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Global estimates of maximal operators generated

by dispersive equations

Yonggeun Cho and Yongsun Shim

(Received November 20, 2007; Revised June 19, 2008)

Abstract. Let Tf(x, t) = eitφ(D)f be the solution of a general dispersive equation with

phase function φ and initial data f in a Sobolev space. When the phase φ has a suitable

growth condition and the initial data f has an angular regularity, we prove global and

local Lp estimates for maximal operators generated by T . Here we do not assume the

radial symmetry for the initial data. These results reveal some sufficient conditions on

initial data for the boundedness of maximal operators in contrast to the negative results

of [28]. We also prove a weighted L2 maximal estimate, which is an extension of [19] to

nonradial initial data.
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1. Introduction

The general dispersive equation is defined by

iut(x) = −φ(D)u(x), on Rn × R,

u(x, 0) = f(x), (x, t) ∈ Rn+1(n ≥ 2),

where D = −i∇ and φ is a smooth phase function. The formal solution of
this equation is

u(x, t) = Tf(x, t) =
1

(2π)n

∫
ei(x·ξ+tφ(ξ))f̂(ξ)dξ, (1.1)

where f̂(ξ) =
∫

e−ix·ξf(x)dx. Now let us define maximal operators:

T ∗f(x) ≡ sup
−1≤t≤1

|Tf(x, t)|, T ∗∗f(x) ≡ sup
t∈R

|Tf(x, t)|.

In this paper, we try to find mapping properties of T ∗∗ or T ∗ associated
to various phase functions. A typical phase is |ξ|a (a 6= 0). Mappings are
from a mixed Sobolev space Hs(Hm

ω ) to a weighted Lp(wdx). The estimates
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are of the form:

‖T ∗f‖Lp(wdx) or ‖T ∗∗f‖Lp(wdx) ≤ C‖f‖Hs(Hm
ω ). (1.2)

Here, ‖g‖p
Lp(wdx) =

∫
Rn |g(x)|pw(x)dx for some nonnegative measurable

function w, Lp = Lp(Rn). The mixed Sobolev space norm is

‖f‖Hs(Hm
ω ) = ‖(1 − ∆)s/2(1 − ∆ω)m/2f‖L2

where ∆ω is the Laplace-Beltrami operator defined on the unit sphere Sn−1.
Let us now impose an assumption on the phase φ as follows:

A. Let φ be a radial function such that for some a ∈ R ( 6= 0, 1), φ ∈
C2(Rn \ {0}) and there exist positive constants c1, c2 such that

c1|ξ|a−k ≤ |φ(k)(ξ)| ≤ c2|ξ|a−k (k = 0, 1, 2), in Rn \ {0}.

The maximal inequality (1.2) is motivated from the well-known point-
wise convergence problem: limt→0 u(x, t) = f(x) a.e. x, for f ∈ H1/4(Rn).
The local and global Lp estimates of the maximal operators have been stud-
ied by many authors [3, 4, 8, 10, 12, 15, 25] and [26]. P. Sjölin [20] and L.
Vega [26] obtained the strong necessary condition (s ≥ 1/4) on the point-
wise convergence problem. In particular, P. Sjölin showed that the maximal
operator T ∗∗ cannot have the global L2 boundedness (see [17]). Thus we
consider global Lp or local (or weighted) L2 estimates. For a global weighted
and a local L2 estimates see [6] and [9].

In this paper we show a nonweighted global Lp estimate under an an-
gular regularity condition on f . See (1) of the main theorem below. In
view of the negative result of [28], where S. Wang showed that if p >

2, then there exist f0 and Yk such that if f(x) = |x|kf0(|x|)Yk(x′) for
some spherical harmonic function Yk of order k (for instance see [23]), then
limk→∞ ‖T ∗f‖Lp(B)/‖f‖H1/4 = ∞ for any ball B, we see that our result
suggests a sufficient condition on f for Lp maximal inequality (1.2). The
same method leads us to an extension of [27], which is stated in part (2) of
the Theorem 1.1.

P. Sjölin also showed the global estimate of T ∗. Namely, ‖T ∗f‖L2 ≤
C‖f‖Hs holds for s > a/4 and radial f , and fails for s < a/4 (a > 1) (see
[19, 20]). We still do not know about the critical case s = a/4. As related
topics, we refer the readers to [1] and [16] in which some global smoothing
properties of the critical case (s = 1/2, a = 2) are considered. Our last
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result ((4) below) is an extension of the sufficiency condition of Sjölin. We
consider a weighted L2 inequality for a general f with angular regularity
even in the case 0 < a < 1.

Now we state our main results.

Theorem 1.1 Let f be a function in Hs(Hm
ω ). Then

(1) ‖T ∗∗f‖Lp ≤ C‖f‖Hs(Hm
ω ) holds for s ∈ (1/4, 1/2), m > (3n − 5)/6 −

2/p, 4n/(2n − 1) ≤ p < 2n/(n − 2s) and 0 < a 6= 1
(2) ‖T ∗∗f‖Lp(w dx) ≤ C‖f‖Hs(Hm

ω ) holds for s ∈ [1/4, 1/2), m > (3n +
1)/6 − 2s/n, p = 2n/(n − 2s), 0 < a 6= 1 and w = |x|b/(1 + |x|)b with
b > 0

(3) ‖T ∗f‖Lp(wdx) ≤ C‖f‖Hs(Hm
ω ) holds for 0 < a < 1, m > (3n + 1)/6 −

2s/n, a/4 < s < 1/4, p = 4n(1 − a)/{2n(1 − a) + a − 4s} and w =
|x|b1/(1 + |x|)b1+b2 with b1 > 0 and b2 > 1 − (n − 1)(p/2 − 1)

(4) ‖T ∗f‖L2(w dx) ≤ C‖f‖Hs(Hm
ω ) holds for s > a/4, m > n/2, 0 < a 6= 1

and w = (1 + |x|)−b with b > 0.

The parts (1), (2) and (3) are obtained by using a boundedness prop-
erty of one dimensional oscillatory integral of the form

∫
R ei(tφ(ξ)+xξ)|ξ|−sdξ.

Many authors referred in this paper have tried to handle such an integral
and obtained various bounds for the corresponding growth rate a of φ (i.e.
a > 1 or a < 1). Here, we show that the integral is bounded by a constant
multiple of |x|−(1−s) for any 0 < a 6= 1 where the constant is independent
of t. See Lemma 2.3 below. Recently P. Sjölin showed this lemma for a > 1
in [21]. An earlier version of the proof of Lemma 2.3 can be also found in
[5].

For the proof of theorem, the uniform bound of Bessel function is impor-
tant. We use the following asymptotic behavior of Bessel function: Jν(r) =
r−1/2(b+reir+b−e−ir)+Ψ(r), |Ψ| ≤ Cr−1 for r > ν, where C is independent
of ν. Owing to the slow decay of the tail Ψ, we cannot attack the end point
case p = 2n/(n − 2s) in (1). To avoid this difficulty, we have used weights
in (2) and (3).

The angular regularity is due to the estimate of Bessel function which
appears in the Fourier transform of spherical harmonics. The condition on
m is far from being optimal. We do not know even the necessary condition
on this angular regularity, which might be interesting if found.

For the last result (4), we use an oscillatory integral to show that a
scaling property is related to the growth rate of the phase φ for a local
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time. See Lemma 2.4 below. If a > 1, the dispersiveness is quite strong,
hence an L2 weighted global maximal inequality is possible which covers
the part (4) when a > 1 (see [6]).

For the more general initial data f , by using a bilinear estimate, T. Tao
in [25] showed that the global estimate for T ∗∗ holds for p > 2(n+3)/(n+1)
and s > n(1/2−1/p), if the phase φ is of an elliptic type. Recently, in [13] S.
Lee improved Tao’s results in 2 dimensional case up to s > 3/8. As another
global estimates, there are several results about the weighted estimates for
s > 1/2. For these results, one may refer [7, 10, 26, 27]. However, it remains
still an open problem whether even a local estimate of T ∗ holds or not for
s = 1/4.

If not specified, throughout this paper, C denotes a generic positive
constant that depends on c1, c2, a, s, n.

2. Preliminary lemmas

We begin with the weighted inequality for the Fourier transform.

Lemma 2.1 (see [14]) If 1 ≤ q ≤ 2, 0 ≤ α < 1/2, 0 ≤ α1 < 1/q′ and
α1 = α + 1/2 − 1/q, then the following inequality holds(∫

R
|ξ|−2α|f̂(ξ)|2dξ

)1/2
≤ C

(∫
R
|f(x)|q|x|α1qdx

)1/q
.

Now we introduce some estimates of oscillatory integrals. Let us first
state a stationary phase lemma which can be found in [12] etc..

Lemma 2.2 Let ψ be a monotone function and I =
∫ β
α eiϕ(ξ)ψ(ξ)dξ. Then

if |dϕ/dξ| ≥λ> 0 in [α, β] and dϕ/dξ is monotone, |I| ≤Cλ−1 sup[α,β] |ψ(ξ)|,
and if |d2ϕ/dξ2| ≥ λ > 0, then |I| ≤ Cλ−1/2 sup[α,β] |ψ(ξ)|. The constant C

doesn’t depend on α, β, λ, ϕ and ψ.

Utilizing the lemma above, we get the following lemma.

Lemma 2.3 Suppose φ satisfies the assumption A for 0 < a 6= 1. Let
A, B, s be the real numbers such that A, B 6= 0, 1/2 ≤ s < 1. Consider the
following integral:

I =
∫

ξ∈R
ei(Aφ(ξ)+Bξ)|ξ|−sdξ.

Then |I| ≤ C(a, s, c1, c2)|B|−(1−s).
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If 0 < a < 1, a/2 < s < 1/2 and |A| ≤ 2, then

I ≤ C(|B|−(1−s) + |B|−(1−s)−a(1−2s)/2(1−a)).

Proof of Lemma 2.3.

Case a > 1: Without loss of generality, we may assume that A > 0 and
B > 0. Let D = B/A1/a. Then by the change of variable, we have

I = A−(1−s)/a

∫
ei(Aφ(A−1/aξ)+Dξ)|ξ|−sdξ =

∫
ξ<0

+
∫

ξ>0
= I− + I+.

We may only have to consider I+. Let us denote it by I again.
Now we first consider the case when φ′ > 0. Observe that

E ≡ (Aφ(A−1/aξ) + Dξ)′ ≥ c1ξ
a−1 + D.

Let M be a large positive number depending only on a, s, c1, c2. If D ≤ M ,
then

I = A−(1−s)/a
(∫ 1

0
+

∫ ∞

1

)
= I1 + I2

For I1, by a direct integration, we have |I1| ≤ CA−(1−s)/a ≤ CB−(1−s).
For I2, since E ≥ C−1, by the first part of Lemma 2.2, we have |I2| ≤
CA−(1−s)/a ≤ CB−(1−s). If D > M , then since E ≥ D, by the first part of
Lemma 2.2, we have |I2| ≤ CA−(1−s)/aD−1 ≤ As/aB−1 ≤ B−(1−s). For I1,
using the change of variable, we have

I1 = A−(1−s)/aD−(1−s)

∫ D

0
ei(Aφ(D−1A−1/aξ)+ξ)ξ−sdξ.

Thus I1 =
∫ 1
0 +

∫ D
1 = I1,1 + I1,2. By the integration, |I1,1| ≤ CB−(1−s). For

I1,2, since (Aφ(D−1A−1/aξ) + ξ)′ ≥ 1, from the first part of Lemma 2.2, we
have |I1,2| ≤ CB−(1−s) and hence |I1| ≤ CB−(1−s).

Now we consider the case when φ′ < 0. We observe that

−c2ξ
a−1 + D ≤ E = (Aφ(A−1/aξ) + Dξ)′ ≤ −c1ξ

a−1 + D.

If D ≤ M , then we split I into two parts as follows:

I = A−(1−s)/a

(∫ (2M/c2)1/(a−1)

0
+

∫ ∞

(2M/c2)1/(a−1)

)
= I3 + I4.
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For I3, we have by direct integration |I3| ≤ CA−(1−s)/a ≤ CB−(1−s). For
I4, since E ≤ −c1ξ

a−1 + D ≤ −1, by the first part of Lemma 2.2, we get
|I4| ≤ CA−(1−s)/a ≤ CB−(1−s). If D > M , then we split I into four parts
as follows:

I = A−(1−s)/a

(∫ 1

0
+

∫ (D/2c2)1/(a−1)

1
+

∫ (2D/c1)1/(a−1)

(D/2c2)1/(a−1)

+
∫ ∞

(2D/c1)1/(a−1)

)
≡ I5 + I6 + I7 + I8. (2.1)

For I5, we use the change of variable so that

I5 = A−(1−s)/aD−(1−s)

∫ D

0
ei(Aφ(D−1A−1/aξ)+ξ)ξ−sdξ.

We split I5 into two part: I5 = A−(1−s)/aD−(1−s)(
∫ 1
0 +

∫ D
1 ) = I5,1 + I5,2.

For I5,1 and I5,2, using the direct integration and the first part of Lemma 2.2
respectively, we have |I5,1| + |I5,2| ≤ CA−(1−s)/aD−(1−s) = CB−(1−s). For
I6, since E ≥ C−1D ≥ C−1D1−s, using the first part of Lemma 2.2, we
have |I6| ≤ CA−(1−s)/aD−(1−s) = CB−(1−s).

To estimate I7, we use the fact |E′| is equivalent to ξa−2 and hence to
D(a−2)/(a−1). Then from the second part of Lemma 2.2, we obtain

|I7| ≤CA−(1−s)/aD−(a−2)/2(a−1)D−s/(a−1)

= CA−(1−s)/aD−(a−2+2s)/2(a−1).

Since a > 1 and s ≥ 1/2, we have |I7| ≤ CA−(1−s)/aD−(1−s) = CB−(1−s).
Finally, we estimate I8. Since E ≥ C−1D ≥ C−1D1−s, by the first part of
Lemma 2.2, we have |I8| ≤ CA−(1−s)/aD−(1−s)D−s/(a−1) ≤ CB−(1−s).

Case a < 1: We first consider the case 1/2 ≤ s < 1. We may assume
A, B > 0. Let D̃ = A/Ba. Then by the change of variable, we write

B1−sI =
∫

ei(Aφ(ξ/B)+ξ)|ξ|−sdξ =
∫ ∞

0
+

∫ 0

−∞
= I+ + I−.

As in the previous case (a > 1), we only consider I+ and denote it by I

again.
In case that φ′ > 0, we have E ≡ (Aφ(ξ/B)+ ξ)′ ≥ c1D̃ξa−1 +1 ≥ 1 for

all ξ > 0. We divide I into two parts: I =
∫ 1
0 +

∫ ∞
1 . For the first integral,

we just integrate and for the second one, we use the first part of Lemma 2.2.
Then we can see |I| . 1.
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Now we consider the case when φ′ < 0. Then we obtain

−c2D̃ξa−1 + 1 ≤ E ≤ −c1D̃ξa−1 + 1.

If c2D̃ < 2, then we divide I into two parts: I =
∫ (1/4)1/(a−1)

0 +
∫ ∞
(1/4)1/(a−1) =

I1 + I2. By the integration, we get |I1| ≤ C. And since c2D̃ < 2 and hence
E ≥ C−1, by the first part of Lemma 2.2, we have |I2| ≤ C.

If c1D̃ > 2, then we divide I into four parts:

I =
∫ 1

0
+

∫ (2/c1D̃)1/(a−1)

1
+

∫ (1/2c2D̃)1/(a−1)

(2/c1D̃)1/(a−1)

+
∫ ∞

(1/2c2D̃)1/(a−1)

= I3 + I4 + I5 + I6.

For I3, by the integration, |I3| ≤ C. For |I5|, since |E′| is equivalent to
D̃D̃−(a−2)/(a−1) = D̃1/(a−1) and s ≥ 1/2, by the second part of Lemma 2.2,
we have |I5| ≤CD̃(2s−1)/2(a−1) ≤C. And since E ≤−C on [1, (2/c1D̃)1/(a−1)]
and E ≥ C−1 on [(1/2c2D̃)1/(a−1), ∞), we also have |I4|, |I6| ≤ C.

If 2/c2 ≤ D̃ ≤ 2/c1, choose a large number M depending only on c1, c2,
and divide I as follows: I =

∫ M
0 +

∫ ∞
M . Then as the estimate of I1 and I2,

we can obtain |I| ≤ C.
If 0 < a < 1 and a/2 < s < 1/2, then except for the integral I5,

we can treat every integral by the same method as above. For I5, since
|E′| is equivalent to D̃D̃−(a−2)/(a−1) = D̃1/(a−1), |A| ≤ 2 and s < 1/2, by
the second part of Lemma 2.2, we have |I5| ≤ CB−a(1−2s)/2(1−a). This
completes the proof of the lemma. ¤

Lemma 2.4 Let N be a positive number and α, β be real numbers satis-
fying 0 < |α| ≤ 1, β 6= 0. Let ϕ be a C∞

0 (R) function with the support away
from the orgin. Consider the oscillatory integral

IN (α, β) = N

∫
ei(αφ(Nξ)+Nβξ)ϕ(ξ)dξ,

where φ satisfies the assumption A. If N ≥ 1 and 0 < a 6= 1, then∫
|IN (α, β)|dβ ≤ CNa/2. The constant Ca does not depend on α and N .

Proof of Lemma 2.4. If N |β| > CNa|α| and N |β| ≥ 1 for some C depend-
ing only on φ, then by the integration by part, we have

|IN | ≤ CµN(1 + N |β|)−µ, (2.2)

where Cµ is a constant depending on the parameters of C to be denoted by
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C again and µ is any positive number less than equal to 2. By the second
part of Lemma 2.2, we have

|IN | ≤ CN(Nα|α|)−1/2 and |IN | ≤ CN. (2.3)

We divide the integral
∫
|IN |dβ into four part as follows.∫

|IN |dβ =
∫

N |β|≤1
+

∫
1≤N |β|≤CNa,
N |β|≤CNa|α|

+
∫

N |β|≥1,
CNa|α|≤|β|≤CNa

+
∫

N |β|>CNa

≡
4∑

i=1

IIi.

Now we estimate each term. At first, by the second part of (2.3), II1 ≤
CNN−1 = C. For II2, using the first part of (2.3),

II2 ≤CN

∫
|β|≤CNa−1|α|

(Na|α|)−1/2dβ

≤CN1/2

∫
|β|≤CNa−1

|β|−1/2dβ ≤ CNa/2.

Using (2.2) with µ = 1 − a/(2 + 2a), for II3, we have

II3 ≤ CN1−µ

∫
N |β|≥1,

CNa|α|≤|β|≤CNa

|β|−µdβ ≤ CN (1−µ)(1+a) = CNa/2.

Finally, for II4, using (2.2) with 1 < µ ≤ 2, we have

II4 ≤ C(a, µ)N1−µ

∫
|β|>CNa−1

|β|−µdβ ≤ CNa(1−µ) ≤ CNa/2.

This completes the proof. ¤

3. Proof of Theorem 1.1

3.1. Proof of the part (1)
We first consider the simple case that f(rω) = f0(r)Yk(ω), where {Yk}

is the orthonormal basis of the space of spherical harmonic functions on the
unit sphere of order k. Using Fourier transform of the radial function and
spherical harmonic function (see [23]), we have

f̂(ρω) = g0(ρ)Yk(ω), ‖f0‖L2 = ‖g0‖L2 ,



Global estimates of maximal operators 781

where

g0(ρ) = cn,k

∫ ∞

0
f0(r)Jν(k)(rρ)rn/2ρ−(n−2)/2dr, (3.1)

with ν(k) = (n + 2k − 2)/2 and |cn,k| ≤ C. We define an auxiliary operator
TB by

TBf(x, t) =
1

(2π)n

∫
ei(x·ξ+tφ(ξ))f̂(ξ)

dξ

(1 + |ξ|2)s/2
.

Then using Fourier transform of the spherical harmonic function again, it
can be written as:

TBf(rω, t) =
1

(2π)n

∫
ei(x·ξ+tφ(ξ))Yk

( ξ

|ξ|

)
g0(|ξ|)

dξ

(1 + |ξ|2)s/2

=
1

(2π)n

∫ ∞

0
eitφ(ρ)ρn−1g0(ρ)

(∫
Sn−1

eirρω·ω′
Yk(ω′)dω′

) dρ

(1 + ρ2)s/2

=
1

(2π)n

∫ ∞

0
eitφ(ρ)ρn−1g0(ρ)(rρ)−(n−2)/2Jν(k)(rρ)

dρ

(1 + ρ2)s/2Yk(−ω)

=
1

(2π)n
r−(n−2)/2

∫ ∞

0
eitφ(ρ)ρ1/2G0(ρ)Jν(k)(rρ)

dρ

(1 + ρ2)s/2Yk(−ω)
≡ T0,k(G0)(r, t)Yk(−ω),

where G0(ρ) = ρn−1/2g0(ρ). Then we have ‖T ∗∗
B f‖Lp ≤ C‖T ∗∗

0,k(G0)‖Lp

×‖Yk‖Lp(Sn−1). For the proof of (1) we have only to show that for p =
2n/(n − 2s′) and s′ ∈ [1/4, s) (hence 4n/(2n − 1) ≤ p < 2n/(n − 2s))

‖T ∗∗
0,kG0(·)‖Lp ≤ Cν(k)3/2−s′‖G0‖L2(R+). (3.2)

Here the Lp norm LHS of (3.2) is the usual Lp = Lp(Rn). For simplicity, we
denote ‖g‖Lp(R+) by ‖g‖Lp

+
. Since ‖G0‖L2(R+) = C‖g0‖L2(Rn), once (3.2) is

proven, then from the observation1 that ‖Yk‖L∞(Sn−1) ≤ Ck(n−2)/2 and the
condition p = 2n/(n − 2s′), we have for k ≥ 1,

‖T ∗∗
B f‖Lp ≤Ck3/2−s′‖f0‖L2‖Yk‖Lp(Sn−1)

≤Ck3/2−s′+(p−2)(n−2)/2p‖f‖L2

≤Ck3/2−2s′/n‖f‖L2 .

1This follows from the facts that Yk(ω) =
R

Sn−1 Yk(σ)Zk
ω(σ)dσ for some zonal harmonic

Zk
ω(σ) and ‖Zk

ω‖L2(Sn−1) . k(n−2)/2. For instance see p. 143–144 of [23].
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Hence, for general f with expansion f(rω) =
∑

k≥0,1≤l≤d(k) f l
k(r)Y

l
k(ω),

where {Y l
k} is the orthonormal basis of spherical harmonics of order k and

d(k) is its dimension, we get

‖T ∗∗
B f‖Lp ≤C

∑
k≥0,1≤l≤d(k)

(1 + k)3/2−2s′/n‖f l
kY

l
k‖L2

≤C
∑
k≥0

(1 + k)3/2−2s′/nd(k)1/2
( ∑

1≤l≤d(k)

‖f l
kY

l
k‖2

L2

)1/2

≤C
(∑

k≥0

(1 + k)2(3/2−2s′/n+(n−2)/2−m)
)1/2

×
(∑

k,l

(1 + k)2m‖f l
kY

l
k‖2

L2

)1/2

≤C‖f‖L2(Hm
ω ).

We have used the bound d(k) ≤ C(1 + k)n−2, the condition m > (3n +
1)/6 − 2s′/n = (3n − 5)/6 − 2/p and the fact −∆ωYk = k(k + n − 2)Yk for
k ≥ 1. This proves the first part (1) of the theorem.

From now on we prove (3.2). We may assume that k and ν(k) are
sufficiently large. Let us denote ν(k) by ν for simplicity. Let SG0 =
rn−1/pT0,kG0 and Sd be the dual operator of S. Let γ = (n − 1)(1/2 −
1/p). Then for any F ∈ C∞

0 (R+ × R), we may write SdF as follows:

SdF (ρ) =
1

(2π)n
ρ1/2(1 + ρ2)−s/2

×
∫

R

∫ ∞

0
e−itφ(ρ)Jν(rρ)r1/2−γF (r, t)drdt

≡
∑

j=0,1,2

Sd
j F,

where

Sd
j F =

1
(2π)n

ρ1/2(1 + ρ2)−s/2

×
∫

R

∫ ∞

0
e−itφ(ρ)Jν(rρ)φj

(rρ

ν

)
r1/2−γF (r, t)drdt

and φ0, φ1 and φ3 are smooth cut-off functions such that φ0 = 1 on {|s| <

1/4}, φ0 = 0 on {|s| > 1/2}, φ1 = 1 on {|s| ∼ 1}, φ1 = 0 otherwise, φ2 = 0
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on {|s| < 2}, φ2 = 1 on {|s| > 3}, and φ0 + φ1 + φ2 = 1.
Before estimating each part, we list some asymptotic properties of

Bessel function:

|Jν(r)| ≤ C exp(−Cν), if r ≤ ν

2
, (3.3)∣∣∣Jν(r)φ1

( r

ν

)∣∣∣ ≤ Cr−1/3 for all r ≥ 1, (3.4)

Jν(r)φ2

( r

ν

)
= r−1/2(b+eir + b−e−ir)φ2

( r

ν

)
+ Φν(r)φ2

( r

ν

)
, (3.5)

where |Φν(r)| ≤ C/r, |b±| ≤ C and the constant C is independent of ν. For
the proof of (3.3), (3.4) and (3.5), see [24], 5.2 of [22] and [6], respectively.

We first estimate Sd
0F . Using (3.3) and the inequality (1 + ρ2)−s/2 ≤

Cρ−s′ , we have

|Sd
0F (ρ)| ≤Ce−Cνρ(n−1)/2−s′

∫ ν/2ρ

0
r(n−1)/2−γ‖F (r, · )‖L1

t
dr

≤Ce−Cν/2ρ−s′
∫ ν/2ρ

0
r−γ‖F (r, · )‖L1

t
dr.

To use the identity ‖Sd
0F (ρ)‖L2(R+) = ‖(1/ρ)Sd

0F (1/ρ)‖L2(R+), we estimate
(1/ρ)Sd

0F (1/ρ) as follows:

1
ρ

∣∣∣∣Sd
0F

(
1
ρ

)∣∣∣∣≤Ce−Cν/2ν1−s′
∫ (νρ/2)

0

r−γ

(νρ/2)1−s′
‖F (r, · )‖L1

t
dr

≤Ce−Cν/2ν1−s′Is′(r−γ‖F (r, · )‖L1
t
)
(νρ

2

)
,

where Is′ is the one dimensional Riesz potential: Is′(g)(r) =
∫

R g(r′)/|r −
r′|1−s′dr′. From Lemma 2.1 with α1 = s′ +1/2−1/p′ and p = 2n/(n−2s′),
we get for large k,

‖Sd
0F‖2

L2
+
≤Ce−Cνν1−2s′

∫
|ξ|−2s′ |(r−γ‖F (r, · )‖L1

t
)∧(ξ)|2dξ

≤C
(∫ ∞

0
(r−γ‖F (r, · )‖L1

t
)p′rα1p′dr

)2/p′

.

Here the Fourier transform of the integrand of the second term is applied
after extending the function r−γ‖F (r, · )‖L1

t
to 0 for r ≤ 0. Since α1 = γ,

we get

‖Sd
0F‖L2

+
≤ C‖F‖

Lp′
r L1

t

(3.6)
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for p = 2n/(n − 2s′), where ‖F‖p′

Lp′
r L1

t

=
∫ ∞
0 (

∫
R |F (r, t)|dt)p′dr.

For Sd
1F , we have |Sd

i F (ρ)|≤Cρ1/2−s′
∫ 2ν/ρ
ν/(2ρ) |Jν(rρ)|r1/2−γ‖F (r, ·)‖L1

t
dr.

Similarly as we did for the estimate of Sd
0F , with p = 2n/(n− 2s′), we have

from (3.4) that

1
ρ

∣∣∣Sd
1F

(1
ρ

)∣∣∣≤Cρ−7/6+s′
∫ 2ν/ρ

ν/(2ρ)
r1/6−γ‖F (r, · )‖L1

t
dr

≤Cν7/6−s′
∫ 2νρ

0

r−γ

(2νρ)1−s′
‖F‖L1

t
dr

≤Cν7/6−s′Is′(r−γ‖F‖L1
t
)(2νρ).

Changing the variable ρ 7→ νρ, we have that

‖Sd
1F‖L2

+
≤ Cν3/2−s′‖F‖

Lp′
r L1

t

. (3.7)

Now we estimate Sd
2F . Let us set Sd

2F = S+F + S−F + S3F , where

S±F (ρ) =
b±

(2π)n
(1 + ρ2)−s/2

×
∫

R

∫ ∞

0
ei(±rρ−tφ(ρ))φ2

(rρ

ν

)
r−γF (r, t)drdt,

S3F (ρ) =
1

(2π)n
(1 + ρ2)−s/2

×
∫

R

∫ ∞

0
e−itφ(ρ)(rρ)1/2Φν(rρ)φ2

(rρ

ν

)
r−γF (r, t)drdt.

For the estimate S±F , it suffices to consider S+F . We decompose it into
two parts as follows:

S+F (ρ) = A1 + A2

where

A1 =
b+

(2π)n
(1 + ρ2)−s/2

∫
R

∫ ∞

0
ei(rρ−tφ(ρ))r−γF (r, t)drdt,

A2 =
b+

(2π)n
(1 + ρ2)−s/2

×
∫

R

∫ ∞

0
ei(rρ−tφ(ρ))

(
φ2

(rρ

ν

)
− 1

)
r−γF (r, t)drdt.
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For A2, we have

|A2(ρ)| ≤ Cρ−s′
∫ 3ν/ρ

0
r−γ‖F (r, · )‖L1dr

and hence by the similar estimate to Sd
0F except for the factor e−Cν

‖A2‖L2
+
≤ Cν1/2−s′‖F‖

Lp′
r L1

t

. (3.8)

Now we estimate A1. Since F is compactly supported in R+ × R,
obviously we may assume that

A1 =
b+

(2π)n
(1 + ρ2)−s/2

∫
R2

ei(rρ−tφ(ρ))|r|−γF (r, t)drdt.

Hence for A1, we have from the inequality (1 + ρ2)−s/2 ≤ Cρ−s′

‖A1‖2
L2

+
≤ C

∫∫∫∫
K(r, r′, t, t′)|r|−γF (r, t)|r′|−γF (r′, t′)drdr′dtdt′,

where

K(r, r′, t, t′) =
∫

e−i((t−t′)φ(ρ)+(r−r′)ρ)ρ−2s′dρ.

Since 1/4 ≤ s′ < 1/2, by Lemma 2.3, we have |K(r, r′, t, t′)| ≤ C|r −
r′|−(1−2s′). Thus we have from the Fourier transform of Riesz potential and
the fact

∫
g(x)h(x)dx = (2π)−n

∫
ĝ(ξ)ĥ(ξ)dξ that

‖A1‖2
L2

+
≤C

∫∫
|r − r′|−(1−2s′)|r|−γ‖F (r, · )‖L1

t

× |r′|−γ‖F (r′, · )‖L1
t′
drdr′

= C

∫
|ξ|−2s′

∣∣(|r|−γ‖F (r, · )‖L1
t
)∧(ξ)

∣∣2dξ.

Invoking Lemma 2.1, we can get

‖A1‖2
L2

+
≤ C

(∫ ∞

0
(r−γ‖F‖L1

t
)p′rαp′dr

)2/p′

,

provided α = s′ + 1/2 − 1/p′. Since α = γ, we have

‖A1‖L2
+
≤ C‖F‖

Lp′
r L1

t

. (3.9)

Now it remains to estimate S3F . The uniform decay of the function Φν
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on ν shows that

|S3F (ρ)| ≤ Cρ−1/2(1 + ρ2)−s/2(χ(0,ν)(ρ) + χ[ν,∞](ρ))

×
∫ ∞

2ν/ρ
r−1/2−γ‖F (r, · )‖L1

t
dr.

By Hölder’s inequality, we get

|S3F (ρ)| ≤Cρ−1/2(1 + ρ2)−s/2(χ(0,ν)(ρ) + χ[ν,∞](ρ))
(ν

ρ

)−s′

‖F‖
Lp′

r L1
t

≤Cν−s′
(
ρ−1/2+s′χ(0,ν)(ρ) + ρ−1/2−s+s′χ[ν,∞)

)
‖F‖

Lp′
r L1

t

and hence

‖S3F‖L2
+
≤ C‖F‖

Lp′
r L1

t

. (3.10)

Therefore the claim (3.2) follows from the estimates (3.6), (3.7), (3.8), (3.9)
and (3.10). This completes the proof of the part (1).

3.2. Proof of the parts (2) and (3)
For the part (2), we follow almost the same way as in the proof of (1).

One can prove (3.6), (3.7), (3.8) and (3.9) by replacing s′ with s and r−γ

factor with r−γrb/p(1 + r)−b/p = r−γw(r)1/p. We leave the details to the
readers.

We have to check the inequality (3.10) with r−γ replaced by r−γw(r)1/p.
Let us observe from the estimate∫ ∞

L
r−(1/2+γ)pw(r)dr ≤ CL−(sp−b) or CL−sp

for p = 2n/(n − 2s) and γ = (n − 1)(1/2 − 1/p) that

|S3F (ρ)|
≤ Cρ−1/2(1 + ρ2)−s/2(χ(0,ν)(ρ) + χ[ν,∞](ρ))

×
∫ ∞

2ν/ρ
r−1/2−γw‖F (r, · )‖L1

t
dr

≤ Cρ−1/2(1 + ρ2)−s/2

(
χ(0,ν)(ρ)

(ν

ρ

)−s
+ χ[ν,∞](ρ)

(ν

ρ

)−(s−b/p)
)

× ‖F‖
Lp′

r L1
t

≤ Cν−s
(
ρ−1/2+sχ(0,ν)(ρ) + ρ−1/2−b/pχ[ν,∞)

)
‖F‖

Lp′
r L1

t

.
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Taking L2
+ norm to both side, we get the desired result.

Similarly, one treats the part (3). Replacing r−γ with r−γrb1/p(1 +
r)−(b1+b2)/p, one can readily get (3.6), (3.7), (3.8) and (3.10). For the in-
equality (3.9), let us consider the modified functional

A1 =
b+

(2π)n
(1 + ρ2)−s/2

×
∫

R2

ei(rρ−tφ(ρ))|r|−γ |r|b1/p(1 + |r|)−(b1+b2)/pF (r, t)drdt.

Then we have from the second part of Lemma 2.3 that

‖A1‖2
L2

+

≤ C

∫∫∫∫
|K(r, r′, t, t′)||r|−γ(1 + |r′|)−b2/p

× |F̃ (r, t)||r′|−γ(1 + |r′|)−b2/p|F̃ (r′, t′)|drdr′dtdt′

≤ C

∫∫
|r − r′|−(1−2s)(1 + |r − r′|−a(1−4s)/2(1−a))|r|−γ(1 + |r′|)−b2/p

× ‖F̃ (r, · )‖L1
t
|r′|−γ(1 + |r′|)−b2/p‖F̃ (r′, · )‖L1

t
drdr′

≤ C

∫∫
|r−r′|≤1

+
∫∫

|r−r′|>1
,

where F̃ (r, t) = |r|b1/p(1 + |r|)−b1/p and

K(r, r′, t, t′) =
∫

e−i((t−t′)φ(ρ)+(r−r′)ρ)ρ−2sdρ.

It follows from Lemma 2.1 with α = s − a(1 − 4s)/4(1 − a), α1 = γ and
q = p′ that the first integral is bounded by∫∫

|r − r′|−(1−2(s−a(1−4s)/4(1−a))|r|−γ‖F̃ (r, · )‖L1
t

× |r′|−γ‖F̃ (r′, · )‖L1
t
drdr′

≤ C‖F̃‖2

Lp′
r L1

t

≤ C‖F‖2

Lp′
r L1

t

.

The second integral is bounded by

C
(∫ ∞

0
r−γ(1 + r)−b2/p‖F‖L1

t
dr

)2
≤ C

((∫ 1

0
+

∫ ∞

1

)
(· · · )

)2



788 Y. Cho and Y. Shim

Since γp < 1 and γp + b2 > 1 by the choice of p and b2, (
∫ 1
0 +

∫ ∞
1 )(· · · )+ ≤

C‖F‖
Lp′

r L1
t

and hence ‖A1‖L2
+
≤ C‖F‖

Lp′
r L1

t

.

3.3. Proof of the part (4)
Let us first define an auxiliary operator T̃B by

T̃Bf(x, t) =
w(|x|)1/2

(2π)n

∫
ei(tφ(ξ)+x·ξ)f̂(ξ)

dξ

(1 + |ξ|)s
,

where w(|x|) = (1 + |x|)−b with 0 < b < s. If f(rω) = f0(r)Yk(ω) for some
smooth radial function f0 and a spherical harmonic Yk of order k, by the
Fourier transform of the spherical harmonic function, the operator T̃B can
be written as:

T̃Bf(rω, t) =
w(r)1/2

(2π)n
r−(n−2)/2

×
∫ ∞

0
eitφ(ρ)ρ1/2G0(ρ)Jν(rρ)

dρ

(1 + ρ2)s/2
Yk(−ω)

≡ T̃0,kG0(r, t)Yk(−ω),

where ν = ν(k) = (n + 2k − 2)/2 and G0 is the same function as in (3.1).
From the proof of the part (1), we have only to prove that

‖T̃ ∗
0,kG0( · )‖L2 ≤ Cν1/2‖G0‖L2

+
. (3.11)

Let S̃G0 = r(n−1)/2T̃0,kG0. Then for the proof of (3.11) it suffices to
show that

‖S̃∗G0( · )‖L2
+
≤ Cν1/2‖G0‖L2

+
. (3.12)

Now we divide the integral of S̃G0 by the cut-off functions φi introduced
in the previous section:

S̃G0(r, t) =
w(r)1/2

(2π)n
r1/2

∫ ∞

0
eitφ(ρ)ρ1/2G0(ρ)Jν(rρ)

dρ

(1 + ρ2)s/2

≡ S̃0G0 + S̃1G0 + S̃2G0,

where

S̃jG0 =
w(r)1/2

(2π)n
r1/2

∫ ∞

0
eitφ(ρ)ρ1/2G0(ρ)φj

(rρ

ν

)
Jν(rρ)

dρ

(1 + ρ2)s/2
.
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Let us define the maximal functions S̃∗
0(r) = sup0<t<1 |S̃0G0(r, t)| and

S̃∗
1(r) = sup0<t<1 |S̃1G0(r, t)|. Then from (3.3) we have that

1
r
S̃∗

0

(1
r

)
≤ Cν1/2e−Cνr−1

∫ 2νr

0
|G0(ρ)|dρ ≤ Cν3/2e−CνMG0(νr),

where M is the Hardy-Littlewood maximal function. We did not use the
weight w here. Hence for large ν,

‖S̃∗
0‖L2

+
≤ Cν3/2e−Cν‖G0‖L2

+
. (3.13)

Using the inequality 1/r
∫ r
0 |Jν(t)|2tdt ≤ C for any r > 0 (see [27] for

instance), for S̃∗
1 , we have

S̃∗
1(r)≤Cν−sχ(0,1)(r)r

1/2+s

∫ 2ν/r

ν/2r
ρ1/2|G0(ρ)Jν(rρ)|dρ

+ Cχ[0,∞)(r)r
1/2−ε

∫ 2ν/r

ν/2r
ρ1/2|G0(ρ)Jν(rρ)|dρ

≤C
(∫ 2ν/r

ν/2r
|Jν(rρ)|2ρdρ

)1/2

×
(
ν−sχ(0,1)(r)r

1/2+s + χ[1,∞)(r)r
1/2−ε

)
‖G0‖L2

+

≤Cν1/2
(
ν−sχ(0,1)(r)r

−1/2+s + χ[1,∞)(r)r
−1/2−ε

)
‖G0‖L2

+

and hence that

‖S̃∗
1‖L2

+
≤ Cν1/2‖G0‖L2

+
. (3.14)

Now we treat S̃2 similarly as we did in (1). Using the asymptotic
behavior (3.5), we divide the integral of S̃2G0 into three parts:

S̃2G0 = S̃+G0 + S̃−G0 + S̃3G0,

where

S̃±G0 =
b±w(r)1/2

(2π)n

∫ ∞

0
ei(±rρ+tφ(ρ))G0(ρ)φ2

(rρ

ν

) dρ

(1 + ρ2)s/2

S̃3G0 =
w(r)1/2

(2π)n
r1/2

∫ ∞

0
eitφ(ρ)ρ1/2G0(ρ)Φν(rρ)φ2

(rρ

ν

) dρ

(1 + ρ2)s/2
.
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For S̃3G0, we have from the uniform bound of Φν ,

|S̃3G0(r, t)| ≤Cχ(0,1)(r)r
−1/2

∫ ∞

2ν/r
ρ−1/2−s|G0(ρ)|dρ

+ Cχ[1,∞)(r)r
−1/2−b/2

∫ ∞

2ν/r
ρ−1/2|G0(ρ)| dρ

(1 + ρ2)s/2

≤Cν−δχ(0,1)(r)r
−1/2+δ

∫ ∞

2ν/r
ρ−1/2−s+δ|G0(ρ)|dρ

+ Cχ[1,∞)(r)r
−1/2−b/2

∫ ∞

2ν/r
ρ−1/2−ε0 |G0(ρ)|dρ,

where δ is any number smaller than s. For the last integrand we have
used (1 + ρ2)−s/2 ≤ Cρ−ε0 for ε0 < min(b/2, s). Then by Cauchy-Schwartz
inequality, we obtain

S̃∗
3(r) ≤ C

(
ν−sχ(0,1)(r)r

−1/2+s + ν−ε0χ[1,∞)(r)r
−1/2−(b/2−ε0)

)
× ‖G0‖L2

+
,

where S̃∗
3(r) = sup0<t<1 |S̃3G0(r, t)|. Hence

‖S̃∗
3‖L2

+
≤ Cν−ε0‖G0‖L2

+
. (3.15)

Now we estimate S̃±G0. We use the extended operator B defining G0

by G0(−ρ) for ρ ≤ 0 as follows:

BG0(r, t) =
b±w(r)1/2

(2π)n

∫
R

ei(tφ(|ρ|)±rρ)φ2

(rρ

ν

)
G0(ρ)

dρ

(1 + |ρ|)s
.

We can rewrite this by

BG0(r, t) =
b±w(r)1/2

(2π)n

∫
R
(· · · ) +

b±w(r)1/2

(2π)n

∫
R

(
1 − φ2

(rρ

ν

))
(· · · )

≡B1G0 + B2G0

as A1 and A2 in Section 3.1. Let B∗
1G0(r) = sup|t|<1 |B1G0| and B∗

2G0(r) =

sup|t|<1 |B2G0|. Then we first have B∗
2G(r) ≤ C

∫ 3ν/r
0 |G0(ρ)|dρ and hence

1
r
B∗

2G0

(1
r

)
≤ C

1
r

∫ 3νr

0
|G0(ρ)|dρ ≤ CνM(|G0|)

(3νr

2

)
,
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where M is the Hardy-Littlewood maximal function. Thus

‖B∗
2G0‖L2

+
≤ Cν1/2‖G0‖L2(R) ≤ Cν1/2‖G0‖L2

+
. (3.16)

Next, we consider a global L2 estimate of the local maximal operator
B∗

1. To do this, we employ the Kolmogorv-Seliverstov-Plessner method (see
[8]). Let us define an operator T as

T G0(r) =
∫

ei(±rρ+t(r)φ(|ρ|))G0(ρ)
dρ

(1 + ρ2)s/2
,

where t(r) is any measurable function with |t(r)| < 1 on R+. Then we may
write the operator T by Tj as T G0(r) =

∑
j≥0 TjG0(r), where

TjG0(r) =
∫

ei(±r·ρ+t(r)φ(|ρ|))G0(ρ)ϕj(ρ)
dρ

(1 + ρ2)s/2
for j ∈ Z,

where {ϕj} are Littlewood-Paley functions such that ϕ0 ∈ C∞
0 (B(0, 1)),

ϕj( · ) = ϕ( · /2j)), ϕ ∈ C∞
0 (B(0, 2)\B(0, 2−1)) and

∑
j≥0 ϕj = 1. We claim

that ‖TjG0‖L2
+

. 2aj/4‖∆jǦ0‖L2(R), where ∆̂jg = ϕj ĝ is the n-dimensional

Fourier transform. The L2(R) was taken for ∆jǦ0 as a one-dimensional
function of ρ. To show that, let T d

j be the dual operator of Tj . Then for
any F (r) ∈ C∞

0 (R+) and j ≥ 1,

‖T d
j F‖2

L2
+

=
∫∫

Kj(r, r′)F (r)F (r′)drdr′

where

Kj(r, r′) = 2(1−2s)j

∫
e−i((t(r)−t(r′))φ(2j |ρ|)+2j(r−r′)ρ)

× 22sjϕ2(ρ)
dρ

(1 + 22jρ2)s
.

Since 22sjϕ2(ρ)/(1 + 22jρ2)s and its derivatives are uniformly bounded on
j, from Lemma 2.4 replacing δ by 2j , we have

sup
r′∈R

∫
|Kj(r, r′)|dr + sup

r∈R

∫
|Kj(r, r′)|dr′ ≤ C2(a/2−2s)j .

It follows from the Schur’s lemma (see the lemma in p. 284 of [22]) that

‖T d
j F‖L2

+
≤ C2(a/4−s)j‖F‖L2

+
. (3.17)
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If j = 0, then

‖T d
0 F‖2

L2
+

=
∫∫

K0(r, r′)F (r)F (r′)drdr′

where

K0(r, r′) =
∫

e−i((t(r)−t(r′))φ(|ρ|)±(r−r′)ρ)ϕ2
0(ρ)

dρ

(1 + ρ2)s
.

Since |t(r) − t(r′)| ≤ 2, using the integration by parts twice, we have

|K0(r, r′)| ≤ C(1 + |r − r′|)−2.

Thus using Schur’s lemma again, we have ‖T d
0 F‖L2 ≤ C‖F‖L2 . Combining

this and (3.17), we get

‖B∗
1G0‖L2

+
≤ C‖G0‖L2

+
. (3.18)

Therefore the part (3) of Theorem 1 follows from the estimates (3.13)–(3.18).
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