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EQUI-RIEMANN AND EQUI-RIEMANN
TYPE INTEGRABLE FUNCTIONS WITH

VALUES IN A BANACH SPACE

Abstract

In this paper we study equi-Riemann and equi-Riemann-type inte-
grability of a collection of functions defined on a closed interval of R with
values in a Banach space. We obtain some properties of such collections
and interrelations among them. Moreover we establish equi-integrability
of different types of collections of functions. Finally, we obtain relations
among equi-Riemann integrability with other properties of a collection
of functions.

1 Introduction

Riemann integration of Banach space valued functions defined on a closed
bounded interval of R was first studied by L.M. Graves [10]. R.A. Gordon,
in his survey article [8], compiled many results of Graves and others, as for
example, Alexiewicz and Orlicz [3]. In our paper [19], there is an extensive
study of Riemann and Riemann-type integrable functions with values in a
Banach space.
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The main object of the present paper is to study equi-Riemann and equi-
Riemann-type integrability, as for example, equi-Darboux, equi-Riemann-Dun-
ford, equi-Riemann-Pettis integrability of a collection of functions defined on a
closed bounded interval of R with values in a Banach space. Equi-integrability
for different types of integrable functions has been studied by many authors,
e.g., [1], [9], [11], [16], [18]. These works, in fact, motivate us to think in this
line.

Following Alewine and Schechter [1], we define, at the outset, some ter-
minologies relating to a collection of functions, in terms of which we define
equi-Riemann and equi-Riemann-type integrable collections of functions and
study their properties and interrelations. We obtain some Cauchy type crite-
ria for equi-Riemann-type integrable collections of functions. We show that
equi-Riemann integrability of a collection of functions with values in a Ba-
nach space becomes equivalent to that of a collection of real-valued functions.
These results help us to prove many ones related to equi-Riemann and equi-
Riemann-type integrable collections of functions. We show that if a collection
of functions is equi-integrable in any of the above senses and pointwise bounded
at some point in the interval of definition, then it is uniformly bounded therein.
We establish the equi-integrability of collections of functions possessing some
special properties.

We conclude the paper with some relations between equi-Riemann integra-
bility, Birkhoff property and Bourgain property of a collection of functions.

Motivation of this work lies in its vast applicability in the study of conver-
gence of nets and sequences of Riemann and Riemann-type integrable func-
tions.

2 Notations, definitions, and preliminaries

Throughout the paper, X stands for a real Banach space with dual X∗ (any
other Banach space appeared in this paper will also be assumed to be a real
Banach space). The closed unit ball of X and X∗ will be denoted by BX and
BX∗ respectively, i.e., BX = {x ∈ X : ‖x‖ ≤ 1} and BX∗ = {x∗ ∈ X∗ : ‖x∗‖ ≤
1}. A subset Γ of BX∗ is said to be a norming set for X if ‖x‖ = sup

x∗∈Γ
|x∗(x)|

for all x ∈ X. Also [a, b] stands for a closed bounded interval of R, Σ for the
σ-algebra of the Lebesgue measurable subsets of [a, b] and λ for the Lebesgue
measure on Σ so that ([a, b],Σ, λ) becomes a complete finite measure space.
The set of all functions defined on [a, b] into X is denoted by X [a,b].

We adopt the usual definitions of partitions and related notations of [8].
For any δ > 0, we say that a (tagged) partition P of [a, b] is δ-fine if |P| < δ.
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Let f ∈ X [a,b] and let E ⊂ [a, b]. Then the oscillation of the function
f on E, denoted as ω(f,E), is defined as ω(f,E) = sup{‖f(u) − f(v)‖ :
u, v ∈ E}. Now for any tagged partition P = {(si, [ti−1, ti]) : 1 ≤ i ≤ n}

of [a, b], f(P) will denote the Riemann sum

n∑
i=1

f(si)(ti − ti−1), and for any

partition P = {ti : 0 ≤ i ≤ n} of [a, b], ω(f,P) will denote the oscillatory sum
n∑
i=1

ω(f, [ti−1, ti])(ti − ti−1).

A function f ∈ X [a,b] is said to be R∆ (resp. Rδ) integrable on [a, b] if there
exists a vector z in X with the following property: for each ε > 0 there exists
a partition Pε of [a, b] (resp. a δ > 0) such that ‖f(P)− z‖ < ε whenever P is
a tagged partition of [a, b] that refines Pε (resp. P is a δ-fine tagged partition
of [a, b]). It is shown that a function f is R∆ integrable if and only if it is
Rδ integrable [8, p. 924, Theorem 3]. A function f is said to be Riemann
integrable if it is either Rδ or R∆ integrable and the vector z, in the above
definition, is called the Riemann integral of f over [a, b] and is denoted by

R-

∫ b

a

f(t)dt or simply by R-

∫ b

a

fdt.

A function f ∈ X [a,b] is said to be D∆ (resp. Dδ) integrable on [a, b] if
for each ε > 0 there exists a partition Pε of [a, b] (resp. a δ > 0) such that
ω(f,P) < ε whenever P is a partition of [a, b] that refines Pε (resp. P is a
δ-fine partition of [a, b]). As in the case of Rδ and R∆ integrable functions
it can be shown that a function in X [a,b] is D∆ integrable if and only if it is
Dδ integrable. A function f is said to be Darboux integrable if it is either
Dδ or D∆ integrable. It can be shown that a Darboux integrable function is
Riemann integrable and in this case the Riemann integral of f over [a, b] is
defined to be the Darboux integral of f over [a, b].

A function f ∈ X [a,b] is said to be scalarly Riemann integrable on [a, b] if
x∗f is Riemann integrable on [a, b] for each x∗ ∈ X∗; it is said to be Riemann-
Pettis integrable (in short, RP -integrable) on [a, b] if it is scalarly Riemann
integrable and Pettis integrable on [a, b] with respect to Lebesgue measure. It
is known that a scalarly Riemann integrable function is bounded and Dun-
ford integrable and as such a scalarly Riemann integrable function is known
as Riemann-Dunford integrable. The Dunford (resp. Pettis) integral of a
Riemann-Dunford (resp. Riemann-Pettis) integrable function over [a, b] is de-
fined to be its Riemann-Dunford (resp. Riemann-Pettis) integral over [a, b].

The collections of all Riemann, Darboux, Riemann-Dunford, Riemann-
Pettis and Pettis integrable (with respect to Lebesgue measure) functions in
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X [a,b] will be denoted by R([a, b], X), D([a, b], X), RD([a, b], X), RP ([a, b], X)
and P ([a, b], X) respectively. In particular, if X = R, we write R[a, b] for
R([a, b], X) and similarly for other such collections.

It is known that D([a, b], X) ⊂ R([a, b], X) ⊂ RP ([a, b], X) ⊂ RD([a, b], X)
⊂ l∞([a, b], X) and RP ([a, b], X) ⊂ P ([a, b], X). Further, for a finite-dimen-
sional space X, we have

D([a, b], X) = R([a, b], X) = RP ([a, b], X) = RD([a, b], X) ⊂ l∞([a, b], X).

For some standard results on Riemann, Darboux, Riemann-Dunford and
Riemann-Pettis integrable functions, we refer to [8] and [19]. For definitions
and certain properties of Bochner, Dunford and Pettis integrable functions,
we refer to [5].

If f ∈ X [a,b] is Riemann or Darboux or Riemann-Dunford or Riemann-
Pettis integrable on [a, b], then it is so on every closed subinterval of [a, b]. If

f ∈ R([a, b], X), then the function F ∈ X [a,b], defined by F (t) = R-

∫ t

a

fdt, t ∈

[a, b], is called the indefinite Riemann integral of f . Indefinite integrals of other
types of integrable functions are defined similarly. If each member of a collec-
tion of functions F ⊂ X [a,b] is integrable in any of the above senses, then we
denote, by F1, the collection of all indefinite integrals of members of F .

Let F ⊂ X [a,b] and let Γ ⊂ X∗. Then we write ZF,Γ = {x∗f : x∗ ∈ Γ, f ∈
F}. Clearly ZF,Γ ⊂ R[a,b]. If, in particular, Γ = BX∗ , then we denote ZF,Γ
by ZF . If F = {f}−a singleton set, then we write Zf,Γ and Zf in places of
Z{f},Γ and Z{f} respectively. For x∗ ∈ X∗, we write ZF,x∗ in place of ZF,{x∗}.

3 Main results

We begin with the following definitions in the line of [1]:

Definition 3.1. Let f ∈ X [a,b]. Let P be any partition of [a, b] and let δ > 0.
Then

(1) θP(f) = sup{‖f(P1)−f(P2)‖ : P1,P2 are tagged partitions of [a, b] that
refine P}.

(2) θ′P(f) = sup{‖f(P1)−f(P2)‖ : P1,P2 are tagged partitions of [a, b] that
have the same points as P}.

(3) θδ(f) = sup{‖f(P1) − f(P2)‖ : P1,P2 are δ-fine tagged partitions of
[a, b]}.

(4) ωP(f) = sup{ω(f,P ′) : P ′ is a partition of [a, b] that refines P}.
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(5) ωδ(f) = sup{ω(f,P) : P is a δ-fine partition of [a, b]}.

If F ⊂ X [a,b], then we define θP(F) = sup
f∈F

θP(f). Similarly θ′P(F), θδ(F),

ωP(F), ωδ(F), ω(F ,P) are defined.

Lemma 3.2. Let P and P ′ be any two tagged partitions of [a, b] and let P ′
refine P. Then ‖f(P)− f(P ′)‖ ≤ ω(f,P) for each f ∈ X [a,b].

Proof. Let P = {(ξi, [ti−1, ti]) : 1 ≤ i ≤ n} be a tagged partition of [a, b].
Let uk0 , u

k
1 , · · · , uknk−1, u

k
nk

be the points of P ′ in [tk−1, tk], k = 1, 2, · · · , n, i.e.,

tk−1 = uk0 < uk1 < · · · < uknk−1 < uknk
= tk, k = 1, 2, · · · , n and let vki be the

tag of P ′ in [uki−1, u
k
i ], i = 1, 2, · · · , nk. Then for any f ∈ X [a,b], we have

‖f(P)− f(P ′)‖ =

∥∥∥∥∥
n∑
k=1

{
f(ξk)(tk − tk−1)−

nk∑
i=1

f(vki )(uki − uki−1)

}∥∥∥∥∥
≤

n∑
k=1

nk∑
i=1

‖f(ξk)− f(vki )‖(uki − uki−1)

≤
n∑
k=1

nk∑
i=1

ω(f, [tk−1, tk])(uki − uki−1)

=

n∑
k=1

ω(f, [tk−1, tk])(tk − tk−1) = ω(f,P).

Theorem 3.3. Let F ⊂ X [a,b]. Then

(a) for each partition P of [a, b], θ′P(F) ≤ θP(F) ≤ 2θ′P(F) and θ′P(F) ≤
ω(F ,P) = ωP(F),

(b) for each δ > 0, θP(F) ≤ θδ(F) ≤ 2ωδ(F) and ω(F ,P) ≤ ωδ(F) for any
δ-fine partition P of [a, b].

Proof. (a) θ′P(F) ≤ θP(F): Obvious.
θP(F) ≤ 2θ′P(F): We follow the method of proof of [8, p. 925-926, Theo-

rem 5]. Let f ∈ F and P = {ti : 0 ≤ i ≤ n} be a partition of [a, b]. Let P0 be
the tagged partition {(ti, [ti−1, ti]) : 1 ≤ i ≤ n} of [a, b]. For each i, let Wi be

the set {(ti − ti−1)f(t) : t ∈ [ti−1, ti]} and let W =

n∑
i=1

Wi.

Let x ∈ W −W . Then there exist two tagged partitions P1,P2 of [a, b]
that have the same points as P such that x = f(P1) − f(P2) implying that
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‖x‖ ≤ θ′P(F). Hence it follows that ‖x‖ ≤ θ′P(F) for all x ∈ co(W −W ) where
co(W −W ) is the convex hull of W −W .

Now let P1,P2 be any two tagged partitions of [a, b] that refine P. Then
proceeding as in the proof of [8, p. 925-926, Theorem 5] we can show that

f(P0)− f(P1) ∈ co(W −W ), f(P0)− f(P2) ∈ co(W −W ).

Hence it follows from above that

‖f(P1)− f(P2)‖ ≤ ‖f(P1)− f(P0)‖+ ‖f(P0)− f(P2)‖ ≤ 2θ′P(F).

Since f ∈ F is arbitrary and P1,P2 are arbitrary tagged partitions of [a, b]
that refine P, the result follows.

θ′P(F) ≤ ω(F ,P): For any partition P of [a, b] and for any two tagged
partitions P1 and P2 of [a, b] that have the same points as P, it is easy to note
that ‖f(P1) − f(P2)‖ ≤ ω(f,P) ≤ ω(F ,P) for all f ∈ F . Taking supremum
over all the tagged partitions P1 and P2 of [a, b] that have the same points as
P and over F , the result follows.

ω(F ,P) = ωP(F): It is easy to note that for any partition P of [a, b],
ω(f,P) = ωP(f) for all f ∈ F whence the result follows by taking supremum
over F .

(b) θP(F) ≤ θδ(F): Obvious.
θδ(F) ≤ 2ωδ(F): Let P1 and P2 be any two δ-fine tagged partitions of

[a, b]. Let P be any tagged partition of [a, b] that refines both P1 and P2.
Then for any f ∈ F , it follows from the previous lemma that

‖f(P1)− f(P2)‖ ≤ ‖f(P1)− f(P)‖+ ‖f(P)− f(P2)‖
≤ ω(f,P1) + ω(f,P2)

≤ ωδ(f) + ωδ(f)

= 2ωδ(f).

Since P1 and P2 are arbitrary δ-fine partitions of [a, b] and f ∈ F is arbitrary,
the result follows.

ω(F ,P) ≤ ωδ(F): Obvious.

Lemma 3.4. Let F ⊂ R[a,b]. If each f ∈ F is bounded on [a, b], then for each
partition P of [a, b], ω(F ,P) = θ′P(F).

Proof. Let P = {ti : 0 ≤ i ≤ n} be any partition of [a, b] and let ε > 0 be
arbitrary.

Let f ∈ F . Let Mi, mi be its supremum and infimum respectively on
[ti−1, ti], i = 1, 2, · · · , n. Then there exist points αi, βi ∈ [ti−1, ti] such that
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f(αi) > Mi − ε
2(b−a) and f(βi) < mi + ε

2(b−a) for i = 1, 2, · · · , n. Now

P1 = {(αi, [ti−1, ti]) : 1 ≤ i ≤ n} and P2 = {(βi, [ti−1, ti]) : 1 ≤ i ≤ n} are two
tagged partitions of [a, b] that have the same points as P.

Now

ω(f,P) =

n∑
i=1

(Mi −mi)(ti − ti−1)

<

n∑
i=1

[
f(αi) +

ε

2(b− a)
− f(βi) +

ε

2(b− a)

]
(ti − ti−1)

=

n∑
i=1

f(αi)(ti − ti−1)−
n∑
i=1

f(βi)(ti − ti−1) + ε

≤ |f(P1)− f(P2)|+ ε

≤ θ′P(F) + ε.

Since f ∈ F is arbitrary, we have ω(F ,P) ≤ θ′P(F) + ε. Also by part (a)
of the previous theorem, θ′P(F) ≤ ω(F ,P). Since ε > 0 is arbitrary, the result
follows.

Definition 3.5. Let F ⊂ X [a,b].

(a) Let E ⊂ [a, b]. Then the oscillation of F on E, denoted as ω(F , E), is
defined as ω(F , E) = sup

f∈F
ω(f,E).

(b) Let s ∈ [a, b]. Then the oscillation of F at s, denoted as ω(F , s), is
defined as ω(F , s) = sup

f∈F
sup
t∈[a,b]

‖f(t)− f(s)‖.

It is evident that sup
s∈[a,b]

ω(F , s) = ω(F , [a, b]).

The following result is analogous to a result of Alewine and Schechter [1,
p. 32, Corollary 6.2], the proof of which is straightforward and so omitted.

Lemma 3.6. Let F ⊂ X [a,b]. Then F is uniformly bounded on [a, b] in each
of the following cases:

(a) If the oscillation of F at some point in [a, b] is finite and if F is pointwise
bounded at that point.

(b) If F is finite and its oscillation at some point in [a, b] is finite.

(c) If the oscillation of F on [a, b] is finite and if F is pointwise bounded at
some point in [a, b].
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Theorem 3.7. Let F ⊂ X [a,b]. Let us consider the following statements:

(a) The oscillation of F on [a, b] is finite.

(b) ω(F ,P) is finite for some/all partitions P of [a, b].

(c) θP(F) is finite for some/all partitions P of [a, b].

(d) For each ε > 0 and for each partition P of [a, b], there exists a δ > 0
such that ωδ(F) < ω(F ,P) + ε and θδ(F) < 2θP(F) + ε.

Then (a) ⇐⇒(b) ⇐⇒(c) =⇒(d).

Proof. (a) =⇒ (b) & (a) =⇒ (c) For any partition P of [a, b], it is easy to
note that ω(F ,P) ≤ (b − a)ω(F , [a, b]). Also by Theorem 3.3 (a), θP(F) ≤
2ω(F ,P). Hence the results follow.

(b) =⇒ (a) & (c) =⇒ (a) Let P = {tk : 0 ≤ k ≤ n} be a partition of
[a, b] with n+ 1 points such that θP(F) is finite and let δ be the length of the
smallest sub-interval of P. Let f ∈ F . Then clearly

‖f(s)− f(t)‖ ≤ θP(F)

δ

for all s, t ∈ [ti−1, ti], i = 1, 2, ..., n. If s ∈ [tj−1, tj ] and t ∈ [tk−1, tk] where
j < k, then

‖f(s)− f(t)‖ ≤ ‖f(s)− f(tj)‖+ ‖f(tj)− f(tj+1)‖+ ‖f(tj+1)− f(tj+2)‖
+ ...+ ‖f(tk)− f(t)‖

≤ nθP(F)

δ
.

Thus for all s, t ∈ [a, b],

‖f(s)− f(t)‖ ≤ nθP(F)

δ
≤ 2nω(F ,P)

δ

by Theorem 3.3 (a), whence the results follow.
(a) =⇒ (d) First part: We follow the method of proof of [8, p. 924-925,

Theorem 3].
Let the oscillation of F on [a, b] be finite. Let ε > 0 and let P = {tk : 0 ≤

k ≤ n} be any partition of [a, b] with n + 1 points. Let δ = ε
4n[ω(F,[a,b])+1] .

Then δ > 0 as ω(F , [a, b]) is finite.
Let P ′ be a δ-fine partition of [a, b] and let P1 = P

⋃
P ′. Then P1 is a

refinement of P ′. Let {[ck, dk] : 1 ≤ k ≤ K} be the intervals of P ′ that contain
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points of P in their interiors. We note that K ≤ n− 1. In the interval [ck, dk],
let ck = uk0 < uk1 < · · · < uknk−1 < uknk

= dk where {uki : 1 ≤ i ≤ nk − 1} are
the points of P in (ck, dk). Then for any f ∈ F , we have

|ω(f,P ′)−ω(f,P1)|

=

∣∣∣∣∣
K∑
k=1

{
ω(f, [ck, dk])(dk − ck)−

nk∑
i=1

ω(f, [uki−1, u
k
i ])(uki − uki−1)

}∣∣∣∣∣
≤

K∑
k=1

nk∑
i=1

|ω(f, [ck, dk])− ω(f, [uki−1, u
k
i ])|(uki − uki−1)

≤
K∑
k=1

nk∑
i=1

[ω(f, [ck, dk]) + ω(f, [uki−1, u
k
i ])](uki − uki−1)

≤ 2ω(F , [a, b])
K∑
k=1

(dk − ck)

≤ 2ω(F , [a, b])(n− 1)δ

<
ε

2

and hence

ω(f,P ′) ≤ |ω(f,P ′)− ω(f,P1)|+ ω(f,P1)

<
ε

2
+ ω(F ,P),

since P1 is a refinement of P. Therefore taking supremum over F and over all
δ-fine partitions P ′ of [a, b], we have ωδ(F) ≤ ε

2 + ω(F ,P) < ω(F ,P) + ε.
Second part: The oscillation of ZF is clearly finite. Hence by first part

there is a δ > 0 such that ωδ(ZF ) < ω(ZF ,P) + ε
2 . Hence by Theorem 3.3

and Lemma 3.4, we have

θδ(F) = θδ(ZF )

≤ 2ωδ(ZF )

< 2
(
ω(ZF ,P) +

ε

2

)
= 2θ′P(ZF ) + ε

≤ 2θP(ZF ) + ε

= 2θP(F) + ε.
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Definition 3.8. A collection of functions, F , in X [a,b] is said to be equi-
Riemann integrable on [a, b] if for each f ∈ F there exists a vector zf ∈ X
with the following property: for any ε > 0 there is a partition P of [a, b] such
that for any f ∈ F

‖f(P ′)− zf‖ < ε

for all tagged partitions P ′ of [a, b] that refine P.

From the above definition, it follows that if a collection of functions, F , in
X [a,b], is equi-Riemann integrable on [a, b], then F ⊂ R([a, b], X) and

zf = R-

∫ b

a

fdt.

From the very definition, it follows that any finite collection of functions
in R([a, b], X) is equi-Riemann integrable on [a, b] and any subcollection of an
equi-Riemann integrable collection of functions in X [a,b] is equi-Riemann inte-
grable on [a, b]. Also it is obvious that finite union of equi-Riemann integrable
collections of functions is equi-Riemann integrable.

The following example shows that an arbitrary, even a countable, union
of equi-Riemann integrable collections of functions is not necessarily equi-
Riemann integrable.

Example 3.9. Let us consider the collection F = {fn} of real-valued functions
defined on [0, 1] where

fn(t) =

{
n if t = 1

n
0 elsewhere

for n ∈ N. Then it is clear that fn ∈ R[0, 1]. Thus F is the countable union of
equi-Riemann integrable collections of functions. But it is easy to verify that
F is not equi-Riemann integrable on [0, 1].

Theorem 3.10. Let F ⊂ X [a,b]. Then the following statements are equivalent:

(a) F is equi-Riemann integrable on [a, b].

(b) For each ε > 0, there exists a partition P of [a, b] such that θP(F) < ε.

(c) For each ε > 0, there exists a partition P of [a, b] such that θ′P(F) < ε.

(d) For each ε > 0, there exists a δ > 0 such that θδ(F) < ε.
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Proof. (a) =⇒ (b) Let F be equi-Riemann integrable on [a, b]. Let ε > 0.
Then there is a partition P of [a, b] such that for any f ∈ F∥∥∥∥∥f(P ′)−

(
R-

∫ b

a

fdt

)∥∥∥∥∥ < ε

4

for all tagged partitions P ′ of [a, b] that refine P.
Let P1,P2 be any two tagged partitions of [a, b] that refine P. Then for

any f ∈ F , we have

‖f(P1)− f(P2)‖ ≤

∥∥∥∥∥f(P1)−

(
R-

∫ b

a

fdt

)∥∥∥∥∥+

∥∥∥∥∥f(P2)−

(
R-

∫ b

a

fdt

)∥∥∥∥∥
<
ε

4
+
ε

4
=
ε

2

which implies that θP(f) ≤ ε
2 . Hence taking supremum over F , we have

θP(F) ≤ ε
2 < ε.

(b) =⇒ (a) Let (b) hold. Then by [8, p. 925, Theorem 5], F ⊂ R([a, b], X).
Now let ε > 0. Then by hypothesis, there exists a partition P of [a, b] such

that θP(F) < ε
2 .

Let f ∈ F . Then f ∈ R([a, b], X) and hence there exists a partition P ′ of
[a, b] such that ∥∥∥∥∥f(P ′′)−

(
R-

∫ b

a

fdt

)∥∥∥∥∥ < ε

2

for all tagged partitions P ′′ of [a, b] that refine P ′.
Let P0 = P ∪ P ′. Let P1 be a tagged partition of [a, b] that refines P and

let P2 be another tagged partition of [a, b] that refines P0. Then P2 refines
both P and P ′. So we have∥∥∥∥∥f(P1)−

(
R-

∫ b

a

fdt

)∥∥∥∥∥ ≤ ‖f(P1)− f(P2)‖+

∥∥∥∥∥f(P2)−

(
R-

∫ b

a

fdt

)∥∥∥∥∥
< θP(F) +

ε

2

<
ε

2
+
ε

2
= ε.

This is true for all f ∈ F . Hence F is equi-Riemann integrable on [a, b].
(b)⇐⇒ (c) Follows from Theorem 3.3 (a).
(b) =⇒ (d) From hypothesis it follows that θP(F) is finite for some parti-

tion P of [a, b] and the result follows from Theorem 3.7 ((c) =⇒ (d)).
(d) =⇒ (b) Follows from Theorem 3.3 (b).
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From Theorem 3.10 ((a) =⇒ (b)) and Theorem 3.7 ((c) =⇒ (a)), we have
the following result:

Corollary 3.11. Oscillation of an equi-Riemann integrable collection of func-
tions on its interval of definition is finite.

Definition 3.12. A collection of functions, F , in X [a,b], is said to be equi-
Darboux integrable on [a, b] if for any ε > 0, there exists a partition P of [a, b]
such that ω(F ,P) = ωP(F) < ε.

Theorem 3.13. Let F ⊂ X [a,b]. Then F is equi-Darboux integrable on [a, b]
if and only if for each ε > 0, there exists a δ > 0 such that ωδ(F) < ε.

Proof. Let F be equi-Darboux integrable on [a, b]. Then it follows that
ω(F ,P) is finite for some partition P of [a, b] and hence the result follows
from Theorem 3.7 ((b) =⇒ (d)).

The converse part follows from Theorem 3.3 (b).

From the very definition and also from the above theorem, it follows that
an equi-Darboux integrable collection of functions is contained in D([a, b], X).

A Darboux integrable function in X [a,b] is Riemann integrable, but the
converse is not necessarily true. For real-valued functions the two notions
coincide. For a collection of functions we have the following analogous result:

Theorem 3.14. Let F ⊂ X [a,b]. If F is equi-Darboux integrable on [a, b],
then it is equi-Riemann integrable on [a, b]. If X = R, then the converse is
also true.

Proof. First part follows from Theorem 3.3 (a) and Theorem 3.10 ((c) =⇒
(a)).

Second part follows from Theorem 3.10 ((a) =⇒ (c)) and Lemma 3.4.

An equi-Riemann integrable collection of functions in X [a,b] is not neces-
sarily equi-Darboux integrable as a Riemann integrable function in X [a,b] is
not necessarily Darboux integrable.

Corollary 3.15. Let F ⊂ X [a,b]. Then the following statements are equiva-
lent:

(a) F is equi-Riemann integrable on [a, b].

(b) ZF,Γ is equi-Riemann integrable on [a, b] for some/all norming subsets
Γ of BX∗ .

(c) ZF,Γ is equi-Darboux integrable on [a, b] for some/all norming subsets Γ
of BX∗ .
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Proof. (a)⇐⇒ (b) It should be noted that if Γ is a norming subset of BX∗ ,
then for any partition P of [a, b], θP(F) = θP(ZF,Γ). Hence the result follows
from Theorem 3.10 ((a)⇐⇒ (b)).

(b)⇐⇒ (c) Follows from Theorem 3.14.

Let F ⊂ X [a,b]. Then the variation of F on [a, b] is defined as

V (F , [a, b]) = sup
f∈F

V (f, [a, b]),

V (f, [a, b]) being the variation of f on [a, b]. If V (F , [a, b]) is finite, then F is
said to be of equi-bounded variation on [a, b].

The collection F is said to be of equi-weak bounded variation on [a, b] if
for each x∗ ∈ X∗, ZF,x∗ is of equi-bounded variation on [a, b].

It can be easily verified that F is of equi-weak bounded variation if and
only if for any norming subset Γ of BX∗ , ZF,Γ is of equi-bounded variation.

In the line of [2, p. 52, Theorem 2.2] we obtain the following result.

Lemma 3.16. Let F ⊂ X [a,b] and let δ > 0. Then ωδ(F) ≤ δV (F , [a, b]).

It is known that if a function in X [a,b] is of bounded variation (resp. weak
bounded variation), then it is Darboux (resp. Riemann) integrable. For a
collection of functions we have the following analogous results:

Theorem 3.17. Let F ⊂ X [a,b]. If F is of equi-bounded (resp. equi-weak
bounded) variation on [a, b], then it is equi-Darboux (resp. equi-Riemann)
integrable on [a, b].

Proof. First part: Follows from the previous lemma and Theorem 3.13.
Second part: For any norming subset Γ of BX∗ , ZF,Γ is of equi-bounded

variation and hence by part (a), equi-Darboux integrable on [a, b]. Hence the
result follows from Corollary 3.15 ((c) =⇒ (a)).

It follows from definition that a collection of functions of equi-bounded
variation is of equi-weak bounded variation. The converse is true for a collec-
tion of real-valued functions. The following example shows that the converse
is not true, in general, even if the collection is, in addition, uniformly bounded
and if each of its members is of bounded variation.

Example 3.18. Let {r1, r2, · · · , rn, · · · } be an enumeration of the rational
numbers in [0, 1]. For each k ∈ N, let us define a function fk : [0, 1]→ c0 by

fk(t) =

{
ej if t = rj , j = 1, 2, · · · , k
θ elsewhere
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where ej is the jth unit vector of c0 for j = 1, 2, · · · .
Then it is easy to verify that {fk} is a uniformly bounded collection of

functions of equi-weak bounded variation, each fk being of bounded variation.
But it is not of equi-bounded variation.

We know that if f ∈ X [a,b] is Darboux integrable or is of bounded variation
on [a, b], then ‖f‖ is also so. For a collection of functions we have the following
result whose proof is very easy and so omitted:

Theorem 3.19. If F ⊂ X [a,b] is equi-Darboux integrable (resp. of equi-
bounded variation) on [a, b], then {‖f‖ : f ∈ F} is equi-Darboux integrable
(resp. of equi-bounded variation) on [a, b].

The results in the above theorem are true neither for equi-Riemann in-
tegrable collections of functions nor for collections of functions of equi-weak
bounded variation. In fact, these are not true for a single function [8, p. 931,
Example 14].

Theorem 3.20. Balanced convex hull of an equi-Riemann (resp. equi-Darboux)
integrable collection of functions is equi-Riemann (resp. equi-Darboux) inte-
grable.

Proof. Let

H =

{
n∑
i=1

λifi : λi is real with

n∑
i=1

|λi| ≤ 1, fi ∈ F , i = 1, 2, · · · , n; n ∈ N

}
.

Then it can be easily shown that H is equi-Riemann (resp. equi-Darboux)
integrable and hence the results follow.

Theorem 3.21. Let Xi be a Banach space and let Fi ⊂ X [a,b]
i , i = 1, 2, · · · , n.

Let

n∏
i=1

Xi be equipped with the summation or max norm so that it becomes a

Banach space. Then

n∏
i=1

Fi, as a collection of functions in

(
n∏
i=1

Xi

)[a,b]

, is

equi-Riemann (resp. equi-Darboux) integrable on [a, b] if and only if Fi is
equi-Riemann (resp. equi-Darboux) integrable on [a, b], for i = 1, 2 · · · , n.

Proof. Let X =

n∏
i=1

Xi and let f = (f1, f2, · · · , fn) ∈
n∏
i=1

Fi. Then for any

two tagged partitions P1 and P2 of [a, b] having the same points, it can be
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easily verified that for k = 1, 2, · · · , n,

‖fk(P1)− fk(P2)‖Xk
≤ ‖f(P1)− f(P2)‖X ≤

n∑
i=1

‖fi(P1)− fi(P2)‖Xi

(for both the norms of X) and hence for any partition P of [a, b], we have

θ′P(fk) ≤ θ′P(f) ≤
n∑
i=1

θ′P(fi).

Also for any partition P = {ti : 0 ≤ i ≤ n} of [a, b], we have, for k =
1, 2, · · · , n,

ω(fk, [ti−1, ti]) ≤ ω(f, [ti−1, ti]) ≤
n∑
i=1

ω(fi, [ti−1, ti])

(for both the norms of X) which implies that

ω(fk,P) ≤ ω(f,P) ≤
n∑
i=1

ω(fi,P).

Hence the results follow from Theorem 3.10 ((a)⇐⇒ (c)) and Definition 3.12
respectively.

Corollary 3.22. Let Xi, i = 1, 2, · · · , n be n Banach spaces. Then

(a)

n∏
i=1

R([a, b], Xi) = R

(
[a, b],

n∏
i=1

Xi

)
.

(b)

n∏
i=1

D([a, b], Xi) = D

(
[a, b],

n∏
i=1

Xi

)
.

From Theorem 3.21 and Theorem 3.14, we have the following result:

Theorem 3.23. Let Xi, i = 1, 2, · · · , n be n Banach spaces. If the notions
of equi-Riemann integrability and equi-Darboux integrability coincide for func-
tions with values in Xi, i = 1, 2, · · · , n, then they coincide for functions with

values in

n∏
i=1

Xi, and conversely.
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Corollary 3.24. Let Xi, i = 1, 2, · · · , n be n Banach spaces. If Xi has

the property of Lebesgue for i = 1, 2, · · · , n, then

n∏
i=1

Xi has the property of

Lebesgue, and conversely.

The following result follows from Theorem 3.14 and Theorem 3.23:

Corollary 3.25. Let n be any positive integer. Then the notions of equi-
Riemann integrability and equi-Darboux integrability coincide for functions
with values in Rn. In particular, Rn has the property of Lebesgue.

Definition 3.26. A collection of functions, F , in X [a,b], is said to be

(a) equi-scalarly Riemann integrable on [a, b] if for each x∗ ∈ X∗, ZF,x∗ is
equi-Riemann integrable on [a, b].

(b) equi-Riemann-Pettis integrable ( in short, equi-RP integrable) on [a, b] if
F is equi-scalarly Riemann integrable on [a, b] and F ⊂ P ([a, b], X).

It is obvious that an equi-scalarly Riemann integrable collection of func-
tions in X [a,b] is contained in RD([a, b], X) and hence such a collection of
functions is said to be equi-Riemann-Dunford integrable (in short, equi-RD
integrable). Also an equi-Riemann-Pettis integrable collection of functions is
contained in RP ([a, b], X).

It is clear that an equi-Riemann integrable collection of functions is equi-
Riemann-Pettis integrable and an equi-Riemann-Pettis integrable collection of
functions is equi-Riemann-Dunford integrable.

It should be noted that all these notions are equivalent for real-valued
functions.

It follows from [8, p. 944, Theorem 31] that in a weakly sequentially
complete Banach space the notions of equi-Riemann-Dunford integrability and
equi-Riemann-Pettis integrability coincide.

Lemma 3.27. Oscillation of an equi-Riemann-Dunford integrable collection
of functions on its interval of definition is finite.

Proof. Let F be an equi-Riemann-Dunford integrable collection of functions
in X [a,b]. Then it follows from Corollary 3.11 that for each x∗ ∈ X∗, oscillation
of ZF,x∗ is finite on its interval of definition. Hence the result follows by an
application of Uniform Boundedness Principle.

We know that a Riemann integrable and hence a Darboux integrable func-
tion on [a, b] is bounded. The following examples show that neither equi-
Riemann nor equi-Darboux integrability of a collection of functions implies



Equi-Riemann-Type Integrable Functions 317

its uniform boundedness, and that uniform boundedness of a collection of
Darboux integrable functions implies neither equi-Riemann nor equi-Darboux
integrability.

Example 3.28. Let, for each positive integer n, fn(t) = n for all t ∈ [0, 1].
Then the collection {fn : n ∈ N} is equi-Darboux integrable in R[0,1], but it is
not uniformly bounded on [0, 1].

Example 3.29. Let {r1, r2, · · · , rn, · · · } be an enumeration of the rational
numbers in [0, 1]. Let us define for each n ∈ N, the function fn : [0, 1]→ R by

fn(t) =

{
1 for t ∈ {r1, r2, · · · , rn}
0 elsewhere.

Then the collection {fn : n ∈ N} is uniformly bounded on [0, 1], and for each
n ∈ N, fn ∈ D[0, 1], but the collection is not equi-Darboux integrable in R[0,1].

However we have the following result which follows from Lemma 3.27 and
Lemma 3.6 (c):

Theorem 3.30. Let F ⊂ X [a,b] be equi-Riemann-Dunford integrable on [a, b]
and pointwise bounded at some point in [a, b]. Then it is uniformly bounded
on [a, b].

We know that if a function is Darboux or Riemann or Riemann-Dunford or
Riemann-Pettis integrable on [a, b] (resp. on [a, c] and [c, b], for some c ∈ [a, b]),
then it is so on every closed subinterval of [a, b] (resp. on [a, b]). Proceeding
similarly we have the following result:

Theorem 3.31. Let F ⊂ X [a,b].

(a) If F is equi-Darboux (resp. equi-Riemann, equi-Riemann-Dunford, equi-
Riemann-Pettis) integrable on [a, b], then it is so on every closed subin-
terval of [a, b].

(b) Let c ∈ [a, b]. If F is equi-Darboux (resp. equi-Riemann, equi-Riemann-
Dunford, equi-Riemann-Pettis) integrable on [a, c] as well as on [c, b],
then it is so on [a, b].

It is known that a function is Bochner (resp. Pettis) integrable on a closed
interval if and only if it is so on every subinterval of it. But if a function is
Bochner (resp. Pettis) integrable on every closed subinterval of (a, b), then it
is not necessarily Bochner (resp. Pettis) integrable on [a, b]. As for example,
the function f(t) = 1

t for t ∈ (0, 1] and f(0) = 0 is Lebesgue integrable on
every closed subinterval of (0, 1), but it is not Lebesgue integrable on [0, 1].

In this regard, we have the following result:
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Theorem 3.32. Let f ∈ X [a,b]. Then

(a) f is Pettis integrable on [a, b] if and only if it is scalarly integrable on
[a, b], Pettis integrable on every closed subinterval of (a, b) and Zf is
relatively weakly compact in L1([a, b], λ),

(b) f is Riemann-Pettis integrable on [a, b] if and only if it is Riemann-
Dunford integrable on [a, b] and Pettis integrable on every closed subin-
terval of (a, b).

Proof. (a) The necessary part is trivial.

For the sufficient part, let E ∈ Σ be arbitrary with λ(E) > 0. Let δ =
λ(E)

4 > 0 and let A = [a + δ, b − δ] ∩ E. Then A is a measurable subset of
[a+δ, b−δ] with λ(A) > 0 and it can be easily verified that corf (A) ⊂ corf (E).
Now, by hypothesis, f is Pettis integrable on [a+ δ, b− δ] which implies that
corf (A) 6= φ [13, p. 543, Theorem 4.10] and hence corf (E) 6= φ. Hence the
result follows from [13, p. 543, Theorem 4.10].

(b) Follows from part (a) as f is bounded and hence Zf is relatively weakly
compact in L1([a, b], λ) whenever f is Riemann-Dunford integrable on [a, b].

Let us recall that if a function is bounded on [a, b] and Riemann integrable
on every closed subinterval of (a, b), then it is Riemann integrable on [a, b].
For a collection of functions we have the following result:

Corollary 3.33. Let F ⊂ X [a,b] be uniformly bounded in some neighbourhood
of a as well as in some neighbourhood of b.

(a) If F is equi-Darboux (resp. equi-Riemann) integrable on every closed
subinterval of (a, b), then it is equi-Darboux (resp. equi-Riemann) inte-
grable on [a, b].

(b) If F is equi-Riemann-Dunford (resp. equi-Riemann-Pettis) integrable on
every closed subinterval of (a, b), then it is equi-Riemann-Dunford (resp.
equi-Riemann-Pettis) integrable on [a, b].

In each case, F is uniformly bounded on [a, b].

Proof. (a) For the first part, let ε > 0. According to hypothesis, there exists
a δ > 0 such that F is uniformly bounded on [a, a+ δ) as well as on (b− δ, b].
Hence there exists an M > 0 such that ‖f(t)‖ ≤M for all t ∈ [a, a+δ)∪(b−δ, b]
and for all f ∈ F .
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Let c ∈ (a, a+ δ) and let d ∈ (b− δ, b) such that c−a = b−d < ε
12M . Then

by hypothesis F is equi-Darboux integrable on [c, d] and hence there exists a
partition P1 = {c = t0, t1, t2, · · · , tn = d} of [c, d] such that

ω(F ,P1) <
ε

6
.

Now P = {a, c = t0, t1, t2, · · · , tn = d, b} is a partition of [a, b] and for all
f ∈ F ,

ω(f,P) = ω(f, [a, c])(c− a) +

n∑
i=1

ω(f, [ti−1, ti])(ti − ti−1) + ω(f, [d, b])(b− d)

<
2Mε

12M
+ ω(f,P1) +

2Mε

12M

≤ ε

3
+ ω(F ,P1)

<
ε

3
+
ε

6
=
ε

2
.

Taking supremum over F , we have ω(F ,P) ≤ ε
2 < ε. Hence the result follows

from Definition 3.12.
Second part follows from Corollary 3.15 ((a) ⇐⇒ (c)) and the first part.

(b) First part follows by an application of part (a) to ZF,x∗ for each x∗ ∈
X∗. Second part follows from the first part and Theorem 3.32 (b). Uniform
boundedness of F in each case follows from Theorem 3.30.

For definitions and some fundamental properties of regulated functions
and equi-regulated collection of functions in X [a,b], we refer to [12] and [17]. A
very basic reference for the properties of the equi-regulated sets of regulated
functions is the paper [6].

It is well known that a regulated function on [a, b] is Darboux integrable
thereon. The following example shows that an equi-regulated collection of
functions is not necessarily equi-Darboux integrable.

Example 3.34. Let us consider the sequence {fn} of functions defined on
[0, 1] by fn(t) = 0 for t ∈ (0, 1] and fn(0) = n. Then the sequence {fn} is
not uniformly Henstock integrable on [0, 1] [7, p. 724] and hence not equi-
Darboux integrable on [0, 1]. It is easy to verify that {fn} is equi-regulated on
[0, 1].

However we have the following result in this regard:

Theorem 3.35. Let F ⊂ X [a,b] be equi-regulated on [a, b]. Then the following
statements hold:
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(a) if the oscillation of F on [a, b] is finite, then F is equi-Darboux integrable
on [a, b],

(b) if F is pointwise bounded on [a, b], then it is uniformly bounded and
equi-Darboux integrable on [a, b].

In each case, F1 is uniformly equi-differentiable from the right on [a, b) and
from the left on (a, b].

Proof. (a) Let the oscillation, ω(F , [a, b]), of F on [a, b] be finite. Let ε > 0.
Then there exists a partition P = {ti : 0 ≤ i ≤ n} of [a, b] such that for all
f ∈ F , ‖f(t′)−f(t′′)‖ < ε

2(b−a) for all t′, t′′ ∈ (ti−1, ti) [12, p. 11-12, Theorem

1.2] which implies that ω(f, (ti−1, ti)) ≤ ε
2(b−a) for i = 1, 2, · · · , n.

Let δ > 0 be such that δ < ε
4n[ω(F,[a,b])+1] and ti−1 + δ < ti − δ, i =

1, 2, · · · , n.
Let P ′ = {a = s0 < s1 < s2 < · · · < s2n+1 = b} be a partition of [a, b]

where s2i+1 = ti + δ, i = 0, 1, · · · , n− 1, s2i = ti − δ, i = 1, 2, · · · , n.
Then for any f ∈ F , we have

ω(f,P ′) =

2n+1∑
i=1

ω(f, [si−1, si])(si − si−1)

=

n∑
k=0

ω(f, [s2k, s2k+1])(s2k+1 − s2k)

+

n∑
j=1

ω(f, [s2j−1, s2j ])(s2j − s2j−1)

≤
n∑
k=0

ω(f, [s2k, s2k+1])(s2k+1 − s2k)

+

n∑
j=1

ω(f, (tj−1, tj))(s2j − s2j−1)

( since [s2j−1, s2j ] ⊂ (tj−1, tj) for j = 1, 2, · · · , n)

≤ ω(F , [a, b])
n∑
k=0

(s2k+1 − s2k) +
ε

2(b− a)

n∑
j=1

(s2j − s2j−1)

( since ω(f, [s2k, s2k+1]) ≤ ω(F , [a, b]) for k = 0, 1, 2, · · · , n)

< ω(F , [a, b]) ε

2[ω(F , [a, b]) + 1]
+

ε

2(b− a)
(b− a)

< ε
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which implies that F is equi-Darboux integrable on [a, b].
(b) Follows from [17, p. 4, Lemma 3.3] and part (a).
The last part follows in a straightforward way.

It should be noted that a Darboux integrable function is not necessarily
regulated. Hence an equi-Darboux integrable collection of functions is not
necessarily equi-regulated.

It is known that a function of bounded variation on a closed interval is
regulated and has at most a countable number of points of discontinuity. The
following example shows that a collection of functions of equi-bounded varia-
tion may neither be equi-regulated nor be equicontinuous almost everywhere.

Example 3.36. Let

fs(t) =

{
1 for all s = t in [a, b]
0 if s 6= t in [a, b].

Clearly {fs : s ∈ [a, b]} is of equi-bounded variation and hence equi-Darboux
integrable in R[a,b], but it is not equi-regulated. Also it is equicontinuous at no
points of [a, b].

The above example also shows that an equi-Darboux integrable collection of
functions may be equicontinuous at no points in contrast with the fact that a
Darboux integrable function is continuous almost everywhere.

It is known that a differentiable, even a weakly differentiable, function on
[a, b] is Darboux integrable. The following example shows that a uniformly
equi-differentiable collection of functions is not necessarily equi-Darboux inte-
grable:

Example 3.37. For each n ∈ N, let us consider the real function fn(t) = nt,
t ∈ [a, b]. It is easy to verify that {fn : n ∈ N} is uniformly equi-differentiable
on [a, b] but is not equi-Darboux integrable thereon.

However we have the following result:

Theorem 3.38. An equicontinuous (resp. equi-weakly continuous) collection
of functions in X [a,b] is equi-Darboux (resp. equi-Riemann-Pettis) integrable
on [a, b] and the collection of indefinite integrals of its members is uniformly
equi-differentiable (resp. uniformly equi-weakly differentiable) on [a, b].

Proof. First part: It should be noted that an equicontinuous collection of
functions in X [a,b] is equi-regulated and has finite oscillation on [a, b]. Hence
the result follows from Theorem 3.35 (a).

Second part: Follows from first part and [19, p. 419, Corollary 21].



322 P. Mondal, L K. Dey and Sk. J. Ali

We conclude the paper with the following results on relations among equi-
Riemann integrability, Birkhoff property [4, p. 264, Definition 2] and Bour-
gain property [14, p. 518, Definition 10] of a collection of functions.

In the following discussion, we shall assume that b − a = 1 to make
([a, b],Σ, λ) a complete probability space.

The following result follows from the very definition of Birkhoff property,
Theorem 3.10 ((a) =⇒ (b)) and [4, p. 265, Lemma 2.3].

Theorem 3.39. Let F ⊂ R[a,b]. Let us consider the following statements:

(a) F is equi-Riemann integrable on [a, b].

(b) F has the Birkhoff property.

(c) F has the Bourgain property.

Then (a) =⇒(b) =⇒(c).

In view of [14, p. 520], we shall say that a collection of functions F ⊂ X [a,b]

has Bourgain property if the family ZF has the Bourgain property.
From Corollary 3.15 ((a) =⇒ (b)) and above theorem ((a) =⇒ (c)) we have

the following result:

Corollary 3.40. If F ⊂ X [a,b] is equi-Riemann integrable on [a, b], then F
has the Bourgain property.

As a particular case of the above result we have the following one [15, p.
57, Proposition 6.0.1].

Corollary 3.41. If f ∈ R([a, b], X), then f has the Bourgain property.

The converse of the above result is not necessarily true which follows from
the fact that a Bochner integrable function has the Bourgain property [14, p.
520, Example 12] but is not necessarily Riemann integrable.

From [14, p. 521, Theorem 13], the following result follows:

Theorem 3.42. Each Riemann-Dunford integrable function in (X∗)
[a,b]

hav-
ing the Bourgain property is Riemann-Pettis integrable. Hence if an equi-

Riemann-Dunford integrable collection of functions F in (X∗)
[a,b]

has the
Bourgain property, then it is equi-Riemann-Pettis integrable.
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