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Abstract. In this paper, we employ the notion of weighted sharing to consider the

problem of uniqueness of meromorphic functions when they share two or three sets. Our

results not only improve the results of Qiu and Fang [21], Lin and Yi [27], Lin and Yi

[28], Fang and Lahiri [6] but also supplement the result of Lahiri [13] in a new direction

and consequently provide an answer to the question of Gross [7].
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1. Introduction, Definitions and Results

Let f and g be two nonconstant meromorphic functions defined in the
open complex plane C. We denote by T (r) the maximum of T (r, f) and
T (r, g). The notation S(r) denotes any quantity satisfying S(r) = o(T (r))
as r −→ ∞, outside a possible exceptional set of finite linear measure. If
for some a ∈ C ∪ {∞}, f and g have the same set of a-points with same
multiplicities then we say that f and g share the value a CM (counting
multiplicities). If we do not take the multiplicities into account, f and g

are said to share the value a IM (ignoring multiplicities).
Let S be a set of distinct elements of C∪{∞} and Ef (S) =

∪
a∈S{z : f(z)

−a = 0}, where each zero is counted according to its multiplicity. If we do
not count the multiplicity the set Ef (S) =

∪
a∈S{z : f(z)−a = 0} is denoted

by Ef (S). If Ef (S) = Eg(S) we say that f and g share the set S CM. On
the other hand if Ef (S) = Eg(S), we say that f and g share the set S IM.

In 1976 F. Gross [7] posed the following question:

Question A ([7]) Can one find two finite sets Sj (j = 1, 2) such that any
two nonconstant entire functions f and g satisfying Ef (Sj) = Eg(Sj) for
j = 1, 2 must be identical ?

Now it is natural to ask the following question.
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Question B ([19]) Can one find two finite sets Sj (j = 1, 2) such that
any two nonconstant meromorphic functions f and g satisfying Ef (Sj) =
Eg(Sj) for j = 1, 2 must be identical ?

Also for meromorphic functions in [22] the following question was asked.

Question C ([22]) Can one find three finite sets Sj (j = 1, 2, 3) such that
any two nonconstant meromorphic functions f and g satisfying Ef (Sj) =
Eg(Sj) for j = 1, 2, 3 must be identical ?

Perhaps to the knowledge of the authors during the last several years
the possible answer of Question B {cf. [2], [3], [4], [6], [9], [13], [17], [19],
[22], [25], [28], [29]} is studied by more authors than that of Question C
{cf. [1], [5], [14], [18], [21], [22], [23], [27]} and continuous efforts is being
put in to relax the hypothesis of the results.

In 1998 in the direction of Question B improving all the previous results
Lahiri [9] proved the following result.

Theorem A ([9]) Let S1 = {z : zn + azn−1 + b = 0}, and S2 = {∞},
where a, b are nonzero constants such that zn + azn−1 + b = 0 has no
repeated root and n (≥ 8) is an integer. If f and g are two nonconstant
meromorphic functions having no simple poles such that Ef (Si) = Eg(Si)
for i = 1, 2 then f ≡ g.

Afterwards Fang and Lahiri improved Theorem A as follows.

Theorem B ([6]) Let S1, and S2, be defined as in Theorem A and n (≥
7) is an integer. If f and g are two nonconstant meromorphic functions
having no simple poles such that Ef (Si) = Eg(Si) for i = 1, 2 then f ≡ g.

It should be noted that if two meromorphic functions f and g have no
simple pole then clearly Θ(∞, f) ≥ 1/2 and Θ(∞, g) ≥ 1/2.

In 2001 an idea of gradation of sharing of values and sets known as
weighted sharing was introduced in [11, 12] which measure how close a
shared value is to being shared IM or to being shared CM. We now give the
definition.

Definition 1.1 ([11, 12]) Let k be a nonnegative integer or infinity. For
a ∈ C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f , where an
a-point of multiplicity m is counted m times if m ≤ k and k + 1 times if
m > k. If Ek(a; f) = Ek(a; g), we say that f , g share the value a with
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weight k.

The definition implies that if f , g share a value a with weight k then
z0 is an a-point of f with multiplicity m (≤ k) if and only if it is an a-point
of g with multiplicity m (≤ k) and z0 is an a-point of f with multiplicity
m (> k) if and only if it is an a-point of g with multiplicity n (> k), where
m is not necessarily equal to n.

We write f , g share (a, k) to mean that f, g share the value a with
weight k. Clearly if f, g share (a, k) then f , g share (a, p) for any integer
p, 0 ≤ p < k. Also we note that f , g share a value a IM or CM if and only
if f , g share (a, 0) or (a, ∞) respectively.

Definition 1.2 ([11]) Let S be a set of distinct elements of C∪{∞} and
k be a nonnegative integer or ∞. We denote by Ef (S, k) the set Ef (S, k) =∪

a∈S Ek(a; f).
Clearly Ef (S) = Ef (S, ∞) and Ef (S) = Ef (S, 0).

With the notion of weighted sharing Lahiri improved Theorem B as
follows.

Theorem C ([13]) Let S1 = {z : zn + azn−1 + b = 0}, and S2 = {∞},
where a, b are nonzero constants such that zn+azn−1+b = 0 has no repeated
root and n (≥ 7) is an integer. If f and g are two nonconstant meromorphic
functions such that Ef (S1, 2) = Eg(S1, 2), Ef (S2, ∞) = Eg(S2, ∞) and
Θ(∞; f) + Θ(∞; g) > 1 then f ≡ g.

Definition 1.3 ([27, 28]) We put

δ1)(∞; f) = 1 − lim sup
r−→∞

N(r, ∞; f |= 1)
T (r, f)

Clearly 0 ≤ 1/2δ1)(∞; f) ≤ Θ(∞; f) ≤ δ1)(∞; f).

Recently Yi and Lin [28] have improved Theorem B and obtained the
following result.

Theorem D ([28]) Let S1, and S2, be defined as in Theorem C. If f

and g are two nonconstant meromorphic functions such that Ef (S1, ∞) =
Eg(S1, ∞), Ef (S2, ∞) = Eg(S2, ∞) and δ1)(∞; f) > 9/14 then f ≡ g.

In the direction of Question C Fang and Xu [5] proved the following
result.
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Theorem E ([5]) Let S1 = {z : z3 − z2 − 1 = 0}, S2 = {0} and S3 =
{∞}. Suppose that f and g are two nonconstant meromorphic functions
such that Θ(∞; f) > 1/2 and Θ(∞; g) > 1/2. If Ef (Sj , ∞) = Eg(Sj , ∞)
for j = 1, 2, 3 then f ≡ g.

Dealing with the question of Gross, Qiu and Fang [21] proved the fol-
lowing theorem.

Theorem F ([21]) Let n ≥ 3 be a positive integer S1 = {z : zn − zn−1 −
1 = 0}, S2 = {0}, and S3 = {∞}. Let f and g be two nonconstant meromor-
phic functions whose poles are of multiplicities at least 2. If Ef (Sj , ∞) =
Eg(Sj , ∞) for j = 1, 2, 3 then f ≡ g.

They also gave example to show that the condition that the poles of f(z)
and g(z) are of multiplicities at least 2 can not be removed in Theorem F.
In 2004 Yi and Lin [27] proved the following theorems.

Theorem G ([27]) Let S1 = {z : zn + azn−1 + b = 0}, S2 = {0} and
S3 = {∞}, where a, b are nonzero constants such that zn + azn−1 + b =
0 has no repeated root and n (≥ 3) is an integer. If for two nonconstant
meromorphic functions f and g Ef (Sj , ∞) = Eg(Sj , ∞) for j = 1, 2, 3 and
δ1)(∞; f) > 5/6 then f ≡ g.

In the same paper Yi and Lin [27] also proved the following result.

Theorem H ([27]) Let S1 = {z : zn +azn−1 + b = 0}, S2 = {0} and S3 =
{∞}, where a, b are nonzero constants such that zn + azn−1 + b = 0 has no
repeated root and n (≥ 4) is an integer. If for two nonconstant meromorphic
functions f and g, Ef (Si) = Eg(Si) for i = 1, 2, 3 and Θ(∞; f) > 0 then
f ≡ g.

Yi and Lin [27] remarked that the assumption Ef (S2, ∞) = Eg(S2, ∞)
in Theorems G and H can be relaxed to Ef (S2, 0) = Eg(S2, 0) and also the
assumption Θ(∞; f) > 0 in Theorem H can be replaced by δ1)(∞; f) > 0.

It is to be noted that to deal with Question B and Question C none
of the previous authors considered the situation of further relaxation of
the nature of sharing the set {∞} in the aforesaid theorems. So it will be
interesting to consider the following problem. Is it possible to further relax
the nature of sharing the set {∞} without increasing the cardinalities of the
other range sets ?

In the paper we deal with this problem.
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We now state the following seven theorems which are the main results
of the paper.

Theorem 1.1 Let S1, and S2, be defined as in Theorem C. If f and g

are two nonconstant meromorphic functions having no simple pole such that
Ef (S1, 2) = Eg(S1, 2), Ef (S2, 2) = Eg(S2, 2) then f ≡ g.

Theorem 1.2 Let S1, and S2, be defined as in Theorem C. If f and g are
two nonconstant meromorphic functions such that Ef (S1, 3) = Eg(S1, 3),
Ef (S2, ∞) = Eg(S2, ∞) and δ1)(∞; f) > 14/3n then f ≡ g.

Remark 1.1 Theorem 1.1 and Theorem 1.2 are respectively the improve-
ments of Theorem B and Theorem D.

Theorem 1.3 Let S1, and S2, be defined as in Theorem C. If f and g are
two nonconstant meromorphic functions such that Ef (S1, 3) = Eg(S1, 3),
Ef (S2, ∞) = Eg(S2, ∞) and δ1)(∞; f) + δ1)(∞; g) > 8/(n− 1) then f ≡ g.

Theorem 1.4 Let S1, and S2, be defined as in Theorem C. If f and g are
two nonconstant meromorphic functions such that Ef (S1, 2) = Eg(S1, 2),
Ef (S2, ∞) = Eg(S2, ∞) and δ1)(∞; f) > 31/6n then f ≡ g.

Theorem 1.5 Let S1, S2 and S3 be defined as in Theorem G. If for
two nonconstant meromorphic functions f and g having no simple pole
Ef (S1, 5) = Eg(S1, 5), Ef (S2, 1) = Eg(S2, 1) and Ef (S3, ∞) = Eg(S3, ∞)
then f ≡ g.

Remark 1.2 Theorem 1.5 improves Theorem F.

Theorem 1.6 Let S1, S2 and S3 be defined as in Theorem G. If f

and g are two nonconstant meromorphic functions such that Ef (S1, 6) =
Eg(S1, 6), Ef (S2, 0) = Eg(S2, 0) and Ef (S3, ∞) = Eg(S3, ∞) and δ1)(∞; f)
+δ1)(∞; g) > 5/n then f ≡ g.

Theorem 1.7 Let S1, S2 and S3 be defined as in Theorem H. If f

and g are two nonconstant meromorphic functions such that Ef (S1, 4) =
Eg(S1, 4), Ef (S2, 0) = Eg(S2, 0) and Ef (S3, 6) = Eg(S3, 6) and δ1)(∞; f)
+δ1)(∞; g) > 0 then f ≡ g.

Remark 1.3 Theorem 1.6 and Theorem 1.7 are respectively the improve-
ments of Theorem G and Theorem H.

Following example shows that the condition δ1)(∞; f) + δ1)(∞; g) > 0
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is sharp in Theorem 1.7.

Example 1.1 Let

g = −a
e(n−1)z − 1

enz − 1
, f(z) = ezg(z)

and Si’s be as in Theorem 1.7. Then Ef (Si, ∞) = Eg(Si, ∞) for i = 1, 2, 3
because fn−1(f+a) ≡ gn−1(g+a) and f ≡ ezg. Also δ1)(∞; f)+δ1)(∞; g) =
0 and f 6≡ g.

Though for the standard definitions and notations of the value distri-
bution theory we refer to [8], we now explain some notations which are used
in the paper.

Definition 1.4 ([10]) For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1)
the counting function of simple a points of f . For a positive integer m we
denote by N(r, a; f |≤ m) (N(r, a; f |≥ m)) the counting function of those
a points of f whose multiplicities are not greater(less) than m where each
a point is counted according to its multiplicity.

N(r, a; f |≤ m) (N(r, a; f |≥ m)) are defined similarly, where in count-
ing the a-points of f we ignore the multiplicities.

Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |>
m) are defined analogously.

Definition 1.5 We denote by N(r, a; f |= k) the reduced counting func-
tion of those a-points of f whose multiplicities is exactly k, where k ≥ 2 is
an integer.

Definition 1.6 Let f and g be two nonconstant meromorphic functions
such that f and g share (a, k) where a ∈ C ∪ {∞}. Let z0 be a a-point
of f with multiplicity p, a a-point of g with multiplicity q. We denote
by NL(r, a; f) the counting function of those a-points of f and g where
p > q, by N

(k+1
E (r, a; f) the counting function of those a-points of f and

g where p = q ≥ k + 1; each point in these counting functions is counted
only once. In the same way we can define NL(r, a; g) and N

(k+1
E (r, a; g).

Clearly N
(k+1
E (r, a; f) = N

(k+1
E (r, a; g).

Definition 1.7 ([12]) We denote by N2(r, a; f) the sum N(r, a; f)
+N(r, a; f |≥ 2).
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Definition 1.8 ([11, 12]) Let f , g share a value a IM. We denote by
N∗(r, a; f, g) the reduced counting function of those a-points of f whose
multiplicities differ from the multiplicities of the corresponding a-points of
g.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f)
+NL(r, a; g).

Definition 1.9 ([15]) Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f |
g = b) the counting function of those a-points of f , counted according to
multiplicity, which are b-points of g.

Definition 1.10 ([15]) Let a, b1, b2, . . . , bq ∈ C ∪ {∞}. We denote by
N(r, a; f | g 6= b1, b2, . . . , bq) the counting function of those a-points of
f , counted according to multiplicity, which are not the bi-points of g for
i = 1, 2, . . . , q.

2. Lemmas

In this section we present some lemmas which will be needed in the
sequel. Let F and G be two nonconstant meromorphic functions defined as
follows.

F =
fn−1(f + a)

−b
, G =

gn−1(g + a)
−b

. (2.1)

Henceforth we shall denote by H, Φ and V the following three functions

H =
(F

′′

F ′ − 2F
′

F − 1

)
−

(G
′′

G′ − 2G
′

G − 1

)
,

Φ =
F

′

F − 1
− G

′

G − 1

and

V =
( F

′

F − 1
− F ′

F

)
−

( G
′

G − 1
− G′

G

)
=

F ′

F (F − 1)
− G′

G(G − 1)
.

Lemma 2.1 ([12], Lemma 1) Let F , G share (1, 1) and H 6≡ 0. Then

N(r, 1;F |= 1) = N(r, 1;G |= 1) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 2.2 Let S1 = {z : zn + azn−1 + b = 0}, S2 = {0} and S3 =
{∞}, where a, b are nonzero constants such that zn + azn−1 + b = 0 has
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no repeated root, n (≥ 3) is an integer and F , G be given by (2.1). If for
two nonconstant meromorphic functions f and g Ef (S1, 0) = Eg(S1, 0),
Ef (S2, 0) = Eg(S2, 0), Ef (S3, 0) = Eg(S3, 0) and H 6≡ 0 then

N(r, H)≤N∗(r, 0, f, g) + N(r, 0; f + a |≥ 2)

+N(r, 0; g + a |≥ 2) + N∗(r, 1;F, G)

+N∗(r, ∞; f, g) + N0(r, 0; F
′
) + N0(r, 0;G

′
),

where N0(r, 0;F
′
) is the reduced counting function of those zeros of F

′

which are not the zeros of F (F − 1) and N0(r, 0;G
′
) is similarly defined.

Proof. Since Ef (S1, 0) = Eg(S1, 0) it follows that F and G share (1, 0).
We can easily verify that possible poles of H occur at (i) those zeros of f

and g whose multiplicities are distinct from the multiplicities of the cor-
responding zeros of g and f respectively, (ii) multiple zeros of f + a and
g + a, (iii) those poles of f and g whose multiplicities are distinct from the
multiplicities of the corresponding poles of g and f respectively, (iv) those
1-points of F and G with different multiplicities, (v) zeros of F

′
which are

not the zeros of F (F − 1), (v) zeros of G
′
which are not zeros of G(G − 1).

Since H has only simple poles, the lemma follows from above. This proves
the lemma. ¤

Lemma 2.3 ([15], Lemma 4) If two nonconstant meromorphic functions
F and G share (1, 0), (∞, 0) and H 6≡ 0 then

N(r, H)≤N(r, 0;F |≥ 2) + N(r, 0;G |≥ 2)

+N∗(r, 1; F, G) + N∗(r, ∞; F, G)

+N0(r, 0; F
′
) + N0(r, 0;G

′
),

where N0(r, 0;F
′
) is the reduced counting function of those zeros of F

′

which are not the zeros of F (F − 1) and N0(r, 0;G
′
) is similarly defined.

Lemma 2.4 ([20]) Let f be a nonconstant meromorphic function and let

R(f) =
∑n

k=0 akf
k∑m

j=0 bjf j

be an irreducible rational function in f with constant coefficients {ak} and
{bj} where an 6= 0 and bm 6= 0 Then

T (r, R(f)) = dT (r, f) + S(r, f),
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where d = max{n, m}.

Lemma 2.5 Let F and G be given by (2.1). If f , g share (0, 0) and 0 is
not a Picard exceptional value of f and g. Then Φ ≡ 0 implies F ≡ G.

Proof. Suppose

Φ ≡ 0.

Then by integration we obtain

F − 1 ≡ C(G − 1).

It is clear that if z0 is a zero of f then it is a zero of g. So from (2.1) it
follows that F (z0) = 0 and G(z0) = 0. So C = 1 and hence F ≡ G. ¤

Lemma 2.6 Let F and G be given by (2.1), n ≥ 3 an integer and Φ 6≡ 0.
If F , G share (1, m) and f , g share (0, p), (∞, k), where 0 ≤ m ≤ ∞,
0 ≤ p < ∞ and 0 ≤ k ≤ ∞ then

[(n − 1)p + n − 2]N(r, 0; f |≥ p + 1)

≤ N∗(r, 1;F, G) + N∗(r, ∞; F, G) + S(r, f) + S(r, g).

Proof. Suppose 0 is an e.v.P. (exceptional value Picard) of f and g then
the lemma follows immediately.
Next suppose 0 is not an e.v.P. of f and g. Let z0 be a zero of f with
multiplicity q and a zero of g with multiplicity r. From (2.1) we know that
z0 is a zero of F with multiplicity (n−1)q and a zero of G with multiplicity
(n − 1)r. We note that F and G have no zero of multiplicity t where (n −
1)p < t < (n − 1)(p + 1). So from the definition of Φ it is clear that z0 is a
zero of Φ with multiplicity at least (n − 1)(p + 1) − 1. So we have

[(n − 1)p + n − 2]N(r, 0; f |≥ p + 1)

= [(n − 1)p + n − 2]N(r, 0; g |≥ p + 1)

= [(n − 1)p + n − 2]N (r, 0; F |≥ n(p + 1))

≤ N(r, 0;Φ)

≤ N(r, ∞; Φ) + S(r, f) + S(r, g)

≤ N∗(r, ∞;F, G) + N∗(r, 1;F, G) + S(r, f) + S(r, g).

¤
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Lemma 2.7 Let F and G be given by (2.1) and f , g share (∞, 0) and ∞
is not a Picard exceptional value of f and g. Then V ≡ 0 implies F ≡ G

Proof. Suppose

V ≡ 0.

Then by integration we obtain

1 − 1
F

≡ A
(
1 − 1

G

)
.

It is clear that if z0 is a pole of f then it is a pole of g. Hence from the
definition of F and G we have 1/F (z0) = 0 and 1/G(z0) = 0. So A = 1 and
hence F ≡ G. ¤

Lemma 2.8 Let F , G be given by (2.1) and V 6≡ 0. If f , g share (0, 0),
(∞, k), where 0 ≤ k < ∞ and F , G share (1, m) then the poles of F and
G are the zeros of V and
( i ) (nk + n − 1)N(r, ∞; f)

≤nkN(r, ∞; f |= 1) + n(k − 1)N(r, ∞; f |= 2)
+ · · · + nN(r, ∞; f |= k)
+N∗(r, 0; f, g) + N(r, 0; f + a) + N(r, 0; g + a)
+NL(r, 1;F ) + NL(r, 1; G) + S(r, f) + S(r, g).

(ii) (2n − 1)N(r, ∞; f)
≤N∗(r, 0; f, g) + N(r, 0; f + a) + N(r, 0; g + a) + NL(r, 1;F )

+NL(r, 1;G) + nN(r, ∞; f |= 1) + S(r, f) + S(r, g).
Similar expressions hold for g.

Proof. Suppose ∞ is an e.v.P. of f and g then the lemma follows immedi-
ately.
Next suppose ∞ is not an e.v.P. of f and g. Since f , g share (∞; k), it
follows that F , G share (∞; nk) and so a pole of F with multiplicity p (≥
nk + 1) is a pole of G with multiplicity r (≥ nk + 1) and vice versa. We
note that F and G have no pole of multiplicity q where nk < q < nk + n.
Also any common pole of F and G of multiplicity p ≤ nk is a zero of V of
multiplicity p − 1. Since

(n − 1)N(r, ∞; f |= 1) + (2n − 1)N(r, ∞; f |= 2) + . . .

+ (nk − 1)N(r, ∞; f |= k) + (nk + n − 1)N(r, ∞; f |≥ k + 1)

= (nk + n − 1)N(r, ∞; f) − nkN(r, ∞; f |= 1)
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− n(k − 1)N(r, ∞; f |= 2) − · · · − nN(r, ∞; f |= k)

using Lemma 2.4 we get from the definition of V

(n − 1)N(r, ∞; f)

≤ (2n − 1)N(r, ∞; f) − nN(r, ∞; f |= 1)

≤ (n − 1)N(r, ∞; f |= 1) + (2n − 1)N(r, ∞; f |= 2) + · · ·
+ (nk − 1)N(r, ∞; f |= k) + (nk + n − 1)N(r, ∞; f |≥ k + 1)

≤ N(r, 0;V )

≤ N(r, ∞; V ) + S(r, f) + S(r, g)

≤ N∗(r, 0; f, g) + N(r, 0; f + a) + N(r, 0; g + a)

+ N∗(r, 1;F, G) + S(r, f) + S(r, g).

Now (i) and (ii) follows from the above discussion. ¤

Lemma 2.9 Let F , G be given by (2.1) and V 6≡ 0. If f , g share (∞, k),
where 0 ≤ k < ∞ and F , G share (1, m) then the poles of F and G are the
zeros of V and
( i ) (nk + n − 1)N(r, ∞; f)

≤nkN(r, ∞; f |= 1) + n(k − 1)N(r, ∞; f |= 2)
+ · · · + nN(r, ∞; f |= k)
+N(r, 0; f) + N(r, 0; g) + N(r, 0; f + a)
+N(r, 0; g + a) + NL(r, 1; F ) + NL(r, 1; G) + S(r, f) + S(r, g).

(ii) (2n − 1)N(r,∞; f)
≤N(r, 0; f) + N(r, 0; g) + N(r, 0; f + a) + N(r, 0; g + a)

+NL(r, 1;F ) + NL(r, 1;G) + nN(r,∞; f |= 1) + S(r, f) + S(r, g).
Similar expressions hold for g.

Proof. We omit the proof since the proof of the lemma can be carried out
in the line of proof of Lemma 2.8. ¤

Lemma 2.10 ([1], Lemma 3) Let f and g be two nonconstant meromor-
phic functions sharing (1, m), where 2 ≤ m < ∞. Then

N(r, 1; f |= 2) + 2N(r, 1; f |= 3) + · · · + (m − 1)N(r, 1; f |= m)

+mNL(r, 1; f) + (m + 1)NL(r, 1; g) + mN
(m+1
E (r, 1; f)

≤ N(r, 1; g) − N(r, 1; g).
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Lemma 2.11 Let F , G be given by (2.1) and they share (1, m). If f , g

share (0, p), (∞, k) where 2 ≤ m < ∞ and H 6≡ 0. Then

T (r, F )≤N(r, 0; f) + N(r, 0; g) + N∗(r, 0; f, g) + N2(r, 0; f + a)

+N2(r, 0; g + a) + N(r, ∞; f) + N(r, ∞; g)

+N∗(r, ∞; f, g) − m(r, 1; G) − N(r, 1; F |= 3)

− · · · − (m − 2)N(r, 1; F |= m) − (m − 2)NL(r, 1;F )

−(m − 1)NL(r, 1;G) − (m − 1)N (m+1
E (r, 1; F )

+S(r, F ) + S(r, G)

Proof. By the second fundamental theorem we get

T (r, F ) + T (r, G)≤N(r, 0;F ) + N(r, ∞; F ) + N(r, 0;G) (2.2)

+N(r, ∞; G) + N(r, 1;F ) + N(r, 1;G)

−N0(r, 0;F
′
) − N0(r, 0; G

′
)

+S(r, F ) + S(r, G).

In view of Definition 1.8, using Lemmas 2.1, 2.2 and 2.10 we see that

N(r, 1;F ) + N(r, 1;G) (2.3)

≤ N(r, 1; F |= 1) + N(r, 1; F |= 2) + N(r, 1;F |= 3)

+ · · · + N(r, 1;F |= m) + N
(m+1
E (r, 1; F )

+ NL(r, 1; F ) + NL(r, 1;G) + N(r, 1;G)

≤ N∗(r, 0; f, g) + N(r, 0; f + a |≥ 2) + N(r, 0; g + a |≥ 2)

+ N∗(r, ∞; f, g) + NL(r, 1;F ) + NL(r, 1;G)

+ N(r, 1;F |= 2) + · · · + N(r, 1;F |= m)

+ N
(m+1
E (r, 1;F ) + NL(r, 1;F ) + NL(r, 1;G)

+ T (r, G) − m(r, 1;G) + O(1) − N(r, 1;F |= 2)

− 2N(r, 1;F |= 3) − (m − 1)N(r, 1; F |= m) − · · ·

− mN
(m+1
E (r, 1;F ) − mNL(r, 1; F ) − (m + 1)NL(r, 1; G)

+ N0(r, 0;F
′
) + N0(r, 0; G

′
) + S(r, F ) + S(r, G)

≤ N∗(r, 0; f, g) + N(r, 0; f + a |≥ 2) + N(r, 0; g + a |≥ 2)

+ N∗(r, ∞; f, g) + T (r, G) − m(r, 1;G) − N(r, 1;F |= 3)

− 2N(r, 1;F |= 4) − · · · − (m − 2)N(r, 1; F |= m)
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− (m − 2)NL(r, 1;F ) − (m − 1)NL(r, 1;G)

− (m − 1)N (m+1
E (r, 1;F ) + N0(r, 0;F

′
) + N0(r, 0;G

′
)

+ S(r, F ) + S(r, G)

From (2.2) and (2.3) in view of Definition 1.7 the lemma follows. ¤

Lemma 2.12 Let F , G be given by (2.1) and they share (1, m). If f , g

share (∞, k) where 2 ≤ m < ∞ and H 6≡ 0. Then

T (r, F )≤ 2N(r, 0; f) + 2N(r, 0; g) + N2(r, 0; f + a)

+N2(r, 0; g + a) + N(r, ∞; f) + N(r, ∞; g)

+N∗(r, ∞; f, g) − m(r, 1;G) − N(r, 1;F |= 3)

− · · · − (m − 2)N(r, 1;F |= m) − (m − 2)NL(r, 1;F )

−(m − 1)NL(r, 1; G) − (m − 1)N (m+1
E (r, 1;F )

+S(r, F ) + S(r, G)

Proof. We omit the proof since using Lemmas 2.1, 2.3 and 2.10 the proof
of the lemma can be carried out in the line of proof of Lemma 2.11. ¤

Lemma 2.13 ([14], Lemma 3) Let f , g be two nonconstant meromor-
phic functions sharing (0, ∞), (∞, ∞) and Θ(∞; f) + Θ(∞; g) > 0. Then
fn−1(f + a) ≡ gn−1(g + a) implies f ≡ g, where n (≥ 2) is an integer and
a is a nonzero finite constant.

Lemma 2.14 ([13], Lemma 5) If two nonconstant meromorphic functions
f , g share (∞, 0) then for n ≥ 2

fn−1(f + a)gn−1(g + a) 6≡ b2,

where a, b are finite nonzero constants.

Lemma 2.15 ([26], Lemma 6) If H ≡ 0, then F , G share (1, ∞). If
further F , G share (∞, 0) then F , G share (∞, ∞).

Lemma 2.16 ([16]) If N(r, 0; f (k) | f 6= 0) denotes the counting function
of those zeros of f (k) which are not the zeros of f , where a zero of f (k) is
counted according to its multiplicity then

N(r, 0; f (k) | f 6= 0) ≤ kN(r, ∞; f) + N(r, 0; f |< k)

+ kN(r, 0; f |≥ k) + S(r, f).
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Lemma 2.17 Let F , G be given by (2.1) and they share (1, m). Also let
ω1, ω2 . . . ωn are the members of the set S1 = {z : zn+azn−1+b = 0}, where
a, b are nonzero constants such that zn +azn−1 + b = 0 has no repeated root
and n (≥ 3) is an integer. Then

NL(r, 1; F )≤ 1
m + 1

[
N(r, 0; f) + N(r, ∞; f) − N⊗(r, 0; f

′
)
]

+S(r, f),

where N⊗(r, 0; f
′
) = N(r, 0; f

′ | f 6= 0, ω1, ω2, . . . , ωn).

Proof. Using Lemma 2.4 and Lemma 2.16 we see that

NL(r, 1; F )≤N(r, 1; F |≥ m + 2)

≤ 1
m + 1

(
N(r, 1;F ) − N(r, 1;F )

)
≤ 1

m + 1

[ n∑
j=1

(
N(r, ωj ; f) − N(r, ωj ; f)

)]
≤ 1

m + 1
(
N(r, 0; f

′ | f 6= 0) − N⊗(r, 0; f
′
)
)

≤ 1
m + 1

[
N(r, 0; f) + N(r, ∞; f) − N⊗(r, 0; f

′
)
]

+S(r, f).

This proves the lemma. ¤

Lemma 2.18 Under the condition of Lemma 2.17

N∗(r, 1;F, G)≤ 1
m

[
N(r, 0; f) + N(r, ∞; f) − N⊗(r, 0; f

′
)
]

+S(r, f).

Proof. Since

N∗(r, 1;F, G)≤N(r, 1;F |≥ m + 1)

≤ 1
m

(
N(r, 1;F ) − N(r, 1;F )

)
,

the proof of the lemma can be carried out in the line of proof of Lemma 2.17.
¤



Uniqueness of meromorphic functions sharing two or three sets 521

Lemma 2.19 ([24]) Let F , G be two nonconstant meromorphic functions
sharing (1, ∞) and (∞, ∞). If

N2(r, 0; F ) + N2(r, 0;G) + 2N(r, ∞; F ) < λT1(r) + S1(r),

where λ < 1 and T1(r) = max{T (r, F ), T (r, G)} and S1(r) = o(T1(r)),
r −→ ∞, outside a possible exceptional set of finite linear measure, then
F ≡ G or FG ≡ 1.

Lemma 2.20 Let F , G be given by (2.1) n ≥ 3 and F , G share (1, m).
If f , g share (0, 0), (∞, k), δ1)(∞; f) + δ1)(∞; g) > 5/n and H ≡ 0. Then
f ≡ g.

Proof. Since H ≡ 0 we get from Lemma 2.15 F and G share (1, ∞) and
(∞, ∞). If possible let us suppose F 6≡ G. Then from Lemma 2.5 and
Lemma 2.6 we have

N(r, 0; f) = N(r, 0; g) = S(r).

Again from Lemma 2.7 and Lemma 2.8 we have for ε > 0

N(r, ∞; f) + N(r, ∞; g)

≤ 4
2n − 1

T (r) +
n

2n − 1
N(r, ∞; f |= 1) +

n

2n − 1
N(r, ∞; g |= 1)

≤
[2n + 4
2n − 1

− n

2n − 1
(
δ1)(∞; f) + δ1)(∞; g) − 2ε

)]
T (r)

Therefore we see that

N2(r, 0;F ) + N2(r, 0;G) + 2N(r,∞; F ) (2.4)

≤ 2N(r, 0; f) + 2N(r, 0; g) + N2(r, 0; f + a) + N2(r, 0; g + a)

+ 2N(r, ∞; f)

≤
[
2 +

2n + 4
2n − 1

− n

2n − 1
(
δ1)(∞; f) + δ1)(∞; g) − 2ε

)]
T (r) + S(r).

Using Lemma 2.4 we obtain

T1(r) = n max{T (r, f), T (r, g)} + O(1) = nT (r) + O(1). (2.5)

So again using Lemma 2.4 we get from (2.4) and (2.5)

N2(r, 0;F ) + N2(r, 0;G) + 2N(r, ∞; F )

≤
[
3 + 5/(2n − 1) − {n/(2n − 1)}

(
δ1)(∞; f) + δ1)(∞; g) − 2ε

)]
n
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× T1(r) + S(r).

Since δ1)(∞; f) + δ1)(∞; g) > 5/n and ε > 0 is arbitrary for n ≥ 3 we have
by Lemma 2.19 FG ≡ 1, which is impossible by Lemma 2.14. Hence F ≡ G

i.e. fn−1(f + a) ≡ gn−1(g + a). This together with the assumption that
f and g share (0, 0) implies that f and g share (0, ∞). Now the lemma
follows from Definition 1.3 and Lemma 2.13. ¤

Lemma 2.21 ([28], Lemma 2) Suppose F and G be defined as in (2.1)
and Θ(∞; f) > 2/(n − 1). Then F ≡ G implies f ≡ g, where n (≥ 7) is an
integer and a is a nonzero finite constant.

Lemma 2.22 Let F , G be given by (2.1) n ≥ 7 and F , G share (1, m).
If f , g share (∞, k), δ1)(∞; f) > 14/3n and H ≡ 0. Then f ≡ g.

Proof. Since H ≡ 0 we get from Lemma 2.15 F and G share (1, ∞) and
(∞, ∞). If possible let us suppose F 6≡ G. From Lemmas 2.7 and 2.9 we
have for ε > 0 that

N2(r, 0;F ) + N2(r, 0;G) + 2N(r, ∞; F )

≤ 2N(r, 0; f) + 2N(r, 0; g) + N2(r, 0; f + a) + N2(r, 0; g + a)

+ 2N(r, ∞; f)

≤
[
7 +

9
2n − 1

− 2n

2n − 1
(
δ1)(∞; f) − ε

)]
T (r) + S(r),

So using Lemmas 2.19, 2.14 we can deduce a contradiction. Hence F ≡
G. Noting that (1/2)δ1)(∞; f) > 7/3n ≥ 2/(n − 1) for n ≥ 7, in view of
Definition 1.3 and Lemma 2.21 we can prove f ≡ g. ¤

Lemma 2.23 Let F , G be given by (2.1) n ≥ 4 and F , G share (1, m).
If f , g share (0, 0), (∞, k), δ1)(∞; f) + δ1)(∞; g) > 0 and H ≡ 0. Then
f ≡ g.

Proof. We omit the proof since the proof can be carried out in the line of
proof of Lemma 2.20. ¤

Lemma 2.24 ([14], Lemma 9) Let f and g be two nonconstant meromor-
phic functions such that Θ(∞; f) + Θ(∞; g) > 4/(n − 1), where n (≥ 4) is
an integer. Then fn−1(f + a) ≡ gn−1(g + a) implies f ≡ g, a is a finite
nonzero constant.
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3. Proofs of the theorems

Proof of Theorem 1.1. Let F , G be given by (2.1). Then F and G share
(1, 2), (∞; 2n). We consider the following cases.

Case 1: Let H 6≡ 0. Then F 6≡ G. Suppose ∞ is not an e.v.P. of f and g.
Then by Lemma 2.7 we get V 6≡ 0. Hence from Lemmas 2.4, 2.9, 2.12 and
2.17 we obtain

nT (r, f)≤ 2N(r, 0; f) + 2N(r, 0; g) + N2(r, 0; f + a) (3.1)

+N2(r, 0; g + a) + N(r, ∞; f |≥ 2) + N(r, ∞; g |≥ 2)

+N(r, ∞; f |≥ 3) − NL(r, 1;G) + S(r, f) + S(r, g)

≤ 3T (r, f) + 3T (r, g) +
2

2n − 1

{
2T (r, f) + 2T (r, g)

+
1
3
(N(r, 0; f) + N(r, ∞; f))

}
+

1
3n − 1

{
2T (r, f)

+ 2T (r, g) +
1
3
(N(r, 0; f) + N(r, ∞; f))

}
+ S(r, f) + S(r, g)

≤
[
6 +

28
3(2n − 1)

+
14

3(3n − 1)

]
T (r) + S(r).

If ∞ is an e.v.P. of f and g then (3.1) automatically holds.
In the same manner we can obtain

nT (r, g) ≤
[
6 +

28
3(2n − 1)

+
14

3(3n − 1)

]
T (r) + S(r). (3.2)

Combining (3.1) and (3.2) we see that[
n − 6 − 28

3(2n − 1)
− 14

3(3n − 1)

]
T (r) ≤ S(r),

which leads to a contradiction for n ≥ 7.

Case 2: Let H ≡ 0. Then noting that f and g have no simple poles implies
δ1)(∞; f) = 1 > 14/3n the theorem follows from Lemma 2.22. ¤

Proof of Theorem 1.2. Let F , G be given by (2.1). Then F and G share
(1, 3), (∞;∞). We consider the following cases.
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Case 1: Let H 6≡ 0. Then F 6≡ G. Suppose ∞ is not an e.v.P. of f and g.
Then by Lemma 2.7 we get V 6≡ 0. Hence from Lemmas 2.4, 2.9 and 2.12
we obtain for ε > 0

nT (r, f)≤ 2N(r, 0; f) + 2N(r, 0; g) + N2(r, 0; f + a) (3.3)

+N2(r, 0; g + a) + N(r, ∞; f) + N(r, ∞; g)

−N∗(r, 1;F, G) − NL(r, 1;G) + S(r, f) + S(r, g)

≤ 3T (r, f) + 3T (r, g)

+
2

2n − 1
{2T (r, f) + 2T (r, g) + N∗(r, 1;F, G)}

+
2n

2n − 1
N(r, ∞; f |= 1) − N∗(r, 1;F, G)

+S(r, f) + S(r, g)

≤
[
6 +

8
(2n − 1)

]
T (r) +

2n

2n − 1
{1 − δ1)(∞; f) + ε}T (r)

+S(r)

≤
[
7 +

9
(2n − 1)

− 2n

2n − 1
{δ1)(∞; f) − ε}

]
T (r) + S(r).

If ∞ is an e.v.P. of f and g then (3.3) automatically holds.
In the same way we can obtain

nT (r, g)≤
[
7 +

9
(2n − 1)

− 2n

2n − 1
{δ1)(∞; f) − ε}

]
T (r) (3.4)

+S(r).

Combining (3.3) and (3.4) we see that[
n − 7 − 9

(2n − 1)
+

2n

2n − 1
{δ1)(∞; f) − ε}

]
T (r) ≤ S(r).

Since δ1)(∞; f) > 14/3n there exist a ρ > 0 such that δ1)(∞; f) = 14/3n +
ρ. We choose 0 < ε < ρ then we get a contradiction.

Case 2: Let H ≡ 0. Now the theorem follows from Lemma 2.22. ¤

Proof of Theorem 1.3. Let F , G be given by (2.1). Then F and G share
(1, 3), (∞;∞). We consider the following cases.

Case 1: Let H 6≡ 0. Then F 6≡ G. Suppose ∞ is not an e.v.P. of f and g.
Then by Lemma 2.7 we get V 6≡ 0. Hence from Lemmas 2.4, 2.9 and 2.12
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we obtain for ε > 0

nT (r, f) (3.5)

≤3T (r, f)+3T (r, g)+
2

2n−1
{2T (r, f)+2T (r, g)+N∗(r, 1;F, G)}

+
n

2n−1
N(r, ∞;f |=1)+

n

2n−1
N(r, ∞;g |=1)−N∗(r, 1;F, G)

+S(r, f)+S(r, g)

≤
[
6+

8
(2n−1)

]
T (r)+

n

2n−1
{2−δ1)(∞;f)−δ1)(∞;g)+2ε}T (r)

+S(r)

≤
[
7+

9
(2n−1)

− n

2n−1
{δ1)(∞;f)+ δ1)(∞;g)−2ε}

]
T (r)+S(r).

If ∞ is an e.v.P. of f and g then (3.5) automatically holds.
In the same way we can obtain

nT (r, g)≤
[
7 +

9
(2n − 1)

− n

2n − 1
{δ1)(∞; f) + δ1)(∞; g) − 2ε}

]
×T (r) + S(r). (3.6)

Combining (3.5) and (3.6) we see that[
n − 7 − 9

(2n − 1)
+

n

2n − 1
{δ1)(∞; f) + δ1)(∞; g) − 2ε}

]
T (r)

≤ S(r).

Noting that δ1)(∞; f) + δ1)(∞; g) > 8/(n− 1) and ε > 0 is arbitrary we get
a contradiction.

Case 2: Let H ≡ 0. Since (1/2)
(
δ1)(∞; f) + δ1)(∞; g)

)
> 4/(n − 1), pro-

ceeding in the same way as done in the proof of Lemma 2.22 the theorem
follows from Definition 1.3 and Lemma 2.24. ¤

Proof of Theorem 1.4. We omit the proof since using Lemmas 2.4, 2.9,
2.12 and 2.17 and proceeding in the same way as done in Theorem 1.2 the
proof of the theorem can be carried out. ¤

Proof of Theorem 1.5. Let F , G be given by (2.1). Then F and G share
(1, 5), (∞;∞). We consider the following cases.
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Case 1: Let H 6≡ 0. Then F 6≡ G. Suppose 0, ∞ are not exceptional
values Picard of f and g. Then by Lemma 2.5 and Lemma 2.7 we get Φ 6≡ 0
and V 6≡ 0. Hence from Lemmas 2.4, 2.6, 2.8 and 2.11 we obtain

nT (r, f)≤ 2N(r, 0; f) + N(r, 0; f |≥ 2) + N2(r, 0; f + a) (3.7)

+N2(r, 0; g + a) + N(r, ∞; f) + N(r, ∞; g)

−3N∗(r, 1; F, G) − NL(r, 1; G) + S(r, f) + S(r, g)

≤
( 2

n − 2
+

2
2n − 1

)
N∗(r, 1;F, G)

+
(
1 +

2
2n − 1

)
N(r, 0; f |≥ 2) +

(
2 +

4
2n − 1

)
T (r)

−3N∗(r, 1; F, G) − NL(r, 1; G) + S(r)

≤
(
2 +

4
2n − 1

)
T (r) +

2n + 1
(2n − 1)(2n − 3)

NL(r, 1; F )

+S(r)

≤
(
2 +

4
2n − 1

+
2n + 1

3(2n − 1)(2n − 3)

)
T (r) + S(r).

If 0, ∞ are e.v.P. of f and g then (3.7) automatically holds.
In the same manner we can obtain

nT (r, g) ≤
(
2 +

4
2n − 1

+
2n + 1

3(2n − 1)(2n − 3)

)
T (r) + S(r). (3.8)

Combining (3.7) and (3.8) we see that(
n − 2 − 4

(2n − 1)
− 2n + 1

3(2n − 1)(2n − 3)

)
T (r) ≤ S(r),

which is a contradiction for n ≥ 3.

Case 2: Let H ≡ 0. Noting that f and g have no simple poles implies
δ1)(∞; f) + δ1)(∞; g) = 2 > 5/n the theorem follows from Lemma 2.20.

¤

Proof of Theorem 1.6. Let F , G be given by (2.1). Then F and G share
(1, 6), (∞;∞). We consider the following cases.

Case 1: Let H 6≡ 0. Then F 6≡ G. Suppose 0, ∞ are not exceptional
values Picard of f and g. Then by Lemma 2.5 and Lemma 2.7 we get Φ 6≡ 0
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and V 6≡ 0. Hence from Lemmas 2.4, 2.6, 2.8 and 2.11 we obtain for ε > 0

nT (r, f)≤ 3N(r, 0; f) + N2(r, 0; f + a) + N2(r, 0; g + a) (3.9)

+N(r, ∞; f) + N(r, ∞; g) − 4N∗(r, 1;F, G)

−NL(r, 1;G) + S(r, f) + S(r, g)

≤
[
3 +

2
2n − 1

]
N(r, 0; f) +

(
2 +

4
2n − 1

)
T (r)

+
2

2n − 1
N∗(r, 1; F, G) +

n

2n − 1
N(r, ∞; f |= 1)

+
n

2n − 1
N(r, ∞; g |= 1) − 4N∗(r, 1;F, G)

+S(r, f) + S(r, g)

≤
[ 3
n − 2

+
2

(n − 2)(2n − 1)
+

2
2n − 1

]
N∗(r, 1;F, G)

+
(
2 +

4
2n − 1

)
T (r)

+
n

2n − 1
{2 − δ1)(∞; f) − δ1)(∞; g) + 2ε}T (r)

−4N∗(r, 1;F, G) + S(r)

≤
[
3 +

5
(2n − 1)

− n

2n − 1
{δ1)(∞; f) + δ1)(∞; g) − 2ε}

]
×T (r) + S(r).

If 0, ∞ are e.v.P. of f and g then (3.9) automatically holds.
In the same way we can obtain

nT (r, g)≤
[
3 +

5
(2n − 1)

− n

2n − 1
{δ1)(∞; f) + δ1)(∞; g) − 2ε}

]
×T (r) + S(r). (3.10)

Combining (3.9) and (3.10) we see that[
n − 3 − 5

(2n − 1)
+

n

2n − 1
{δ1)(∞; f) + δ1)(∞; g) − 2ε}

]
× T (r) ≤ S(r).

Since δ1)(∞; f) + δ1)(∞; g) > 5/n there exist a ρ > 0 such that δ1)(∞; f) +
δ1)(∞; g) = 5/n + ρ. We choose 0 < ε < ρ/2 then we get a contradiction.

Case 2: Let H ≡ 0. Now the theorem follows from Lemma 2.20. ¤
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Proof of Theorem 1.7. Let F , G be given by (2.1). Then F and G share
(1, 4), (∞; 6n). We consider the following cases.

Case 1: Let H 6≡ 0. Then F 6≡ G. Suppose 0, ∞ are not exceptional
values Picard of f and g. Then by Lemma 2.5 and Lemma 2.7 we get
Φ 6≡ 0 and V 6≡ 0. Noting that f , g share (0, 0) and (∞, 6) implies
N∗(r, 0; f, g) ≤ N(r, 0; f) = N(r, 0; g) and N∗(r, ∞; f, g) ≤ N(r, ∞; f |≥
7) = N(r, ∞; g |≥ 7) from Lemmas 2.4, 2.6 and 2.11 we obtain

nT (r, f) + nT (r, g) (3.11)

≤ 6N(r, 0; f) + 2T (r, f) + 2T (r, g) + 4N(r, ∞; f)

+ 2N(r, ∞; f |≥ 7) − 5N∗(r, 1;F, G) + S(r, f) + S(r, g)

≤ 2T (r, f) + 2T (r, g) +
{

2 +
6

n − 2

}
N(r, ∞; f |≥ 7)

+
6

n − 2
N∗(r, 1; F, G) + 4N(r, ∞; f) − 5N∗(r, 1;F, G)

+ S(r, f) + S(r, g)

So respectively using Lemma 2.8 for k = 6 and k = 0, Lemma 2.6 for p = 0
and Lemma 2.18 we get from (3.11) that

nT (r, f) + nT (r, g) (3.12)

≤
(
2 +

3(n + 1)
(n − 2)(7n − 1)

)
{T (r, f) + T (r, g)}

+
( 6

n − 2
+

2(n + 1)
(n − 2)(7n − 1)

)
N∗(r, 1;F, G)

+
4

n − 1
[T (r, f) + T (r, g) + N(r, 0; f) + N∗(r, 1;F, G)]

− 5N∗(r, 1; F, G) + S(r, f) + S(r, g)

≤
(
2 +

4
n − 1

+
3(n + 1)

(n − 2)(7n − 1)

)
{T (r, f) + T (r, g)}

+
( 6

n − 2
+

4
n − 1

+
2(n + 1)

(n − 2)(7n − 1)

)
N∗(r, 1;F, G)

+
4

(n − 1)(n − 2)
[N(r, ∞; f |≥ 7) + N∗(r, 1;F, G)]

− 5N∗(r, 1; F, G) + S(r, f) + S(r, g)

≤
(
2 +

4n − 6
(n − 1)(n − 2)

+
3(n + 1)

(n − 2)(7n − 1)

)
{T (r, f) + T (r, g)}
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+
( 10

n − 2
+

2(n + 1)
(n − 2)(7n − 1)

− 5
)
N∗(r, 1;F, G)

+ S(r, f) + S(r, g)

≤
(
2 +

(4n − 6)
(n − 1)(n − 2)

+
7(n + 1)

2(n − 2)(7n − 1)

)
{T (r, f) + T (r, g)}

+ S(r, f) + S(r, g).

From (3.12) we get a contradiction for n ≥ 4.
If 0, ∞ are e.v.P. of f and g then (3.12) automatically holds.

Case 2: Let H ≡ 0. Now the theorem follows from Lemma 2.23. ¤
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