
RESEARCH Real Analysis Exchange
Vol. 42(2), 2017, pp. 329–344

Franklin R. Astudillo-Villaba, Departamento de Matemáticas, Universidad
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MULTIPLICATION OPERATORS ON THE
SPACES OF FUNCTIONS OF BOUNDED

p-VARIATION IN WIENER’S SENSE

Abstract

In this article, we make a comprehensive study about the properties
of multiplication operators acting on the spaces of functions of bounded
p-variation in Wiener’s sense WBVp[0, 1]. We characterize all functions
u ∈ WBVp[0, 1] that define invertible, compact and Fredholm multipli-
cation operators Mu on WBVp[0, 1]. Also we characterize when Mu has
finite range and has closed range on WBVp[0, 1].

1 Introduction

The classical space of functions of bounded variation on an interval [a, b], de-
noted by BV [a, b] was defined in 1881 by Camile Jordan in his celebrated
article: Sur la série de Fourier in the volume 92 of Comptes rendus hebdo-
madaires des séances de l’Académie des sciences (see [14]). BV [a, b] consists
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of all real functions f defined on [a, b] such that its total variation V ba (f) <∞,
where

V ba (f) := sup
P

{
n∑
k=1

|f (xk)− f (xk−1)|

}
<∞,

and the supremum is taken over all the partitions

P : a = x0 < x1 < · · · < xn = b

of the interval [a, b]. The space of functions of bounded variation is non-
separable Banach space with the norm

‖f‖BV [a,b] := ‖f‖∞ + Vb
a (f) ,

where ‖f‖∞ = sup {|f(t)| : t ∈ [a, b]}. This space of functions finds applica-
tions to solve value initial problems and it can be applied in other areas of the
knowledge such as Physical and the Engineering (see for instance [7]).

There are many extensions or generalizations of the concept of functions
of bounded variation. There are remarkable contributions made by Wiener
[23], Riesz [19, 20], De La Vallée Poussin [8], Hardy [10], Korenblum [17], and
Waterman [22]. We refer to the excellent monograph of Appell, Banas, and
Merentes [4] where they collect the properties and relations of the different
generalizations of BV [a, b]. In this note, we consider the extension given by
Wiener in [23] which is defined as follows: Given a parameter p ≥ 1, the space
of functions of bounded p-variation in Wiener’s sense, denoted by WBVp[a, b],
consists of all real functions f defined on [a, b] such that its total variation in
the Wiener’s sense VarWp (f ; [a, b]) defined by

VarWp (f ; [a, b]) := sup
P

(
n∑
k=1

|f (xk)− f (xk−1)|p
)1/p

<∞, (1)

where, as before, the supremum is taken over all the partitions

P : a = x0 < x1 < · · · < xn = b

of [a, b]. Clearly, when p = 1 we have WBV1[a, b] = BV [a, b]. The space
WBVp[a, b] becomes a Banach space with the norm

‖f‖WBVp([a,b]) := ‖f‖∞ + VarWp (f ; [a, b]) . (2)

This kind of space provided the first example of a non-reflexive space which is
isometrically isomorphic to its double dual (see James [12, 13]). Furthermore,
for all f, g ∈WBVp[a, b] the following very useful identity holds:

‖fg‖WBVp([a,b]) ≤ ‖f‖WBVp([a,b]) ‖g‖WBVp([a,b]) . (3)
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This last relation tell us that WBVp[a, b] is a Banach algebra. Also, we have
that WBVp[a, b] is embedded into B[a, b], the space of all bounded functions
defined on [a, b], in fact, we have

|f(x)− f(y)| ≤ VarWp (f ; [x, y])

for all a ≤ x < y ≤ b. In particular, this last relation implies that

‖f‖∞ ≤ |f(a)|+ VarWp (f ; [a, b])

and that VarWp (f ; [a, b]) = 0 if and only if f is a constant function on [a, b].
The fact that WBVp[a, b] is a Banach algebra allow us to define, for u ∈

WBVp[a, b] fixed, a linear operator Mu on WBVp[a, b] by the relation Mu(f) =
u · f with f ∈ WBVp[a, b]; which is known as multiplication operator with
symbol u. Clearly, since the constant function 1[a,b] defined by 1[a,b](t) = 1
for all t ∈ [a, b] belongs to WBVp[a, b] we have that Mu applies WBVp[a.b]
into itself if and only if the symbol u ∈WBVp[a, b]. Hence, from now, we can
suppose that the symbol u belongs to WBVp[a, b].

In the last decades there has been a growing interest in a deeper study of the
properties of multiplication operators acting on different spaces of functions.
It is remarkable the works of Halmos [9], Abrahamse [1], Takagi and Yok-
ouchi [21], Komal and Gupta [15]. Recently, Castillo, Ramos-Fernández, and
Rafeiro [5] characterized boundedness, invertibility, compactness, and closed-
ness of the range of multiplication operators on variable Lebesgue spaces. Also,
the essential norm of multiplication operator on Lorentz sequence spaces was
recently estimated by Castillo, Ramos-Fernández, and Salas-Brown [6].

There is an important work due to Hudzik, Kumar, and Kumar about the
properties of multiplication operator on a very general setting which generalize
many of the results of the authors mentioned above (see [11]), namely on
Köthe-type spaces, where a Banach spaceX is said a Köthe space if it is a space
of measurable functions defined on a measurable space (Ω,Σ, µ) satisfying the
following properties:

1. Every f ∈ X is locally integrable.

2. If |f(t)| ≤ |g(t)| almost everywhere in Ω with f, g measurable and g ∈ X,
then f ∈ X and ‖f‖X ≤ ‖g‖X .

3. For each A ∈ Σ with µ(A) <∞, the characteristic function of A, denoted
by 1A belongs to X.

The Lp spaces, the Orlicz spaces, the Lorentz spaces, and the Orlicz-Lorentz
spaces are important examples of Köthe-type spaces. However, the spaces
BV [a, b], WBVp[a, b] among other are not Köthe spaces.
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Recently, Astudillo-Villalba and Ramos-Fernández in [3] made a com-
prehensive study about the properties of multiplication operators acting on
BV [0, 1]. The main goal of this article is to show that modifying the techniques
used by Astudillo-Villalba and Ramos-Fernández in [3], we can characterize
the properties of multiplication operators acting on the space of functions of
bounded p-variation in Wiener’s sense. More precisely, in Section 2, we char-
acterize invertible multiplication operators on WBVp[a, b], we show that all
surjective multiplication operators on WBVp[a, b] are also injective and that
all bounded below multiplication operators on WBVp[a, b] are also bijective.
Section 3 is about the compactness of multiplication operators Mu acting on
WBVp[a, b], our characterization is given in terms of the zero set of the symbol
u. We also show that Mu has range finite if and only if Zu, the zero set of u,
is a finite set. The Section 4 is dedicated to characterize the symbols u that
define multiplication operators with closed range on WBVp[a, b]. Finally, in
Section 5 we characterize all symbols u that induce Fredholm multiplication
operators on WBVp[a, b]. Without loss of generality and for our convenience,
through this note we will work with space WBVp[0, 1] instead of the more
general case WBVp[a, b].

2 Invertible and bounded below multiplication operators
on WBVp[a, b]

In this section we show that the class of invertible multiplication operators with
symbols in WBVp[a, b] coincides with the class of bounded below multiplica-
tion operators with symbols in WBVp[a, b] and that all surjective multiplica-
tion operators acting on WBVp[a, b] is invertible. First of all, we characterize
injective multiplication operators acting on WBVp[a, b], our characterization
can be enunciate in terms of supp(u), the support of u which is defined as the
set

supp(u) = {t ∈ [0, 1] : u(t) 6= 0}.

Then the set Zu = [0, 1] \ supp(u) are the zeros of the function u. Our first
result can be enunciate as follows:

Proposition 1. Suppose that u ∈WBVp[0, 1], then

Mu : WBVp([0, 1])→WBVp([0, 1])

is injective if and only if supp(u) = [0, 1].

Proof. Indeed, if supp(u) = [0, 1] and f ∈ Ker (Mu) then u(t) · f(t) = 0 for
all t ∈ [0, 1] and hence f ≡ 0, that is, Ker (Mu) = {0} and Mu is injective on
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WBVp[0, 1]. Conversely, if there exists a t0 ∈ [0, 1] such that u (t0) = 0, then
we can define the function

f(t) =

{
1 if t = t0

0 otherwise
(4)

which is non-null, belongs to WBVp[0, 1] since 1 ≤ VarWp (f ; [0, 1]) ≤ 21/p

(note that VarWp (f ; [0, 1]) = 1 if t0 = 1 or t0 = 0 and VarWp (f ; [0, 1]) = 21/p if
t0 ∈ (0, 1)) and satisfies u(t) · f(t) = 0 for all t ∈ [0, 1]. This last implies that
f ∈ Ker(Mu) 6= {0} and Mu is not injective on WBVp([0, 1]).

Now we show the main result of this section. We recall that an operator
T : X → X, where X is a Banach space, is said to be bounded below if there
exists a constant L > 0 such that ‖Tf‖ ≥ L‖f‖ for all f ∈ X. It is known
that T : X → X is bounded if and only if T : X → X is injective and Ran(T )
is a closed subset of X.

Theorem 2. Suppose that u ∈ WBVp[0, 1]. The following statements are
equivalents:

(1) Ran(Mu) = WBVp([0, 1]), that is, Mu is surjective on WBVp[0, 1],

(2) Mu : WBVp([0, 1])→WBVp([0, 1]) is bijective (with inverse continuous),

(3) Mu : WBVp([0, 1])→WBVp([0, 1]) is bounded below,

(4) inf
t∈[0,1]

(|u(t)|) > 0.

Proof. (1)⇒ (2): Suppose that Mu is surjective on WBVp[0, 1]. If Mu :
WBVp([0, 1]) → WBVp([0, 1]) is not injective, then by Proposition 1, there
exists t0 ∈ [0, 1] such that u(t0) = 0. Thus the function f defined in (4)
belongs to WBVp[0, 1]. Hence, since que Ran(Mu) = WBVp([0, 1]), there
exists a function h ∈WBVp[0, 1] such that f = u ·h. In particular, evaluating
at t = t0 we find that 1 = f (t0) = u (t0)h (t0) = 0. Which is a contradiction
and Mu : WBVp([0, 1])→WBVp([0, 1]) must be bijective.

(2)⇒ (3): Is true for any operator.

(3)⇒ (4): If inf
t∈[0,1]

(|u(t)|) = 0, then there exists a sequence {tn} ⊂ [0, 1]

such that 0 ≤ |u (tn)| < 1
n for all n ∈ N. Hence we can define the functions

{fn}n∈N, on [0, 1] by

fn(t) =

{
1 if t = tn

0 otherwise
(5)
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Then fn ∈WBVp[0, 1] and 2≤‖fn‖WBVp([0,1])≤21/p+ 1 for all n ∈ N. Further-

more, VarWp (u · fn, [0, 1]) = |u(tn)|VarWp (fn, [0, 1]) for all n ∈ N and therefore

‖u · fn‖
WBVp([0,1])

= |u(tn)| ‖fn‖
WBVp([0,1])

≤ 1

n
‖fn‖WBVp([0,1]) ,

for all n ∈ N. Which tell us that Mu : WBVp([0, 1]) → WBVp([0, 1]) is not
bounded below on WBVp[0, 1].

(4)⇒ (1): If inf
t∈[0,1]

(|u(t)|) > 0, then since u ∈ WBVp([0, 1]) it follows

that 1
u ∈ WBVp([0, 1]). Hence, for each f ∈ WBVp([0, 1]), the function h =

1
u · f ∈ WBVp([0, 1]) and satisfies Muh = u · h = f . This shows that Mu :
WBVp([0, 1])→WBVp([0, 1]) is surjective.

3 Compact multiplication operators on WBVp[0, 1]

In this section we characterize the symbols u ∈WBVp[0, 1] which define com-
pact multiplication operators Mu acting on WBVp[0, 1]. We recall that an
operator T : X → X is said to be compact if T (xn) has a convergent subse-
quence in X for all bounded sequence {xn} ⊂ X. It is known that the limit of
compact operators is also a compact operator and that the identity operator
I : X → X defined by If = f is compact if and only if dim(X) <∞. A con-
tinuous operator S : X → X is said to has finite range if dim (Ran(S)) < ∞.
It is known that all operator having finite range is a compact operator. In
the following result, we characterize the symbols u which define multiplication
operators Mu having finite range on WBVp[0, 1].

Theorem 3. Suppose that u ∈WBVp[0, 1]. Then

Mu : WBVp([0, 1])→WBVp([0, 1])

has finite range if and only if supp(u) is a finite set.

Proof. If supp(u) is an infinite set, then we can choose a sequence {tn}n∈N ⊂
supp(u) such that tn 6= tm for all n 6= m. Thus, the functions {hn} defined by

hn(t) =

{
u(t) if t = tn

0 otherwise
(6)

belong to Ran(Mu), since hn = u · fn with fn the functions defined in (5) and
they are clearly linearly independent. Therefore dim (Ran (Mu)) =∞.

Conversely, if supp(u) = {t1, · · · , tm} is a finite set, then the functions
{h1, h2, · · · , hm} defined as in (6) are vectors, linearly independent in Ran (Mu).
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Furthermore, if f ∈ Ran(Mu) then f = Mug = u ·g for some g ∈WBVp([0, 1]).
Thus, if we consider the scalars αk = g (tk), with k = 1, 2, · · · ,m, we have

f =

m∑
k=1

αkhk

and dim(Ran(Mu)) = m <∞. This shows our result.

Our characterization of the compactness of Mu acting on WBVp[0, 1] is
given in terms of certain subsets of supp(u) which we define now. Given ε > 0
we set

Eε =
{
t ∈ [0, 1] : |u(t)| ≥ ε

}
. (7)

Then we have the following property:

Proposition 4. For each ε > 0, the set

XEε = {f ∈WBVp([0, 1]) : f(t) = 0 ∀t ∈ [0, 1] \ Eε}

is an Mu-invariant closed subspace of WBVp([0, 1]).

Proof. Clearly, XEε is a Mu-invariant subspace of WBVp([0, 1]). Further-
more, if {fn} is a sequence of functions inXEε such that ‖fn − f‖

WBVp([0,1])
→ 0

as n → ∞, then ‖fn − f‖∞ → 0 as n → ∞. Hence, we can conclude that
f(t) = 0 for all t ∈ [0, 1] \Eε and f ∈ XEε . This shows that XEε is closed.

We can now enunciate the main result of this section:

Theorem 5. Suppose that u ∈WBVp([0, 1]). The operator Mu is compact on
WBVp([0, 1]) if and only if for each ε > 0 the set Eε is finite.

Proof. Let us suppose first that Mu : WBVp([0, 1]) → WBVp([0, 1]) is a
compact operator. Fix ε > 0. By Proposition 4, the space XEε is closed in
WBVp([0, 1]), hence the inclusion operator iEε : XEε → WBVp([0, 1]) defined
by iEεf = f is continuous and therefore, the composition

Mu ◦ iEε : XEε →WBVp([0, 1])

is a compact operator. Clearly, sinceXEε isMu-invariant, we have Ran (Mu ◦ iEε) ⊂
XEε . Also, if f ∈ XEε , then the function h : [0, 1]→ R defined by

h(t) =

{
f(t)
u(t) if t ∈ Eε
0 otherwise
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belongs to WBVp[0, 1] since

VarWp (h; [0, 1])p ≤
[

1

εp
+

(
2‖u‖∞
ε2

)p]
VarWp (f ; [0, 1])p

+

[
2‖f‖∞
ε2

]p
VarWp (u; [0, 1])p

and clearly, f(t) = u(t)·h(t) for all t ∈ [0, 1]. This means that Ran (Mu ◦ iEε) =
XEε and the operator Mu ◦ iEε : XEε → XEε is a surjective and compact op-
erator.

We affirm that Mu ◦ iEε : XEε → XEε is injective. Indeed, if f ∈ Ker(Mu ◦
iEε), then f ∈ XEε which implies that f(t) = 0 for all t ∈ [0, 1] \ Eε; while
from the fact that u · f = 0, we obtain that f(t) = 0 for all t ∈ Eε. Therefore
Ker(Mu ◦ iEε) = {0} and Mu ◦ iEε : XEε → XEε is a bijective and compact
operator. Hence, we have arrived to the following conclusion: XEε is a finite
dimensional space.

If Eε is an infinite set, then it has a sequence {tn} such that tn 6= tm for
n 6= m. Then the sequence of functions {fn} as in (5) are linearly independent
and belong to XEε . This gives us a contradiction to the fact that XEε is a
finite dimensional space.

Suppose now that for each ε > 0 the set Eε is finite. Then, since

supp(u) =

∞⋃
n=1

E 1
n

=

∞⋃
n=1

{
t ∈ [0, 1] : |u(t)| ≥ 1

n

}
,

we conclude that supp(u) is a finite set or a denumerable set. If supp(u) is
a finite set, then Theorem 3 implies that Mu : WBVp([0, 1]) → WBVp([0, 1])
has finite range and therefore is a compact operator. If supp(u) is an infinite
denumerable set, namely

supp(u) = {t1, t2, · · · , tn, · · · } ⊂ [0, 1].

Then we have( ∞∑
k=1

|u(tk)|p
)1/p

≤ VarWp (u; [0, 1]) ≤

(
2

∞∑
k=1

|u(tk)|p
)1/p

,

and the series

∞∑
k=1

|u(tk)|p converges absolutely. Thus, any rearrangement of

{tn}n∈N does not affect its value. For each n ∈ N, we set En = {t1, t2, · · · , tn},
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and we define the symbol un by

un(t) = u(t) · χ
En

(t) =

{
u(t) if t ∈ En
0 otherwise.

Then un ∈WBVp([0, 1]) since VarWp
(
un; [0, 1]

)
≤ (2n)

1/p ‖u‖∞, and supp(un)
is a finite set. Theorem 3 implies that Mun : WBVp([0, 1])→WBVp([0, 1]) has
finite range for each n ∈ N. Furthermore, we have

un(t)− u(t) =


0 if t ∈ {t1, t2, · · · , tn}
−u(t) if t ∈ {tn+1, tn+2, · · · }
0 otherwise,

and hence

VarWp
(
un − u; [0, 1]

)
≤

(
2

∞∑
k=n+1

|u(tk)|p
)1/p

→ 0 as n→∞,

since the series

∞∑
k=1

|u(tk)|p is convergent. We conclude that

‖Mun −Mu‖ = ‖Mun−u‖ = ‖un − u‖
WBVp([0,1])

→ 0 as n→∞

and Mu : WBVp([0, 1])→WBVp([0, 1]) is a compact operator.

4 Multiplication operators with closed range
on WBVp[0, 1]

In this section we characterize all symbols u ∈WBVp[0, 1] which define multi-
plication operators Mu : WBVp([0, 1])→WBVp([0, 1]) with closed range. The
key of our result lie in to consider the following subspace: For u ∈WBVp([0, 1]),
we define the set XZu by

XZu = {f ∈WBVp([0, 1]) : f(t) = 0 ∀t ∈ Zu}. (8)

Then, we have the following property:

Proposition 6. If Zu 6= ∅ then XZu is a Mu-invariant and closed subspace
of WBVp([0, 1]). Furthermore, Ran(Mu) ⊂ XZu .
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Proof. Clearly XZu is contained in Ran(Mu) and it is a Mu-invariant sub-
space of WBVp([0; 1]). Also, if {fn} is a sequence in X

Zu
such that

‖fn − f‖
WBVp([0,1])

→ 0

as n → ∞, then ‖fn − f‖∞ → 0 as n → ∞ and hence we can deduce that
f(t) = 0 for all t ∈ Zu. That is, X

Zu
is closed in WBVp([0, 1]).

Next, we are going to enunciate and to show the main result of this section.

Theorem 7. Suppose that u ∈WBVp[0, 1]. The operator

Mu : WBVp([0, 1])→WBVp([0, 1])

has closed range if and only if there exists a δ > 0 such that |u(t)| ≥ δ for all
t ∈ supp(u).

Proof. Suppose first that Mu : WBVp([0, 1]) → WBVp([0, 1]) has closed
range and that for each n ∈ N we can find tn ∈ supp(u) such that

0 < |u(tn)| < 1

n2
.

In particular, the above inequality implies that the series
∑∞
k=1 |u(tk)| is ab-

solutely convergent and that {tn}n∈N is an infinite set. Furthermore, since
{tn}n∈N ⊂ supp(u) ⊂ [0, 1], by passing to a subsequence we may assume that
{tn}n∈N is an ordered and convergent set (recall that from a convergent se-
quence we can build a monotone subsequence). Next, for each n ∈ N we
consider the function

hn(t) =

{
u(t) if t ∈ A2n+1

0 otherwise

where A2n+1 = {t1, t3, t5, · · · , t2n+1}. Clearly hn = u · χ
A2n+1

∈ Ran(Mu)
since

VarWp
(
χ
A2n+1

; [0, 1]
)
≤ (2(n− 1))

1/p
.

Furthermore, if n,m ∈ N and n > m, then

(hn − hm) (t) =

{
u(t) if t ∈ {t2m+3, · · · , t2n+1}
0 otherwise
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and hence

‖hn − hm‖
WBVp([0,1])

≤

(
2

2n+1∑
k=2m+3

|u(tk)|p
)1/p

≤ 21/p
2n+1∑

k=2m+3

|u(tk)|

≤ 21/p
∞∑

k=2m+3

1

k2
→ 0 as m→∞.

Thus, {hn}n∈N is a Cauchy sequence in the closed set Ran(Mu) and there exists
a function f ∈ WBVp([0, 1]) such that ‖hn − u · f‖

WBVp([0,1])
→ 0 as n → ∞.

In particular,
∥∥∥u · χA2n+1

− u · f
∥∥∥
∞
→ 0 as n → ∞ and since u(t) 6= 0 for all

t ∈ A2n+1 ⊂ supp(u), we conclude that

f(t) =

{
1 if t ∈ A2n+1

0 if t ∈ supp(u) \A2n+1.

But, if we consider the partition Pn = {0, t1, t2, t3, · · · , tn−1, tn, 1}, then we
have

VarWp (f ; [0, 1]) ≥

(
n∑
k=2

|f(tk)− f(tk−1)|p
)1/p

=

(
n∑
k=2

1

)1/p

= (n− 1)1/p.

Which implies that f does not belong to WBVp[0, 1] and we have a contradic-
tion. Therefore there exists a δ > 0 such that |u(t)| ≥ δ for all t ∈ supp(u).

Next, suppose that there exists a δ > 0 such that |u(t)| ≥ δ for all t ∈
supp(u). We affirm that Ran(Mu) = XZu . Clearly Ran(Mu) ⊆ XZu , hence it
is enough to show that XZu ⊆ Ran(Mu). Indeed, for each f ∈ XZu , we have
that f ∈WBVp[0, 1] and we can define the function

g(t) =

{
f(t)
u(t) if t ∈ [0, 1] \ Zu
0 otherwise.

(9)

Thus, if P : 0 = t0 < t1 < · · · < tn = 1 is any partition of [0, 1], then
by considering separately the cases tk, tk−1 ∈ Zu, tk ∈ Zu and tk−1 /∈ Zu,
tk ∈ Zu and tk−1 /∈ Zu and tk /∈ Zu and tk−1 ∈ Zu, we obtain

n∑
k=1

|g(tk)− g(tk−1)|p ≤
[

1

δp
+

(
2‖u‖∞
δ2

)p]
VarWp (f ; [0, 1])p

+

[
2‖f‖∞
δ2

]p
VarWp (u; [0, 1])p,
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where we have used the well known identity (a + b)p ≤ 2p(ap + bp) valid
for all a, b ≥ 0. Therefore, g ∈ WBVp[0, 1], f = u · g ∈ Ran (Mu) and
Ran(Mu) = XZu as we affirmed. The result follows since XZu is a closed set
of WBVp[0, 1] by Proposition 6.

5 Fredholm multiplication operators on WBVp[0, 1]

In this section we characterize all symbols u ∈WBVp[0, 1] which define Fred-
holm multiplication operators on WBVp[0, 1]. We recall that a bounded
operator T : X → X is said to be Fredholm if dim(Ker(Mu)) < ∞ and
codim(Ran(Mu)) = dim(X/Ran(Mu)) < ∞. The operator T is called upper
semi-Fredholm if dim(Ker(Mu)) <∞ and Ran(Mu) is a closed set of X, while
T is lower semi-Fredholm if codim(Ran(Mu)) < ∞. It is known that the
condition codim(Ran(Mu)) < ∞ implies that Ran(Mu) is a closed set of X.
Clearly, T : X → X is Fredholm if and only if T : X → X is lower and upper
Fredholm. The following is the main result of this section.

Theorem 8. Suppose that u ∈ WBVp[0, 1]. The following statements are
equivalents:

(1) Mu : WBVp([0, 1])→WBVp([0, 1]) is upper semi-Fredholm,

(2) Mu : WBVp([0, 1])→WBVp([0, 1]) is lower semi-Fredholm,

(3) Mu : WBVp([0, 1])→WBVp([0, 1]) is Fredholm,

(4) Zu is a finite set and there exists a δ > 0 such that |u(t)| ≥ δ for all
t ∈ supp(u).

Proof. (1)⇒ (4): Let us suppose that Mu : WBVp([0, 1]) → WBVp([0, 1])
is upper semi-Fredholm. If Zu is an infinite set, then we can find a sequence
{tn}n∈N ⊂ Zu such that tn 6= tm. Thus the functions fn defined as in (5) are
linearly independent in WBVp[0, 1] and belong to Ker (Mu) which give us a
contradiction to the fact thatMu : WBVp([0, 1])→WBVp([0, 1]) is upper semi-
Fredholm. Finally, since Ran(Mu) is a closed set of WBVp[0, 1] by Theorem 7
we conclude that there exists a δ > 0 such that |u(t)| ≥ δ for all t ∈ supp(u).

(4)⇒ (2): By Theorem 7 we have that the operator Ran (Mu) is a closed
set of WBVp[0, 1], then the quotient space

Q = WBVp[0, 1]/Ran (Mu) = {f + Ran (Mu) : f ∈WBVp[0, 1]}

is a Banach space. We are going to show that dim(Q) <∞. Indeed, since Zu
is a finite set, then we can write Zu = {t1, t2, · · · , tm} and the functions fk
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with k = 1, 2, · · · ,m defined as in (5) are linearly independent in WBVp[0, 1].
Hence, the set

B = {fk + Ran (Mu) : k = 1, · · · ,m}
is linearly independent in Q. Furthermore, if g̃ ∈ Q then g̃ = g + Ran(Mu)
for some g ∈ WBVp([0, 1]) and we can consider the scalars αk = g (tk) with

k = 1, 2, · · · ,m. We affirm that g −
m∑
k=1

αkfk ∈ Ran(Mu). Bearing this in

mind, we define the function

h(t) =

{
g(t)
u(t) if t /∈ Zu

0 otherwise.

Then h ∈ WBVp[0, 1] since there exists a δ > 0 such that |u(t)| ≥ δ for all
t ∈ supp(u). Furthermore, if t ∈ supp(u) then fk(t) = 0 for all k = 1, 2, · · · ,m
and we have

g(t)−
m∑
k=1

αkfk(t) = g(t) = u(t) · h(t),

while if t ∈ Zu then t = tj for some j ∈ {1, 2, · · · ,m} and we obtain

g(t)−
m∑
k=1

αkfk(t) = g(tj)− αjfj(tj) = αj − αj = 0 = u(t) · h(t).

We conclude then that g −
m∑
k=1

αkfk = u · h ∈ Ran(Mu) which means that

g̃ =

m∑
k=1

αkfk + Ran (Mu) .

and B is a basis for Q as we affirmed. This shows that

codim (Ran(Mu)) = dim (WBVp([0, 1])/Ran (Mu)) = m <∞.

(2)⇒ (3): SinceMu : WBVp([0, 1])→WBVp([0, 1]) is lower semi-Fredholm,
only we need to show that dim(Ker(Mu)) < ∞. As in the proof of (4)⇒(2),
the fact that codim (Ran(Mu)) < ∞ implies that Zu is a finite set, namely
Zu = {t1, t2, · · · , tm}. Then the functions fk with k = 1, 2, · · · ,m defined as
in (5) belong to Ker (Mu) and they are linearly independent in WBVp[0, 1].
Furthermore, for any g ∈ Ker(Mu) we have

g =

m∑
k=1

αkfk,
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where αk = g (tk), which tell us that dim(Ker(Mu)) = m <∞.
(3)⇒(1): Always is true by definition.

Next we give some consequences. From Theorems 8 and 7 we have the
following corollary:

Corollary 9. Suppose that u ∈WBVp[0, 1]. The operator

Mu : WBVp([0, 1])→WBVp([0, 1])

is Fredholm if and only if Zu is a finite set and Ran(Mu) is a closed subset of
WBVp[0, 1].

Also we can characterize the invertibility in terms of Fredholmness of Mu :
WBVp([0, 1])→WBVp([0, 1]):

Corollary 10. Suppose that u ∈WBVp[0, 1]. The operator

Mu : WBVp([0, 1])→WBVp([0, 1])

is invertible (with continuous inverse) if and only if codim(Ran(Mu)) < ∞
and supp(u) = [0, 1].

Proof. Clearly, if Mu : WBVp([0, 1]) → WBVp([0, 1]) is invertible, then
codim(Ran(Mu)) <∞ and supp(u) = [0, 1] since it is Fredholm and injective.
Conversely, if codim(Ran(Mu)) < ∞ then Mu : WBVp([0, 1]) → WBVp([0, 1])
is lower semi-Fredholm and by Theorem 8 we have that Zu is a finite set and
there exists a δ > 0 such that |u(t)| ≥ δ for all t ∈ supp(u). But by hypothesis
supp(u) = [0, 1] which tell us that Zu = ∅ and |u(t)| ≥ δ for all t ∈ [0, 1].
Hence the proof follows now by Theorem 2.
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