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Paley’s inequality of integral transform type
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Abstract. Let {nk}∞k=1 be a sequence of positive integers with Hadamard gap.

For an analytic function F (z) =
P∞

n=0 anzn in the unit disc satisfying sup0<r<1R 2π
0 |F (reiθ)| dθ < ∞, the inequality (

P∞
k=1 |ank

|2)1/2 < ∞ holds, which is familiar

as Paley’s inequality. In this paper, an integral transform version of this inequality is

established.
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1. Introduction and Results

A well-known inequality of Paley says in terms of the real Hardy space
H1(T) on the torus T that there exists a constant C such that

{ ∞∑

k=1

(|cnk
|2 + |c−nk

|2)
}1/2

≤ C‖f‖H1(T),

for f(θ) ∼ ∑∞
n=−∞ cneinθ in H1(T), where {nk}∞k=1 is a Hadamard se-

quence, that is, a sequence of positive integers such that nk+1/nk ≥ ρ with
a constant ρ > 1.

Kanjin and Sato [3] obtained the Paley-type inequality with respect to
the Jacobi expansions, and Sato [4] proved the inequality of the same type
in the Fourier-Bessel expansions.

The main purpose of this paper is to establish Paley’s inequality with
respect to the Hankel transform for the real Hardy space on the half line
(0,∞).

The Hankel transform Hνf of order ν > −1 of a function f on (0,∞)
is defined by

Hνf(y) =
∫ ∞

0

f(t)
√

ytJν(yt) dt, y > 0,
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where Jν is the Bessel function of the first kind of order ν. We remark that
the Hankel transforms H−1/2f(y) and H1/2f(y) are the cosine and the sine
transforms:

H−1/2f(y) =

√
2
π

∫ ∞

0

f(t) cos yt dt, H1/2f(y) =

√
2
π

∫ ∞

0

f(t) sin yt dt.

From now on, we let the order ν of the Hankel transform be greater than or
equal to −1/2 unless otherwise stated explicitly.

It is known that the Hankel transform Hνf of f is continuous for f ∈
L1(0,∞), and |Hνf(y)| ≤ Cν‖f‖L1(0,∞), y > 0, where Cν is a constant
depending only on ν. Further, the following facts are known: The Hankel
transform Hν , initially defined on L1(0,∞) ∩ L2(0,∞), extends uniquely
to an isometry of L2(0,∞) (Parseval’s identity for the Hankel transform),
HνHν = I (The inversion formula for the Hankel transform) where I is the
identity operator of L2(0,∞), and

∫ ∞

0

f(t)g(t) dt =
∫ ∞

0

Hνf(y)Hνg(y) dy

for f, g ∈ L2(0,∞) (Plancherel’s theorem for the Hankel transform). For
these facts, see [6, Chapter VIII], [5].

Let H1(R) be the real Hardy space on the real line R. We shall work
on the space H1(0,∞) defined by

H1(0,∞) = {h|(0,∞) ; h ∈ H1(R), supph ⊂ [0,∞)},

where [0,∞) is the closed half line, and we endow the space with the
norm ‖f‖H1(0,∞) = ‖h‖H1(R), where h ∈ H1(R), supph ⊂ [0,∞) and
f = h|(0,∞). We remark that H1(0,∞) = {h|(0,∞) ; h ∈ H1(R), even} and
c1‖h‖H1(R) ≤ ‖f‖H1(0,∞) ≤ c2‖h‖H1(R) with positive constants c1 and c2,
where f = h|(0,∞) and h ∈ H1(R) is even. For this fact, see [1, Chapter III,
Lemma 7.40].

Our theorem is as follows:

Theorem Let ν ≥ −1/2. Let L > 0. Then, the Hankel transform Hνf of
a function f ∈ H1(0,∞) satisfies
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( ∞∑

k=1

∫

nk≤y≤nk+L

|Hνf(y)|2 dy

)1/2

≤ C‖f‖H1(0,∞), (1)

where C is independent of f .

As a corollary, we state here that the same type of result holds with
respect to the Fourier transform.

Corollary Under the same assumptions of the theorem, there exists a
constant C such that

( ∞∑

k=1

∫

nk≤|ξ|≤nk+L

|Fh(ξ)|2 dξ

)1/2

≤ C‖h‖H1(R)

for h ∈ H1(R), where Fh is the Fourier transform of h:

Fh(ξ) =
1√
2π

∫ ∞

−∞
h(x)e−iξx dx, ξ ∈ R.

The corollary follows from the following simple relations between the
Fourier transform and the Hankel transforms:

Fh(ξ) =

{
H−1/2(R[he])(ξ) + i H−1/2(R[(Hh)e])(ξ), a.e. ξ > 0,

H−1/2(R[he])(−ξ)− i H−1/2(R[(Hh)e])(−ξ), a.e. ξ < 0.

Here, Hh is the Hilbert transform of h, and R[h] is the restriction of h to
the half interval (0,∞), and he is the even part of h. If h ∈ H1(R), then
Hh ∈ H1(R) and R[(Hh)e] ∈ H1(0,∞). Therefore, the inequality (1) with
ν = −1/2 implies the corollary.

Applying an interpolation method to the theorem, we have the Lp, 1 <

p ≤ 2 case which is an integral transform version of Zygmund’s Fourier series
case [8, (7.6)]. Further, we obtain that in the theorem we can not replace the
space H1(0,∞) with L1(0,∞). We precisely state these as a proposition.

Proposition Under the same assumptions of the theorem, the following
(i) and (ii) hold.

(i) Let 1 < p ≤ 2. Then, the Hankel transform Hνf of a function
f ∈ Lp(0,∞) satisfies
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( ∞∑

k=1

∫

nk≤y≤nk+L

|Hνf(y)|2 dy

)1/2

≤ C‖f‖Lp(0,∞), (2)

where C is independent of f .
(ii) There exists a function f ∈ L1(0,∞) such that

∞∑

k=1

∫

nk≤y≤nk+L

|Hνf(y)|2 dy = ∞.

A proof of the theorem will be given in the next section. The
(H1, BMO)-duality will play an essential role in our proof. In the last
section, we shall give a proof of the proposition.

2. Proof of the theorem

We shall prove the theorem. The letter C will be used to denote positive
constants not necessarily the same at each occurrence.

Let {nk}∞k=1 be a Hadamard sequence, that is, nk+1/nk ≥ ρ > 1. Let
L > 0 and let χk(y) be the characteristic function of the interval [nk, nk +L]
for every positive integer k. If we show the following inequality

∣∣∣∣
∫ ∞

0

N∑

k=1

χk(y)Hνf(y)g(y) dy

∣∣∣∣ ≤ C‖f‖H1(0,∞)‖g‖L2(0,∞) (3)

for N = 1, 2, . . . , f ∈ H1(0,∞) ∩ L2(0,∞) and g ∈ L2(0,∞), where C is
independent of N, f and g, then we have

∫ ∞

0

∣∣∣∣
N∑

k=1

χk(y)Hνf(y)
∣∣∣∣
2

dy ≤ C‖f‖2H1(0,∞). (4)

Since {nk}∞k=1 is a Hadamard sequence, we may suppose that the intervals
[nk, nk + L] are non-overlapping. Letting N →∞ in (4), we have

∞∑

k=1

∫

nk≤y≤nk+L

|Hνf(y)|2 dy ≤ C‖f‖2H1(0,∞)
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for f ∈ H1(0,∞)∩L2(0,∞). Since H1(0,∞)∩L2(0,∞) is dense in H1(0,∞),
the standard density argument allows us to obtain the theorem. Therefore,
it is enough to prove the inequality (3).

Let f ∈ H1(0,∞) ∩ L2(0,∞) and g ∈ L2(0,∞). We set

GN (y) = Hν

( N∑

k=1

χkg

)
(y) =

N∑

k=1

Hν(χkg)(y)

=
N∑

k=1

∫

nk≤t≤nk+L

g(t)
√

ytJν(yt) dt

for N = 1, 2, . . . . Then, by Plancherel’s theorem we have

∫ ∞

0

N∑

k=1

χk(y)Hνf(y)g(y) dy =
∫ ∞

0

f(y)GN (y) dy

=
1
2

∫ ∞

−∞
E[f ](x)E[GN ](x) dx,

where we denote by E[g] the even extension of a function g on (0,∞) to the
whole line (−∞,∞). By the (H1, BMO)-duality, we have

∣∣∣∣
∫ ∞

−∞
E[f ](x)E[GN ](x) dx

∣∣∣∣ ≤ C‖E[f ]‖H1(R)‖E[GN ]‖∗,

where ‖ · ‖∗ is the BMO-norm. By the inequality ‖E[f ]‖H1(R) ≤
C‖f‖H1(0,∞) and the definition of BMO-norm, we see that to show (3)
it is enough to prove that for every interval I of (−∞,∞) there exists a
constant c such that

1
|I|

∫

I

|E[GN ](x)− c| dx ≤ C‖g‖L2(0,∞), (5)

where C is independent of N, g and I. We may assume that I ⊂ [0,∞), and
it suffices to show that there exists a constant c such that

1
|I|

∫

I

|GN (y)− c| dy ≤ C‖g‖L2(0,∞). (6)
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For, if I ⊂ (−∞, 0], then (5) follows from (6) since we treat the even exten-
sion. If I = [−a1, a2], a1, a2 > 0, then

1
|I|

∫

I

|E[GN ](x)− c| dx =
1
|I|

{ ∫ a1

0

|GN (y)− c| dy +
∫ a2

0

|GN (y)− c| dy

}

≤ 2
a

∫ a

0

|GN (y)− c| dy

for any constant c, where a = max{a1, a2}. Thus, if we can prove (6), then
(5) is obtained.

Now we turn to a proof of (6). Let I = [y0, y1], y1 > y0 ≥ 0. If
|I| > 1/n1, then we have by Scwarz’s inequality and Parseval’s identity for
the Hankel transform that

1
|I|

∫

I

|GN (y)| dy ≤
(

1
|I|

∫

I

|GN (y)|2 dy

)1/2

≤ n
1/2
1

( ∫ ∞

0

|GN (y)|2 dy

)1/2

= n
1/2
1

∥∥∥∥
N∑

k=1

χkg

∥∥∥∥
L2(0,∞)

≤ n
1/2
1 ‖g‖L2(0,∞),

that is, we have (6) with c = 0.
Suppose that 1/nM+1 < |I| ≤ 1/nM with a positive integer M . We first

deal with the case N ≤ M . In this case, we shall show (6) with c = GN (y0).
It follows that

|GN (y)−GN (y0)|2 =
∣∣∣∣
∫ ∞

0

g(t)
{ N∑

k=1

χk(t)(φν(yt)− φν(y0t))
}

dt

∣∣∣∣
2

≤ ‖g‖2L2(0,∞)

N∑

k=1

∫

nk≤t≤nk+L

|φν(yt)− φν(y0t)|2 dt,

(7)

where φν(u) =
√

uJν(u).
We need to estimate the quantity |φν(yt)−φν(y0t)|. We shall show that
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there exists a constant C depending only on ν such that

|φν(u2)− φν(u1)| ≤ C|u2 − u1|δ (8)

for u2, u1 > 0, where δ = ν+1/2 for−1/2 < ν < 1/2, and δ = 1 for ν = −1/2
or 1/2 ≤ ν. The case ν = −1/2 is obvious since φ−1/2(u) = (2/π)1/2 cos u is
a smooth function. We assume ν > −1/2. By the facts Jν(z) ∼ zν (z → +0)
and Jν(z) = O(z−1/2) (z → +∞), we have supu≥0 |φν(u)| ≤ C. Thus, it
suffices to show (8) for 0 ≤ u1 < u2 and u2 − u1 ≤ 1. The formula J ′ν(z) =
(ν/z)Jν(z) − Jν+1(z) leads to (d/du)φν(u) = (ν + (1/2))u−1/2Jν(u) −
u1/2Jν+1(u), and sup1≤u |(d/du)φν(u)| ≤ C. It follows from this that (8)
holds when 1 ≤ u1 < u2 and u2 − u1 ≤ 1. Since we can divide the
matter into two parts at the point 1, it is enough to deal with the case
0 ≤ u1 < u2 ≤ 1. It follows from the series definition of the Bessel function
that φν(u) = uν+1/2hν(u), where

hν(u) = 2−ν
∞∑

n=0

(−1)n(u/2)2n

n!Γ(ν + n + 1)
,

which is an entire function. We have

|φν(u2)− φν(u1)| ≤ |uν+1/2
2 ||hν(u2)− hν(u1)|+ |uν+1/2

2 − u
ν+1/2
1 ||hν(u1)|

≤ |u2 − u1| sup
0≤u≤1

|h′ν(u)|+ C|u2 − u1|δ sup
0≤u≤1

|hν(u)|

≤ C|u2 − u1|δ,

and obtain the inequality (8).
Let us go back to estimating (7). It follows from (8) that |φν(yt) −

φν(y0t)| ≤ Cν |y − y0|δtδ, with which (7) leads to

|GN (y)−GN (y0)|2 ≤ C‖g‖2L2(0,∞)|y − y0|2δ
N∑

k=1

∫

nk≤t≤nk+L

t2δ dt

≤ KL‖g‖2L2(0,∞)|y − y0|2δ
N∑

k=1

n2δ
k ,
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where KL depends only on ν and L. Since the sequence {nk}∞k=1 has a
Hadamard gap, nk+1/nk ≥ ρ > 1, it follows that

∑N
k=1 n2δ

k ≤ Cn2δ
N with

a constant C depending only on ν and ρ. For y ∈ I = [y0, y1], we have
|y − y0|nN ≤ |I|nN ≤ 1 for N ≤ M by the choice of M . Thus, we have
|GN (y)−GN (y0)|2 ≤ C‖g‖2L2(0,∞) for y ∈ I and N ≤ M with C depending
only on ν, ρ and L. Applying Schwarz’s inequality to the left-hand side of
the inequality (6) and using this inequality, we see that (6) with c = GN (y0)
holds in the case N ≤ M .

Remark The constant KL satisfies CL ≤ KL, where C depends only on
ν. It is crucial for our proof to take the lengths of the intervals [nk, nk + L]
so as to be constant L. In other words, our proof do not allow to treat the
intervals [nk, nk + Lk] with Lk →∞ as k →∞.

Let us deal with the case M < N . We write

GN (y) = GM (y) +
N∑

k=M+1

∫

nk≤t≤nk+L

g(t)
√

ytJν(yt) dt

= GM (y) + RM,N (y), say.

In this case, for I = [y0, y1] we shall show that (6) with c = GM (y0) holds.
We have that

1
|I|

∫

I

|GN (y)−GM (y0)| dy

≤ 1
|I|

∫

I

|GM (y)−GM (y0)| dy +
1
|I|

∫

I

|RM,N (y)| dy.

By the case N ≤ M we just proved, we see that the first term on the right-
hand side of the above inequality is bounded by C‖g‖L2(0,∞). Thus, it is
enough to show that the second term on the right-hand side is bounded by
C‖g‖L2(0,∞), that is,

1
|I|

∫

I

|RM,N (y)| dy ≤ C‖g‖L2(0,∞). (9)

Let us estimate ((1/|I|) ∫
I
|RM,N (y)| dy)2. It follows that
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(
1
|I|

∫

I

|RM,N (y)| dy

)2

≤ 1
|I|

∫

I

|RM,N (y)|2 dy

≤
∫ ∞

0

∫ ∞

0

|g(t)||g(s)|
N∑

k,j=M+1

χk(t)χj(s)KI(t, s) dtds,

where

KI(t, s) =
1
|I|

∣∣∣∣
∫

I

√
ytJν(yt)

√
ysJν(ys) dy

∣∣∣∣ =
1
|I|

∣∣∣∣
∫

I

φν(yt)φν(ys) dy

∣∣∣∣.

We state an estimate for KI(t, s) as a lemma, which will be proved after
finishing the proof of the theorem.

Lemma Let I be a subinterval of [0,∞), and let M be a positive integer
such that 1/nM+1 < |I| ≤ 1/nM . Then the inequalities

KI(t, s) ≤ Cγ|k−j|, t ∈ [nk, nk + L], s ∈ [nj , nj + L] (10)

hold for k, j = M + 1,M + 2, . . . , where C is a positive constant depending
only on ν, ρ and L, and γ is a constant with 0 < γ < 1 depending only on ν

and ρ.

By the lemma, we have

(
1
|I|

∫

I

|RM,N (y)| dy

)2

≤ C
∞∑

k,j=M+1

BkBjγ
|k−j|, Bk =

∫ ∞

0

|g(t)|χk(t) dt.

By using Schwarz’s inequality, we see that

∞∑

k,j=M+1

BkBjγ
|k−j|

=
∞∑

k=M+1

B2
k + 2γ

∞∑

k=M+1

Bk+1Bk + · · ·+ 2γm
∞∑

k=M+1

Bk+mBk + · · ·

≤ (1 + 2γ + · · ·+ 2γm + · · · )
∞∑

k=M+1

B2
k.
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This leads to

(
1
|I|

∫

I

|RM,N (y)| dy

)2

≤ C
∞∑

k=M+1

B2
k

≤ CL

∞∑

k=M+1

∫

nk≤t≤nk+L

|g(t)|2 dt ≤ C‖g‖2L2(0,∞)

with a constant C not depending on M, N, I and g, which implies (9). There-
fore, we complete the proof of the theorem.

We turn to the proof of the lemma. Let t ∈ [nk, nk + L] and s ∈
[nj , nj + L] be fixed, and let I = [y0, y1]. We may assume that j ≥ k.
Denote by K the greatest non-negative integer such that 2πK/s ≤ y1 − y0,
and put ap = y0 +2πp/s for p = 0, 1, 2, . . . , K and aK+1 = y1. We note that
ap+1 − ap ≤ 2π/nj for p = 0, 1, . . . , K. We write

∫

I

φν(yt)φν(ys) dy =
K∑

p=0

{
A(1)

p + A(2)
p

}
,

where

A(1)
p =

∫ ap+1

ap

(φν(yt)−φν(apt))φν(ys) dy, A(2)
p = φν(apt)

∫ ap+1

ap

φν(ys) dy.

Combining (8) and the fact |φν(ys)| ≤ C for ν ≥ −1/2, we have that

|A(1)
p | ≤ Ctδ

(
2π

nj

)δ

(ap+1 − ap) ≤ C

(
nk

nj

)δ

(ap+1 − ap),

which leads to

K∑
p=0

|A(1)
p | ≤ C

(
nk

nj

)δ

|I| ≤ C

(
1
ρδ

)j−k

|I|, (11)

since 1 < ρ ≤ ni+1/ni, i = 1, 2, . . . . Let us estimate A
(2)
p . For A

(2)
0 and

A
(2)
K , we see by nk|I| ≥ 1, k = M + 1, . . . that
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∣∣A(2)
p

∣∣ ≤ C

nj
= C

nk

njnk|I| |I| ≤ C

(
1
ρ

)j−k

|I|, p = 0,K. (12)

We deal with A
(2)
p , p = 1, 2, . . . , K − 1. We may assume K ≥ 2. We use the

following well-known asymptotic formula:

Jν(z) =
√

2/(πz) cos(z − (2ν + 1)π/4) + O(z−3/2), z → +∞. (13)

For y ∈ [ap, ap+1], p = 1, 2, . . . , K − 1, it follows from ys ≥ 2π that

φν(ys) =
√

2/π cos(ys− (2ν + 1)π/4) + R(ys), |R(ys)| ≤ C(ys)−1,

where C depends only on ν. This leads to

∣∣A(2)
p

∣∣ ≤ C

∣∣∣∣
∫ ap+1

ap

{√
2/π cos(ys− (2ν + 1)π/4) + R(ys)

}
dy

∣∣∣∣

for p = 1, 2, . . . , K − 1. Since
∫ ap+1

ap
cos(ys− (2ν + 1)π/4) dy = 0, it follows

that

∣∣A(2)
p

∣∣ ≤ C

s

∫ ap+1

ap

1
y

dy =
C

s
(log ap+1 − log ap),

and
∑K−1

p=1 |A(2)
p | ≤ (C/s) log K. By the choice of K, we have log K ≤

log(s|I|). Let a constant η be fixed such that 0 < η < 1. Then there exists
a positive constant C depending only on η satisfying (1/x) log x ≤ Cx−η for
x ≥ 2. Thus we have

K−1∑
p=1

∣∣A(2)
p

∣∣ ≤ C|I|
(

1
s|I|

)η

.

We note that nk|I| > 1 since k ≥ M + 1. It follows that

1
s|I| ≤

1
nk|I|

nk

nj
≤ nk

nj
≤

(
1
ρ

)j−k

.

Thus we have
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K−1∑
p=1

∣∣A(2)
p

∣∣ ≤ C|I|
(

1
ρη

)j−k

. (14)

Combining (11), (12) and (14), we have the desired inequality (10), which
completes the proof of the lemma.

3. Proof of the proposition

Let us prove (i) of the proposition. We first note that the Hankel trans-
form Hνf is well-defined for a function f ∈ Lp(0,∞) with 1 ≤ p ≤ 2.
For, if 1 ≤ p ≤ 2, then the Hausdorff-Young inequality ‖Hνf‖Lq(0,∞) ≤
C‖f‖Lp(0,∞) of the Hankel transform holds, where 1/p + 1/q = 1.

The case p = 2 is trivial. Let 1 < p < 2 and let f ∈ Lp(0,∞). We
denote by E[f ] the even extension of f to (−∞,∞). We use the result [7,
XIV, Proposition 5.1], which says that given λ > 0, there exist functions
E[f ]λ ∈ H1(R) and E[f ]λ ∈ L2(R) such that E[f ] = E[f ]λ + E[f ]λ and

∥∥E[f ]λ
∥∥

H1(R)
≤ Cλ1−p‖E[f ]‖p

Lp(R),

∥∥E[f ]λ
∥∥2

L2(R)
≤ Cλ2−p‖E[f ]‖p

Lp(R)

with C independent of E[f ] and λ. Let χ+ be the characteristic func-
tion of (0,∞). Then we have that f = E[f ]eχ+, where E[f ]e is the even
part of E[f ]. This leads to f = (E[f ]λ)eχ+ + (E[f ]λ)eχ+. By apply-
ing the result [1, III, Lemma 7.39], we see that (E[f ]λ)eχ+ ∈ H1(R) and
‖(E[f ]λ)eχ+‖H1(R) ≤ C‖E[f ]λ‖H1(R), which implies that (E[f ]λ)eχ+ ∈
H1(0,∞) and

∥∥(E[f ]λ)eχ+

∥∥
H1(0,∞)

≤ C
∥∥E[f ]λ

∥∥
H1(R)

≤ Cλ1−p‖f‖p
Lp(0,∞). (15)

Also, we have

∥∥(E[f ]λ)eχ+

∥∥
L2(0,∞)

≤ C
∥∥E[f ]λ

∥∥
L2(R)

≤ Cλ(2−p)/2‖f‖p/2
Lp(0,∞). (16)

The left-hand side of (2) is equal to ‖∑∞
k=1 χkHνf‖L2(0,∞), where χk is

the characteristic function of [nk, nk + L], since we may assume that the
intervals [nk, nk + L] are non-overlapping. By the theorem and Parseval’s
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identity, we have

∥∥∥∥
∞∑

k=1

χkHνf

∥∥∥∥
L2(0,∞)

≤
∥∥∥∥
∞∑

k=1

χkHν

(
(E[f ]λ)eχ+

)∥∥∥∥
L2(0,∞)

+
∥∥∥∥
∞∑

k=1

χkHν

(
(E[f ]λ)eχ+

)∥∥∥∥
L2(0,∞)

≤ C
∥∥(E[f ]λ)eχ+

∥∥
H1(0,∞)

+
∥∥(E[f ]λ)eχ+

∥∥
L2(0,∞)

≤ C
(
λ1−p‖f‖p

Lp(0,∞) + λ(2−p)/2‖f‖p/2
Lp(0,∞)

)
.

The last inequality follows from (15) and (16). Choosing λ so as λ =
‖f‖Lp(0,∞), we obtain the desired inequality (2), which completes the proof
of (i).

We now turn to proving (ii) of the proposition. Suppose that the series
on the left-hand side of (2) converges for every f ∈ L1(0,∞). Then, by the
closed graph theorem we have

( ∞∑

k=1

∫

nk≤y≤nk+L

|Hνf(y)|2 dy

)1/2

≤ C‖f‖L1(0,∞)

for f ∈ L1(0,∞) with C independent of f . Let t0 be a fixed positive
number. For every j = 1, 2, . . . , we define the function fj by fj(t) = j

(t0 ≤ t ≤ t0 + 1/j) and fj(t) = 0 (otherwise). Then, ‖fj‖L1(0,∞) = 1
for every j and limj→∞Hνfj(y) =

√
yt0Jν(yt0). The above inequality and

Fatou’s lemma lead to

∞∑

k=1

∫

nk≤y≤nk+L

∣∣√yt0Jν(yt0)
∣∣2 dy

≤ lim inf
j→∞

∞∑

k=1

∫

nk≤y≤nk+L

|Hνfj(y)|2 dy ≤ C.

By the asymptotic formula (13), we have

∣∣√t0yJν(yt0)
∣∣2 ≥ C1| cos(yt0 − (2ν + 1)π/4)|2 − C2y

−1
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for y ≥ 1, where positive constants C1 and C2 are independent of k, but may
depend on t0 and ν. It follows that

∑∞
k=1

∫ nn+L

nk
y−1 dy ≤ L

∑∞
k=1 n−1

k ≤
Ln−1

1 ρ(ρ− 1)−1. Thus we have the inequality

∞∑

k=1

∫

nk≤y≤nk+L

∣∣ cos(yt0 − (2ν + 1)π/4)
∣∣2 dy ≤ C (17)

with a positive constant C.
On the other hand, there exists a point t0 such that the set of points

{〈nkt0/π〉}∞k=1 is dense in (0, 1) (cf. [2, Theorem 1.40]), where 〈t〉 denotes
the fractional part of t. For such a t0, the integral in the sum of (17) is larger
than

∫ L/2

0
(cos t0y)2 dy for infinitely many k’s and hence (17) is impossible.

We complete the proof of (ii), and the proof of the proposition.

The authors would like to thank the referee for his/her careful reading
of the paper and his/her comments which have clarified the proofs.
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