
Michigan Math. J. 68 (2019), 19–31

Biharmonic Maps on Principal G-Bundles over Complete
Riemannian Manifolds of Nonpositive Ricci Curvature

Hajime Urakawa

Abstract. We show that, for every principal G-bundle over a com-
plete Riemannian manifold of nonpositive Ricci curvature, if the pro-
jection of the G-bundle is biharmonic, then it is harmonic.

1. Introduction

Variational problems play a central role in geometry; a harmonic map is one
of important variational problems, which is a critical point of the energy func-
tional E(ϕ) = 1

2

∫
M

|dϕ|2vg for smooth maps ϕ of (M,g) into (N,h). The Euler–
Lagrange equations are given by the vanishing of the tension filed τ(ϕ) (see [6;
15; 18; 25; 38]). In 1983, Eells and Lemaire [9] extended the notion of harmonic
maps to biharmonic maps, which are, by definition, critical points of the bienergy
functional

E2(ϕ) = 1

2

∫
M

|τ(ϕ)|2vg. (1.1)

Jiang [17] studied the first and second variation formulas of E2. In this area,
extensive studies have been done (e.g., see [2; 3; 5; 10; 12; 13; 14; 15; 16; 20; 21;
24; 23; 31; 29; 30; 32; 35; 36; 37; 39; 40], etc.). Notice that harmonic maps are
always biharmonic by definition. Chen [7] raised the so-called Chen conjecture,
and later Caddeo, Montaldo, Piu, and C. Oniciuc [5] raised the generalized Chen
conjecture.

Chen’s conjecture. Every biharmonic submanifold of the Euclidean space R
n

is harmonic (minimal).

The generalized Chen conjecture. Every biharmonic submanifold of a Rie-
mannian manifold of nonpositive curvature is harmonic (minimal).

For the generalized Chen conjecture, Ou and Tang [33; 32] gave a counterex-
ample in a Riemannian manifold of negative curvature. For the Chen conjecture,
affirmative answers were known for the case of surfaces in the three-dimensional
Euclidean space [7] and for the case of hypersurfaces of the four-dimensional Eu-
clidean space [11; 8]. Akutagawa and Maeta [1] showed a supporting evidence to
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the Chen conjecture: Any complete regular biharmonic submanifold of the Eu-
clidean space R

n is harmonic (minimal). The affirmative answers to the gen-
eralized Chen conjecture were shown [26; 27; 28] under the L2-condition and
completeness of (M,g).

In this paper, we treat with a principal G-bundle over a Riemannian manifold
and show the following two theorems.

Theorem 2.3. Let π : (P,g) → (M,h) be a principal G-bundle over a Riemann-
ian manifold (M,h) with negative definite Ricci tensor field. Assume that P is
compact, so that M is also compact. If the projection π is biharmonic, then it is
harmonic.

Theorem 2.4. Let π : (P,g) → (M,h) be a principal G-bundle over a Riemann-
ian manifold with nonpositive Ricci curvature. Assume that (P,g) is a noncom-
pact complete Riemannian manifold and that the projection π has both finite en-
ergy E(π) < ∞ and finite bienergy E2(π) < ∞. If π is biharmonic, then it is
harmonic.

We give two comments on these theorems: For the generalized Chen conjecture,
the nonpositivity of the sectional curvature of the ambient space of biharmonic
submanifolds is necessary. However, it should be emphasized that for the principal
G-bundles, we need not the assumption of nonpositivity of the sectional curvature.
We only assume the nonpositivity of the Ricci curvature of the domain manifolds
in the proofs of Theorems 2.3 and 2.4. Second, in Theorem 2.4, the finiteness
of the energy and bienergy is necessary. Otherwise, we can see the following
counterexamples of Loubeau and Ou [22].

Example 1 (cf. [34], [22, p. 62]). The inversion in the unit sphere φ : Rn\{o} �
x �→ x/(|x|2) ∈ R

n is biharmonic if n = 4. It is not harmonic since τ(φ) =
−4x/(|x|4).
Example 2 (cf. [22, p. 70]). Let (M2, h) be a Riemannian surface, and let
β : M2 × R → R

∗ and λ : R → R
∗ be two positive C∞ functions. Consider

the projection π : (M2 ×R∗, g = λ−2h + β2 dt2) � (p, t) �→ p ∈ (M2, h). Here,
we take β = c2e

∫
f (x)dx , f (x) = −c1(1 + ec1x)/(1 − ec1x) with c1, c2 ∈ R

∗, and
(M2, h) = (R2, dx2 + dy2). Then,

π : (R2 ×R
∗, dx2 + dy2 + β2(x) dt2) � (x, y, t) �→ (x, y) ∈ (R2, dx2 + dy2)

gives a family of proper biharmonic (i.e., biharmonic but not harmonic) Riemann-
ian submersions.

2. Preliminaries

2.1. Harmonic Maps and Biharmonic Maps

We first prepare the materials for the first and second variational formulas for
the bienergy functional and biharmonic maps. Let us recall the definition of a
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harmonic map ϕ : (M,g) → (N,h) of a compact Riemannian manifold (M,g)

into another Riemannian manifold (N,h), which is an extremal of the energy
functional defined by

E(ϕ) =
∫

M

e(ϕ)vg,

where e(ϕ) := 1
2 |dϕ|2 is called the energy density of ϕ; that is, for any variation

{ϕt } of ϕ with ϕ0 = ϕ,

d

dt

∣∣∣∣
t=0

E(ϕt ) = −
∫

M

h(τ(ϕ),V )vg = 0, (2.1)

where V ∈ �(ϕ−1T N) is a variation vector field along ϕ given by V (x) =
d
dt

|t=0ϕt (x) ∈ Tϕ(x)N (x ∈ M), and the tension field is given by τ(ϕ) =∑m
i=1 B(ϕ)(ei, ei) ∈ �(ϕ−1T N), where {ei}mi=1 is a locally defined orthonormal

frame field on (M,g), and B(ϕ) is the second fundamental form of ϕ defined by

B(ϕ)(X,Y ) = (∇̃ dϕ)(X,Y )

= (∇̃X dϕ)(Y )

= ∇X(dϕ(Y )) − dϕ(∇XY) (2.2)

for all vector fields X,Y ∈ X(M). Here, ∇ and ∇h are Levi-Civita connections
on T M and T N of (M,g) on (N,h), respectively, and ∇ and ∇̃ are the induced
ones on ϕ−1T N and T ∗M ⊗ϕ−1T N , respectively. By (2.1), ϕ is harmonic if and
only if τ(ϕ) = 0.

The second variation formula is given as follows. Assume that ϕ is harmonic.
Then,

d2

dt2

∣∣∣∣
t=0

E(ϕt ) =
∫

M

h(J (V ),V )vg, (2.3)

where J is an elliptic differential operator, called the Jacobi operator acting on
�(ϕ−1T N) given by

J (V ) = 	V −R(V ), (2.4)

where 	V = ∇∗∇V = −∑m
i=1{∇ei

∇ei
V − ∇∇ei

ei
V } is the rough Lapla-

cian, R is the linear operator on �(ϕ−1T N) given by R(V ) = ∑m
i=1 RN(V,

dϕ(ei)) dϕ(ei), and RN is the curvature tensor of (N,h) given by Rh(U,V ) =
∇h

U∇h
V − ∇h

V ∇h
U − ∇h[U,V ] for U,V ∈ X(N).

Eells and Lemaire [9] proposed polyharmonic (k-harmonic) maps, and Jiang
[17] studied the first and second variation formulas of biharmonic maps. Let us
consider the bienergy functional defined by

E2(ϕ) = 1

2

∫
M

|τ(ϕ)|2vg, (2.5)

where |V |2 = h(V,V ), V ∈ �(ϕ−1T N).
The first variation formula of the bienergy functional is given by

d

dt

∣∣∣∣
t=0

E2(ϕt ) = −
∫

M

h(τ2(ϕ),V )vg, (2.6)
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where

τ2(ϕ) := J (τ(ϕ)) = 	(τ(ϕ)) −R(τ (ϕ)), (2.7)

which is called the bitension field of ϕ, and J is given in (2.4).
A smooth map ϕ of (M,g) into (N,h) is said to be biharmonic if τ2(ϕ) = 0.

By definition every harmonic map is biharmonic. We say that an immersion
ϕ : (M,g) → (N,h) is proper biharmonic if it is biharmonic but not harmonic
(minimal).

2.2. The Principal G-Bundle

Recall several notions on principal G-bundles. A manifold P = P(M,G) is a
principal fiber bundle over M with a compact Lie group G, where p = dimP ,
m = dimM , and k = dimG. By definition a Lie group G acts on P by right-
hand side denoted by (G,P ) � (a,u) �→ u · a ∈ P , and, for each point u ∈ P , the
tangent space TuP admits a subspace Gu := {A∗

u | A ∈ g}, the vertical subspace
at u, and each A ∈ g defines the fundamental vector field A∗ ∈X(P ) by

A∗
u := d

dt

∣∣∣∣
t=0

uexp(tA) ∈ TuP.

A Riemannian metric g on P is called adapted if it is invariant under all the right
action of G, that is, Ra

∗g = g for all a ∈ G. An adapted Riemannian metric on
P always exists because for every Riemannian metric g′ on P , we can define the
new metric g on P by

gu(Xu,Yu) =
∫

G

g′(Ra∗Xu,Ra∗Yu)dμ(a),

where dμ(a) is a bi-invariant Haar measure on G. Then, Ra
∗g = g for all a ∈ G.

Each tangent space TuP has the orthogonal direct decomposition of the tangent
space TuP ,

(a) TuP = Gu ⊕ Hu,

where the subspace Gu of Pu satisfies

(b) Gu = {A∗
u | A ∈ g},

and the subspace Hu of Pu satisfies

(c) Hu·a = Ra∗Hu, a ∈ G, u ∈ P ;

the subspace Hu of Pu is called the horizontal subspace at u ∈ P with respect
to g.

In the following, we fix a locally defined orthonormal frame field {ei}pi=1 cor-
responding (a), (b) in such a way that

• {ei}mi=1 is a locally defined orthonormal basis of the horizontal subspace Hu

(u ∈ P ), and
• {ei = A∗

m+i}ki=1 is a locally defined orthonormal basis of the vertical subspace
Gu (u ∈ P ) for an orthonormal basis {Am+i}ki=1 of the Lie algebra g of a Lie
group G with respect to the Ad(G)-invariant inner product 〈·, ·〉.
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For each decomposition (a), we can define the g-valued 1-form ω on P by

ω(Xu) = A, Xu = Xu
V + Xu

H,

where
Xu

V ∈ Gu, Xu
H ∈ Hu, Xu

V = Au
∗

for u ∈ P and a unique A ∈ g. This 1-form ω on P is called a connection form
of P .

Then, there exist a unique Riemannian metric h on M and an Ad(G)-invariant
inner product 〈·, ·〉 on g such that

g(Xu,Yu) = h(π∗Xu,π∗Yu) + 〈ω(Xu),ω(Yu)〉, Xu,Yu ∈ TuP,u ∈ P,

namely,
g = π∗h + 〈ω(·),ω(·)〉.

We call this Riemannian metric g on P an adapted Riemannian metric on P .
Let us recall the following definitions.

Definition 2.1. (1) The projection π : (P,g) → (M,h) is harmonic if the
tension field vanishes, τ(π) = 0, and

(2) the projection π : (P,g) → (M,h) is biharmonic if, the bitension field
vanishes, τ2(π) = J (τ(π)) = 0.

Here, J is the Jacobi operator for the projection π given by

J (V ) := 	V −R(V ), V ∈ �(π−1T M),

where

	V := −
p∑

i=1

{∇ei
(∇ei

V ) − ∇∇ei
ei
V }

= −
m∑

i=1

{∇ei
(∇ei

V ) − ∇∇ei
ei
V }

−
k∑

i=1

{∇A∗
m+i

(∇A∗
m+i

V ) − ∇∇A∗
m+i

A∗
m+i

V }

for V ∈ �(π−1T M), that is, V (x) ∈ Tπ(x)M (x ∈ P ). Here, {ei}pi=1 is a local
orthonormal frame field on (P,g) given as follows: {ei}mi=1 is an orthonormal
horizontal field on the principal G-bundle π : (P,g) → (M,h), and {em+i,u =
A∗

m+i,u}ki=1 (u ∈ P ) is an orthonormal frame field on the vertical space Gu = {A∗
u |

A ∈ g} (u ∈ P ) corresponding to an orthonormal basis {Am+i}ki=1 of (g, 〈 , 〉).
If π : (P,g) → (M,h) is harmonic, then it is clearly biharmonic. Our main inter-
est is to ask under what conditions the reverse holds.

Problem 2.2. If the projection π of a principal G-bundle π : (P,g) → (M,h) is
biharmonic, then is π harmonic or not?
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In this paper, we show that this answer is affirmative when the Ricci curvature of
the base manifold (M,h) is negative definite. Indeed, we show the following:

Theorem 2.3. Let π : (P,g) → (M,h) be a principal G-bundle over a Riemann-
ian manifold (M,h) with negative definite Ricci tensor field. Assume that P is
compact, so that M is also compact. If the projection π is biharmonic, then it is
harmonic.

Theorem 2.4. Let π : (P,g) → (M,h) be a principal G-bundle over a Riemann-
ian manifold with nonpositive Ricci curvature. Assume that (P,g) is a noncom-
pact complete Riemannian manifold and that the projection π has both finite en-
ergy E(π) < ∞ and finite bienergy E2(π) < ∞. If π is biharmonic, then it is
harmonic.

3. Proof of Theorem 2.3

In this section, we prove Theorem 2.3 in the case that Riemannian manifold
(M,h) is compact and the Ricci tensor of (M,h) is negative definite. In Section 4,
we will prove Theorem 2.4 in the case of a noncompact complete Riemannian
manifold (M,h).

Let us first consider a principal G-bundle π : (P,g) → (M,h) whose total
space P is compact. Assume that the projection π : (P,g) → (M,h) is bihar-
monic, that is, by definition, J (τ(π)) ≡ 0, where τ(π) is the tension field of π

defined by

τ(π) :=
p∑

i=1

{∇h
ei
π∗ei − π∗(∇ei

ei)}, (3.1)

and the Jacobi operator J is defined by

JV := 	V −R(V ) (V ∈ �(π−1T M)) (3.2)

with the rough Laplacian

	V := −
p∑

i=1

{∇ei
(∇ei

V ) − ∇∇ei
ei
V } (3.3)

and
R(V ) := Rh(V,π∗ei)π∗ei, (3.4)

where {ei}pi=1 is a locally defined orthonormal frame field on (P,g).
The tangent space Pu (u ∈ P ) is canonically decomposed into the orthogonal

direct sum of the vertical subspace Gu = {Au
∗ | A ∈ g} and the horizontal sub-

space Hu: Pu = Gu ⊕ Hu. Then, we have

τ2(π) = 	τ(π) −
p∑

i=1

Rh(τ(π),π∗ei)π∗ei

= 	τ(π) −
m∑

i=1

Rh(τ(π),π∗ei)π∗ei
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−
k∑

i=1

Rh(τ(π),π∗A∗
m+i )π∗A∗

m+i

= 	τ(π) −
m∑

i=1

Rh(τ(π),π∗ei)π∗ei,

where p = dimP , m = dimM , and k = dimG, respectively. Then, we obtain

0 =
∫

P

〈J (τ(π)), τ (π)〉vg

=
∫

P

〈∇∗∇τ(π), τ (π)〉vg −
∫

P

m∑
i=1

〈Rh(τ(π),π∗ei)π∗ei, τ (π)〉vg

=
∫

P

〈∇τ(π),∇τ(π)〉vg −
∫

P

m∑
i=1

〈Rh(τ(π),π∗ei)π∗ei, τ (π)〉vg.

Therefore, we obtain∫
P

〈∇τ(π),∇τ(π)〉vg =
∫

P

m∑
i=1

〈Rh(τ(π),π∗ei)π∗ei, τ (π)〉vg

=
∫

P

m∑
i=1

〈Rh(τ(π), e′
i )e

′
i , τ (π)〉vg

=
∫

P

Rich(τ (π))vg, (3.5)

where {e′
i}mi=1 is a locally defined orthonormal frame field on (M,h) satisfying

π∗ei = e′
i , and Ric(X) is the Ricci curvature of (M,h) along X ∈ TxM . The left-

hand side of (3.5) is nonnegative, and then both sides of (3.5) must vanish if the
Ricci curvature of (M,h) is nonpositive. Therefore, we obtain{

∇Xτ(π) = 0 (∀X ∈ X(P )), i.e., τ (π) is parallel, and

Rich(τ (π)) = 0.
(3.6)

Let us consider the 1-form α on M defined by

α(Y )(π(x)) := 〈τ(π)(x),Yπ(x)〉 (Y ∈ X(M), x ∈ P). (3.7)

Then, for all Y,Z ∈ X(M), we have

(∇h
Zα)(Y ) = Z(α(Y )) − α(∇h

ZY )

= Z〈τ(π),Y 〉 − 〈τ(π),∇h
ZY 〉

= 〈∇Zτ(π),Y 〉 + 〈τ(π),∇h
ZY 〉 − 〈τ(π),∇h

ZY 〉
= 0, (3.8)

which implies that α is a parallel 1-form on (M,h). Since we assume that the
Ricci tensor of (M,h) is negative definite, α must vanish (by Bochner’s theorem;
see [4], and [19, p. 55]). Thus, τ(π) ≡ 0, that is, the projection of the principal
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G-bundle π : (P,g) → (N,h) must be harmonic. We obtain Theorem 2.3 in the
case that M is compact and the Ricci tensor is negative definite.

4. Proof of Theorem 2.4

We prove Theorem 2.4 for a noncompact and complete Riemannian manifold
(P,g) and a Riemannian manifold (M,h) with nonpositive Ricci curvature.

(Step 1) We first take a cutoff function η on (P,g) for a fixed point p0 ∈ P as
follows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ≤ η ≤ 1 (on P),

η = 1 (on Br(p0)),

η = 0 (outside B2r (p0)),

|∇η| ≤ 2
r

(on P),

(4.1)

where Br(p0) is the ball in (P,g) of radius r around p0.
Now assume that the projection π : (P,g) → (M,h) is biharmonic. Namely,

we have, by definition,

0 = J2(π) = Jπ(τ(π))

= 	τ(π) −
p∑

i=1

Rh(τ(π),π∗ei)π∗ei, (4.2)

where {ei}pi=1 is a local orthonormal frame field on (P,g), and 	 is the rough
Laplacian defined by

	V := ∇∗∇V = −
p∑

i=1

{∇ei
(∇ei

V ) − ∇∇ei
ei
V } (4.3)

for V ∈ �(π−1T M).
(Step 2) By (4.2) we have∫

P

〈∇∗∇τ(π), η2τ(π)〉vg =
∫

P

η2
〈 p∑

i=1

Rh(τ(π),π∗ei)π∗ei, τ (π)

〉
vg

=
∫

P

η2
p∑

i=1

〈Rh(τ(π),π∗ei)π∗ei, τ (π)〉vg

=
∫

P

η2
m∑

i=1

〈Rh(τ(π), e′
i )e

′
i , τ (π)〉vg

=
∫

P

η2 Rich(τ (π))vg, (4.4)

where {e′
i}mi=1 is a local orthonormal frame field on (M,h), and Rich(u) u ∈ TyM

(y ∈ M) is the Ricci curvature of (M,h), which is nonpositive by our assumption.
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(Step 3) Therefore, we obtain

0 ≥
∫

P

〈∇∗∇τ(π), η2τ(π)〉vg

=
∫

P

〈∇τ(π),∇(η2τ(π))〉vg

=
∫

P

p∑
i=1

〈∇ei
τ (π),∇ei

(η2τ(π))〉vg

=
∫

P

p∑
i=1

{η2〈∇ei
τ (π),∇ei

τ (π)〉 + ei(η
2)〈∇ei

τ (π), τ (π)〉}vg

=
∫

P

η2
p∑

i=1

|∇ei
τ (π)|2vg

+ 2
∫

P

p∑
i=1

〈η∇ei
τ (π), ei(η)τ (π)〉vg. (4.5)

(Step 4) Therefore, by (4.5) we have∫
P

η2
p∑

i=1

|∇ei
τ (π)|2vg ≤ −2

∫
P

p∑
i=1

〈η∇ei
τ (π), ei(η)τ (π)〉vg

= −2
∫

P

p∑
i=1

〈Vi,Wi〉vg, (4.6)

where Vi := η∇ei
τ (π) and Wi := ei(η)τ (π) (i = 1, . . . , p). Then, we estimate

the right-hand side of (4.6) by the Cauchy–Schwarz inequality:

±2〈Vi,Wi〉 ≤ ε|Vi |2 + 1

ε
|Wi |2, (4.7)

which follows from

0 ≤
∣∣∣∣√εVi ± 1√

ε
Wi

∣∣∣∣2

= ε|Vi |2 ± 2〈Vi,Wi〉 + 1

ε
|Wi |2.

Therefore, we estimate the right-hand side of (4.6) as follows:

RHS of (4.6) := −
∫

P

p∑
i=1

〈Vi,Wi〉vg

≤ ε

∫
P

p∑
i=1

|Vi |2vg + 1

ε

∫
P

p∑
i=1

|Wi |2vg. (4.8)
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(Step 5) By putting ε = 1
2 we have∫

P

η2
p∑

i=1

|∇ei
τ (π)|2vg ≤ 1

2

∫
P

p∑
i=1

η2|∇ei
τ (π)|2vg

+ 2
∫

P

p∑
i=1

ei(η)2|τ(π)|2vg. (4.9)

Therefore, we obtain

1

2

∫
P

η2
p∑

i=1

|∇ei
τ (π)|2vg ≤ 2

∫
P

|∇η|2|τ(π)|2vg. (4.10)

Substituting (4.1) into (4.10), we obtain∫
P

η2
p∑

i=1

|∇ei
τ (π)|2vg ≤ 4

∫
P

|∇η|2|τ(π)|2vg ≤ 16

r2

∫
P

|τ(π)|2vg. (4.11)

(Step 6) Taking the limit as r → ∞, by the completeness of (P,g) and
E2(π) = 1

2

∫
P

|τ(π)|2vg < ∞ we obtain that∫
P

p∑
i=1

|∇ei
τ (π)|2vg = 0, (4.12)

which implies that

∇Xτ(π) = 0 (∀X ∈X(P )). (4.13)

(Step 7) Therefore, we obtain

|τ(π)| is constant, say c, (4.14)

because
X|τ(π)|2 = 2〈∇Xτ(π), τ (π)〉 = 0 (∀X ∈X(P ))

by (4.13).
(Step 8) In the case that Vol(P,g) = ∞ and E2(π) < ∞, c must be zero since

if c �= 0, then

E2(π) = 1

2

∫
P

|τ(π)|2vg = c

2
Vol(P,g) = ∞,

a contradiction.
Thus, if Vol(P,g) = ∞, then c = 0, that is, π : (P,g) → (M,h) is harmonic.
(Step 9) In the case E(π) < ∞ and E2(π) < ∞, let us define the 1-form α ∈

A1(P ) on P by

α(X) := 〈dπ(X), τ (π)〉 (X ∈X(P )). (4.15)

Then, we obtain∫
P

|α|vg =
∫

P

( p∑
i=1

|α(ei)|2
)1/2

vg ≤
∫

P

|dπ ||τ(π)|vg
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≤
(∫

P

|dπ |2vg

)1/2(∫
P

|τ(π)|2vg

)1/2

= 2
√

E(π)E2(π) < ∞. (4.16)

For the function δα := −∑p

i=1(∇ei
α)(ei) ∈ C∞(P ), we have

−δα =
p∑

i=1

(∇ei
α)(ei) =

p∑
i=1

{ei(α(ei)) − α(∇ei
ei)}

=
p∑

i=1

{ei〈dπ(ei), τ (π)〉 − 〈dπ(∇ei
ei), τ (π)〉}

=
p∑

i=1

{〈∇ei
dπ(ei), τ (π)〉 + 〈dπ(ei),∇ei

τ (π)〉 − 〈dπ(∇ei
ei , τ (π)〉}

=
〈 p∑

i=1

{∇ei
dπ(ei) − dπ(∇ei

ei)}, τ (π)

〉
+

p∑
i=1

〈dπ(ei),∇ei
τ (π)〉

= 〈τ(π), τ (π)〉 + 〈dπ,∇τ(π)〉
= |τ(π)|2 (4.17)

since ∇τ(π) = 0. By (4.17) we obtain∫
P

|δα|vg =
∫

P

|τ(π)|2vg = 2E2(π) < ∞. (4.18)

By (4.16), (4.18), and the completeness of (P,g), we can apply Gaffney’s theo-
rem, which implies that

0 =
∫

P

(−δα)vg =
∫

P

|τ(π)|2vg. (4.19)

Thus, we obtain

τ(π) = 0, (4.20)

that is, π : (P,g) → (M,h) is harmonic. We obtain Theorem 2.4.
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