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Doubly nonlinear Cahn-Hilliard-Gurtin equations
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Abstract. Our aim in this article is to study the long time behavior, in terms of

finite-dimensional attractors, of doubly nonlinear Cahn-Hilliard type equations. In

particular, we prove the existence of an exponential attractor. We also study the

continuity of exponential attractors when the equations converge to the usual Cahn-

Hilliard equation.
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1. Introduction

We are interested in this article in the study of the asymptotic behavior
(in terms of finite-dimensional attractors) of doubly nonlinear equations of
the form





∂tu−∆v = 0,

∂tα(u)−∆u + f(u) = v,

u |∂Ω = v |∂Ω = 0, u |t=0 = u0,

(1.1)

in a bounded smooth domain Ω ⊂ R3. Such equations appear, e.g., in
the study of phase separation in binary alloys. More precisely, M. Gurtin
proposed in [23], based on a new balance law for internal microforces (i.e.,
for interactions at a microscopic level), generalizations of the Cahn-Hilliard
equation of the form

∂tu = κ1∆v, κ1 > 0, (1.2)

a(u,∇u, ∂tu)∂tu− κ2∆u + f(u) = v, κ2 > 0, (1.3)

where a ≥ 0. Here, u is the order parameter (it corresponds to a density of
atoms) and v is the chemical potential. Furthermore, (1.2) follows from the
mass balance, while (1.3) is derived by considering the restrictions imposed
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by the second law of thermodynamics, together with the microforce balance.
Thus, if the coefficient a only depends on u, we obtain a system of the
form (1.1) (system (1.1) can also be seen as a (nonlinear) generalization of
the viscous Cahn-Hilliard equation introduced in [31] and corresponding to
α(s) = α0s, α0 > 0). Furthermore, if a only depends on ∂tu, we obtain a
system of the form

{
∂tu−∆v = 0,

α(∂tu)−∆u + f(u) = v,
(1.4)

which is also of interest. We will study such systems in a forthcoming article.
We finally note that, usually, the Cahn-Hilliard equations are associated with
Neumann boundary conditions, both for u and v. In that case, the treatment
of the problem would be analogous, but technically more difficult, due to
the presence of nonlocal terms; we chose to avoid such technicalities in this
article, hence our choice of Dirichlet boundary conditions.

We can rewrite (1.1) in the following equivalent form:

{
∂t(α(u) + (−∆)−1u)−∆u + f(u) = 0,

v = −(−∆)−1∂tu, u |∂Ω = 0, u |t=0 = u0,
(1.5)

where (−∆)−1 is the inverse Laplacian (equipped with Dirichlet boundary
conditions), so that we are led to the study of a compact perturbation of
the following doubly nonlinear equation:

∂tα(u)−∆u + f(u) = 0. (1.6)

Such equations, which appear, e.g., in the Allen-Cahn theory in phase sepa-
ration (one again considers generalizations of the Allen-Cahn equation based
on the microforce balance proposed by M. Gurtin, see [23]), have been much
studied and are now well understood (we refer the reader to, e.g., [1], [4],
[6], [8], [9], [11], [14], [15], [19], [22], [28], [29], [33], [34] and [35]). In par-
ticular, one now has satisfactory results on the existence and uniqueness
of solutions and on the asymptotic behavior of the system (existence of
finite-dimensional attractors and convergence of solutions to steady states).
Furthermore, such results concern both the cases where α does not degen-
erate (i.e., α′(s) ≥ c0 > 0, s ∈ R) and where α degenerates (with a finite
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number of degeneration points and also when the equation becomes elliptic
in some region (typically, α′(s) = 0 for s ≤ 0), see [29]).

Now, and especially when α degenerates, the mathematical study of
(1.5) (or, equivalently, of (1.1)) does not simply follow from that of (1.6),
in particular, as far as the study of the asymptotic behavior of the system
is concerned. The main difficulty here is to obtain proper dissipative esti-
mates and, contrary to (1.6), such estimates cannot be obtained directly by
energy estimates (which only work under additional restrictive assumptions
on α and f , see Sections 2 and 3 below; see also [29]). In particular, it is
essential here to derive dissipative estimates in L∞(Ω). In order to deduce
such estimates, we use a combination of Moser iterations techniques and of
arguments based on the existence of a proper dissipation integral.

It is also worth noting that, in the degenerate case, the presence of the
subordinated term (−∆)−1∂tu in (1.5) drastically changes the analytical and
dynamical properties of the problem (when compared with (1.6)). In partic-
ular, equation (1.6) is well-posed and possesses the finite-dimensional global
attractor only if the nonlinearity f is monotone increasing at all points where
α degenerates (see [29]; see also [18] for examples of infinite-dimensional at-
tractors when this condition is violated). Surprisingly, the presence of the
nondegenerate lower order term (−∆)−1∂tu removes, in some sense, the
degeneration and the dynamical behavior of the solutions to (1.5) is, a pos-
teriori, closer to that of nondegenerate dissipative systems. In particular,
we do not need the monotonicity assumption mentioned above (which is
typical of degenerate systems) in order to establish the existence and the
finite-dimensionality of the global attractor (this allows, in particular, to
consider, contrary to the degenerate doubly nonlinear Allen-Cahn equation,
the physically relevant (in the context of phase separation) cubic nonlin-
earity f(s) = s3 − s in the case of, say, one degeneration point at 0). At
the same time, the analytical properties of equation (1.5) remain typical
of degenerate equations (lack of further regularity on the solutions, lack of
differentiability with respect to the initial data, . . . ).

This article is organized as follows. In Section 2, we study the well-
posedness of the system. Then, in Section 3, we derive dissipative estimates
which allow us to prove, in Section 4, the existence of finite-dimensional
attractors. Section 5 is devoted to the study of the limit α → 0 (for α = 0,
the system reduces to the usual Cahn-Hilliard equation). However, we do
not know how to obtain uniform (with respect to α → 0) estimates on the
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L∞-norm of the solutions and, consequently, we have to work with energy
solutions only, which, in turn, requires essential growth restrictions on α

and f . Finally, we prove, in the appendix, additional regularity results on
the solutions when α does not degenerate.

Throughout this article, the same letter C (and, sometimes, C ′) denotes
constants which may vary from line to line.

Setting of the problem
We recall that we consider the following equations, in a bounded smooth

domain Ω ⊂ R3:

∂tu−∆v = 0, (1.7)

∂tα(u)−∆u + f(u) = v, (1.8)

together with the boundary conditions

u |∂Ω = v |∂Ω = 0 (1.9)

and the initial condition

u |t=0 = u0. (1.10)

We assume that the nonlinearity α ∈ C1(R) is monotone increasing,

α(0) = 0, α′(s) ≥ 0, s ∈ R, (1.11)

and satisfies the following nondegeneracy assumption at infinity:

lim inf
|s|→∞

α′(s) ≥ C0 > 0, s ∈ R, (1.12)

and that the nonlinearity f ∈ C2(R) satisfies the standard dissipativity
assumption

f(s)s ≥ −C, s ∈ R, C ≥ 0. (1.13)

Remark 1.1 For instance, the above assumptions are satisfied for α(s) =
s2p+1, p ∈ N, and f(s) =

∑2q+1
i=0 ais

i, a2q+1 > 0, q ∈ N. For such an
α, setting w := α(u), the Allen-Cahn type equation (1.6) reduces, say, for
f ≡ 0, to the fast diffusion equation
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∂tw −∆wm = 0, m =
1

2p + 1

(see, e.g., [2], [10], [12], [21], [32] and the references therein). We can note
that p = 2, i.e., m = 1

5 , corresponds to the critical exponent in this fast
diffusion equation (see also Remark 3.5 and (3.36) below). Furthermore,
compared with the results of [29] for (1.6), the presence of the subordinated
term (−∆)−1∂tu allows to prove the existence of finite-dimensional attrac-
tors for (1.5) for a much more general class of nonlinear terms f for the
aforementioned “fast diffusion” term α.

2. Well-posedness for L∞-solutions

In this section, we prove the unique solvability of system (1.7)–(1.8) in
the following class of solutions:

u ∈ L∞([0, T ]× Ω) ∩ L∞
(
[0, T ],H1

0 (Ω)
)
, v ∈ L2

(
[0, T ],H1

0 (Ω)
)
. (2.1)

The main result of the section is the following.

Theorem 2.1 Let assumptions (1.11), (1.12) and (1.13) hold. Then, for
every u0 ∈ H1

0 (Ω) ∩ L∞(Ω), there exists a unique solution (u, v) to problem
(1.7)–(1.8) belonging to the class (2.1).

Proof. We rewrite the equations in the equivalent form

{
∂t(α(u) + (−∆)−1u)−∆u + f(u) = 0,

v = −(−∆)−1∂tu, u |∂Ω = 0, u |t=0 = u0.
(2.2)

We first prove the uniqueness of solutions. To this end, we need the
following lemma.

Lemma 2.2 Let the assumptions of Theorem 2.1 hold. Then, for every
solutions (u1, v1) and (u2, v2) to (2.2) belonging to the class (2.1) (with initial
data u1,0 and u2,0, respectively, belonging to H1

0 (Ω) ∩ L∞(Ω)), there holds

∥∥α(u1(t))− α(u2(t)) + (−∆)−1(u1(t)− u2(t))
∥∥

H−1

≤ CeC′t
∥∥α(u1,0)− α(u2,0) + (−∆)−1(u1,0 − u2,0)

∥∥
H−1 , (2.3)
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where t ∈ [0, T ] and the constants C and C ′ depend on the norms of u1 and
u2 in the class (2.1).

Proof. It follows from (2.2) that, setting u := u1 − u2,

∂t

(
α(u1)− α(u2) + (−∆)−1u

)−∆u + f(u1)− f(u2) = 0. (2.4)

Multiplying (2.4) by (−∆)−1w, w = α(u1) − α(u2) + (−∆)−1u, and inte-
grating over Ω and by parts, we obtain

1
2
∂t‖w‖2H−1 + (α(u1)− α(u2), u)

+ ‖u‖2H−1 + (f(u1)− f(u2), (−∆)−1w) = 0, (2.5)

where (·, ·) denotes the usual L2-scalar product. The difficulty here is to
estimate the term

∣∣(f(u1)− f(u2), (−∆)−1w)
∣∣.

To do so, we write
∣∣(f(u1)−f(u2), (−∆)−1w

)∣∣ ≤ ε1‖f(u1)−f(u2)‖2H−2+δ
∆

+Cε1‖w‖2H−δ , (2.6)

where δ > 0 is small enough (in particular, δ < 1/2), ε1 > 0 is arbitrary and
H−2+δ

∆ := [H2−δ(Ω) ∩H1
0 (Ω)]∗.

We then have, owing to classical interpolation inequalities,

‖w‖2H−δ ≤ ε2‖w‖2L2 + Cε2‖w‖2H−1 , (2.7)

where ε2 > 0 is arbitrary. Furthermore,

‖w‖2L2 ≤ 2
(‖α(u1)− α(u2)‖2L2 + ‖(−∆)−1w‖2L2

)

≤ C
(
(α(u1)− α(u2), u) + ‖w‖2H−1

)
, (2.8)

since α′(s) ≥ 0, ∀s ∈ R, and ui ∈ L∞([0, T ] × Ω), i = 1, 2, which implies
that (α(u1) − α(u2), u) ≥ 0 and ‖α(u1) − α(u2)‖2L2 ≤ C(α(u1) − α(u2), u).
We thus deduce from (2.7)–(2.8) that
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‖w‖2H−δ ≤ ε3(α(u1)− α(u2), u) + Cε3‖w‖2H−1 ,

where ε3 > 0 is arbitrary, so that (2.6) yields

∣∣(f(u1)− f(u2), (−∆)−1w)
∣∣

≤ ε1‖f(u1)− f(u2)‖2H−2+δ
∆

+ ε4(α(u1)− α(u2), u) + Cε1,ε4‖w‖2H−1 ,

(2.9)

where ε1 and ε4 > 0 are arbitrary.
Now, we have, for ϕ ∈ H2−δ

∆ (Ω) := H2−δ(Ω)∩H1
0 (Ω) and using the fact

that ui ∈ L∞([0, T ]× Ω) ∩ L∞([0, T ],H1
0 (Ω)), i = 1, 2,

∣∣〈f(u1)− f(u2), ϕ〉H−2+δ
∆ ,H2−δ

∆

∣∣

= |(f(u1)− f(u2), ϕ)|

=
∣∣∣∣
(

u,

∫ 1

0

f ′(su1 + (1− s)u2)dsϕ

)∣∣∣∣

≤ ‖u‖H−1

∥∥∥∥∇
( ∫ 1

0

f ′(su1 + (1− s)u2)dsϕ

)∥∥∥∥
L2

≤ C‖u‖H−1

(
(‖∇u1‖L2 + ‖∇u2‖L2)‖ϕ‖L∞ + ‖∇ϕ‖L2

)

≤ C‖u‖H−1‖ϕ‖H2−δ
∆

,

if δ < 1/2 (so that the embedding H2−δ ⊂ C holds), whence

‖f(u1)− f(u2)‖H−2+δ
∆

≤ C‖u‖H−1 . (2.10)

We finally deduce from (2.9)–(2.10) that

∣∣(f(u1)− f(u2), (−∆)−1w)
∣∣

≤ ε
(
(α(u1)− α(u2), u) + ‖u‖2H−1

)
+ Cε‖w‖2H−1 , (2.11)

where ε > 0 is arbitrary, and (2.3) follows from (2.5), (2.11), e.g., with ε = 1
2 ,

and Gronwall’s lemma. This finishes the proof of Lemma 2.2. ¤

The uniqueness of solutions to problem (2.2) is an immediate conse-
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quence of the above lemma. Indeed, if u1,0 = u2,0, then

α(u1)− α(u2) + (−∆)−1(u1 − u2) = 0,

which yields, multiplying this equation by u1 − u2 and noting that α′ ≥ 0,

‖u1 − u2‖H−1 = 0,

and, thus, u1 = u2.
We now establish the existence of a solution. To this end, we approx-

imate the nonlinear term α by smooth functions αε, ε > 0, which satisfy
(1.11) and (1.12), with a (new) constant C0 which is independent of ε, and

α′ε(s) ≥ C ′0(ε) > 0, s ∈ R; (2.12)

for instance, if α is of class C2, we can take αε(s) = α(s) + εs, s ∈ R.
We then consider the approximate problems

∂tu−∆v = 0, (2.13)

∂tαε(u)−∆u + f(u) = v, (2.14)

u |∂Ω = v |∂Ω = 0, (2.15)

u |t=0 = u0,ε, (2.16)

where u0,ε smooth enough approximates u0. Rewriting (2.13)–(2.16) in the
equivalent form

{
∂t(αε(u) + (−∆)−1u)−∆u + f(u) = 0,

v = −(−∆)−1∂tu, u |∂Ω = 0, u |t=0 = u0,ε,
(2.17)

we note that (2.17) is a compact perturbation of a second-order parabolic
equation which possesses, owing to standard results (we can for instance use
the Leray-Schauder fixed point theorem, see, e.g., [25]; see also the appendix)
a unique solution uε, say, in W (1,2),r(Ω× (0, T )), where T > 0 and r < ∞ is
large enough. We thus deduce the existence and uniqueness of the regular
solution (uε, vε) to (2.13)–(2.16).

Our task now is to deduce several uniform (with respect to ε) estimates
which will allow us to establish the existence of a solution to the limit
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problem (2.2) by passing to the limit ε → 0. For simplicity, we omit the
index ε in what follows.

We start with a standard energy estimate. Multiplying (2.17) by ∂tu

and integrating over [0, T ]× Ω, we have

2
∫ T

0

[(
α′ε(u(t))∂tu(t), ∂tu(t)

)
+ ‖∂tu(t)‖2H−1

]
dt

+ ‖∇u(T )‖2L2 + 2(F (u(T )), 1) = ‖∇u0‖2L2 + 2(F (u0), 1), (2.18)

where F (s) :=
∫ s

0
f(z) dz. This, together with assumptions (1.11) and

(1.13), gives

‖v‖L2([0,T ],H1(Ω)) + ‖u‖L∞([0,T ],H1(Ω)) ≤ Q(‖u0‖L∞∩H1), (2.19)

where the monotonic function Q is independent of ε and T .
Our next task is to obtain an L∞-estimate on the solution u. To this

end, we need the following lemma.

Lemma 2.3 Let v ∈ L2([0, T ],H1
0 (Ω)) and let u be a sufficiently regular

solution to equation (2.14). Then, the following estimate holds:

‖u(t)‖L∞ ≤ QT (‖u0‖L∞) + CT ‖v‖L2([0,T ],H1(Ω)), t ∈ [0, T ], (2.20)

where the monotonic function QT and the constant CT depend on T , but
are independent of ε.

Proof. Although the assertion of this lemma is rather standard, we give
below, for the sake of convenience (and in order to check that the estimate
is indeed uniform with respect to ε), the details of the proof. As usual, we
obtain this estimate by a Moser-type iterations technique. Indeed, multi-
plying equation (2.14) by u|u|k, k > 0, and integrating over [0, T ] × Ω, we
have

(Ak(u(T )), 1) +
4(k + 1)
(k + 2)2

∫ T

0

∥∥∇(u(t)|u(t)| k
2 )

∥∥2

L2 dt

+
∫ T

0

(
f(u(t)), u(t)|u(t)|k)

dt = (Ak(u(0)), 1) +
∫ T

0

(
v(t), u(t)|u(t)|k)

dt,

(2.21)
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where Ak(s) :=
∫ s

0
α′ε(z)z|z|k dz. Using the embedding H1 ⊂ L6, we esti-

mate the last integral in the right-hand side of (2.21) as follows:

∫ T

0

(v(t), u(t)|u(t)|k) dt

≤
∫ T

0

‖v(t)‖L6‖u(t)‖k+1

L
6
5 (k+1)

dt

≤ C‖v‖L2([0,T ],H1(Ω))‖u‖k+1

L2(k+1)([0,T ],L
6
5 (k+2)(Ω))

≤ C
(
‖v‖k+2

L2([0,T ],H1(Ω)) + ‖u‖k+2

L2(k+2)([0,T ],L
6
5 (k+2)(Ω))

)
. (2.22)

Since the nonlinearity f satisfies the dissipativity assumption (1.13), we have

∫ T

0

(
f(u(t)), u(t)|u(t)|k+1

)
dt ≥ −C‖u‖k+1

Lk+1([0,T ]×Ω)

≥ −C‖u‖k+2

L2(k+2)([0,T ],L
6
5 (k+2)(Ω))

− CT ,

for positive constants C and CT which are independent of k (note however
that CT depends on T ).

Finally, using assumption (1.12), we see that

Ak(s) ≥ C

k + 2
|s|k+2 −Ak+2, (2.23)

where the constants C > 0 and A ≥ 0 are independent of ε and k. Therefore,
inserting the above estimates into (2.21), we end up with

max
{‖u‖L∞([0,T ],Lk+2(Ω)), ‖u‖Lk+2([0,T ],L3(k+2)(Ω))

}k+2

≤ CT (k + 2)max
{

Ak+2, Ak(u0), ‖v‖k+2
L2([0,T ],H1(Ω)),

‖u‖k+2

L2(k+2)([0,T ],L
6
5 (k+2)(Ω))

}
, (2.24)

where the constant CT is also independent of k and ε. We now note that
the interpolation embedding
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L∞(Lk+2) ∩ Lk+2(L3(k+2)) ⊂ L
7
3 (k+2)(L

7
5 (k+2)) (2.25)

gives the uniform (with respect to k) estimate

‖u‖
L

7
3 (k+2)([0,T ],L

7
5 (k+2)(Ω))

≤ C max
{‖u‖L∞([0,T ],Lk+2(Ω)), ‖u‖Lk+2([0,T ],L3(k+2)(Ω))

}
.

Furthermore, we set, for s ≥ 0,

Q(s) := sup
k

(
max

z∈[−s,s]
Ak(z)

) 1
k+2

.

Then, obviously, Q is finite and

Q(s) ≤ s2
{

max
z∈[−s,s]

α′(z)
}1/(k+2)

+ C,

where C is independent of s. Using these estimates, we infer from (2.24)
that

Jκ(k+2) ≤ (CT (k + 2))
1

k+2 Jk+2, (2.26)

where κ = 7
6 and

Jk+2 := max
{
A, ‖u‖

L2(k+2)([0,T ],L
6
5 (k+2)(Ω))

, ‖v‖L2([0,T ],H1(Ω)), Q(‖u0‖L∞)
}
.

(2.27)

We also note that, due to the analogue of estimate (2.19) for equation (2.14),
we have a control of Jk+2 for k = 0,

J2 ≤ CT (Q
(‖u0‖L∞) + ‖v‖L2([0,T ],H1(Ω))

)
.

Thus, iterating estimate (2.26), we finally infer

‖u‖L∞([0,T ]×Ω) ≤ J∞ := lim sup
k→∞

Jk ≤ C
(‖v‖L2([0,T ],H1(Ω)) + Q(‖u0‖L∞)

)

and estimate (2.20) is proved, which finishes the proof of the lemma. ¤



326 A. Miranville and S. Zelik

We are now ready to finish the proof of existence. Indeed, according to
Lemma 2.3 and estimate (2.19), we have

‖uε‖L∞([0,T ]×Ω)∩L∞([0,T ],H1(Ω)) + ‖vε‖L2([0,T ],H1(Ω))

≤ QT (‖u0‖L∞∩H1), (2.28)

where the monotonic function QT is independent of the approximation pa-
rameter ε. It then follows from (2.28) and classical compactness results (see,
e.g., [26]) that, at least for a subsequence, uε → u a.e. and in L∞([0, T ]×Ω)
?-weak and L∞([0, T ],H1

0 (Ω)) ?-weak and vε → v in L∞([0, T ],H1
0 (Ω)) ?-

weak, where (u, v) belongs to the class (2.1). This is sufficient to pass to
the limit ε → 0 in equations (2.17) and to have the existence of a solution
to problem (2.2), which finishes the proof of Theorem 2.1. ¤

Remark 2.4 If we assume, in addition, that α does not degenerate,

α′(s) ≥ C > 0, s ∈ R, (2.29)

then we have the additional term
∫

Ω

α′ε(uε)‖∂tuε‖2L2 dx ≥ C ′‖∂tuε‖2L2 ,

where C ′ > 0 is independent of ε, in (2.18). This yields that ∂tu ∈
L2([0, T ], L2(Ω)) and v ∈ L2([0, T ],H2(Ω) ∩H1

0 (Ω)).

Remark 2.5 Unfortunately, the function QT in estimate (2.28) depends
on T (to be more precise, it grows polynomially as T grows). Therefore,
we cannot extract any dissipativity from this estimate. However, we obtain
this dissipativity in the next section under the additional assumption that
α′ grows at most polynomially as |s| → ∞. We do not know whether or not
the dissipativity holds without this asumption.

3. Dissipativity of L∞-solutions

In this section, we establish the dissipativity of the L∞-solutions con-
structed in the previous section. To this end, we need an additional assump-
tion, namely,



Doubly nonlinear equations 327

α′(s) ≤ C(1 + |s|p), s ∈ R, C ≥ 0, (3.1)

for some nonnegative exponent p. Furthermore, the proof of the desired
dissipativity is strongly based on the use of the dissipation integral

∫ ∞

0

‖v(t)‖2H1 dt =
∫ ∞

0

‖∂tu(t)‖2H−1 dt ≤ Q(‖u0‖L∞∩H1), (3.2)

for a monotonic function Q, which is an immediate consequence of estimate
(2.19).

In order to avoid unnecessary technicalities, we derive all the estimates
directly for equation (2.2), although, in order to justify them, one should
use the approximating problem (2.17).

The next lemma gives the Lp+q −L∞-smoothing property for the solu-
tions to equation (1.8) if q = q(p) is large enough.

Lemma 3.1 Let the assumptions of Theorem 2.1 hold and, in addition,
inequality (3.1) be satisfied. Let also q > 3p

2 . Then, any sufficiently regular
solution u to equation (1.8) satisfies the following smoothing property :

‖u(1)‖L∞ ≤ C
(
1 + ‖u0‖Lp+q + ‖v‖L2([0,1],H1(Ω))

)P
, (3.3)

for positive constants P and C which are independent of u.

Proof. The proof of this estimate is, analogously to that of Lemma 2.3,
based on a Moser iterations technique and essentially follows [19]. Let
{kn}∞n=0 and {tn}∞n=0 be two strictly increasing sequences of exponents and
times, respectively, such that

k0 = q − 2, kn →∞, t0 = 0, tn → 1,

and set

In := max
{‖u‖L∞([tn,2], Lkn+2(Ω)), ‖u‖Lkn+2([tn,2],L3(kn+2)(Ω))

}kn+2
.

Then, multiplying equation (2.14) by u|u|kn and integrating over [t∗, t]×Ω,
where t∗ is an arbitrary time in the interval [tn−1, tn] and t ∈ [tn, 2], we
have, as in (2.21),
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sup
t∈[tn,2]

(Akn
(u(t)), 1) +

4(kn + 1)
(kn + 2)2

∫ 2

tn

∥∥∇(u(t)|u(t)| kn
2 )

∥∥2

L2 dt

+
∫ 2

tn−1

∣∣(f(u(t)), u(t)|u(t)|kn)
∣∣ dt

≤ (Akn
(u(t∗)), 1) +

∫ 2

tn−1

(
v(t), u(t)|u(t)|kn

)
dt. (3.4)

Arguing as in the proof of Lemma 2.3 and using (3.1), we infer the following
inequality:

In ≤ C(kn + 2)
(
Akn+2 + ‖v‖kn+2

L2([0,2],H1(Ω))

+ ‖u‖kn+2

L2(kn+2)([tn−1,2],L
6
5 (kn+2)(Ω))

+ ‖u(t∗)‖kn+p+2
Lkn+p+2

)
.

(3.5)

We assume from now on that

3(kn−1 + 2) > kn + p + 2 (3.6)

(this assumption is not contradictory if and only if q > 3p
2 , see [19]; other-

wise, the sequence kn cannot be strictly increasing). Then, there exists
t∗ ∈ [tn−1, tn] such that

‖u(t∗)‖kn−1+2

Lkn+p+2

≤ C

tn − tn−1

∫ tn

tn−1

‖u(s)‖kn−1+2

L3(kn−1+2) ds ≤ C

tn − tn−1
In−1. (3.7)

Furthermore, using the interpolation embedding (2.25) with (k+2) replaced
by 6

7 (kn + 2), we deduce that

‖u‖kn+2

L2(kn+2)([tn−1,2],L
6
5 (kn+2))

≤ C max
{
‖u‖

L∞([tn−1,2],L
6
7 (kn+2)(Ω))

, ‖u‖
L

6
7 (kn+2)([tn−1,2],L3· 67 (kn+2)(Ω))

}kn+2

≤ C1I
kn+2

kn−1+2

n−1 , (3.8)
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where we have assumed, in addition, that

7
6
(kn−1 + 2) ≥ (kn + 2). (3.9)

Inserting estimates (3.5), (3.7) and (3.8) into the right-hand side of (3.5),
we obtain

In ≤ C(kn + 2)max
{

Akn+2, ‖v‖kn+2
L2([0,2],H1(Ω)),

I
kn+2

kn−1+2

n−1 ,

(
C

tn − tn−1
In−1

) kn+p+2
kn−1+2

}
. (3.10)

Thus, setting Jn := I
1

kn+2
n and taking the root of power kn +2 of both sides

of this inequality, we obtain

Jn ≤ [C(kn + 2)]
1

kn+2

[
C

tn − tn−1

] kn+p+2
(kn−1+2)(kn+2)

·max
{
Jn−1, A, ‖v‖L2([0,2],H1(Ω))

} kn+p+2
kn+2 . (3.11)

We can now fix the sequence kn in such a way that kn ∼
(

7
6

)n (satisfying
both assumptions (3.6) and (3.9)) and finally fix the sequence tn in such a
way that

tn − tn−1 =
β

kn
,

for some constant β which is independent of n. Then, inequality (3.11) reads

max
{
Jn, A, ‖v‖L2([0,2],H1(Ω))

}

≤ [C1(kn + 2)]
kn+p+2

(kn−1+2)(kn+2) max
{
Jn−1, A, ‖v‖L2([0,2],H1(Ω))

} kn+p+2
kn+2

and, taking the logarithm of both sides of this inequality and setting

Zn := ln max
{
Jn, A, ‖v‖L2([0,2],H1(Ω))

}
,
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we finally end up with

Zn ≤ anZn−1 + bn,

an := 1 +
p

kn + 2
, bn :=

kn + p + 2
(kn−1 + 2)(kn + 2)

ln(C1(kn + 2))
(3.12)

(we can assume, without loss of generality, that A ≥ 1 and, therefore, Zn ≥
0). Iterating estimate (3.12), we find

Zn ≤ PnZ0 + Cn, Pn :=
n∏

i=1

ai, Cn := a−1
1

n∑

i=1

Pn+1−ibi.

We finally set P := limn→∞ Pn and C := limn→∞ Cn. These limits exist and
are finite, since we have assumed that kn ∼

(
7
6

)n. Then, the last inequality
yields

‖u‖L∞([1,2],Lkn+2(Ω)) ≤ Jn ≤ max
{
Jn, A, ‖v‖L2([0,2],H1(Ω))

}

≤ eC max
{
J0, A, ‖v‖L2([0,2],H1(Ω))

}P

and, consequently,

‖u‖L∞([1,2]×Ω) ≤ lim sup
n→∞

‖u‖L∞([1,2],Lkn+2(Ω))

≤ eC
(
1 + ‖u‖L∞([0,2],Lq(Ω)) + ‖u‖Lq([0,2],L3q(Ω))

+ ‖v‖L2([0,2],H1(Ω))

)P
, (3.13)

for the positive constants C and P defined above. Furthermore, using esti-
mate (2.24) with k = q − 2 and the interpolation embedding (2.25), we can
see that

‖u‖L∞([0,2],Lq(Ω)) + ‖u‖Lq([0,2],L3q(Ω))

≤ C ′
(
1 + (Aq−2(u0), 1)

) 1
q ≤ C ′′

(
1 + ‖u0‖Lp+q(Ω)

)1+ p
q

(here, we have also implicitly used (3.1)). Inserting this last estimate into
the right-hand side of (3.13), we deduce (3.3) (up to a time scaling) and
finish the proof of Lemma 3.1. ¤
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Thus, in order to prove the dissipative estimate in L∞(Ω), it is sufficient
to obtain it in Lp+q(Ω), for a fixed q > 3p

2 . Based on this observation and
using the dissipation integral (3.2), we are now ready to obtain a uniform
(as t →∞) estimate in L∞(Ω).

Lemma 3.2 Let the assumptions of Lemma 3.1 hold. Then, the solution
u to problem (2.2) satisfies

‖u(t)‖L∞ ≤ Q(‖u0‖L∞∩H1), t ≥ 0, (3.14)

where the monotonic function Q is independent of t and u.

Proof. We multiply equation (1.8) by u|u|k, where k > 3p
2 − 2 is some

fixed number, and integrate over Ω. Then, arguing as above and using the
embedding H1 ⊂ L6, we infer

∂t(Ak(u(t)), 1) + 2γ‖u(t)‖k+2
L3(k+2) ≤ C1 + C2‖v(t)‖H1‖u(t)‖k+1

L
6
5 (k+2)

, (3.15)

for a positive constant γ. Using now the interpolation inequality

‖u‖
L

6
5 (k+2) ≤ C‖u‖

3
4
Lk+2‖u‖

1
4
L3(k+2) ,

together with Young’s inequality with exponents (k + 2), 2 and 2(k+2)
k , we

see that, for any ε, γ > 0,

C2‖v‖H1‖u‖k+1

L
6
5 (k+2)

≤ C3

[
‖v‖H1‖u‖

k+2
2

Lk+2

]
·
[
‖u‖

k−1
4

Lk+2

]
·
[
‖u‖

k+1
4

L3(k+2)

]

≤ C ′
[
‖v‖H1‖u‖

k+2
2

Lk+2

]
·
[
‖u‖

k
2
L3(k+2)

]

≤
[
C ′ε−1/2γ−

k
2(k+2)

]
·
[
ε1/2‖v‖H1‖u‖

k+2
2

Lk+2

]
·
[
γ

k
2(k+2) ‖u‖

k
2
L3(k+2)

]

≤ Cε,γ + ε‖v‖2H1‖u‖k+2
Lk+2 + γ‖u‖k+2

L3(k+2)

and, consequently,
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∂t(Ak(u(t)), 1) + γ‖u(t)‖k+2
L3(k+2) ≤ Cε + ε‖v(t)‖2H1‖u(t)‖k+2

Lk+2 ,

∀ε > 0, (3.16)

which, together with inequalities (2.23) and (3.1) and the inequality 3(k +
2) > k + p + 2, implies that

∂tBk(t)− ‖v(t)‖2H1Bk(t) + γ′Bk(t)θ ≤ C3, γ′ > 0, (3.17)

where θ = k+2
k+p+2 < 1, Bk(t) := (Ak(u(t)), 1) + C4 (for a constant C4 which

is independent of t and u) and C3 is a constant which is independent of t

and u. We claim that (3.17), together with the dissipation integral (3.2),
implies the following estimate:

Bk(t) ≤ Q(‖u0‖L∞∩H1), (3.18)

for a monotonic function Q which is independent of t and u. Indeed, setting
Z(t) := Bk(t)K(t) and K(t) := e−

R t
0 ‖v(s)‖2

H1 ds, we have

∂tZ(t) + γ′K(t)1−θZ(t)θ ≤ C3K(t). (3.19)

Furthermore, owing to the dissipation integral (3.2),

K0 ≤ K(t) ≤ 1, (3.20)

for a constant K0 which only depends on the L∞ ∩H1-norm of the initial
datum. Thus, using the fact that Z is positive, we have

∂tZ(t) + γ′K1−θ
0 Z(t)θ ≤ C3, (3.21)

which implies (by comparison arguments) estimate (3.18). More precisely,
we have

Z(t) ≤ Z̃ := max(Z(0), Z?),

where Z? :=
(

C3

γ′K1−θ
0

) 1
θ satisfies ∂tZ? + γ′K1−θ

0 Zθ
? = C3. Therefore, due to

(2.23), we have

‖u(t)‖Lk+2 ≤ Q(‖u0‖L∞∩H1), t ≥ 0.
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Thus, recalling that k + 2 > 3p
2 , Lemmas 2.3 and 3.1 give

‖u(t)‖L∞ ≤ Q(‖u0‖L∞∩H1), t ≥ 0, (3.22)

for a monotonic function Q which is independent of t and u. This estimate,
together with (2.19), gives the desired estimate (3.14) and finishes the proof
of the lemma. ¤

The next simple lemma shows that the estimate on the L∞-norm of u

implies an analogous one on the H1-norm.

Lemma 3.3 Let the assumptions of Lemma 3.1 hold and let u be a solution
to Equation (2.2). Then, the following estimate holds:

‖u(t + 1)‖H1 ≤ Q(‖u‖L∞([t,t+1]×Ω)), t ≥ 0, (3.23)

for a monotonic function Q which is independent of t and u.

Proof. It is sufficient to prove estimate (3.23) for t = 0 only. To this end,
we first multiply equation (2.2) by u and integrate over [0, 1]×Ω. Since the
L∞-norm of u is known, we have, after standard transformations,

∫ 1

0

‖∇u(s)‖2L2 ds ≤ Q(‖u‖L∞([0,1]×Ω)), (3.24)

for a monotonic function Q. We then multiply the equation by t∂tu and
integrate over [0, 1]× Ω. This gives

∫ 1

0

s
[
(α′(u(s))∂tu(s), ∂tu(s)) + ‖∂tu(s)‖2H−1

]
ds

+
1
2
‖∇u(1)‖2L2 + (F (u(1)), 1)

=
∫ 1

0

(
1
2
‖∇u(s)‖2L2 + (F (u(s)), 1)

)
ds. (3.25)

Using (3.24) and exploiting again the fact that the L∞-norm of the solution
is known in order to estimate the second part of the integral in the right-
hand side of (3.25), we deduce the required estimate (3.23) and finish the
proof of the lemma. ¤
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We are now ready to formulate and prove the main result of this section,
namely, the dissipativity of u in L∞(Ω) ∩H1(Ω).

Theorem 3.4 Let the assumptions of Lemma 3.1 hold. Then, the solution
u to problem (2.2) satisfies the following estimate:

‖u(t)‖L∞∩H1 ≤ Q(‖u0‖L∞∩H1)e−γt + C∗, t ≥ 0, (3.26)

where the positive constant γ and the monotonic function Q are independent
of t and u.

Proof. As usual, in order to prove (3.26), it is sufficient to prove that there
exist a constant C∗ and a monotonic function Q1 independent of the solution
u such that

‖u(t)‖L∞∩H1 ≤ C∗, ∀t ≥ Q1(‖u0‖L∞∩H1). (3.27)

In order to prove (3.27), we again use the dissipation integral (3.2). Indeed,
let u be a solution to (2.2). Then, due to (3.2), for every N > 0, the interval
[0, T0 −N ], with T0 = T0(‖u0‖L∞∩H1) := NQ(‖u0‖L∞∩H1) (here, Q is the
same as in (3.2)), contains at least one point t0 = t0(u) such that

∫ t0+N

t0

‖v(t)‖2H1 dt ≤ 1. (3.28)

We now consider equation (3.17) on the time interval [t0, t0 + N ]. Then, on
the one hand, due to (2.23) and (3.18),

|Bk(t0)| ≤ Q(‖u0‖L∞∩H1),

Bk(t) ≥ γ‖u(t)‖k+2
Lk+2 − C, t ∈ [t0, t0 + N ],

(3.29)

where the monotonic function Q and the positive constants γ and C are
independent of t and u. On the other hand, due to (3.28), estimate (3.20) is
satisfied for K(t) := e

− R t
t0
‖v(s)‖2

H1 ds, with K0 = e−1 on this time interval,
and

e−1Bk(t) ≤ Z(t) ≤ Bk(t), t ∈ [t0, t0 + N ]. (3.30)

Therefore, due to the comparison principle for scalar ODEs,
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Bk(t) ≤ eZ(t) ≤ ey(t), t ∈ [t0, t0 + N ], (3.31)

where the function y = y(t) solves the equation

y′ + γ′K1−θ
0 yθ = C3, C3 > 0, y(t0) ≥ Bk(t0), (3.32)

We set, as above, Z∗ :=
(

C3

γ′K1−θ
0

) 1
θ . In addition, we can assume, without

loss of generality, that

y(t0) = max
{
2Z∗, Q(‖u0‖L∞∩H1)

}
,

where Q is the same as in (3.29). Then, the solution y(t) is monotone
decreasing and satisfies

y′(t) ≤ C3 − γ′K1−θ
0 (2Z∗)θ = −(2θ − 1)C3

as long as y(t) ≥ 2Z∗. Thus,

y(t) ≤ max
{
2Z∗, y(t0)− (2θ − 1)C3(t− t0)

}
(3.33)

and, therefore,

Bk(t) ≤ emax
{
2Z∗, Q(‖u0‖L∞∩H1)− (2θ − 1)C3(t− t0)

}
, t ∈ [t0, t0 + N ],

where the constants C3 and Z∗ are independent of u0, t0 and N . We now
set

N = N(‖u0‖L∞∩H1) :=
Q(‖u0‖L∞∩H1)

(2θ − 1)C3
+ 2.

Then, the last estimate guarantees that

Bk(t) ≤ 2eZ∗, t ∈ [t0 + N − 2, t0 + N ]. (3.34)

Inequalities (3.13), (3.28), (3.29) and (3.34) now give

‖u‖L∞([t0+N−1,t0+N ]×Ω) ≤ C ′, (3.35)

where t0 ≤ T0(‖u0‖L∞∩H1) and the constant C ′ is independent of u0. There-
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fore, due to Lemma 3.3, we obtain

‖u(t0 + N)‖L∞∩H1 ≤ C ′′,

where C ′′ is independent of u0. Finally, using estimate (3.14), we infer

‖u(t)‖L∞∩H1 ≤ C∗, t ≥ t0 + N, t0 ≤ T0(‖u0‖L∞∩H1).

Thus, (3.27) is verified and the theorem is proved. ¤

Remark 3.5 The proof of dissipativity given above is strongly based
on the dissipation integral (3.2) and cannot be extended to a system with
nonautonomous external forces for which this integral is infinite. This is re-
lated to the fact that “pathological” nonsmooth solutions to equation (1.8)
may exist if α grows sufficiently fast as |s| → ∞ (see [7] and [19] for sit-
uations in which one encounters such solutions). In that case, the energy
solutions are not necessarily regular and we need, in addition, to establish
the dissipativity in Lq(Ω), for q > 3p

2 , and, as far as the Lq-estimates are
concerned, we can only treat the term ∂t(−∆)−1u as a perturbation.

This problem can be overcome if the growth exponent p is not too large,
namely,

α′(s) ≤ C(1 + |s|4), s ∈ R, C ≥ 0. (3.36)

Indeed, in that case, multiplying equation (2.2) by u, we have

∂tB(t) + γB(t)
1
3 + γ‖∇u(t)‖2L2 + (f(u(t)), u(t)) ≤ C, (3.37)

where B(t) := (A0(u(t)), 1)+‖u(t)‖2H−1 and γ and C are positive constants.
This estimate gives the dissipativity in L2(Ω),

‖u(t)‖2L2 +
∫ t+1

t

[‖∇u(s)‖2L2 + (f(u(s)), u(s))
]
ds ≤ Q(‖u0‖L6)e−βt + C∗,

t ≥ 0, β > 0.

If, in addition, the nonlinearity f satisfies some regularity assumption,
namely,

F (s) ≤ C(1 + f(s)s), s ∈ R, C ≥ 0,
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multiplying now equation (2.2) by ∂tu and t∂tu and arguing in a standard
way, we deduce the dissipativity in H1(Ω),

‖u(t)‖2H1 +
∫ t+1

t

‖v(s)‖2H1 ds ≤ Q(‖u0‖L∞∩H1)e−βt + C∗, t ≥ 0, β > 0.

(3.38)

Thus, we have a dissipative estimate on u in L6(Ω). Now, recall that p = 4,
so that we exactly have the limit case q = 6 = 3p

2 . If p < 4, the desired
dissipativity in L∞(Ω) is an immediate consequence of Lemma 3.1. In order
to handle the critical case p = 4, we need one more step before applying
Lemma 3.1. To be more precise, owing to the dissipative estimate (3.38)
and the interpolation embedding (2.25) (with k = 0), we have an analogue
of inequality (3.15), with an additional function h in the right-hand side
satisfying the estimate

∫ t+1

t

|h(s)| ds ≤ Q(‖u0‖L∞∩H1)e−βt + C∗, t ≥ 0, β > 0,

if k ≤ 4
3 . This, in turn, gives the following analogue of (3.16):

∂tBk(t) + γ′[Bk(t)]θ + γ′‖u(t)‖k+2
L3(k+2) ≤ h(t), θ = θk > 0,

which is sufficient to obtain a dissipative estimate of the form

‖u‖Lk+2([t,t+1],L3(k+2)(Ω)) ≤ Q(‖u0‖L∞∩H1)e−βt + C∗, t ≥ 0, β > 0,

if k ≤ 4
3 . Thus, we have, for k = 4

3 , a control on the Lq-norm of u(t?), for
t? ∈ [T, T + 1], ∀T ≥ 0, with q = 3(k + 2) = 10, and we can now apply
Lemma 3.1.

It is not difficult to see that this alternative scheme does not require
the dissipation integral (3.2) to be finite and can be extended to the nonau-
tonomous case (i.e., we can, in particular, consider nonautonomous external
forces).

Another possibility to avoid the use of the dissipation integral (3.2) is
to assume that f grows faster than α,

f(s)s ≥ −C + γ|s|p+2, s ∈ R, γ > 0, C ≥ 0.
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In that case, an analogue of (3.37) still holds (but only the second term,
now of the form γB(t), providing the dissipation appears; this dissipation is
due to the nonlinearity, but not to the Laplacian). It is also worth mention-
ing that, in both cases, the above mentioned pathological energy solutions
cannot exist, see [19].

4. Finite-dimensional attractors for L∞-solutions

The aim of this section is to prove the existence of finite-dimensional
attractors for the solution semigroup

S(t) : Φ → Φ, S(t)u0 := u(t), (4.1)

associated with equation (2.2) in the phase space

Φ := L∞(Ω) ∩H1
0 (Ω). (4.2)

We recall that, owing to Theorem 3.4, we already have the dissipativity of
the semigroup (4.1) in Φ,

‖S(t)u0‖Φ ≤ Q(‖u0‖Φ)e−γt + C∗, t ≥ 0, γ > 0. (4.3)

However, if α degenerates, it seems problematic (and even impossible) to
obtain additional regularity on the solutions to problem (2.2) in order to
establish the asymptotic compactness of this semigroup in a strong topology.
Therefore, we will consider below the attractors in a weak topology only. For
the reader’s convenience, we recall the definition of such an attractor (see,
e.g., [3], [5], [24], [30] and [36] for more details).

Definition 4.1 The set A is the weak global attractor for the semigroup
(4.1) in the phase space Φ if:

1) A is closed in Φ and is compact in Φ endowed with the ∗-weak
topology;

2) A is invariant, S(t)A = A, t ≥ 0;
3) A attracts the images of all bounded sets of Φ in the ∗-weak topology,

i.e., for every bounded set B ⊂ Φ and every neighborhood O(A) of A in the
∗-weak topology of Φ, there exists a time T = T (B,O) such that

S(t)B ⊂ O(A), ∀t ≥ T. (4.4)
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In particular, owing to the compact embedding

Φ ⊂ H1−δ ∩ Lq,

for any δ > 0 and 1 ≤ q < ∞, the weak attraction (4.4) implies the strong
attraction in H1−δ(Ω) ∩ Lp(Ω),

lim
t→∞

distH1−δ∩Lq (S(t)B,A) = 0, (4.5)

where distV (·, ·) denotes the Hausdorff semi-distance between sets in V ,
defined by

distV (A,B) = sup
a∈A

inf
b∈B

‖a− b‖V .

The next theorem establishes the existence of such a weak attractor for the
solution semigroup associated with equation (2.2).

Theorem 4.2 Let the assumptions of Theorem 3.4 hold. Then, the semi-
group (4.1) associated with problem (2.2) possesses the weak global attractor
A in the sense of Definition 4.1. Furthermore, this attractor has the follow-
ing standard structure:

A = K |t=0, (4.6)

where K ⊂ L∞(R × Ω) ∩ L∞(R,H1
0 (Ω)) is the set of all bounded solutions

to equation (2.2) defined for all t ∈ R.

Indeed, the asymptotic compactness in the ∗-weak topology is immedi-
ate, due to (4.3) and the fact that a bounded closed ball in Φ is compact in
the ∗-weak topology, and the continuity of S(t) (in the ∗-weak topology) on
the absorbing ball can be verified in a standard way (we leave the details
to the reader, see also [3] and [5]). Thus, usual global attractors’ existence
theorems give the attractor A for the solution semigroup and equality (4.6)
(see again [3], [5], [24], [30] and [36]).

Our next aim is to prove the finite-dimensionality of the above attractor.
Since it is compact in the ∗-weak topology only, the finite-dimensionality will
also be understood in a weaker topology, say, in H−1(Ω). Furthermore, we
will also establish the existence of a so-called exponential attractor for the
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solution semigroup in the sense of the following definition.

Definition 4.3 A set M is an exponential attractor for the solution semi-
group S(t) in Φ if the following assumptions are satisfied:

1) M is bounded in Φ and compact in the ∗-weak topology of Φ;
2) M is positively invariant, S(t)M⊂M, t ≥ 0;
3) M has finite fractal dimension in the space H−1(Ω),

dimf (M,H−1(Ω)) ≤ C < ∞; (4.7)

4) M attracts exponentially the images of all bounded sets of Φ in the
H−1-topology, i.e., for every bounded subset B ⊂ Φ,

distH−1(S(t)B,M) ≤ Q(‖B‖Φ)e−γt, t ≥ 0, (4.8)

where the positive constant γ and the monotonic function Q are independent
of t.

We note that, by interpolation between Φ and H−1(Ω),

‖u‖H1−δ∩Lq ≤ C‖u‖θ
H−1‖u‖1−θ

Φ ,

where the positive constants C and θ depend on δ > 0 and 1 ≤ q < ∞,
but are independent of u. This shows that an exponential attractor M is
automatically finite-dimensional in the spaces H1−δ(Ω)∩Lq(Ω), for all δ > 0
and 1 ≤ q < ∞, and the exponential attraction property (4.8) also holds in
these spaces.

The next theorem, which establishes the existence of such an attractor,
is the main result of this section.

Theorem 4.4 Let the assumptions of Theorem 3.4 hold. Then, the solu-
tion semigroup S(t) associated with equation (2.2) possesses an exponential
attractor M in the sense of Definition 4.3.

Proof. Keeping in mind the Lipschitz continuity property proved in
Lemma 2.2, we introduce the following nonlinear transformation B of the
phase space Φ:

B(u) = α(u) + (−∆)−1u, u ∈ Φ. (4.9)
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The next result shows that this transformation is Hölder continuous in
H−1(Ω).

Lemma 4.5 Let the assumptions of Theorem 3.4 hold. Then, the following
inequalities hold, for every u1, u2 ∈ Φ:




‖B(u1)− B(u2)‖H−1 ≤ C‖u1 − u2‖

1
2
H−1 ,

‖u1 − u2‖H−1 ≤ C‖B(u1)− B(u2)‖
1
2
H−1 ,

(4.10)

where the constant C only depends on ‖u1‖Φ and ‖u2‖Φ.

Proof. We have, since ui ∈ Φ, i = 1, 2,

‖B(u1)− B(u2)‖H−1 ≤ C
(‖α(u1)− α(u2)‖L2 + ‖u1 − u2‖H−1

)

≤ C1‖u1 − u2‖L2 ≤ C2‖u1 − u2‖
1
2
H−1‖u1 − u2‖

1
2
H1

≤ C3‖u1 − u2‖
1
2
H−1 .

Conversely, using the monotonicity of α,

‖u1 − u2‖2H−1 ≤ (B(u1)− B(u2), u1 − u2)

≤ C‖B(u1)− B(u2)‖H−1‖u1 − u2‖H1

≤ C ′‖B(u1)− B(u2)‖H−1

and the lemma is proved. ¤

The next lemma, which establishes some kind of smoothing property on
the difference of solutions to (2.2), is the main technical tool to prove the
existence of an exponential attractor (see also [27] and [37]).

Lemma 4.6 Let the above assumptions hold and let l > 0, u1 and u2

be two solutions to (2.2) and wi := B(ui), i = 1, 2. Then, the following
estimate holds:

‖w1 − w2‖L2([l,2l]×Ω) + ‖∂tw1 − ∂tw2‖L2([l,2l],H−3(Ω))

≤ Cl‖w1 − w2‖L2([0,l],H−1(Ω)), (4.11)
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where the constant Cl only depends on l and on the norms ‖ui‖Φ, i = 1, 2.

Proof. Returning to (2.5) and (2.11), we have, for ε = 1
2 in (2.11),

∂t‖w‖2H−1 + (α(u1)− α(u2), u) + ‖u‖2H−1 ≤ C‖w‖2H−1 , (4.12)

where w = w1 − w2 and u = u1 − u2. Now, we have

(α(u1)− α(u2), u) + ‖u‖2H−1 ≥ C
(‖α(u1)− α(u2)‖2L2 + ‖(−∆)−1u‖2L2

)

≥ C ′‖w‖2L2 ,

for C ′ > 0 small enough, so that (4.12) yields

∂t‖w‖2H−1 + C‖w‖2L2 +
1
2
‖u‖2H−1 ≤ C ′‖w‖2H−1 . (4.13)

Applying Gronwall’s lemma to estimate (4.13), we deduce in a standard way
that

‖w‖2L∞([l,2l],H−1(Ω))+
∫ 2l

l

(‖w(t)‖2L2+‖u(t)‖2H−1

)
dt ≤ Cl‖w(l)‖2H−1 . (4.14)

Furthermore, multiplying (4.13) by t and integrating over [0, l], we find

‖w(l)‖2H−1 ≤ Cl

∫ l

0

‖w(t)‖2H−1 dt. (4.15)

Combining the last two estimates, we obtain

‖w‖L2([l,2l]×Ω) + ‖u‖L2([l,2l],H−1(Ω)) ≤ Cl‖w‖L2([0,l],H−1(Ω)). (4.16)

Thus, the first term in the left-hand side of (4.11) is estimated and we only
need to estimate the H−3-norm of the derivative ∂tw. To this end, we note
that the functions u and w solve

∂tw = ∆u− [f(u1)− f(u2)], (4.17)

so that, taking the H−3-norm of both sides of this equation and using (2.10),
we finally have
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‖∂tw(t)‖H−3 ≤ ‖u(t)‖H−1+‖f(u1(t))−f(u2(t))‖H−3 ≤ C‖u(t)‖H−1 . (4.18)

Taking the L2([l, 2l])-norm of both sides of (4.18) and using (4.16), we obtain
the desired estimate for ∂tw and finish the proof of the lemma. ¤

We are now ready to finish the proof of the theorem. To this end, we
note that, due to the dissipative estimate (4.3), it is sufficient to construct
the exponential attractor for initial data belonging to the absorbing ball

B := {u0 ∈ Φ, ‖u0‖Φ ≤ 2C∗}. (4.19)

Furthermore, due to the same dissipative estimate, we can fix l > 0 in such
a way that

S(l)B ⊂ B. (4.20)

We now introduce the two spaces

H := L2([0, l],H−1(Ω)) and H1 := L2([0, l]×Ω)∩H1([0, l],H−3(Ω)) (4.21)

and define a map S : B→ H by the following expression:

(Su0)(t) := B(S(t)u0), t ∈ [0, l].

Then, due to Lemmas 2.2 and 4.5, this map is uniformly Hölder continuous
as a map from B, endowed with the H−1-topology, into H. Consequently,
its image

B0 := S(B) (4.22)

is a compact set of H. We now consider the following map L which is
conjugated with the solution operator S(l) via the map S:

L := S ◦ S(l) ◦ S−1.

Then, owing to (4.20), L : B0 → B0 and, owing to Lemma 4.6, we have, for
every w1, w2 ∈ B0,

‖Lw1 − Lw2‖H1 ≤ C‖w1 − w2‖H, (4.23)
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where the constant C is independent of wi, i = 1, 2.
Since the embedding H1 ⊂ H is compact, inequality (4.23) implies the

existence of an exponential attractor M ⊂ B0 for the discrete semigroup
generated by the iterations of the map L which satisfies the following prop-
erties:

1) it is compact and positively invariant, LM ⊂M;
2) it attracts exponentially the set B0, i.e.,

distH(LnB0,M) ≤ Ce−γn, n ∈ N, (4.24)

where C and γ are positive constants;
3) its fractal dimension is finite,

dimf (M,H) ≤ C < ∞. (4.25)

We refer the reader to [16] for more details.
We now note that, due to Lemma 4.5 and estimate (4.15), the map

S−1 ◦ L : B0 → B ⊂ Φ

is uniformly Hölder continuous with exponent 1
2 (here, B is endowed with

the H−1-topology). Therefore, the set

Md := S−1 ◦ LM (4.26)

is an exponential attractor for the discrete semigroup {S(ln), n ∈ N} acting
on B ⊂ H−1(Ω).

As usual, the desired exponential attractor M for the semigroup S(t)
in the continuous framework of time can be constructed by the following
expression:

M := ∪t∈[0,l]S(t)Md.

Indeed, due to Lemmas 2.2 and 4.5, the maps S(t) are uniformly Hölder
continuous (for the H−1-topology) for every fixed t and, due to the control
(2.19), every solution u to problem (2.2) satisfies

u ∈ C
1
2−δ([0, T ],H−1(Ω)), δ > 0.
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Thus, the map (t, u0) 7→ S(t)u0 is uniformly Hölder continuous on [0, l]×Md.
All the desired properties of the exponential attractorM are now immediate
consequences of the analogous properties for the discrete attractor Md and
Theorem 4.4 is proved. ¤

Remark 4.7 Since, obviously, the global attractor is a subset of any
exponential attractor, A ⊂M, the above theorem guarantees that the global
attractor A also has finite fractal dimension in H−1(Ω).

5. Energy solutions and the Cahn-Hilliard limit α → 0

The aim of this section is to study the Cahn-Hilliard limit α → 0 in
equations (2.2). However, the theory developed in the previous sections is
not sufficient for this purpose, since our L∞-estimates essentially depend on
α and diverge as α → 0. Consequently, all further estimates, including also
the dimension of the attractors, diverge as α → 0. In order to overcome
this difficulty, we will consider weaker energy solutions to problem (2.2) and
will avoid the use of the nonuniform L∞-estimates. To this end, we need to
impose the following restrictions on the nonlinearity α ∈ C2(R):

0 ≤ α′(s) ≤ α0, |α′′(s)| ≤ α0, s ∈ R, α0 > 0. (5.1)

Furthermore, in addition to the dissipativity assumption (1.13), we impose
the following growth restriction and quasi-monotonicity condition on the
nonlinearity f :

|f ′′(s)| ≤ C(1 + |s|), f ′(s) ≥ −C, s ∈ R, C ≥ 0. (5.2)

We note that, in contrast to the previous sections, we now no longer need
the nondegeneracy (1.12) of the nonlinearity α at infinity.

We say that a pair of functions (u, v),

u ∈ L∞
(
[0, T ],H1

0 (Ω)
) ∩ L2

(
[0, T ],H2(Ω)

)
, v ∈ L2

(
[0, T ],H1

0 (Ω)
)
, (5.3)

is an energy solution to problem (2.2) if u and v satisfy (2.2) in the sense of
distributions.

The proof of existence of energy solutions is, in view of the assumptions
made on α and f , straightforward.

The next lemma gives the uniform (as α → 0) dissipativity of such
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energy solutions.

Lemma 5.1 Let assumptions (1.13), (5.1) and (5.2) be satisfied. Then,
any energy solution (u, v) to problem (2.2) satisfies the following dissipative
estimate:

‖u(t)‖2H1 +
∫ t+1

t

(‖v(s)‖2H1 + ‖u(s)‖2H2

)
ds ≤ Q(‖u0‖H1)e−γt + C∗, t ≥ 0,

(5.4)

where the monotonic function Q and the positive constants γ and C∗ are
independent of α0 → 0.

Proof. Multiplying equation (2.2) by u and integrating over Ω, we have

∂t

[
(A(u), 1) +

1
2
‖u‖2H−1

]
+ ‖∇u‖2L2 ≤ C, (5.5)

where A(s) :=
∫ s

0
α′(z)z dz. Using the fact that

0 ≤ A(u) ≤ 1
2
α0|u|2,

together with Friedrichs’ inequality, we deduce from (5.5) that

∂t

[
(A(u), 1) +

1
2
‖u‖2H−1

]
+ γ

[
(A(u), 1) +

1
2
‖u‖2H−1

]
+ γ‖∇u‖2L2 ≤ C,

where the positive constant γ is independent of α0 → 0. Applying Gronwall’s
lemma to this relation, we obtain a dissipative estimate in H−1(Ω),

‖u(t)‖2H−1 +
∫ t+1

t

‖u(s)‖2H1 ds ≤ C‖u0‖2L2e−γt + C∗, t ≥ 0, γ > 0, (5.6)

where all the constants are uniform with respect to α0 → 0.
In a next step, we multiply equation (2.2) by ∂tu. Then, arguing as in

(2.18) and (2.19), we find

‖u(t)‖2H1 +
∫ t

t0

[
(α′(u(s))∂tu(s), ∂tu(s))+ ‖v(s)‖2H1

]
ds ≤ C

(
1+ ‖u(t0)‖4H1

)
,

(5.7)
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where C is again independent of α0 → 0 and t ≥ t0 ≥ 0 (here, we have
implicitly used the fact that F (u) ≤ C(1 + |u|4)). Estimates (5.6) and (5.7)
imply the following dissipative estimate in H1(Ω):

‖u(t)‖2H1 +
∫ t+1

t

[
(α′(u(s))∂tu(s), ∂tu(s)) + ‖v(s)‖2H1

]
ds

≤ C(1 + ‖u0‖H1)4e−γt + C∗, (5.8)

t ≥ 0, γ > 0, where all the constants are again uniform with respect to
α0 → 0 (indeed, taking, e.g., t = 1 in (5.6), we note that there exists
t0 ∈ (1, 2) such that ‖u(t0)‖2H1 ≤ C‖u0‖2L2e−γt0 +C∗). Thus, it only remains
to deduce an L2(H2)-estimate on u. In order to do so, we note that, owing
to the global boundedness of α′,

∫ t+1

t

‖∂tα(u(s))‖2L2 ds ≤ α0

∫ t+1

t

(α′(u(s))∂tu(s), ∂tu(s)) ds. (5.9)

Furthermore, due to the estimate |f(u)| ≤ C(1 + |u|3) and the embedding
H1 ⊂ L6, estimate (5.8) allows to control the L2([t, t + 1] × Ω)-norm of
the terms f(u) and v = −(−∆)−1∂tu in equation (2.2). The classical H2-
regularity theorem for the Laplacian now gives the desired control on the
L2(H2)-norm of u and finishes the proof of the lemma. ¤

The next lemma establishes the uniqueness of the energy solutions.

Lemma 5.2 Let the assumptions of Lemma 5.1 hold. Then, an energy
solution is unique. Furthermore, any two energy solutions u1 and u2 to prob-
lem (2.2) satisfy estimate (2.3), where the constants C and C ′ are uniform
with respect to α0 → 0.

Proof. The proof of this lemma basically follows that of Lemma 2.2, but
we now no longer have a control on the L∞-norms of u1 and u2 and, conse-
quently, we need to estimate the term

∣∣(f(u1)− f(u2), (−∆)−1w)
∣∣

in a different way, using the growth restriction on f instead of the L∞-
control.
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We set l(t) :=
∫ 1

0
f ′(su1(t) + (1 − s)u2(t)) ds, so that f(u1) − f(u2) =

l(t)u. Then, using the embedding H1 ⊂ L6, we have, for every φ ∈ H1
0 (Ω),

|(f(u1)− f(u2), φ)| = |(u, l(t)φ)| ≤ ‖u‖H−1‖l(t)φ‖H1

≤ C‖u‖H−1

(‖l(t)‖L∞ + ‖∇l(t)‖L3

)‖φ‖H1

and, consequently,

‖f(u1)− f(u2)‖H−1 ≤ C
(‖l(t)‖L∞ + ‖∇l(t)‖L3

)‖u‖H−1 . (5.10)

Using now the growth restriction on f and the interpolation inequality

‖ui‖2L∞ ≤ C‖ui‖H1‖ui‖H2 , i = 1, 2,

we have

‖l(t)‖L∞ ≤ C(1 + ‖u1‖H1 + ‖u2‖H1)(1 + ‖u1‖H2 + ‖u2‖H2).

Analogously,

‖∇l(t)‖L3 ≤ C sup
i=1,2

(1 + ‖ui‖L6‖∇ui‖L6)

≤ C ′(1 + ‖u1‖H1 + ‖u2‖H1)(1 + ‖u1‖H2 + ‖u2‖H2).

Thus, using the uniform control on the H1-norm of the solutions given in
Lemma 5.1, we finally have

∣∣(f(u1)− f(u2), (−∆)−1w)
∣∣

≤ ‖f(u1)− f(u2)‖H−1‖w‖H−1

≤ ε‖u‖2H−1 + Cε

(
1 + ‖u1‖2H2 + ‖u2‖2H2

)‖w‖2H−1 , (5.11)

where ε > 0 is arbitrary and Cε depends on ε and on the H1-norms of u1

and u2, but is independent of α0 → 0.
Furthermore, since α′(u) ≤ α0,
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‖w‖2L2 ≤ 2
[‖α(u1)− α(u2)‖2L2 + ‖u‖2H−2

]

≤ C
[
α0(u, α(u1)− α(u2)) + ‖u‖2H−1

]

≤ C ′
[
(u, α(u1)− α(u2)) + ‖u‖2H−1

]
, (5.12)

where the constant C ′ is independent of α0 → 0. Inserting estimates (5.11)
and (5.12) into inequality (2.5), we deduce that

∂t‖w(t)‖2H−1 + γ
(‖w(t)‖2L2 + ‖u(t)‖2H−1

)

≤ C
(
1 + ‖u1(t)‖2H2 + ‖u2(t)‖2H2

)‖w(t)‖2H−1 , (5.13)

where the positive constants γ and C are uniform with respect to α0 → 0.
Applying Gronwall’s lemma to this relation and using the control on the
L2(H2)-norms of u1 and u2 obtained in Lemma 5.1, we deduce estimate
(2.3) and finish the proof of the lemma. ¤

Corollary 5.3 Let the assumptions of Lemma 5.1 hold. Then, for any
two energy solutions u1 and u2 and wi := B(ui), i = 1, 2, we have estimate
(4.11), where the constant Cl depends on l and on the L∞(H1)-norms of u1

and u2, but is independent of α0 → 0. Furthermore, the constant C in the
Hölder continuity inequality (4.10) is also uniform as α0 → 0.

Indeed, the uniform estimate (4.11) follows from (5.13) exactly as in
the proof of Lemma 4.6 and the uniform estimate (4.10) can be obtained
repeating word by word the proof of Lemma 4.5 (but now using the fact
that α′ is globally bounded).

Thus, under the assumptions of this section, equation (2.2) is well-posed
in the energy phase space Φen := H1

0 (Ω) and generates a dissipative solution
semigroup Sα(t) in this space,

Sα(t) : Φen → Φen, Sα(t)u0 := u(t), (5.14)

where u solves equation (2.2) (since we are now interested in the limit α → 0,
we explicitly indicate the dependence on the nonlinearity α). According to
Lemma 5.1, this semigroup is dissipative in the energy phase space Φen,

‖u(t)‖Φen ≤ Q(‖u0‖Φen)e−γt + C∗, t ≥ 0, (5.15)
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where the monotonic function Q and the positive constants γ and C∗ are
independent of t, u0 and α0 → 0. Moreover, due to Lemma 5.2 and Corollary
5.3, this semigroup is (uniformly with respect to α0 → 0) Hölder continuous
in Φen endowed with the H−1-norm.

Furthermore, analogously to Theorem 4.2, this semigroup possesses the
weak global attractor Aα in the phase space Φen. We also note that the
case α0 = 0 (i.e., α = 0) corresponds to the classical Cahn-Hilliard equation

∂t(−∆)−1u = ∆u− f(u), u |∂Ω = 0, u |t=0 = u0, (5.16)

which, as is well-known, possesses smooth global (A0) and exponential (M0)
attractors, even in the strong topology of the phase space Φen (see, e.g., [17]
and [36]).

The following result, which gives a robust Hölder continuous family of
exponential attractors for equations (2.2) as α → 0, can be considered as
the main result of this section.

Theorem 5.4 Let the assumptions of Lemma 5.1 hold. Then, for ev-
ery nonlinearity α satisfying (5.1), there exists a weak exponential attractor
Mα ⊂ Φen of the solution semigroup Sα(t) in the sense of Definition 4.3
(in which the space Φ is replaced by Φen). Furthermore, these attractors are
uniformly (with respect to α0 → 0) bounded in Φen and estimates (4.7) and
(4.8) are also independent of α0 → 0. Finally, the attractors Mα tend to the
limit Cahn-Hilliard attractor M0 as α → 0 in the sense of the symmetric
Hausdorff distance in H−1(Ω),

distsym
H−1(Mα,M0) ≤ Cαθ

0, (5.17)

where the positive constants θ and C are independent of α and can be com-
puted explicitly.

Proof. To prove this result, we need one more lemma to estimate the dif-
ference between the solutions to equations (2.2) and (5.16).

Lemma 5.5 Let the assumptions of the theorem hold and let uα and u0 be
two solutions to problems (2.2) and (5.16), respectively. Then, the following
estimate is valid :
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‖uα(t)− u0(t)‖2H−1 +
∫ t

0

‖uα(s)− u0(s)‖2H1 ds

≤ CeKt
(‖uα(0)− u0(0)‖2H−1 + α0

)
, (5.18)

where the constants C and K depend on the H1-norms of uα(0) and u0(0),
but are independent of t and α0 → 0.

Proof. We set u := uα − u0. Then, this function solves

∂t(−∆)−1u−∆u + [f(uα)− f(u0)] = −α′(uα)∂tuα. (5.19)

Multiplying this equation by u and using the quasi-monotonicity assumption
on f and a proper interpolation inequality, we deduce in a standard way that

∂t‖u(t)‖2H−1+γ‖u(t)‖2H1 ≤ K‖u(t)‖2H−1+C‖α′(uα)∂tuα‖H−1‖u‖H1 , (5.20)

where the positive constants γ, C and K are independent of α0 → 0. Fur-
thermore, arguing as in the proof of Lemma 5.2, we can check that

∥∥α′(uα(t))∂tuα(t)
∥∥

H−1 ≤ Cα0(1 + ‖uα(t)‖H2)‖∂tuα(t)‖H−1 , (5.21)

where the constant C depends on the H1-norms of the initial data, but is
independent of α0. Applying now Gronwall’s lemma to (5.20) and using
the uniform control on the L2(H2) ∩ L∞(H1)-norms of uα and u0 and the
control on the L2(H−1)-norm of ∂tuα given in Lemma 5.1, we deduce the
desired estimate (5.18) and finish the proof of the lemma. ¤

We are now ready to finish the proof of the theorem, proceeding exactly
as in the end of that of Theorem 4.4. Indeed, according to the dissipative
estimate (5.15), the ball

B := {u0 ∈ Φen, ‖u0‖Φen
≤ 2C∗}

is an absorbing ball for all the semigroups Sα(t) if α0 is not too large (say, if
α0 ∈ (0, 1]). Furthermore, according to the same uniform estimate, we can
fix l (independently of α0) in such a way that

Sα(l)B ⊂ B
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if α0 is not too large. We also define the transformations Bα : Φen → Φen

by

Bα(u0) := α(u0) + (−∆)−1u0, B0(u0) = (−∆)−1u0,

and the lifting maps Sα : B→ H by

(Sαu0)(t) := Bα(Sα(t)), t ∈ [0, l]

(the spaces H and H1 are defined in (4.21)). Then, according to Corollary
5.3 and Lemma 5.2, the sets

B0(α) := Sα(B) (5.22)

are uniformly bounded and compact in H. Finally, we define the maps Lα

by

Lα := Sα ◦ Sα(l) ◦ [Sα]−1

and construct the desired family of exponential attractors for the maps Lα.
Indeed, according to Corollary 5.3,

‖Lαw1 − Lαw2‖H1 ≤ C‖w1 − w2‖H, wi ∈ B0(α), i = 1, 2, (5.23)

where the constant C is independent of α0 → 0. However, the phase spaces
B0(α) for the maps Lα now depend on α. In order to overcome this difficulty,
we introduce the projectors Πα→0 : B0(α) → B0(0) and Π0→α := Π−1

α→0

defined by

Πα→0w := S0 ◦ [Sα]−1w.

Then, due to Lemma 5.5, it is not difficult to see that

‖Πα→0w − w‖H ≤ Cα
1
2
0 , w ∈ B0(α);

‖Π0→αw − w‖H ≤ Cα
1
2
0 , w ∈ B0(0),

(5.24)

where C is independent of α0 and w. The last estimate shows, in particular,
that
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distsym
H (B0(α),B0(0)) ≤ Cα

1
2
0 .

Furthermore, Lemma 5.5 also implies that

‖Lα(Π0→αw)− L0w‖H ≤ Cα
1
2
0 , (5.25)

where C is again independent of w ∈ B0(0) and α0.
Thus, due to estimates (5.23), (5.24) and (5.25) and using an abstract

theorem on the existence of robust families of exponential attractors, see,
e.g., [20] and [30], the maps Lα possess a family of exponential attractors
Mα ⊂ H which satisfy estimates (4.24) and (4.25), uniformly with respect
to α, and, in addition,

distsym
H (Mα,M0) ≤ Cαθ

0,

where θ > 0 and C are independent of α.
Returning to the phase space Φen (exactly as in the end of the proof

of Theorem 4.4), we obtain the desired family of exponential attractors
Mα ⊂ Φen and finish the proof of Theorem 5.4. ¤

Remark 5.6 Since the attractors Mα are uniformly bounded in H1(Ω),
estimate (5.17), together with a proper interpolation inequality, gives

distsym
H1−δ(Mα,M0) ≤ Cδα

θδ
0 ,

where the constants Cδ and θδ depend on δ > 0, but are independent of α0.
In particular, we have the Hölder continuity of the family Mα in L2(Ω).

Remark 5.7 We assume that, in addition, the nonlinearity α does not
degenerate at infinity (i.e., (1.12) holds). Then, arguing as in Section 3 (see
also Remark 3.5), we can prove that

Sα(t) : Φen → Φ := L∞(Ω) ∩H1
0 (Ω), (5.26)

for every t > 0, and, consequently, the global attractor constructed in Sec-
tion 4 for the L∞-solutions coincides with that based on the energy solutions
(since any energy solution becomes an L∞-solution as soon as t > 0). How-
ever, as already mentioned, the L∞-estimates are not uniform with respect
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to α0 → 0 and, consequently, are useless for the purposes of this section.

6. Appendix. The nondegenerate case

The aim of this appendix is to show how to obtain additional regularity
results on the solutions to (2.2) in the nondegenerate case where α ∈ C2(R),
u0 ∈ C2(Ω) and

α′(s) ≥ α0 > 0, s ∈ R. (6.1)

We first recall that, due to Theorem 3.4 and estimate (2.18), we have the
following a priori estimate in L∞(Ω) ∩H1

0 (Ω):

‖u(t)‖2L∞∩H1 +
∫ ∞

t

‖∂tu(s)‖2H−1 ds ≤ Q(‖u0‖C2)e−γt + C∗, t ≥ 0, (6.2)

for positive constants γ and C∗ and a monotonic function Q.
Our aim is to exploit the fact that α does not degenerate in order to

establish additional regularity on the solutions. To be more precise, the
following result holds.

Proposition 6.1 Let the assumptions of Theorem 3.4 hold and let, in
addition, α ∈ C2(R), u0 ∈ C2(Ω) and (6.1) be satisfied. Then, the solution u

to problem (2.2) belongs to the parabolic Sobolev space W (1,2),q([T, T+1]×Ω),
for any 1 ≤ q < ∞ and T ≥ 0, and the following estimate holds:

‖u‖Lq([T,T+1]×Ω) + ‖u‖Lq([T,T+1],W 2,q(Ω)) ≤ Q(‖u0‖C2)e−γT + C∗, (6.3)

for positive constants γ and C∗ and a monotonic function Q which may a
priori depend on q, but are independent of T and u.

Proof. We rewrite equation (2.2) in the form of a linear equation,

a(t, x)∂tu−∆u = hu(t, x) := −(−∆)−1∂tu(t, x)− f(u(t, x)), (6.4)

where

a(t, x) := α′(u(t, x)).

We note that, on the one hand, due to (6.1) and (6.2), we have the following
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nondegeneracy condition on a:

0 < α0 ≤ a(t, x) ≤ Q(‖u0‖C2)e−γt + C∗, t ≥ 0, x ∈ Ω, (6.5)

for positive constants γ and C∗ and a monotonic function Q. On the other
hand, estimate (6.2), together with the embedding H1 ⊂ L6, guarantees
that the right-hand side hu is regular enough,

‖hu‖L2([T,T+1],L6(Ω)) ≤ Q(‖u0‖C2)e−γT + C∗. (6.6)

These two estimates allow to apply the classical De Giorgi technique to the
linear parabolic equation (6.4) and to establish the uniform Hölder continu-
ity of the solution u,

‖u‖Cδ([T,T+1]×Ω) ≤ Q(‖u0‖C2)e−γT + C∗, (6.7)

for positive constants δ, γ and C∗ and a monotonic function Q (see, e.g.,
[25]).

The above Hölder continuity property implies that the coefficient a(t, x)
is also uniformly Hölder continuous with respect to t and x. This, in turn,
implies that we can apply the standard localization technique in order to
extend the maximal regularity estimates for the heat equation to equation
(6.4) (see [25]). In particular, we have the following anisotropic maximal
regularity result:

‖∂tu‖L2([T,T+1],L6(Ω)) + ‖u‖L2([T,T+1],W 2,6(Ω))

≤ C
(‖hu‖L2([T−1,T+1],L6(Ω)) + ‖u‖L∞([T−1,T+1]×Ω)

)
, (6.8)

for T ≥ 1, and

‖∂tu‖L2([0,1],L6(Ω)) + ‖u‖L2([0,1],W 2,6(Ω))

≤ C
(‖hu‖L2([0,1],L6(Ω)) + ‖u0‖C2

)
. (6.9)

These two estimates, together with (6.6), give

‖∂tu‖L2([T,T+1],L6(Ω)) + ‖u‖L2([T,T+1],W 2,6(Ω))

≤ Q(‖u0‖C2)e−γT + C∗, T ≥ 0, (6.10)
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for positive constants γ and C∗ and a monotonic function Q.
Our next step is to obtain an estimate on the L∞(L2)-norm of ∂tu. To

this end, we differentiate equation (2.2) with respect to t and set v := ∂tu.
Then, this function solves

α′(u)∂tv + α′′(u)v2 + (−∆)−1∂tv = ∆v − f ′(u)v. (6.11)

Multiplying this equation by v and integrating over Ω, we have

∂t

[
(α′(u)v, v)+‖v‖2H−1

]
+2‖∇v‖2L2 +2(f ′(u)v, v)+(α′′(u), v3) = 0. (6.12)

Integrating this equality with respect to t ∈ [0, 1] and using the non-
degeneracy assumption, the L∞-estimate on u and the obvious fact that
‖∂tu(0)‖L2 ≤ Q(‖u0‖C2), we deduce that

‖v‖2L∞([0,1],L2(Ω)) + ‖v‖2L2([0,1],H1(Ω)) ≤ C
(‖v‖3L3([0,1]×Ω) + 1

)
+ Q(‖u0‖C2),

(6.13)

where the constant C only depends on the L∞-norm of u. Writing now

‖v‖3L3([0,1],L3(Ω)) ≤ C‖v‖L∞([0,1],L2(Ω))‖v‖2L2([0,1],L4(Ω))

≤ ε‖v‖2L∞([0,1],L2(Ω)) + Cε‖v‖4L2([0,1],L6(Ω)), ε > 0,

fixing ε > 0 small enough and using (6.10), we deduce from (6.13) that

‖∂tu‖L∞([0,1],L2(Ω)) ≤ Q(‖u0‖C2), (6.14)

for a monotonic function Q. Furthermore, multiplying (6.12) by t− T + 1,
integrating over [T −1, T +1] and arguing as above, we obtain the following
smoothing property on ∂tu:

‖∂tu‖L∞([T,T+1],L2(Ω)) ≤ C
(‖∂tu‖2L2([T−1,T+1],L6(Ω)) + 1

)
, (6.15)

where T ≥ 1 and the constant C only depends on ‖u‖L∞([T−1,T+1]×Ω).
Estimates (6.14) and (6.15), together with the dissipative estimates (6.2)

and (6.10), give the desired dissipative estimate on the L2-norm of ∂tu,

‖∂tu(t)‖L2 ≤ Q(‖u0‖C2)e−γt + C∗, t ≥ 0, (6.16)
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for a monotonic function Q and positive constants γ and C∗.
It is now not difficult to finish the proof of the proposition. Indeed,

the last estimate, together with the embedding H2 ⊂ C, gives a dissipative
estimate on the L∞-norm of the function hu in the right-hand side of (6.4),

‖hu(t)‖L∞ ≤ Q(‖u0‖C2)e−γt + C∗, t ≥ 0, γ > 0. (6.17)

Applying then the usual Lq-regularity estimate to the parabolic equation
(6.4), we deduce the desired estimate (6.3). The existence of a solution
follows from this a priori estimate exactly as for second order semilinear
parabolic PDEs (see [25]). ¤

Remark 6.2 The above scheme shows that the maximal regularity of a
solution u is restricted by the regularity of α, f and Ω (and u0 if we are
interested in the regularity near t = 0) only. In particular, if α, f and Ω are
of class C∞, then the solution u is also of class C∞ with respect to x and t.
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