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The simple and multiple zero points of meromorphic functions
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Abstract. The paper studies the counting functions of the simple and multiple zero

points of meromorphic functions that share three values with finite weight. The results

in this paper improve some results of H.X. Yi, X.M. Li and H.X. Yi and other authors.

Examples show that the results in this paper are best possible.
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1. Introduction and results

Two meromorphic functions are said to share a value a CM if they have
the same a-points with the same multiplicities, and if we do not consider the
multiplicities then they are said to share a value a IM. One of the main tools
that has been used in the study of functions that share values is Nevanlinna’s
theory on the distribution of values (see [4] or [8]).

Throughout this paper we denote by f , g two nonconstant meromorphic
functions defined on the open complex plane. The symbol S(r, f) is quantity
satisfying S(r, f) = o(T (r, f)) as r → +∞ possibly outside a set E of finite
Lebesgue measure.

Definition 1 Let k be a positive integer. We denote by Nk)(r, f) (or
Nk)(r, f)) the counting function of the poles of f with multiplicities less
than or equal to k (ignoring multiplicities), and N(k(r, f) (or N (k(r, f)) the
counting function of the poles of f with multiplicities greater than or equal
to k (ignoring multiplicities).

In 1995, Yi [10] proved the following theorem:

Theorem A ([10]) Let f and g be two distinct nonconstant meromorphic
functions sharing 0, 1, ∞ CM, and let a (6= 0, 1) be a finite complex number.
If N2)

(
r, 1

g−a

) 6= T (r, g) + S(r, g), then a is a Picard exceptional value of g,
and f and g satisfy one of the following three relations:

(i) (g− a)(f + a− 1) ≡ a(1− a); (ii) g +(a− 1)f ≡ a; (iii) g ≡ af .
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According to Theorem A that it is necessary to investigate the properties
of the simple a-points of g. Li and Yi [7] proved the following:

Theorem B ([7]) Let f and g be two distinct nonconstant meromorphic
functions sharing 0, 1, ∞ CM. If there exists a finite complex number a

(6= 0, 1) such that a is not a Picard value of f , and N1)

(
r, 1

g−a

) ≤ uT (r, g)+
S(r, g), where u < 1/3, then N1)

(
r, 1

g−a

)
= 0, and f and g assume one of

the following forms:

( i ) g = e3γ−1
eγ−1 , f = e−3γ−1

e−γ−1 , with a = 3
4 ;

( ii ) g = e3γ−1
e2γ−1 , f = e−3γ−1

e−2γ−1 , with a = −3;

( iii ) g = eγ−1
e3γ−1 , f = e−γ−1

e−3γ−1 , with a = 4
3 ;

( iv ) g = e2γ−1
e3γ−1 , f = e−2γ−1

e−3γ−1 , with a = − 1
3 ;

( v ) g = e2γ−1
e−γ−1 , f = e−2γ−1

eγ−1 , with a = 1
4 ;

( vi ) g = eγ−1
e−2γ−1 , f = e−γ−1

e2γ−1 , with a = 4;

(vii ) g = e2γ−1
δeγ−1 , f = e−2γ−1

(1/δ)e−γ−1 , with δ2 6= 1, a2δ2 = 4(a− 1);

(viii) g = eγ−1
δe2γ−1 , f = e−γ−1

(1/δ)e−2γ−1 , with δ 6= 1, 4a(1− a)δ = 1;

( ix ) g = eγ−1
δe−γ−1 , f = e−γ−1

(1/δ)eγ−1 , with δ 6= 1, (1− a)2 + 4aδ = 0,

where γ is a nonconstant entire function.

In [1] and [3], the present author discussed Theorem A when a is not a
constant by the following result:

Theorem C ([1], [3]) Let f and g be two distinct nonconstant meromor-
phic functions sharing 0, 1, ∞ CM, and let a (6= ∞) be a nonconstant
small meromorphic function of f and g. Then N(2

(
r, 1

f−a

)
= S(r, f) and

N(2

(
r, 1

g−a

)
= S(r, g). Furthermore, if N1)

(
r, 1

g−a

) 6= T (r, g) + S(r, g), then
f and g satisfy one of the following three relations (i)–(iii) in Theorem A.

It is evident from Theorem B that Theorem C is not true when a is a
constant.

Question 1 Can one be relaxed the nature of sharing 0, 1 and ∞ in
Theorem B? What happens in Theorem B, if a is a small meromorphic
function of f and g?
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In fact, Lahiri [5] gave an accurate concept for the CM sharing which
provides opportunity to relax a CM shared value. We explain this notion
by the following definition.

Definition 2 ([5]) Let k be a nonnegative integer or infinity. For any
a ∈ C⋃{∞} we denote by Ek(a, f) the set of all a-points of f where an
a-point of multiplicity m is counted m times if m ≤ k and k + 1 times if
m > k. If Ek(a, f) = Ek(a, g), we say that f, g share the value a with weight
k.

The definition implies that if f, g share a value a with weight k then
z0 is a zero of f − a with multiplicity m(≤ k) if and only if it is a zero of
g − a with multiplicity m (≤ k), and z0 is a zero of f − a with multiplicity
m (> k) if and only if it is a zero of g − a with multiplicity n (> k), where
m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with
weight k. Clearly if f, g share (a, k), then f, g share (a, p) for all integer p,
0 ≤ p < k. Also we note that f, g share a value a IM or CM if and only if
f, g share (a, 0) or (a,∞) respectively.

In this paper we exploit the idea of weighted sharing to answer the
question 1 by the following result which is a improvement Theorem B.

Theorem 1 Let f and g be two distinct nonconstant meromorphic func-
tions sharing (0, k1), (1, k2), (∞, k3), where kj (j = 1, 2, 3) are positive
integers satisfying

k1k2k3 > k1 + k2 + k3 + 2, (1.1)

and let a (6≡ 0, 1, ∞) be a small meromorphic function of f and g such that

T (r, g) <

(
3
2

+ o(1)
)

N(2

(
r,

1
g − a

)
. (1.2)

(I) If a is a constant, then f and g share 0, 1, ∞ CM, and the conclusions
of Theorem B still hold.

(II) If a is not a constant and f, g do not satisfy the relations (i)–(iii) in
Theorem A, then N1)

(
r, 1

g−a

)
= S(r, g), and f, g satisfy one of the

following three relations:
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( i ) g = a 2(a−1)h+1
(a−1)h2+a , f = h

2
2(a−1)h+1
(a−1)h2+a ;

( ii ) g = a
h

h2−(a−1)
ah−2(a−1) , f = 2 h2−(a−1)

ah−2(a−1) ;

( iii ) g = a
h

(a−1)+2h
2a−(a−1)h , f = −h (a−1)+2h

2a−(a−1)h ,

where h is a nonconstant meromorphic such that N(r, h)+N(r, 1/h) =
S(r, f) + S(r, g).

Theorem 2 Let f and g be two distinct nonconstant meromorphic func-
tions sharing (0, k1), (1, k2), (∞, k3), where kj (j = 1, 2, 3) are positive
integers satisfying (1.1), and let a (6≡ 0, 1, ∞) be a nonconstant small
meromorphic function of f and g. Suppose further that f and g do not
satisfy the relations (i)–(iii) in Theorem A. If one of

{
N(r, g), N

(
r, 1

g

)
,

N
(
r, 1

g−1

)}
is equal to S(r, g), then T (r, g) = N1)

(
r, 1

g−a

)
+ S(r, g), that

means N(2

(
r, 1

g−a

)
= S(r, g).

Corollary 1 Let f and g be two distinct nonconstant meromorphic func-
tions sharing (0, k1), (1, k2), (∞, k3), where kj (j = 1, 2, 3) are positive
integers satisfying (1.1), and let a (6≡ 0, 1, ∞) be a small meromorphic
function of f and g such that

N1)

(
r,

1
g − a

)
<

(
1
3

+ o(1)
)

T (r, g). (1.3)

If f and g do not satisfy the relations (i)–(iii) in Theorem A, then the con-
clusions of Theorem 1 still hold.

Proof. Since f and g do not satisfy the relations (i)–(iii) in Theorem A
then, from Lemma 4 and Lemma 5, we have N

(
r, 1

g−a

)
+ S(r, g) = T (r, g).

Consequently, the condition (1.3) implies to the inequality (1.2), that means,
the conclusions of Theorem 1 still hold. This proves Corollary 1. ¤

Corollary 2 Let f and g be two distinct nonconstant meromorphic func-
tions sharing (0, k1), (1, k2), (∞, k3), where kj (j = 1, 2, 3) are positive
integers satisfying (1.1), and let a (6≡ 0, 1, ∞) be a nonconstant small
meromorphic function of f and g. If one of

{
N(r, g), N

(
r, 1

g ), N
(
r, 1

g−1

)}

is equal to S(r, g), then N (2

(
r, 1

g−a

)
= S(r, g).

Proof. If f and g satisfy the relation (i) in Theorem A then, by using
Lemma 1, we see that N (2(r, 1/(g−a)) ≤ N (2(r, g)+S(r) = S(r). Similarly,
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one can prove that if f and g satisfy the relations (ii) or (iii) in Theorem
A, then the conclusion of Corollary 2 is true. Consequently, the Corollary 2
follows from the Theorem 2. This proves Corollary 2. ¤

The following example shows that the condition (1.2) in Theorem 1 is
best possible.

Examble 1 Let f = 1+e−β +e−2β +e−3β , g = 1+eβ +e2β +e3β and a =
20±4

√
2i

27 , where β is a non-constant entire function. It is easy to verify that f

and g share (0, 3), (1, 4) and (∞, 4) and T (r, g) = (3/2)N(2

(
r, 1

g−a

)
+S(r, g).

But f and g do not satisfy any one of the forms (i)–(ix) in Theorem B.

The following example shows that Theorem 2 is not true when a is a
constant.

Examble 2 Let g = e2z + ez + 1 and f = e−2z + e−z + 1, and a = 3/4.
Then f and g share (0,∞), (1,∞), (∞,∞) and N(r, g) = 0, further that
f and g do not satisfy the relations (i)–(iii) in Theorem A, but T (r, g) =
N(2

(
r, 1

g−a

)
+ S(r, g) and N1)

(
r, 1

g−a

)
= 0.

Remark 1 ([8]) If f and g are two nonconstant meromorphic functions
sharing three distinct values IM, then S(r, f) = S(r, g). We use S(r) to
express either S(r, f) or S(r, g), unless otherwise stated.

2. Some lemmas

In this section we discuss some lemmas which will be required in the
sequel.

Lemma 1 ([9]) Let f and g be two distinct meromorphic functions sharing
(0, k1), (1, k2), (∞, k3), where kj (j = 1, 2, 3) are positive integers satisfying
(1.1). Then N (2

(
r, 1

f−a

)
+ N (2

(
r, 1

g−a

)
= S(r), for any a = 0, 1,∞.

Lemma 2 ([2]) Under the assumptions of Lemma 1, if α = f−1
g−1 and

H = f
g , then N

(
r, 1

α

)
+ N(r, α) + N

(
r, 1

H

)
+ N(r,H) = S(r).

Lemma 3 ([6]) Let f1 and f2 be distinct nonconstant meromorphic func-
tions satisfying N(r, fi) + N

(
r, 1

fi

)
= S(r, f1, f2), i = 1, 2. If fs

1f t
2 − 1 is

not identically zero for all integers s, t (|s|+ |t| > 0), then for any positive
number ε, we have
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N0(r, 1, f1, f2) ≤ εT (r) + S(r, f1, f2),

where N0 (r, 1, f1, f2) denotes the reduced counting function of f1 and f2

related to the common 1-points, T (r) = T (r, f1)+T (r, f2) and S(r, f1, f2) =
max{S(r, f1), S(r, f2)}.
Lemma 4 ([2]) Let f and g be satisfying the assumptions of Lemma 1,
and let a (6≡ 0, 1, ∞) be a small meromorphic function of f and g. If f, g do
not satisfy the relations (i)–(iii) in Theorem A, then N(3

(
r, 1

g−a

)
= S(r, g).

Lemma 5 ([2]) Under the assumptions of Lemma 1, if a (6≡ 0, 1, ∞) is
a small meromorphic function of f and g such that N2)

(
r, 1

g−a

) 6= T (r, g) +
S(r) then N

(
r, 1

g−a

)
= S(r), and f and g satisfy one of the three relations

(i)–(iii) in Theorem A.

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. We first suppose that f is a fractional linear trans-
formation of g. Then f and g share 0, 1, ∞ CM, and there are two distinct
Picard values of g. Indeed, we see that the condition (1.2) tells us that a is
not a Picard value of g, that is, if we apply the second fundamental theorem
of Nevanlinna we get T (r, g) = N(r, 1/(g − a)) + S(r, g), which yields that
N(2(r, 1/(g − a)) = S(r, g), this and (1.2) imply to T (r, g) = S(r, g), which
is impossible. Therefore, f is not a fractional linear transformation of g.
From the definition of α and H in Lemma 2, we have

f =
1− α−1

H−1 − α−1
, g =

1− α

H − α
, (3.1)

and

g − a =
α(a− 1)− aH + 1

H − α
. (3.2)

From (3.1) and Remark 1, we see that S(r) = max{S(r,H), S(r, α)}. ¤

Assume that T (r, α) = S(r). The possibility α(a − 1) + 1 ≡ 0 gives us
(ii) in Theorem A, and a is not a constant. Therefore, α(a − 1) + 1 6≡ 0,
and by the second fundamental theorem of Nevanlinna and Lemma 2, we
see that
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T (r, g) = T (r,H) + S(r) = N

(
r,

1
α(a− 1)− aH + 1

)
+ S(r)

= N

(
r,

1
g − a

)
+ S(r),

which implis N(2

(
r, 1

g−a

)
= S(r), this is a contradiction with (1.2). Thus,

T (r, α) 6= S(r). In the same way, we can prove that T (r,H) 6= S(r) and
T (r, α/H) 6= S(r). Since f and g do not satisfy (i)–(iii) in Theorem A
(whatever a is a constant or not), by Lemma 4 we have N(3

(
r, 1

g−a

)
= S(r).

Set

α1 =
a′

a
+

H ′

H
, α2 =

α′

α
+

a′

a− 1
. (3.3)

Since a is a small function of f and so g, then we have αi 6≡ 0 and T (r, αi) =
S(r), i = 1, 2. Let z0 be a multiple zero of g − a, which is neither any zero
of α′, H ′, α′ −H ′, a, a− 1, α1, α2, α1 − α2, nor the pole of a. From (3.2)
we obtain

(α(a− 1)− aH + 1)(z0) = 0,
((

α′

α
(a− 1) + a′

)
α−

(
a′ + a

H ′

H

)
H

)
(z0) = 0.

(3.4)

Let us now define the following two functions:

f1 = (a− 1)
α2 − α1

α1
α, f2 = a

α2 − α1

α2
H, (3.5)

and consider T0(r) = T (r, f1) + T (r, f2), S0(r) = o(T0(r)). From this,
Lemma 2 and (3, 5), we get S0(r) = S(r) and

N(r, fj) + N

(
r,

1
fj

)
= S(r) (j = 1, 2). (3.6)

In view of (3.4) and (3, 5), it can be verified that z0 is a common zero of
f1 − 1 and f2 − 1. By this and Lemma 5, one deduces that

N(2

(
r,

1
f − a

)
≤ N0(r, 1, f1, f2) + S(r), (3.7)
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where N0(r, 1, f1, f2) is defined as in Lemma 3.
According to the condition (1.2), from (3.7) we observe N0(r, 1, f1, f2) 6=

S(r). Then from (3.6), Lemma 2 and by using Lemma 3, there exist two
integers p and q (|p|+ |q| > 0) such that

fp
1 fq

2 ≡ 1. (3.8)

Combining (3.5) and (3.8) we obtain pq 6= 0 and

(a− 1)paqαpHq =
(

α1

α2 − α1

)p(
α2

α2 − α1

)q

. (3.9)

Since N0(r, 1, f1, f2) 6= S(r), from (3.8) we can assume that p is a posi-
tive integer, and p and |q| are relatively primes. If p+ q = 0 then from (3.5)
and (3.8), we get T (r, α/H) = S(r), which is a contradiction. Differentiating
the equation (3.9) and using (3.3), we can easily obtain that

qα1 + pα2 = q

(
α1
α2

)′
1− α1

α2

− p

(
α2
α1

)′
α2
α1
− 1

=
qα1 + pα2

α1 − α2

(
α2
α1

)′
α2
α1

.

If qα1 + pα2 6≡ 0 then, from the last equation and (3.3), we get

a′

a
+

H ′

H
− α′

α
− a′

a− 1
=

(
α2
α1

)′
α2
α1

,

which implies that H/α = c((a− 1)/a)(α2/α1), where c is a constant. This
equation gives us T (r,H/α) = S(r), which is impossible. Thus qα1 + pα2 ≡
0; this relation and (3.3) yield

p

{
α′

α
+

a′

a− 1

}
+ q

{
H ′

H
+

a′

a

}
≡ 0. (3.10)

By taking integration on the above equation to conclude (a− 1)paqHqαp =
A, where A 6= 0 is a constant. Since qα1 + pα2 ≡ 0, then p + q 6= 0, and
then the last equation and (3.9) give us

(a− 1)paqHqαp = (λ− 1)pλq, (3.11)
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where λ = α2/(α2 − α1) = q/(q + p). From (1.2) and Lemma 5, we get

N1)

(
r,

1
g − a

)
<

(
1
3

+ o(1)
)

T (r, g). (3.12)

From (3.11), we observe that if a is a constant then f and g share 0, 1, ∞
CM, and then (I) of Theorem 1 follows from (3.12) and Theorem B.

We suppose that a is not a constant. Since p and |q| are relatively
primes, there exist two integers u and v such that uq + vp = 1. We let
h = f−u

1 fv
2 . By utilizing (3.8), we find that f1 = h−q and f2 = hp. One can

write (3.5) as

α =
1

a− 1
(λ− 1)h−q, H =

1
a
λhp. (3.13)

Consequently, from (3.1) and (3.13) we deduce

g = a
(a− 1)− (λ− 1)h−q

(a− 1)λhp − a(λ− 1)h−q
,

f = λ
(a− 1)hq − (λ− 1)

(a− 1)λhq − a(λ− 1)h−p

(3.14)

Let z be a double zero of g − a such that it is not any zero or pole of
H−α, a, a−1, H, α, h and h′. Then from (3.14), we get that z is a common
zero of the following equations

1 + (λ− 1)h−q − λhp = 0 and q(λ− 1)h−q−1 + pλhp−1 = 0. (3.15)

By solving these two equation, we obtain that z is a common zero of hp−1 =
0 and hq − 1 = 0, which means that z is a zero of h − 1 = 0, because
g.c.d(p, |q|) = 1. Conversely, if z is a zero of h− 1 = 0, then z is a common
zero of the two equations in (3.15). From (3.5) and Lemma 2, it is clear

N

(
r,

1
h′

)
= N

(
r,

1
f ′2

)
+ S(r) ≤ N

(
r,

1
H′
H + a′

a

)
+ S(r)

≤ T

(
r,

H ′

H
+

a′

a

)
+ S(r) = S(r).
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Consequently, from the above discussion, Lemma 2 and (3.6), and by apply-
ing the second fundamental theorem of Nevanlinna, we deduce that

N (2

(
r,

1
g − a

)
= N

(
r,

1
h− 1

)
+ S(r) = T (r, h) + S(r). (3.16)

From (3.13) and by using the second fundamental theorem of Nevan-
linna, it is easy to verify that

T (r,H) = pT (r, h) + S(r) = N

(
r,

1
H − 1

)
+ S(r)

= N

(
r,

1
f − 1

)
+ S(r), (3.17)

T (r, α) = |q|T (r, h) + S(r) = N

(
r,

1
α− 1

)
+ S(r)

= N

(
r,

1
f

)
+ S(r) (3.18)

and

T

(
r,

α

H

)
= |p + q|T (r, h) + S(r)

= N

(
r,

1
α
H − 1

)
+ S(r) = N(r, f) + S(r). (3.19)

From (3.14) and (3.17)–(3.19), we note

T (r, g) ≤ max{p, |q|, |p + q|}T (r, h) + S(r)

= max
{

N

(
r,

1
f − 1

)
, N

(
r,

1
f

)
, N(r, f)

}
+ S(r) ≤ T (r, g) + S(r)

from this and (3.16) we obtain

T (r, g) =
1
2

max{p, |q|, |p + q|}N(2

(
r,

1
g − a

)
+ S(r).

This equation and the assumption (1.2) give us that max{p, |q|, |p+ q|} < 3,
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which implies that max{p, |q|, |p + q|} = 2, because p + q 6= 0. Therefore
(p, q) ∈ {(1, 1), (1,−2), (2,−1)}. It follows, from (3.14), we get the cases
(i)–(iii) of Theorem 1. It remains to show that

N(r, h) + N

(
r,

1
h

)
= S(r). (3.20)

Let z be a common zero of f with multiplicity i(f) and g with multiplicity
i(g) such that i(g) < i(f). If q > 0 (q < 0), then from (3.11) we see that z is
a pole (zero) of (a− 1)paq with multiplicity q(i(f)− i(g))(−q(i(f)− i(g))).
It is not difficult by utilizing Lemma 1 to show that

N(2

(
r,

1
f

)
= S(r, f). (3.21)

Similarly, one can be derived

N(2(r, f)+N(2

(
r,

1
f − 1

)
+N(2(r, g)+N(2

(
r,

1
g − 1

)
+N(2

(
r,

1
g

)
= S(r).

(3.22)

From the inequalities (3.21) and (3.22), we see

N

(
r,

1
H

)
≤ N(2

(
r,

1
f

)
+ N(2(r, g) + S(r) = S(r). (3.23)

Similarly, from (3.21) and (3.22) we obtain

N(r,H) + N

(
r,

1
α

)
+ N(r, α) = S(r). (3.24)

Consequently, we will arrive at (3.20) from (3.23) and (3.24). This proves
Theorem 1.

Proof of Theorem 2. As we have seen in the proof of Theorem 1 that if
N(2

(
r, 1

g−a

) 6= S(r, g) then, from (3.7), we have (3.11), (3.13) and (3.17)–
(3.19). Then, from the assumption of Theorem 2 and (3.17)–(3.19), we
obtain that one of {T (r, α), T (r,H), T (r, α/H)} is equal to S(r), and this
requires that f and g must satisfy one of the relations (i)–(iii) in Theorem
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A, which is impossible. Therefore N(2

(
r, 1

g−a

)
= S(r, g), and Theorem 2

follows from Lemma 5. This proves Theorem 2. ¤
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