Paley's inequality of integral transform type

Yuichi Kanjin and Kunio Sato

(Received October 29, 2007; Revised March 4, 2008)

Abstract

Let $\left\{n_{k}\right\}_{k=1}^{\infty}$ be a sequence of positive integers with Hadamard gap. For an analytic function $F(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ in the unit disc satisfying $\sup _{0<r<1}$ $\int_{0}^{2 \pi}\left|F\left(r e^{i \theta}\right)\right| d \theta<\infty$, the inequality $\left(\sum_{k=1}^{\infty}\left|a_{n_{k}}\right|^{2}\right)^{1 / 2}<\infty$ holds, which is familiar as Paley's inequality. In this paper, an integral transform version of this inequality is established.

Key words: Paley's inequality, Hankel transform.

1. Introduction and Results

A well-known inequality of Paley says in terms of the real Hardy space $H^{1}(\mathbf{T})$ on the torus \mathbf{T} that there exists a constant C such that

$$
\left\{\sum_{k=1}^{\infty}\left(\left|c_{n_{k}}\right|^{2}+\left|c_{-n_{k}}\right|^{2}\right)\right\}^{1 / 2} \leq C\|f\|_{H^{1}(\mathbf{T})}
$$

for $f(\theta) \sim \sum_{n=-\infty}^{\infty} c_{n} e^{i n \theta}$ in $H^{1}(\mathbf{T})$, where $\left\{n_{k}\right\}_{k=1}^{\infty}$ is a Hadamard sequence, that is, a sequence of positive integers such that $n_{k+1} / n_{k} \geq \rho$ with a constant $\rho>1$.

Kanjin and Sato [3] obtained the Paley-type inequality with respect to the Jacobi expansions, and Sato [4] proved the inequality of the same type in the Fourier-Bessel expansions.

The main purpose of this paper is to establish Paley's inequality with respect to the Hankel transform for the real Hardy space on the half line $(0, \infty)$.

The Hankel transform $H_{\nu} f$ of order $\nu>-1$ of a function f on $(0, \infty)$ is defined by

$$
H_{\nu} f(y)=\int_{0}^{\infty} f(t) \sqrt{y t} J_{\nu}(y t) d t, \quad y>0
$$

2000 Mathematics Subject Classification : Primary 42A38; Secondary 42A55.
where J_{ν} is the Bessel function of the first kind of order ν. We remark that the Hankel transforms $H_{-1 / 2} f(y)$ and $H_{1 / 2} f(y)$ are the cosine and the sine transforms:

$$
H_{-1 / 2} f(y)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \cos y t d t, \quad H_{1 / 2} f(y)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \sin y t d t
$$

From now on, we let the order ν of the Hankel transform be greater than or equal to $-1 / 2$ unless otherwise stated explicitly.

It is known that the Hankel transform $H_{\nu} f$ of f is continuous for $f \in$ $L^{1}(0, \infty)$, and $\left|H_{\nu} f(y)\right| \leq C_{\nu}\|f\|_{L^{1}(0, \infty)}, y>0$, where C_{ν} is a constant depending only on ν. Further, the following facts are known: The Hankel transform H_{ν}, initially defined on $L^{1}(0, \infty) \cap L^{2}(0, \infty)$, extends uniquely to an isometry of $L^{2}(0, \infty)$ (Parseval's identity for the Hankel transform), $H_{\nu} H_{\nu}=I$ (The inversion formula for the Hankel transform) where I is the identity operator of $L^{2}(0, \infty)$, and

$$
\int_{0}^{\infty} f(t) g(t) d t=\int_{0}^{\infty} H_{\nu} f(y) H_{\nu} g(y) d y
$$

for $f, g \in L^{2}(0, \infty)$ (Plancherel's theorem for the Hankel transform). For these facts, see [6, Chapter VIII], [5].

Let $H^{1}(\mathbf{R})$ be the real Hardy space on the real line \mathbf{R}. We shall work on the space $H^{1}(0, \infty)$ defined by

$$
H^{1}(0, \infty)=\left\{\left.h\right|_{(0, \infty)} ; h \in H^{1}(\mathbf{R}), \operatorname{supp} h \subset[0, \infty)\right\}
$$

where $[0, \infty)$ is the closed half line, and we endow the space with the norm $\|f\|_{H^{1}(0, \infty)}=\|h\|_{H^{1}(\mathbf{R})}$, where $h \in H^{1}(\mathbf{R})$, $\operatorname{supp} h \subset[0, \infty)$ and $f=\left.h\right|_{(0, \infty)}$. We remark that $H^{1}(0, \infty)=\left\{\left.h\right|_{(0, \infty)} ; h \in H^{1}(\mathbf{R})\right.$, even $\}$ and $c_{1}\|h\|_{H^{1}(\mathbf{R})} \leq\|f\|_{H^{1}(0, \infty)} \leq c_{2}\|h\|_{H^{1}(\mathbf{R})}$ with positive constants c_{1} and c_{2}, where $f=\left.h\right|_{(0, \infty)}$ and $h \in H^{1}(\mathbf{R})$ is even. For this fact, see [1, Chapter III, Lemma 7.40].

Our theorem is as follows:
Theorem Let $\nu \geq-1 / 2$. Let $L>0$. Then, the Hankel transform $H_{\nu} f$ of a function $f \in H^{1}(0, \infty)$ satisfies

$$
\begin{equation*}
\left(\sum_{k=1}^{\infty} \int_{n_{k} \leq y \leq n_{k}+L}\left|H_{\nu} f(y)\right|^{2} d y\right)^{1 / 2} \leq C\|f\|_{H^{1}(0, \infty)} \tag{1}
\end{equation*}
$$

where C is independent of f.
As a corollary, we state here that the same type of result holds with respect to the Fourier transform.

Corollary Under the same assumptions of the theorem, there exists a constant C such that

$$
\left(\sum_{k=1}^{\infty} \int_{n_{k} \leq|\xi| \leq n_{k}+L}|\mathcal{F} h(\xi)|^{2} d \xi\right)^{1 / 2} \leq C\|h\|_{H^{1}(\mathbf{R})}
$$

for $h \in H^{1}(\mathbf{R})$, where $\mathcal{F} h$ is the Fourier transform of h :

$$
\mathcal{F} h(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} h(x) e^{-i \xi x} d x, \quad \xi \in \mathbf{R}
$$

The corollary follows from the following simple relations between the Fourier transform and the Hankel transforms:

$$
\mathcal{F} h(\xi)= \begin{cases}H_{-1 / 2}\left(R\left[h_{e}\right]\right)(\xi)+i H_{-1 / 2}\left(R\left[(\mathcal{H} h)_{e}\right]\right)(\xi), & \text { a.e. } \xi>0 \\ H_{-1 / 2}\left(R\left[h_{e}\right]\right)(-\xi)-i H_{-1 / 2}\left(R\left[(\mathcal{H} h)_{e}\right]\right)(-\xi), & \text { a.e. } \xi<0 .\end{cases}
$$

Here, $\mathcal{H} h$ is the Hilbert transform of h, and $R[h]$ is the restriction of h to the half interval $(0, \infty)$, and h_{e} is the even part of h. If $h \in H^{1}(\mathbf{R})$, then $\mathcal{H} h \in H^{1}(\mathbf{R})$ and $R\left[(\mathcal{H} h)_{e}\right] \in H^{1}(0, \infty)$. Therefore, the inequality (1) with $\nu=-1 / 2$ implies the corollary.

Applying an interpolation method to the theorem, we have the $L^{p}, 1<$ $p \leq 2$ case which is an integral transform version of Zygmund's Fourier series case $[8,(7.6)]$. Further, we obtain that in the theorem we can not replace the space $H^{1}(0, \infty)$ with $L^{1}(0, \infty)$. We precisely state these as a proposition.

Proposition Under the same assumptions of the theorem, the following (i) and (ii) hold.
(i) Let $1<p \leq 2$. Then, the Hankel transform $H_{\nu} f$ of a function $f \in L^{p}(0, \infty)$ satisfies

$$
\begin{equation*}
\left(\sum_{k=1}^{\infty} \int_{n_{k} \leq y \leq n_{k}+L}\left|H_{\nu} f(y)\right|^{2} d y\right)^{1 / 2} \leq C\|f\|_{L^{p}(0, \infty)} \tag{2}
\end{equation*}
$$

where C is independent of f.
(ii) There exists a function $f \in L^{1}(0, \infty)$ such that

$$
\sum_{k=1}^{\infty} \int_{n_{k} \leq y \leq n_{k}+L}\left|H_{\nu} f(y)\right|^{2} d y=\infty
$$

A proof of the theorem will be given in the next section. The ($H^{1}, B M O$)-duality will play an essential role in our proof. In the last section, we shall give a proof of the proposition.

2. Proof of the theorem

We shall prove the theorem. The letter C will be used to denote positive constants not necessarily the same at each occurrence.

Let $\left\{n_{k}\right\}_{k=1}^{\infty}$ be a Hadamard sequence, that is, $n_{k+1} / n_{k} \geq \rho>1$. Let $L>0$ and let $\chi_{k}(y)$ be the characteristic function of the interval $\left[n_{k}, n_{k}+L\right]$ for every positive integer k. If we show the following inequality

$$
\begin{equation*}
\left|\int_{0}^{\infty} \sum_{k=1}^{N} \chi_{k}(y) H_{\nu} f(y) g(y) d y\right| \leq C\|f\|_{H^{1}(0, \infty)}\|g\|_{L^{2}(0, \infty)} \tag{3}
\end{equation*}
$$

for $N=1,2, \ldots, f \in H^{1}(0, \infty) \cap L^{2}(0, \infty)$ and $g \in L^{2}(0, \infty)$, where C is independent of N, f and g, then we have

$$
\begin{equation*}
\int_{0}^{\infty}\left|\sum_{k=1}^{N} \chi_{k}(y) H_{\nu} f(y)\right|^{2} d y \leq C\|f\|_{H^{1}(0, \infty)}^{2} \tag{4}
\end{equation*}
$$

Since $\left\{n_{k}\right\}_{k=1}^{\infty}$ is a Hadamard sequence, we may suppose that the intervals $\left[n_{k}, n_{k}+L\right]$ are non-overlapping. Letting $N \rightarrow \infty$ in (4), we have

$$
\sum_{k=1}^{\infty} \int_{n_{k} \leq y \leq n_{k}+L}\left|H_{\nu} f(y)\right|^{2} d y \leq C\|f\|_{H^{1}(0, \infty)}^{2}
$$

for $f \in H^{1}(0, \infty) \cap L^{2}(0, \infty)$. Since $H^{1}(0, \infty) \cap L^{2}(0, \infty)$ is dense in $H^{1}(0, \infty)$, the standard density argument allows us to obtain the theorem. Therefore, it is enough to prove the inequality (3).

Let $f \in H^{1}(0, \infty) \cap L^{2}(0, \infty)$ and $g \in L^{2}(0, \infty)$. We set

$$
\begin{aligned}
G_{N}(y) & =H_{\nu}\left(\sum_{k=1}^{N} \chi_{k} g\right)(y)=\sum_{k=1}^{N} H_{\nu}\left(\chi_{k} g\right)(y) \\
& =\sum_{k=1}^{N} \int_{n_{k} \leq t \leq n_{k}+L} g(t) \sqrt{y t} J_{\nu}(y t) d t
\end{aligned}
$$

for $N=1,2, \ldots$ Then, by Plancherel's theorem we have

$$
\begin{aligned}
\int_{0}^{\infty} \sum_{k=1}^{N} \chi_{k}(y) H_{\nu} f(y) g(y) d y & =\int_{0}^{\infty} f(y) G_{N}(y) d y \\
& =\frac{1}{2} \int_{-\infty}^{\infty} E[f](x) E\left[G_{N}\right](x) d x
\end{aligned}
$$

where we denote by $E[g]$ the even extension of a function g on $(0, \infty)$ to the whole line $(-\infty, \infty)$. By the $\left(H^{1}, B M O\right)$-duality, we have

$$
\left|\int_{-\infty}^{\infty} E[f](x) E\left[G_{N}\right](x) d x\right| \leq C\|E[f]\|_{H^{1}(\mathbf{R})}\left\|E\left[G_{N}\right]\right\|_{*},
$$

where $\|\cdot\|_{*}$ is the $B M O$-norm. By the inequality $\|E[f]\|_{H^{1}(\mathbf{R})} \leq$ $C\|f\|_{H^{1}(0, \infty)}$ and the definition of $B M O$-norm, we see that to show (3) it is enough to prove that for every interval I of $(-\infty, \infty)$ there exists a constant c such that

$$
\begin{equation*}
\frac{1}{|I|} \int_{I}\left|E\left[G_{N}\right](x)-c\right| d x \leq C\|g\|_{L^{2}(0, \infty)} \tag{5}
\end{equation*}
$$

where C is independent of N, g and I. We may assume that $I \subset[0, \infty)$, and it suffices to show that there exists a constant c such that

$$
\begin{equation*}
\frac{1}{|I|} \int_{I}\left|G_{N}(y)-c\right| d y \leq C\|g\|_{L^{2}(0, \infty)} \tag{6}
\end{equation*}
$$

For, if $I \subset(-\infty, 0]$, then (5) follows from (6) since we treat the even extension. If $I=\left[-a_{1}, a_{2}\right], a_{1}, a_{2}>0$, then

$$
\begin{aligned}
\frac{1}{|I|} \int_{I}\left|E\left[G_{N}\right](x)-c\right| d x & =\frac{1}{|I|}\left\{\int_{0}^{a_{1}}\left|G_{N}(y)-c\right| d y+\int_{0}^{a_{2}}\left|G_{N}(y)-c\right| d y\right\} \\
& \leq \frac{2}{a} \int_{0}^{a}\left|G_{N}(y)-c\right| d y
\end{aligned}
$$

for any constant c, where $a=\max \left\{a_{1}, a_{2}\right\}$. Thus, if we can prove (6), then (5) is obtained.

Now we turn to a proof of (6). Let $I=\left[y_{0}, y_{1}\right], y_{1}>y_{0} \geq 0$. If $|I|>1 / n_{1}$, then we have by Scwarz's inequality and Parseval's identity for the Hankel transform that

$$
\begin{aligned}
\frac{1}{|I|} \int_{I}\left|G_{N}(y)\right| d y & \leq\left(\frac{1}{|I|} \int_{I}\left|G_{N}(y)\right|^{2} d y\right)^{1 / 2} \\
& \leq n_{1}^{1 / 2}\left(\int_{0}^{\infty}\left|G_{N}(y)\right|^{2} d y\right)^{1 / 2} \\
& =n_{1}^{1 / 2}\left\|\sum_{k=1}^{N} \chi_{k} g\right\|_{L^{2}(0, \infty)} \leq n_{1}^{1 / 2}\|g\|_{L^{2}(0, \infty)}
\end{aligned}
$$

that is, we have (6) with $c=0$.
Suppose that $1 / n_{M+1}<|I| \leq 1 / n_{M}$ with a positive integer M. We first deal with the case $N \leq M$. In this case, we shall show (6) with $c=G_{N}\left(y_{0}\right)$. It follows that

$$
\begin{align*}
\left|G_{N}(y)-G_{N}\left(y_{0}\right)\right|^{2} & =\left|\int_{0}^{\infty} g(t)\left\{\sum_{k=1}^{N} \chi_{k}(t)\left(\phi_{\nu}(y t)-\phi_{\nu}\left(y_{0} t\right)\right)\right\} d t\right|^{2} \\
& \leq\|g\|_{L^{2}(0, \infty)}^{2} \sum_{k=1}^{N} \int_{n_{k} \leq t \leq n_{k}+L}\left|\phi_{\nu}(y t)-\phi_{\nu}\left(y_{0} t\right)\right|^{2} d t \tag{7}
\end{align*}
$$

where $\phi_{\nu}(u)=\sqrt{u} J_{\nu}(u)$.
We need to estimate the quantity $\left|\phi_{\nu}(y t)-\phi_{\nu}\left(y_{0} t\right)\right|$. We shall show that
there exists a constant C depending only on ν such that

$$
\begin{equation*}
\left|\phi_{\nu}\left(u_{2}\right)-\phi_{\nu}\left(u_{1}\right)\right| \leq C\left|u_{2}-u_{1}\right|^{\delta} \tag{8}
\end{equation*}
$$

for $u_{2}, u_{1}>0$, where $\delta=\nu+1 / 2$ for $-1 / 2<\nu<1 / 2$, and $\delta=1$ for $\nu=-1 / 2$ or $1 / 2 \leq \nu$. The case $\nu=-1 / 2$ is obvious since $\phi_{-1 / 2}(u)=(2 / \pi)^{1 / 2} \cos u$ is a smooth function. We assume $\nu>-1 / 2$. By the facts $J_{\nu}(z) \sim z^{\nu}(z \rightarrow+0)$ and $J_{\nu}(z)=O\left(z^{-1 / 2}\right)(z \rightarrow+\infty)$, we have $\sup _{u \geq 0}\left|\phi_{\nu}(u)\right| \leq C$. Thus, it suffices to show (8) for $0 \leq u_{1}<u_{2}$ and $u_{2}-u_{1} \leq 1$. The formula $J_{\nu}^{\prime}(z)=$ $(\nu / z) J_{\nu}(z)-J_{\nu+1}(z)$ leads to $(d / d u) \phi_{\nu}(u)=(\nu+(1 / 2)) u^{-1 / 2} J_{\nu}(u)-$ $u^{1 / 2} J_{\nu+1}(u)$, and $\sup _{1 \leq u}\left|(d / d u) \phi_{\nu}(u)\right| \leq C$. It follows from this that (8) holds when $1 \leq u_{1}<u_{2}$ and $u_{2}-u_{1} \leq 1$. Since we can divide the matter into two parts at the point 1 , it is enough to deal with the case $0 \leq u_{1}<u_{2} \leq 1$. It follows from the series definition of the Bessel function that $\phi_{\nu}(u)=u^{\nu+1 / 2} h_{\nu}(u)$, where

$$
h_{\nu}(u)=2^{-\nu} \sum_{n=0}^{\infty} \frac{(-1)^{n}(u / 2)^{2 n}}{n!\Gamma(\nu+n+1)},
$$

which is an entire function. We have

$$
\begin{aligned}
\left|\phi_{\nu}\left(u_{2}\right)-\phi_{\nu}\left(u_{1}\right)\right| & \leq\left|u_{2}^{\nu+1 / 2}\right|\left|h_{\nu}\left(u_{2}\right)-h_{\nu}\left(u_{1}\right)\right|+\left|u_{2}^{\nu+1 / 2}-u_{1}^{\nu+1 / 2}\right|\left|h_{\nu}\left(u_{1}\right)\right| \\
& \leq\left|u_{2}-u_{1}\right| \sup _{0 \leq u \leq 1}\left|h_{\nu}^{\prime}(u)\right|+C\left|u_{2}-u_{1}\right|^{\delta} \sup _{0 \leq u \leq 1}\left|h_{\nu}(u)\right| \\
& \leq C\left|u_{2}-u_{1}\right|^{\delta}
\end{aligned}
$$

and obtain the inequality (8).
Let us go back to estimating (7). It follows from (8) that $\mid \phi_{\nu}(y t)-$ $\phi_{\nu}\left(y_{0} t\right)\left|\leq C_{\nu}\right| y-\left.y_{0}\right|^{\delta} t^{\delta}$, with which (7) leads to

$$
\begin{aligned}
\left|G_{N}(y)-G_{N}\left(y_{0}\right)\right|^{2} & \leq C\|g\|_{L^{2}(0, \infty)}^{2}\left|y-y_{0}\right|^{2 \delta} \sum_{k=1}^{N} \int_{n_{k} \leq t \leq n_{k}+L} t^{2 \delta} d t \\
& \leq K_{L}\|g\|_{L^{2}(0, \infty)}^{2}\left|y-y_{0}\right|^{2 \delta} \sum_{k=1}^{N} n_{k}^{2 \delta},
\end{aligned}
$$

where K_{L} depends only on ν and L. Since the sequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ has a Hadamard gap, $n_{k+1} / n_{k} \geq \rho>1$, it follows that $\sum_{k=1}^{N} n_{k}^{2 \delta} \leq C n_{N}^{2 \delta}$ with a constant C depending only on ν and ρ. For $y \in I=\left[y_{0}, y_{1}\right]$, we have $\left|y-y_{0}\right| n_{N} \leq|I| n_{N} \leq 1$ for $N \leq M$ by the choice of M. Thus, we have $\left|G_{N}(y)-G_{N}\left(y_{0}\right)\right|^{2} \leq C\|g\|_{L^{2}(0, \infty)}^{2}$ for $y \in I$ and $N \leq M$ with C depending only on ν, ρ and L. Applying Schwarz's inequality to the left-hand side of the inequality (6) and using this inequality, we see that (6) with $c=G_{N}\left(y_{0}\right)$ holds in the case $N \leq M$.

Remark The constant K_{L} satisfies $C L \leq K_{L}$, where C depends only on ν. It is crucial for our proof to take the lengths of the intervals $\left[n_{k}, n_{k}+L\right]$ so as to be constant L. In other words, our proof do not allow to treat the intervals $\left[n_{k}, n_{k}+L_{k}\right.$] with $L_{k} \rightarrow \infty$ as $k \rightarrow \infty$.

Let us deal with the case $M<N$. We write

$$
\begin{aligned}
G_{N}(y) & =G_{M}(y)+\sum_{k=M+1}^{N} \int_{n_{k} \leq t \leq n_{k}+L} g(t) \sqrt{y t} J_{\nu}(y t) d t \\
& =G_{M}(y)+R_{M, N}(y), \quad \text { say. }
\end{aligned}
$$

In this case, for $I=\left[y_{0}, y_{1}\right]$ we shall show that (6) with $c=G_{M}\left(y_{0}\right)$ holds. We have that

$$
\begin{aligned}
& \frac{1}{|I|} \int_{I}\left|G_{N}(y)-G_{M}\left(y_{0}\right)\right| d y \\
& \quad \leq \frac{1}{|I|} \int_{I}\left|G_{M}(y)-G_{M}\left(y_{0}\right)\right| d y+\frac{1}{|I|} \int_{I}\left|R_{M, N}(y)\right| d y
\end{aligned}
$$

By the case $N \leq M$ we just proved, we see that the first term on the righthand side of the above inequality is bounded by $C\|g\|_{L^{2}(0, \infty)}$. Thus, it is enough to show that the second term on the right-hand side is bounded by $C\|g\|_{L^{2}(0, \infty)}$, that is,

$$
\begin{equation*}
\frac{1}{|I|} \int_{I}\left|R_{M, N}(y)\right| d y \leq C\|g\|_{L^{2}(0, \infty)} \tag{9}
\end{equation*}
$$

Let us estimate $\left((1 /|I|) \int_{I}\left|R_{M, N}(y)\right| d y\right)^{2}$. It follows that

$$
\begin{aligned}
& \left(\frac{1}{|I|} \int_{I}\left|R_{M, N}(y)\right| d y\right)^{2} \leq \frac{1}{|I|} \int_{I}\left|R_{M, N}(y)\right|^{2} d y \\
& \quad \leq \int_{0}^{\infty} \int_{0}^{\infty}|g(t)||g(s)| \sum_{k, j=M+1}^{N} \chi_{k}(t) \chi_{j}(s) K_{I}(t, s) d t d s
\end{aligned}
$$

where

$$
K_{I}(t, s)=\frac{1}{|I|}\left|\int_{I} \sqrt{y t} J_{\nu}(y t) \sqrt{y s} J_{\nu}(y s) d y\right|=\frac{1}{|I|}\left|\int_{I} \phi_{\nu}(y t) \phi_{\nu}(y s) d y\right|
$$

We state an estimate for $K_{I}(t, s)$ as a lemma, which will be proved after finishing the proof of the theorem.

Lemma Let I be a subinterval of $[0, \infty)$, and let M be a positive integer such that $1 / n_{M+1}<|I| \leq 1 / n_{M}$. Then the inequalities

$$
\begin{equation*}
K_{I}(t, s) \leq C \gamma^{|k-j|}, \quad t \in\left[n_{k}, n_{k}+L\right], \quad s \in\left[n_{j}, n_{j}+L\right] \tag{10}
\end{equation*}
$$

hold for $k, j=M+1, M+2, \ldots$, where C is a positive constant depending only on ν, ρ and L, and γ is a constant with $0<\gamma<1$ depending only on ν and ρ.

By the lemma, we have

$$
\left(\frac{1}{|I|} \int_{I}\left|R_{M, N}(y)\right| d y\right)^{2} \leq C \sum_{k, j=M+1}^{\infty} B_{k} B_{j} \gamma^{|k-j|}, \quad B_{k}=\int_{0}^{\infty}|g(t)| \chi_{k}(t) d t
$$

By using Schwarz's inequality, we see that

$$
\begin{aligned}
& \sum_{k, j=M+1}^{\infty} B_{k} B_{j} \gamma^{|k-j|} \\
& \quad=\sum_{k=M+1}^{\infty} B_{k}^{2}+2 \gamma \sum_{k=M+1}^{\infty} B_{k+1} B_{k}+\cdots+2 \gamma^{m} \sum_{k=M+1}^{\infty} B_{k+m} B_{k}+\cdots \\
& \quad \leq\left(1+2 \gamma+\cdots+2 \gamma^{m}+\cdots\right) \sum_{k=M+1}^{\infty} B_{k}^{2} .
\end{aligned}
$$

This leads to

$$
\begin{aligned}
\left(\frac{1}{|I|} \int_{I}\left|R_{M, N}(y)\right| d y\right)^{2} & \leq C \sum_{k=M+1}^{\infty} B_{k}^{2} \\
& \leq C L \sum_{k=M+1}^{\infty} \int_{n_{k} \leq t \leq n_{k}+L}|g(t)|^{2} d t \leq C\|g\|_{L^{2}(0, \infty)}^{2}
\end{aligned}
$$

with a constant C not depending on M, N, I and g, which implies (9). Therefore, we complete the proof of the theorem.

We turn to the proof of the lemma. Let $t \in\left[n_{k}, n_{k}+L\right]$ and $s \in$ $\left[n_{j}, n_{j}+L\right]$ be fixed, and let $I=\left[y_{0}, y_{1}\right]$. We may assume that $j \geq k$. Denote by K the greatest non-negative integer such that $2 \pi K / s \leq y_{1}-y_{0}$, and put $a_{p}=y_{0}+2 \pi p / s$ for $p=0,1,2, \ldots, K$ and $a_{K+1}=y_{1}$. We note that $a_{p+1}-a_{p} \leq 2 \pi / n_{j}$ for $p=0,1, \ldots, K$. We write

$$
\int_{I} \phi_{\nu}(y t) \phi_{\nu}(y s) d y=\sum_{p=0}^{K}\left\{A_{p}^{(1)}+A_{p}^{(2)}\right\}
$$

where

$$
A_{p}^{(1)}=\int_{a_{p}}^{a_{p+1}}\left(\phi_{\nu}(y t)-\phi_{\nu}\left(a_{p} t\right)\right) \phi_{\nu}(y s) d y, \quad A_{p}^{(2)}=\phi_{\nu}\left(a_{p} t\right) \int_{a_{p}}^{a_{p+1}} \phi_{\nu}(y s) d y
$$

Combining (8) and the fact $\left|\phi_{\nu}(y s)\right| \leq C$ for $\nu \geq-1 / 2$, we have that

$$
\left|A_{p}^{(1)}\right| \leq C t^{\delta}\left(\frac{2 \pi}{n_{j}}\right)^{\delta}\left(a_{p+1}-a_{p}\right) \leq C\left(\frac{n_{k}}{n_{j}}\right)^{\delta}\left(a_{p+1}-a_{p}\right)
$$

which leads to

$$
\begin{equation*}
\sum_{p=0}^{K}\left|A_{p}^{(1)}\right| \leq C\left(\frac{n_{k}}{n_{j}}\right)^{\delta}|I| \leq C\left(\frac{1}{\rho^{\delta}}\right)^{j-k}|I| \tag{11}
\end{equation*}
$$

since $1<\rho \leq n_{i+1} / n_{i}, i=1,2, \ldots$ Let us estimate $A_{p}^{(2)}$. For $A_{0}^{(2)}$ and $A_{K}^{(2)}$, we see by $n_{k}|I| \geq 1, k=M+1, \ldots$ that

$$
\begin{equation*}
\left|A_{p}^{(2)}\right| \leq \frac{C}{n_{j}}=C \frac{n_{k}}{n_{j} n_{k}|I|}|I| \leq C\left(\frac{1}{\rho}\right)^{j-k}|I|, \quad p=0, K \tag{12}
\end{equation*}
$$

We deal with $A_{p}^{(2)}, p=1,2, \ldots, K-1$. We may assume $K \geq 2$. We use the following well-known asymptotic formula:

$$
\begin{equation*}
J_{\nu}(z)=\sqrt{2 /(\pi z)} \cos (z-(2 \nu+1) \pi / 4)+O\left(z^{-3 / 2}\right), \quad z \rightarrow+\infty . \tag{13}
\end{equation*}
$$

For $y \in\left[a_{p}, a_{p+1}\right], p=1,2, \ldots, K-1$, it follows from $y s \geq 2 \pi$ that

$$
\phi_{\nu}(y s)=\sqrt{2 / \pi} \cos (y s-(2 \nu+1) \pi / 4)+R(y s), \quad|R(y s)| \leq C(y s)^{-1}
$$

where C depends only on ν. This leads to

$$
\left|A_{p}^{(2)}\right| \leq C\left|\int_{a_{p}}^{a_{p+1}}\{\sqrt{2 / \pi} \cos (y s-(2 \nu+1) \pi / 4)+R(y s)\} d y\right|
$$

for $p=1,2, \ldots, K-1$. Since $\int_{a_{p}}^{a_{p+1}} \cos (y s-(2 \nu+1) \pi / 4) d y=0$, it follows that

$$
\left|A_{p}^{(2)}\right| \leq \frac{C}{s} \int_{a_{p}}^{a_{p+1}} \frac{1}{y} d y=\frac{C}{s}\left(\log a_{p+1}-\log a_{p}\right)
$$

and $\sum_{p=1}^{K-1}\left|A_{p}^{(2)}\right| \leq(C / s) \log K$. By the choice of K, we have $\log K \leq$ $\log (s|I|)$. Let a constant η be fixed such that $0<\eta<1$. Then there exists a positive constant C depending only on η satisfying $(1 / x) \log x \leq C x^{-\eta}$ for $x \geq 2$. Thus we have

$$
\sum_{p=1}^{K-1}\left|A_{p}^{(2)}\right| \leq C|I|\left(\frac{1}{s|I|}\right)^{\eta}
$$

We note that $n_{k}|I|>1$ since $k \geq M+1$. It follows that

$$
\frac{1}{s|I|} \leq \frac{1}{n_{k}|I|} \frac{n_{k}}{n_{j}} \leq \frac{n_{k}}{n_{j}} \leq\left(\frac{1}{\rho}\right)^{j-k}
$$

Thus we have

$$
\begin{equation*}
\sum_{p=1}^{K-1}\left|A_{p}^{(2)}\right| \leq C|I|\left(\frac{1}{\rho^{\eta}}\right)^{j-k} \tag{14}
\end{equation*}
$$

Combining (11), (12) and (14), we have the desired inequality (10), which completes the proof of the lemma.

3. Proof of the proposition

Let us prove (i) of the proposition. We first note that the Hankel transform $H_{\nu} f$ is well-defined for a function $f \in L^{p}(0, \infty)$ with $1 \leq p \leq 2$. For, if $1 \leq p \leq 2$, then the Hausdorff-Young inequality $\left\|H_{\nu} f\right\|_{L^{q}(0, \infty)} \leq$ $C\|f\|_{L^{p}(0, \infty)}$ of the Hankel transform holds, where $1 / p+1 / q=1$.

The case $p=2$ is trivial. Let $1<p<2$ and let $f \in L^{p}(0, \infty)$. We denote by $E[f]$ the even extension of f to $(-\infty, \infty)$. We use the result $[7$, XIV, Proposition 5.1], which says that given $\lambda>0$, there exist functions $E[f]^{\lambda} \in H^{1}(\mathbf{R})$ and $E[f]_{\lambda} \in L^{2}(\mathbf{R})$ such that $E[f]=E[f]^{\lambda}+E[f]_{\lambda}$ and

$$
\begin{aligned}
\left\|E[f]^{\lambda}\right\|_{H^{1}(\mathbf{R})} & \leq C \lambda^{1-p}\|E[f]\|_{L^{p}(\mathbf{R})}^{p} \\
\left\|E[f]_{\lambda}\right\|_{L^{2}(\mathbf{R})}^{2} & \leq C \lambda^{2-p}\|E[f]\|_{L^{p}(\mathbf{R})}^{p}
\end{aligned}
$$

with C independent of $E[f]$ and λ. Let χ_{+}be the characteristic function of $(0, \infty)$. Then we have that $f=E[f]_{e} \chi_{+}$, where $E[f]_{e}$ is the even part of $E[f]$. This leads to $f=\left(E[f]^{\lambda}\right)_{e} \chi_{+}+\left(E[f]_{\lambda}\right)_{e} \chi_{+}$. By applying the result $\left[1\right.$, III, Lemma 7.39], we see that $\left(E[f]^{\lambda}\right)_{e} \chi_{+} \in H^{1}(\mathbf{R})$ and $\left\|\left(E[f]^{\lambda}\right)_{e} \chi_{+}\right\|_{H^{1}(\mathbf{R})} \leq C\left\|E[f]^{\lambda}\right\|_{H^{1}(\mathbf{R})}$, which implies that $\left(E[f]^{\lambda}\right)_{e} \chi_{+} \in$ $H^{1}(0, \infty)$ and

$$
\begin{equation*}
\left\|\left(E[f]^{\lambda}\right)_{e} \chi_{+}\right\|_{H^{1}(0, \infty)} \leq C\left\|E[f]^{\lambda}\right\|_{H^{1}(\mathbf{R})} \leq C \lambda^{1-p}\|f\|_{L^{p}(0, \infty)}^{p} \tag{15}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
\left\|\left(E[f]_{\lambda}\right)_{e} \chi_{+}\right\|_{L^{2}(0, \infty)} \leq C\left\|E[f]_{\lambda}\right\|_{L^{2}(\mathbf{R})} \leq C \lambda^{(2-p) / 2}\|f\|_{L^{p}(0, \infty)}^{p / 2} \tag{16}
\end{equation*}
$$

The left-hand side of (2) is equal to $\left\|\sum_{k=1}^{\infty} \chi_{k} H_{\nu} f\right\|_{L^{2}(0, \infty)}$, where χ_{k} is the characteristic function of $\left[n_{k}, n_{k}+L\right]$, since we may assume that the intervals $\left[n_{k}, n_{k}+L\right]$ are non-overlapping. By the theorem and Parseval's
identity, we have

$$
\begin{aligned}
& \left\|\sum_{k=1}^{\infty} \chi_{k} H_{\nu} f\right\|_{L^{2}(0, \infty)} \\
& \quad \leq\left\|\sum_{k=1}^{\infty} \chi_{k} H_{\nu}\left(\left(E[f]^{\lambda}\right)_{e} \chi_{+}\right)\right\|_{L^{2}(0, \infty)}+\left\|\sum_{k=1}^{\infty} \chi_{k} H_{\nu}\left(\left(E[f]_{\lambda}\right)_{e} \chi_{+}\right)\right\|_{L^{2}(0, \infty)} \\
& \quad \leq C\left\|\left(E[f]^{\lambda}\right)_{e} \chi_{+}\right\|_{H^{1}(0, \infty)}+\left\|\left(E[f]_{\lambda}\right)_{e} \chi_{+}\right\|_{L^{2}(0, \infty)} \\
& \quad \leq C\left(\lambda^{1-p}\|f\|_{L^{p}(0, \infty)}^{p}+\lambda^{(2-p) / 2}\|f\|_{L^{p}(0, \infty)}^{p / 2}\right)
\end{aligned}
$$

The last inequality follows from (15) and (16). Choosing λ so as $\lambda=$ $\|f\|_{L^{p}(0, \infty)}$, we obtain the desired inequality (2), which completes the proof of (i).

We now turn to proving (ii) of the proposition. Suppose that the series on the left-hand side of (2) converges for every $f \in L^{1}(0, \infty)$. Then, by the closed graph theorem we have

$$
\left(\sum_{k=1}^{\infty} \int_{n_{k} \leq y \leq n_{k}+L}\left|H_{\nu} f(y)\right|^{2} d y\right)^{1 / 2} \leq C\|f\|_{L^{1}(0, \infty)}
$$

for $f \in L^{1}(0, \infty)$ with C independent of f. Let t_{0} be a fixed positive number. For every $j=1,2, \ldots$, we define the function f_{j} by $f_{j}(t)=j$ $\left(t_{0} \leq t \leq t_{0}+1 / j\right)$ and $f_{j}(t)=0$ (otherwise). Then, $\left\|f_{j}\right\|_{L^{1}(0, \infty)}=1$ for every j and $\lim _{j \rightarrow \infty} H_{\nu} f_{j}(y)=\sqrt{y t_{0}} J_{\nu}\left(y t_{0}\right)$. The above inequality and Fatou's lemma lead to

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \int_{n_{k} \leq y \leq n_{k}+L}\left|\sqrt{y t_{0}} J_{\nu}\left(y t_{0}\right)\right|^{2} d y \\
& \quad \leq \liminf _{j \rightarrow \infty} \sum_{k=1}^{\infty} \int_{n_{k} \leq y \leq n_{k}+L}\left|H_{\nu} f_{j}(y)\right|^{2} d y \leq C
\end{aligned}
$$

By the asymptotic formula (13), we have

$$
\left|\sqrt{t_{0} y} J_{\nu}\left(y t_{0}\right)\right|^{2} \geq C_{1}\left|\cos \left(y t_{0}-(2 \nu+1) \pi / 4\right)\right|^{2}-C_{2} y^{-1}
$$

for $y \geq 1$, where positive constants C_{1} and C_{2} are independent of k, but may depend on t_{0} and ν. It follows that $\sum_{k=1}^{\infty} \int_{n_{k}}^{n_{n}+L} y^{-1} d y \leq L \sum_{k=1}^{\infty} n_{k}^{-1} \leq$ $L n_{1}^{-1} \rho(\rho-1)^{-1}$. Thus we have the inequality

$$
\begin{equation*}
\sum_{k=1}^{\infty} \int_{n_{k} \leq y \leq n_{k}+L}\left|\cos \left(y t_{0}-(2 \nu+1) \pi / 4\right)\right|^{2} d y \leq C \tag{17}
\end{equation*}
$$

with a positive constant C.
On the other hand, there exists a point t_{0} such that the set of points $\left\{\left\langle n_{k} t_{0} / \pi\right\rangle\right\}_{k=1}^{\infty}$ is dense in $(0,1)$ (cf. [2, Theorem 1.40]), where $\langle t\rangle$ denotes the fractional part of t. For such a t_{0}, the integral in the sum of (17) is larger than $\int_{0}^{L / 2}\left(\cos t_{0} y\right)^{2} d y$ for infinitely many k 's and hence (17) is impossible. We complete the proof of (ii), and the proof of the proposition.

The authors would like to thank the referee for his/her careful reading of the paper and his/her comments which have clarified the proofs.

References

[1] Garcia-Cuerva J. and Rubio de Francia J.L., Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
[2] Hardy G.H. and Littlewood J.E., Some problems of Diophantine approximation. I. The fractional part of $n^{k} \theta$., Acta Math. 37 (1914), 155-190.
[3] Kanjin Y. and Sato K., Paley's inequality for the Jacobi expansions, Bull. London Math. Soc. 33 (2001), 483-491.
[4] Sato K., Paley's inequality and Hardy's inequality for the Fourier-Bessel expansions, J. Nonlinear Convex Anal. 6 (2005), 441-451.
[5] Titchmarsh E.C., Hankel transforms, Proc. London Math. Soc. 45 (1922), 458-474.
[6] Titchmarsh E.C., Introduction to the Theory of Fourier Integrals, 3rd ed., Chelsea Publishing Company, New York, 1986.
[7] Torchinsky A., Real-Variable Methods in Harmonic Analysis, Pure and Applied Math. No. 123 (Academic Press, Orland, 1986).
[8] Zygmund A., Trigonometric series, Vol. II, 2nd ed., Cambridge University Press, Cambridge, UK, 1959.

Yuichi Kanjin
Mathematics Section
Division of Innovative Technology and Science
Graduate School of Natural Science and Technology
Kanazawa University
Kanazawa 920-1192, Japan
E-mail: kanjin@kenroku.kanazawa-u.ac.jp
Kunio Sato
Department of Basic Technology
Faculty of Engineering
Yamagata University
Yonezawa 992-8510, Japan
E-mail: sato@yz.yamagata-u.ac.jp

