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Extensions of Some Classical Local Moves on
Knot Diagrams

Benjamin Audoux, Paolo Bellingeri,
Jean-Baptiste Meilhan, & Emmanuel Wagner

Abstract. We consider local moves on classical and welded dia-
grams: (self-)crossing change, (self-)virtualization, virtual conjuga-
tion, Delta, fused, band-pass, and welded band-pass moves. Interre-
lationships between these moves are discussed, and, for each of these
moves, we provide an algebraic classification. We address the ques-
tion of relevant welded extensions for classical moves in the sense that
the classical quotient of classical object embeds into the welded quo-
tient of welded objects. As a byproduct, we obtain that all of the local
moves mentioned are unknotting operations for welded (long) knots.
We also mention some topological interpretations for these combina-
torial quotients.

Introduction

Although knot and link theory has its roots and foundations in the topology of em-
bedded circles in 3-space, its study was early turned combinatorial by considering
generic projections, which can be seen as decorated 4-valent planar graphs. This
opened a new way to think the topology in terms of combinatorial local moves.
First, ambient isotopies were proved to correspond to Reidemeister moves [32].
Other equivalence relations were then interpreted as the quotient under some ad-
ditional local moves (see Figure 1): for general homotopy, we should authorize
crossing changes (CC); for link-homotopy, only self-crossing changes (SC) [25];
and link-homology, introduced by Murakami and Nakanishi [27] and Matveev
[23], corresponds to Delta moves (�). Other local moves were also investigated,
still within some topological perspectives, such as the band-pass move (BP),
which is motivated by the crossing of two bands, but also from more algebraic
or even purely combinatorial considerations. These notions straightforwardly ex-
tend to other kinds of knotted objects in dimension 3.

Forgetting the planarity assumption for the decorated 4-valent graphs gives
rise to the notion of virtual links, introduced from the diagram point of view by
Kauffman [19] and from the Gauss diagram point of view by Goussarov, Polyak,
and Viro [16]. In this virtual context, two forbidden local moves emerged, the
over- and under-commute moves. The welded theory, first introduced in the braid
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Figure 1 Classical local moves

context by Fenn, Rimányi, and Rourke [13], is defined by allowing one of them,
and the fused theory, already mentioned by Kauffman [18], by allowing both.

Welded knots and links provide a sensible extension of usual knot theory in the
sense that two classical links are equivalent as welded objects if and only if they
are classically equivalent. In 2000, Satoh provided another topological motivation
for welded knotted objects by generalizing a construction—given forty years ear-
lier, in the classical case, by Yajima [38]—that inflates diagrams into embedded
tori in 4-space which bound immersed solid tori with only ribbon singularities.
The resulting map, the so-called Tube map, is surjective, but its injectivity remains
an intriguing question: false for welded links [37; 2], true for welded braids [8],
and undetermined for welded string links.

In [3], the authors used the Tube map to classify ribbon tubes and ribbon 2-
torus links—which are a two–dimensional analogue of string links and links—up
to link-homotopy. Along the paper, several phenomena emerged:

(i) link-homotopy among ribbon objects is generated by the image through the
Tube map of a single local move, namely the self-virtualization (SV), and up
to this move, the Tube map is one-to-one;

(ii) as in the classical case, every welded string link is link-homotopic to a
welded braid, that is, the map from welded pure braids to welded string links
up to self-virtualization is surjective;

(iii) the given classification of welded string links up to self-virtualization is a
natural extension of the classification of classical string links up to link-
homotopy given by Habegger and Lin [17]. As such, it suggests that self-
virtualization is a natural welded extension of the classical self-crossing
change in the sense that the embedding of planar 4-valent graphs into gen-
eral 4-valent graphs induces an embedding of classical string links up to
self-crossing change into welded string links up to self-virtualization.

Point (ii) has been developed in [4]. Point (i) is raised at the end of the present
introduction, but the paper essentially pushes further the analysis of point (iii) by
discussing the welded extensions of the classical � and BP moves. In doing so,
we define several candidates for such extensions and compare them, carrying on
a work initiated in the classical case by Murakami and Nakanishi [27] and Aida
[1]. An unexpected outcome is that a given classical local move may admit several
distinct welded extensions (see e.g. Proposition 3.15). Specifically, we consider
in Figure 2 nonclassical local moves (see Section 2 for details).

We provide in Theorems 2.9 and 2.10 an ordering between the classical and
nonclassical local moves. Notice that these results hold for all types of welded
knotted objects. Moreover, in the case of links and string links, we provide a
complete classification under these moves, as stated further below.
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Figure 2 Nonclassical local moves

Recall that links up to � moves are classified by the linking numbers [27,
Thm. 1.1], whereas links up to BP are classified by the modulo 2 reduction of∑

1≤k �=i≤n lkik [27; 22]. The main results of this paper can be summarized as
follows.

Theorem 1.

• Welded links up to F are classified by the virtual linking numbers.
• Welded links up to VC are classified by the (vlkij + vlkji)’s.
• Welded links up to CC are classified by the (vlkij − vlkji)’s.
• Welded links up to wBP are classified by the vlkmod

i∗ s and the (vlkmod
ij +

vlkmod
ji )’s.

Here, the virtual linking number vlkij is the welded link invariant that counts,
with signs, the crossings where the ith component overpasses the j th component,
vlkmod

ij denotes its modulo 2 reduction, and vlkmod
i∗ denotes the modulo 2 reduction

of
∑

1≤k �=i≤n vlkik .
As a consequence, we obtain that VC, �, F, BP, and wBP are all unknotting

operations for welded knots, which recovers and extends a result recently proved
by Satoh [36] using a different approach. We actually show the stronger result that
these are all unknotting operations for welded long knots. Another consequence
is the following extension result.

Theorem 2.

• Links up to � embed into welded links up to F.
• Links up to VC embed into welded links up to F.
• Links up to BP embed into welded links up to wBP.

Note that the classification of welded links up to F has been independently proved
in [31] with a completely different and algebraic approach. This completes a pre-
vious result of Fish and Keyman [15, Thm. 2] (see also [7, Thm. 3.7] for a shorter
proof) stating that fused links with only classical crossings are classified by link-
ing numbers.

To prove these results, we provide algebraic classifications of all the considered
local moves for string links. For each of them, we give an explicit group isomor-
phism between the quotient space of (welded) string links and a power of Z or Z2.
Our main tool will be the theory of Gauss diagrams, mentioned earlier, which is
an even more combinatorial alternative to describe virtual diagrams. Whereas the
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virtual diagrams are a pleasant tool to picture local operations, Gauss diagrams
appear to be more efficient to handle global manipulations. In the present paper,
we adopt and use both points of view in parallel.

Let us conclude this introduction with a few comments returning back to topol-
ogy.

Murakami and Nakanishi [27] introduced a notion of link-homology, which can
be rephrased as the quotient where two elements are identified whenever the im-
age of each strand in the homology groups of the complement of the other strands
are the same. They noted that the classification of links up to � by the linking
numbers implies that the link-homology is generated by the � move or, equiva-
lently, that (string) links up to � describe (string) links up to link-homology. Sim-
ilarly, string links up to self-crossing changes were studied in [17] as the group
of string links up to link-homotopy, that is, the topological quotient where each
connected component is allowed to cross itself.

As already mentioned, welded (string) links also have a topological interpreta-
tion, via Satoh’s Tube map [35]. This topological interpretation is however partial
since the Tube map is surjective but not injective. Indeed, performing SR, a local
move depicted in Figure 7, on each classical crossing and reversing, the orienta-
tion on a given link diagram produces another diagram with same image through
Tube; see [37, Thm. 3.3] or [2, Prop. 2.7]. It is moreover still unknown whether
this move generates all the kernels of Tube for welded links.

In [3], the authors applied the Tube map to welded string links, producing rib-
bon tubes. It is shown in [3, Prop. 3.16] and [5] that SV generates link-homotopy
on ribbon tubes and that the Tube map is injective on the quotient, thus producing
a full topological interpretation for welded string links up to SV. Furthermore, the
virtual linking number vlkij corresponds to the evaluation of any longitude—that
is, any path from one boundary component to the other—of the j th tube in Z seen
as the first homology group of the complement of the ith tube. Since longitudes
are the only subspaces of a ribbon tube component that may have a nontrivial
image in the homology groups of the complement of the other components, it
follows from Proposition 3.6 that welded string links up to F describe faithfully
ribbon tubes up to (the natural extension of Murakami and Nakanishi’s notion of)
link-homology.

Let us mention here that the term “link-homology” is also used in the literature
as a synonym for bordance, which is a weakening of the concordance obtained by
allowing any cobordism. It appears within the framework of usual knot theory (see
[33; 34; 10] for a classification result), but also in the context of virtual knot theory
seen as links in thickened surfaces up to isotopy and (de)stabilization. Carter,
Kamada, and Saito [9] proved that virtual links up to virtual link-homology are
classified by virtual linking numbers. As a byproduct, we obtain that the two
forbidden moves generate virtual link-homology.

The paper is organized as follows. In Section 1, the central objects of the pa-
per, classical/welded string links and the notion of local move, are defined from
both the virtual and the Gauss diagrams points of view. In Section 2, we introduce
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all the considered local moves (see Figures 6 and 7) and study their interrelation-
ships. In Section 3, we use virtual linking numbers to provide a complete alge-
braic classification of welded string links up to each considered local move. These
algebraic identifications are then used to discuss welded extensions for classical
(self)-crossing changes, � and BP moves. Section 4 is built on the string link case
to address other kinds of knotted objects such as links and pure braids.

Glossary. Throughout the paper, the various local moves studied in this pa-
per will be denoted by the notation introduced in their defining figures. For the
reader’s convenience, we furthermore list these various acronyms, their meaning,
and the references to their definition:

Ri; i = 1,2,3 Reidemeister move i Figure 3
vRi; i = 1,2,3 virtual Reidemeister move i Figure 3
OC Overcommute move Figure 3
UC Undercommute move Proposition 2.5
CC Crossing Change Figures 1 and 6
SC Self-crossing Change Figures 1 and 6
� Delta move Figures 1 and 6
BP unoriented band-pass move Figures 1 and 6
V Virtualization move Figures 2 and 7
SV Self-virtualization move Figures 2 and 7
VC Virtual conjugation move Figures 2 and 7
SR Sign reversal move Figure 7
F Fused move Figures 2 and 7
wBP welded band-pass move Figures 2 and 7

We also note here, as a point of convention, that the same acronym will often
be used when referring to the equivalence relation on diagrams generated by the
corresponding local move.

1. Classical and Welded String Links

We first introduce, in two different but equivalent ways, the main objects of this
paper. All along the text, n will be a positive integer.

1.1. Virtual Diagrams

Fix n real numbers 0 < p1 < · · · < pn < 1.

Definition 1.1. A virtual string link diagram is an immersion of n oriented
intervals

⊔
i∈{1,...,n} Ii in I × I , called strands, such that

• for each i ∈ {1, . . . , n}, the strand Ii has boundary ∂Ii = {pi} × {0,1} and is
oriented from {pi} × {0} to {pi} × {1};

• the singular set is a finite number of transverse double points;
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• each double point is labeled, either as a positive crossing, as a negative crossing,
or as a virtual crossing. Positive and negative crossings are also called classical
crossings.

Strands are naturally ordered by the order of their endpoints on either I × {0} or
I × {1}.

A virtual string link diagram that has no virtual crossing is said to be classical.
Up to ambient isotopy and reparameterization, the set of virtual string link

diagrams is naturally endowed with a structure of monoid by the stacking product,
where the unit element is the trivial diagram

⋃
i∈{1,...,n}{pi} × I ; we denote this

monoid by vSLDn and its submonoid made of classical string link diagrams by
SLDn. We denote by ι : SLDn ↪→ vSLDn the natural injection.

Crossings where the two preimages belong to the same strand are called self-
crossings.

We will use the usual drawing convention for crossings:

Definition 1.2. A local move is a transformation that changes a diagram only
inside a disk. It is specified by the contents of the disk, before and after the move.
In our context, the contents will be pieces of strands, without any specified orien-
tation, which may classically and virtually cross themselves. If the disk does not
contain any virtual crossing neither before nor after the move, then we say that
the local move is classical.

To represent a local move, we will draw only the disk where the move occurs.
Examples are given in Figures 1 and 2.

Definition 1.3. A string link is an equivalence class of SLDn under the three
classical Reidemeister moves. We denote by SLn the set of string links; it is a
monoid with composition induced by the stacking product.

A welded string link is an equivalence class of vSLDn under the welded Rei-
demeister moves, which are the classical and the virtual Reidemeister moves, to-
gether with the mixed and overcommute (OC) moves given in Figure 3. We denote
by wSLn the set of welded string links; it is a monoid with composition induced
by the stacking product.

Elements of SL1 and wSL1 are also called, respectively, long knots and
welded long knots.

String-links can be seen as an intermediate object between braids and links. For
convenience, we give short definitions of these objects:

• Compared with string links and welded string links, pure braids and welded
pure braids are defined by requesting, in addition, that the immersed intervals
are monotone with respect to the second coordinate. Ambient isotopies are then
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Figure 3 Welded Reidemeister move

also requested to respect this monotony. The stacking product then induces
group structures, which we denote, respectively, by Pn and wPn.

• Links and welded links are defined by replacing in Definition 1.1 the disjoint
union of oriented intervals

⊔
i∈{1,...,n} Ii by a disjoint union of oriented circles

⊔
i∈{1,...,n} S1

i (ignoring the points pi ). Note that (welded) links are thus im-
plicitly equipped with an enumeration of its connected components. We denote
by Ln and wLn the sets of links and welded links. Elements of L1 and wL1 are
also called, respectively, knots and welded knots.

1.2. Gauss Diagrams

Welded string links can by definition be represented by virtual string link dia-
grams, which can, in turn, be alternatively described in terms of Gauss diagrams.

Definition 1.4. A Gauss diagram is defined over n ordered and oriented in-
tervals, called strands, as a finite set of triplets (t, h, σ ), called arrows, where t

and h, called respectively the tail and the head of the arrow, are elements of the
strands, and σ ∈ {±1} is a sign. Tails and heads, also called endpoints or ends, are
all distinct and considered up to orientation-preserving homeomorphisms of the
strands.

The strands are represented by parallel upward thick intervals arranged in in-
creasing order, and each arrow by an actual thin arrow, going from its tail to its
head, labeled by its sign.

Arrows having both ends on the same strand are called self-arrows.

See the right-hand side of Figure 4 for an example.
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Figure 4 A virtual diagram and the corresponding Gauss diagram

Figure 5 Welded Reidemeister moves on Gauss diagrams. There is a
sign condition for applying move R3, namely that εiδi = εj δj , where
δk = 1 if the the kth strand, read from left to right, is oriented upward
and −1 otherwise

Definition 1.5. A local move is a transformation that changes arrows only on a
given finite union of portions of strands. It is specified by the portions with their
arrows, before and after the move, and it is assumed that no other arrow has an
endpoint on these portions.

To represent a local move, we will draw only the portions where the move oc-
curs by parallel thick intervals, without any specified orientation or ordering. The
reader should be aware that when the local move is applied to a given Gauss dia-
gram, the portions should be reordered—and even possibly put one above others if
they are part of a same strand—and possibly reversed to get upward; (s)he should
also keep in mind that there is a nonrepresented part, which is identical on each
side of the move, but that no arrow can connect the nonrepresented part to the
represented one. Examples are given in Figure 5 and on the right-hand sides of
Figures 6 and 7.

There is a one-to-one correspondence between Gauss diagrams up to ambi-
ent isotopy and virtual diagrams up to virtual Reidemeister and mixed moves. It
associates a Gauss diagram with any virtual diagram so that the set of positive
and negative crossings in the virtual diagram are in one-to-one correspondence
with, respectively, the set of +1-labeled and −1-labeled arrows in the Gauss dia-
gram. This procedure is, for example, described in [3, Sec. 4.5] and is illustrated
in Figure 4. Local moves on virtual diagrams have Gauss diagrams counterparts.
Figure 5 gives the Gauss diagram versions of the classical Reidemeister moves.
Note that the Gauss diagram counterparts of the virtual Reidemeister and mixed
moves are actually trivial since they do not affect any classical crossing. Through-
out the paper, we will use indifferently one or the other description.

This correspondence yields a faithful representation of welded string links by
Gauss diagrams up to the welded Reidemeister moves depicted in Figure 5.

Welded pure braids and welded links also enjoy Gauss diagram descriptions:
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Figure 6 Classical local moves. The Gauss diagram version of move
�, resp. of BP, is subject to the condition εiδi = εj δj , resp. εij εkl =
δiδj δkδl , where δk = 1 if the kth strand, read from left to right, is
oriented upward and −1 otherwise

• welded pure braids are faithfully represented, up to the welded Reidemeister
moves, by Gauss diagrams with only horizontal arrows. This result, usually
considered as folklore (see, e.g., [6]), is a consequence of a similar result on
virtual braids [11, Prop. 2.24] (see [12] for a complete proof in the welded
case);

• replacing intervals by oriented circles in Definition 1.4, we obtain a tool that,
up to welded Reidemeister moves, faithfully represents welded links. Gauss
diagrams were actually first defined over a single circle to describe knots; see,
for instance, [16] or [14].

2. Local Moves and Their Relations

In this section, we introduce several local moves and study their interrelationships.

2.1. Local Moves

In Figures 6 and 7, we introduce the different local moves that we will study in
detail. We first consider the classical local moves, which were already presented
in Figure 1.

The crossing change CC is certainly the simplest and most natural local
move in classical knot theory. Its refinement SC requires the additional self-
connectedness condition that the two involved pieces of strand belong to the
same strand. Note that, although the modification remains local, checking that
the pieces are connected is not. This latter move was introduced by Milnor [25]
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Figure 7 Nonclassical local moves

as a generating move for link-homotopy and further studied by Habegger and Lin
[17].

The � move was introduced by Murakami and Nakanishi [27] and Matveev
[23] as a local and combinatorial incarnation of the link-homology quotient of
links. There exists another representation of this move, given by its mirror image,
which is easily checked to be equivalent; see [27, Fig. 1.1(c)]. Similar observa-
tions hold for each of the local moves introduced in the rest of the paper, and
we only give one formulation and freely use equivalent versions, leaving as an
exercise to the reader to check that they are indeed equivalent.

The BP move is the unoriented counterpart of the band-pass move, introduced
by Murakami [26] as an alternative unknotting operation for knots.

Let us now turn to nonclassical local moves.
The virtualization move V and its self-connected refinement SV simply replace

a classical crossing and self-crossing by a virtual one or vice-versa. It is fairly
obvious that V is an unknotting operation for welded knotted objects.

The virtual conjugation move VC is best known in the literature—where it is
usually refered to as the virtualization move—under the form given in Figure 2. In
this paper, it is convenient to use the equivalent reformulation given in Figure 7.

The sign reversal move SR is a composition of the VC and CC moves.
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From the Gauss diagram point of view, the moves V, SV, VC, and SR are the
simplest and most natural local moves, since they all involve a single arrow, which
is modified by, respectively, being removed/added, having its orientation reversed
or having its sign reversed.

Note that the overcommute move OC of Figure 3 can be interpreted as allowing
adjacent tails to cross one another. Similarly, move F can be seen as a commuta-
tion between a tail and an adjacent head. Furthermore, as we will see later, this
move is equivalent, up to OC, to the undercommute move UC, so that it actu-
ally allows any pair of adjacent endpoints to commute. In other words, F defines
the fused quotient of welded objects, introduced by Kauffman and Lambropoulou
[20; 21].

The move wBP can be seen as a welded analogue of the classical BP move.
Note that its Gauss diagram incarnation should require some sign restrictions, but
as we will prove in a diagrammatical way that SR can be realized using wBP, they
can be released.

Remark 2.1. The wBP move may appear asymmetric—and thus unnatural—to
the reader but turns out to be the simplest candidate for a welded analogue of the
BP move in the sense of Theorem 2.9 and Proposition 3.17. As a matter of fact,
we can consider the following more symmetric version:

One can show that it is in fact equivalent to wBP; in practice, however, such a
symmetrized version of wBP is less convenient, since it involves more crossings.

To conclude this section, we introduce some generic notation.

Notation 2.2. For any local move μ, we denote by wSLμ
n the quotient of wSLn

under the move μ.
If μ is classical, then we furthermore denote by SLμ

n the quotient of SLn under
the move μ.

We will use similar notation for classical and welded pure braids and links.

2.2. Relation Between Local Moves

Definition 2.3. Let M1 and M2 be two local moves.
We say that M2 w-generates M1 if M1 can be realized using M2 and welded

Reidemeister moves. We denote it by M2
w⇒ M1. If M2

w⇒ M1 and M1
w⇒ M2,

then we say that M1 and M2 are w-equivalent.
If M1 and M2 are classical, then we say that M2 c-generates M1 if M1 can be

realized using M2 and classical Reidemeister moves. We denote this by M2
c⇒

M1. If M2
c⇒ M1 and M1

c⇒ M2, then we say that M1 and M2 are c-equivalent.
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Remark 2.4. The inclusion ι : SLDn ↪→ vSLDn induces a well-defined map
ι∗ : SLMc

n −→ wSLMw
n whenever Mw

w⇒ Mc with Mc a classical local move.
However, the induced map is, in general, not injective. This will be one of the
main motivations for Definition 3.12.

Proposition 2.5. Move F is w-equivalent to the following undercommute move

Proof. From the Gauss diagram point of view, F can be realized as

Note that the restrictions on signs requested to perform the R3 move can be ful-
filled since we are free to choose the value of γ and free to choose the orientation
of the piece of strand that supports the tail of the ε-labeled arrow.

Conversely, UC can be similarly realized using F. �

It follows, in particular, that wSLF
n is actually the fused quotient studied in [20;

21], where both “forbidden moves” are allowed. From the Gauss diagram point
of view, it has also the following consequence.

Corollary 2.6. Up to F, two arrow ends that are consecutive on a strand can
be exchanged. Consequently, for Gauss diagram representatives of elements in
wSLF

n , ends of arrows can be moved freely along a strand, so that the only rele-
vant informations are the strands it starts from and goes to.

Proposition 2.7. Both VC and CC w-generate F.

Proof. From the Gauss diagram point of view, F can be realized as

�

Proposition 2.8. The move wBP w-generates SR.

Proof. From the virtual diagram point of view, SR can be realized as

�

Now we state the first theorem of this section, which emphasizes the parallel
between the classical and welded realms.
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Theorem 2.9. The following diagram holds:

CC c⇒

w⇒

BP c⇒

w⇒

� c⇒

w⇒

SC

w⇒

V w⇒ wBP w⇒ F w⇒ SV

Proof. The upper line gathers classical known facts:

• CC
c⇒ BP is obvious;

• �
c⇒ SC is a classical fact, proved in [27, Lemma 1.1];

• BP
c⇒ � is proved by combining [30, Prop. 1] and [1, Lemma 2]; more pre-

cisely, Lemma 2 of [1] shows (when ignoring orientations) that BP w-generates
the following local move:

whereas [30, Prop. 1(5)] shows that this local move w-generates �.

The statements SV
w⇒ SC, V

w⇒ CC, and V
w⇒ wBP are direct consequences

of the fact that virtualization V and SV moves allow us to remove any arrow and
reinsert it with reversed sign.

Since BP and wBP differ by one application of SR, the statement wBP
w⇒ BP

is a corollary of Proposition 2.8.
From the Gauss diagram point of view, � modifies the relative positions of

three arrows. It follows hence from Corollary 2.6 that F
w⇒ �. For the same rea-

son, F
w⇒ SV since both ends of a self-arrow can be made adjacent and the self-

arrow removed using R1.
To prove the last statement wBP

w⇒ F, we first note that wBP w-generates the
4-move:1

Indeed, we have the following, which can be seen as a welded analogue of [26,
Fig. 8]:

The sequence

1It is still an open problem, known as the 4-move conjecture and first posed by Nakanishi [29], whether
this move is an unknotting operation on classical knots.
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hence proves that wBP w-generates the following move:

The following sequence, together with Proposition 2.5, then concludes the proof:

�

Note that if the statement M2
c⇒ M1, for some classical local moves M1 and M2,

is proved by realizing locally M1 using M2, then it automatically follows that
M2

w⇒ M1. For instance, it follows directly from the proofs in the classical case
that CC

w⇒ BP
w⇒ �. On the contrary, the proof that �

c⇒ SC is not local, and
promoting it to the welded realm requires some attention.

Theorem 2.10. The following relations hold: CC
w⇒ BP

w⇒ �
w⇒ SC.

Proof. As already noted, only the relation �
w⇒ SC needs to be proved. We adopt

the Gauss diagram point of view. Let a be a self-arrow on which we want to
realize a crossing change. We proceed by induction on the width of a, which is
defined as the number of heads located on the portion of strand between the two
endpoints of a.

If a has width zero, then there is no head between the endpoints of a, and the
crossing change can be realized as

Now, we assume that a has width d ∈N
∗ and that the statement is proved for self-

arrows having width smaller than d . We call an interior arrow any self-arrow that
has both endpoints located in the portion of strand between the endpoints of a.
There are two cases.

There is an interior arrow b: then we proceed in three steps.

Step 1: Remove b by pushing its tail next to its head as follows. Tails can be
crossed using OC. Heads from non interior arrows can be crossed using the
sequence
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Figure 8 Correspondence between sign restrictions

The restrictions on signs requested to perform the � move can be fulfilled
since we are free to choose the signs of the arrows created with the R2
move and free to choose the orientation of the piece of strand that supports
the tail of the non interior arrow. Heads from interior arrows can be crossed
by using the induction hypothesis, which allows us to turn them into tails
using self-crossing changes; an interior arrow has indeed a strictly smaller
width than a. The arrow b can now be removed using R1.

Step 2: Since none of the operations of Step 1 has increased the number of
head between its endpoints, a has now width d − 1, and the induction hy-
pothesis can be used to perform a self-crossing change on it.

Step 3: The arrow b can be placed back by performing Step 1 backward.

There is no interior arrow: then we also proceed in three steps.

Step 1: Push the tail of a toward its head until it has crossed one head. In
doing so, the tail of a first crosses a number of tails (of noninterior arrows),
and we request that these are not crossed using OC but using the sequence

The restrictions on signs requested to perform the R3 move can be fulfilled
since we are free to choose the signs of the arrows created with the R2
move and free to choose the orientation of the piece of strand that supports
the head of the non interior arrow. Finally, the first head met by the tail of a

is crossed using the sequence given in Step 1 of the previous case.
Step 2: Since none of the operations of Step 1 has increased the number of

head between its endpoints, a has now width d − 1, and the induction hy-
pothesis can be used to perform a self-crossing change on it.

Step 3: The tail of a can now be pushed back to its initial position by perform-
ing Step 1 backward. It is indeed illustrated in Figure 8 that the � and R3
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moves performed in Step 1 and the corresponding move performed in this
final step have sign restrictions that are simultaneously satisfied.2 Some ran-
dom orientations have been chosen for the strands in Figure 8, but changing
it would merely add a sign on both sides. �

As observed in [4, Lemma 4.4], SC is an unknotting operation on wSL1. Indeed,
by SC and OC moves, any Gauss diagram of a long knot can be turned into a
diagram where all arrows have adjacent endpoints, which is clearly trivial by R1.
It follows that Theorem 2.10 and Proposition 2.7 have the following corollary.

Corollary 2.11. Moves �, BP, F, VC, and wBP are all unknotting operations
on welded long knots and hence on welded knots.

Remark 2.12. The statement of Corollary 2.11 on welded knots has been also
recently proved in a different way by Satoh [36].

A consequence of Corollary 2.11 is that, on one strand, that is, for welded long
knots, all the local moves considered in Theorem 2.9 are w-equivalent. In the
next section, we provide classification results, which point out that, except in a
few cases (see, e.g., Corollary 3.10), this is no longer true on more strands. How-
ever, wSL�

n is not considered there, and since it provides another example of
w-equivalence on two strands, we address it now.

Proposition 2.13. On two strands, � and SC are w-equivalent, that is, we have
wSL�

2 = wSLSC
2 .

Proof. It has been proved in Theorem 2.10 that �
w⇒ SC. Conversely, any �

move involves at least two pieces of strand that belong to the same strand. By
performing a self-crossing change on the corresponding crossing before and after,
any � move can then be replaced by an R3. �

Remark 2.14. On three strands and more, the Milnor invariants μw
i1i2i3

defined in
[3, Sec. 5.2]—which are also described, in terms of Gauss diagram formula, as

〈 + − ,−〉, using the notation from [4, Sec. 3.2]—detects any �

move but is invariant under SC.
Note also that, even on two strands, wSLF

2 is a proper quotient of wSL�
2 since

the elements

and

are equal in the former but not in the latter. Indeed, the invariant Q2, defined in
the proof of [4, Lemma 4.10] as the invariant for welded string links up to SC

2This can also be trivially checked from the virtual diagram point of view.
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Figure 9 Summary of the classification and extension results

given by 〈 − + − + − ,−〉, is also invariant under �: if a
� move involves three distinct strands, only one of the three arrows affected by
this move can be involved in the computation of Q2, so that the value of Q2 is
the same before and after the move; if a � move involves only one or two distinct
strands, then, as noticed in the proof of Proposition 2.13, it can be replaced by two
SC and one R3 moves. The invariant Q2 is hence well defined on wSL�

2 , and it
is directly computed that Q2(S) = −1 whereas Q2(S

′) = 0.

3. Classifying Invariants

In this section, we classify string link diagrams modulo the main local moves
studied before, and as a corollary, we discuss how some classical local moves can
be extended to the welded case. A global description of the results is given in
Figure 9.

3.1. Classifications

Definition 3.1. Let μ be a local move, and let φ : vSLDn −→ A, for some
monoid A, be a morphism of monoids.

We say that φ w-classifies μ if φ is invariant under μ and the welded Reide-
meister moves and that the induced map φ∗ : wSLμ

n −→ A is an isomorphism.
If μ is classical, then we say that φ c-classifies μ if φ is invariant under μ and

the classical Reidemeister moves and if the induced map φ∗ : SLμ
n −→ A is an

isomorphism.

Now, we define a few welded invariants that will classify the moves introduced in
the previous section.
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Definition 3.2. For every i �= j ∈ {1, . . . , n}, we define the virtual linking num-
ber vlkij : vSLD −→ Z as the map that counts, with signs, the crossings where
the ith component passes over the j th component. From the Gauss diagram point
of view, it simply counts the signs of all the arrows going from the ith to j th
strands.

The following lemma is considered as folklore. The first part is clear from the
Gauss diagram point of view, and the second part can be proved using the virtual
diagram point of view.

Lemma 3.3. For every i �= j ∈ {1, . . . , n}, vlkij is invariant under welded Reide-
meister moves, and if D ∈ SLDn is a classical diagram, then vlkij (D) = vlkji(D).

Notation 3.4. For every i �= j ∈ {1, . . . , n}, we set

• the linking number lkij : SLDn −→ Z as the restriction to classical diagrams of
either (and equivalently) vlkij , vlkji , or 1

2 (vlkij + vlkji);
• vlki∗ := ∑

1≤k≤n
k �=i

vlkik and lki∗ := ∑
1≤k≤n

k �=i

lkik ;

• vlkmod
ij , vlkmod

i∗ , lkmod
ij , and lkmod

i∗ as the modulo 2 reduction of vlkij , vlki∗, lkij ,
and lki∗, respectively.

Linking and virtual linking numbers can be similarly defined for classical or
welded pure braids and links.

Habegger and Lin [17] defined a map ϕHL : SLDn −→ Aut0C(RFn), which was
extended into a map ϕw

HL : vSLDn −→ AutC(RFn) in [3], in the sense that ϕw ◦
ι = ϕ. Here, RFn denotes the largest quotient of the free group over x1, . . . , xn

such that each xi commutes with all its conjugates, AutC(RFn) is the group of
automorphisms of RFn mapping each xi to a conjugate of itself, and Aut0C(RFn)

is the subgroup of such automorphisms fixing x1 · · ·xn.
The following classification results are known.

Proposition 3.5. In the classical case:

• [27, Thm. 1.1]3 The map (lkij )1≤i<j≤n : SLDn −→ Z
(n(n−1))/2 c-classifies �.

• [22, Thm. 11.6.7] and [27, Thm. A.2]3 The map (lkmod
i∗ )1≤i≤n−1 : SLDn −→

Z
n−1
2 c-classifies BP.

• [17, Thm. 1.7] The map ϕHL : SLDn −→ Aut0C(RFn) c-classifies SC.

In the welded case:

• [3, Thm. 2.34] The map ϕw
HL : vSLDn −→ AutC(RFn) w-classifies SV.

We now provide new classification results. To this end, we use the Gauss diagram
point of view and define, for every k ∈ N, ε ∈ {±1} and i �= j ∈ {1, . . . , n}, Gεk

i,j

as the Gauss diagram that has only k horizontal ε–labeled arrows from strand i

to j .

3In the given references, the statements are for links rather than string links, but as discussed in Sec-
tion 4.1, up to � or BP, these notions are the same.
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Proposition 3.6. The map (vlkij )1�=i<j≤n : vSLDn −→ Z
n(n−1) w-classifies F.

Proof. It essentially follows from Corollary 2.6 that virtual linking numbers are
invariant under F.

It can be noted that Gεk
i,j satisfies vlki,j (G

εk
i,j ) = εk and vlkp,q(Gεk

i,j ) = 0 for
(p, q) �= (i, j). By stacking such Gauss diagrams in lexicographical order of i �=
j ∈ {1, . . . , n} we obtain normal forms realizing any configuration of the virtual
linking numbers.

Now, given a Gauss diagram, all self-arrows can be removed using F and
welded Reidemeister moves since F

w⇒ SC, and then, using Corollary 2.6, arrow
ends can be reorganized in order to obtain one of the normal forms. �

Proposition 3.7. The map (vlkij + vlkji)1≤i<j≤n : vSLDn −→ Z
(n(n−1))/2 w-

classifies VC.

Proof. Performing VC on a self-arrow does not affect any vlkij + vlkji . Perform-
ing it on an arrow between strands i and j adds ±1 to vlkij , whereas it adds ∓1
to vlkji ; the sum vlkij + vlkji hence remains invariant.

The surjectivity of the induced map is achieved by considering the same nor-
mal forms as in the proof of Proposition 3.6, but restricted to Gεk

i,j with i < j .
Given a Gauss diagram, all vlkij with i > j can be made to vanish by creating

sufficiently many arrows from the ith to j th strand using R2 moves and perform-
ing VC on them. Then by Proposition 3.6 there is a sequence of F and welded
Reidemeister moves to one of the normal forms considered, and this concludes
the proof since VC

w⇒ F. �

Proposition 3.8. The map (vlkij − vlkji)1≤i<j≤n : vSLDn −→ Z
(n(n−1))/2 w-

classifies CC.

Proof. The proof is totally similar to that of Proposition 3.7. �

Proposition 3.9. The map (vlkmod
ij + vlkmod

ji )1≤i<j≤n ⊕ (vlkmod
i∗ )1≤i≤n−1 :

vSLDn −→ Z
(n(n−1))/2
2 ⊕Z

n−1
2 = Z

((n+2)(n−1))/2
2 w-classifies wBP.

Proof. A move wBP is a combination of CC and VC. As such, it modifies vlkij +
vlkji by a multiple of 2. Moreover, a move wBP changes the number of non-self-
arrows with the tail on a given strand by 0 or 2: this is clear if none of the four
involved pieces of strands are connected, and it can be case-by-case checked in
the other situations. As a consequence, vlki∗ is also modified by a multiple of 2.
In conclusion, the invariant is indeed invariant under wBP.

The surjectivity of the induced map is achieved by stacking (in any order)
elements of the form G+1

i,j as follows: fix an element in Z
((n+2)(n−1))/2
2 , seen as

some (vlkmod
ij +vlkmod

ji )1≤i<j≤n ⊕ (vlkmod
i∗ )1≤i≤n−1; start from the Gauss diagram

with no arrow and, for each i < j ∈ {1, . . . , n}, add one G+1
i,j whenever vlkmod

ij +
vlkmod

ji ≡ 1; next, for each i ∈ {1, . . . , n − 1}, add G+1
i,n and G+1

n,i if vlki∗(G) �=
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vlki∗ and do nothing otherwise. The resulting Gauss diagram is the requested
preimage.

The injectivity of the induced map is proved by induction on n. For n = 1, the
result follows from Corollary 2.11. Now assume that n > 1 and that the result is
true on n− 1 strands. It was shown in [3, Thm. 4.12] that every welded string link
is related to a welded braid by welded Reidemeister and SV moves. Since every
welded braid has an inverse and since wBP

w⇒ SV, it follows that wSLwBP
n is a

group, and it is thus sufficient to prove that the kernel of the induced map is trivial.
Consider hence a Gauss diagram G that is in the kernel. In the following, we will
apply some welded Reidemeister and wBP moves on G, but by abuse of notation,
we will keep denoting it by G. First, we can modify G so that each vlkij (G)

is either 0 or 1. Indeed, this is easily achieved using the SR move, and wBP
w-generates SR by Proposition 2.8. Next, we show how to reduce all vlk1i (G)

and vlki1(G) to 0. If vlk1i (G) is 1 for some i �= 1, then there is j �= 1, i such
that vlk1j (G) = 1, since otherwise vlkmod

1∗ (G) would be 1; moreover, we have
that vlki1(G) is also 1, since otherwise vlkmod

1i (G) + vlkmod
i1 (G) would be 1, and

likewise we have vlkj1(G) = 1. Then perform locally the following sequence
anywhere on G (there, the indices at the bottom correspond to the labels of the
strands to which the different pieces belong):

As a result, we have that vlk1i (G) = vlki1(G) = vlk1j (G) = vlkj1(G) = 0. Re-
peat this operation until all vlk1i (G) and vlki1(G) are 0, as desired. Using the
normal form given in the proof of Proposition 3.6, there is a sequence of welded
Reidemeister and F moves transforming G into a Gauss diagram with no arrow
touching the first strand. Since wBP

w⇒ F, this sequence can be traded for a se-
quence of welded Reidemeister and wBP moves. By forgetting the first strand we
obtain a welded string link on n − 1 strands that is in the kernel of the induced
map. By induction hypothesis, G is hence trivial in wSLwBP

n . �

Classification results may be used to prove w-equivalence between local moves.

Corollary 3.10. On two strands, SV and F are w-equivalent, but for n ≥ 3,
wSLF

n is a proper quotient of wSLSV
n .

Proof. The local move F is w-classified by virtual linking numbers, that is, wSLF
n

is isomorphic to Z
n(n−1). On the other hand, wSLSV

n is isomorphic to AutC(RFn).
For n = 2, it is easily seen that any element of AutC(RF2) can be written as ϕn1,n2

for some integers n1, n2 ∈ N, where ϕn1,n2(x1) = x
n1
2 x1x

−n1
2 and ϕn1,n2(x2) =
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x
n2
1 x2x

−n2
1 , and that ϕn1,n2ϕn3,n4 = ϕn1+n3,n2+n4 . This implies that AutC(RF2) is

isomorphic Z
2, whereas AutC(RFn) is not abelian for n > 2. �

Remark 3.11. The fact that, on two strands, SV
w⇒ F can also be seen as a corol-

lary of [3, Prop. 4.11].

3.2. Welded Extensions

Definition 3.12. Let Mc and Mw be two local moves such that Mc is classical
and Mw

w⇒ Mc . We say that Mw extends Mc if the map ι∗ : SLMc
n −→ wSLMw

n

induced by the inclusion ι : SLDn ↪→ vSLDn is injective.

This definition is motivated by the following direct consequence.

Lemma 3.13. Let Mc and Mw be two local moves such that Mc is classical and
Mw extends Mc . If two classical diagrams are connected by a sequence of Mw

and welded Reidemeister moves, then they are connected by a sequence of Mc

and classical Reidemeister moves.

Now, we can use the classification results of the previous section to obtain some
extension results. In each case, it is sufficient to check that the target of the c-
classifying map can be identified with a subset of the target of the w-classifying
map and that, with this identification, the c-classifying map is in fact the compo-
sition of the w-classifying map with the injection ι : SLDn ↪→ vSLDn.

Proposition 3.14 ([4, Thm. 4.3]). The move SV extends SC.

Proposition 3.15. Both F and VC extend �.

This proposition, as well as Proposition 3.16, illustrates how a given classical
local move can be extended in several different ways.

Proof of Proposition 3.15. To prove that F extends �, we use Propositions 3.5
and 3.6 and identify Z

(n(n−1))/2 with the subset of Zn(n−1) made of elements such
that the ij and ji-summands are equal for every i �= j ∈ {1, . . . , n}. The linking
number lkij is then seen as simultaneously equal to vlkij and vlkji .

Similarly, to prove that VC extends � using Propositions 3.5 and 3.7, we
identify Z

(n(n−1))/2 with the subset 2Z(n(n−1))/2 of even-valued elements in
Z

(n(n−1))/2. The linking number lkij should then rather be interpreted as 1
2 (vlkij +

vlkji). �

Proposition 3.16. Both V and CC extend CC.

Proof. In both situations, there is no ambiguity on how 0 is identified as a subset
of 0 or of Z(n(n−1))/2. In the latter case, the result follows from the fact that vlkij =
vlkji on classical diagrams, so that vlkij − vlkji vanishes. �

Proposition 3.17. The local move wBP extends BP.
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Proof. To prove the statement, Zn−1
2 should be identified with the n − 1 last

(vlkmod
i∗ )-summands of Z((n+2)(n−1))/2

2 , the other being identically equal to 0. �

4. Braids and Links

We now investigate how the results given so far for string links can be transported
to the more familiar context of braids and (possibly unordered) links. In particular,
we prove the results stated in the Introduction.

4.1. Welded Links

Most of the results stated for classical and welded string links in this paper extend
to the case of welded links. In particular, it can be noted that none of the proofs
given in Section 2.2 uses the fact that we are dealing with intervals rather than with
circles. It follows that all generation and equivalence results stated there hold the
same for classical and welded links.

4.1.1. From String Links to Links. There is a natural way to associate a welded
link with a welded string link, incarnated by the closure map Cl : wSLn −→ wLn,
which is defined, using the Gauss diagram point of view, by identifying pairwise
the endpoints of each strand while keeping the order on the resulting circles. This
map restricts to a well-defined map Cl : SLn −→ Ln. Cutting circles into inter-
vals produces preimages, showing that these maps are surjective. However, this
procedure does not provide a well-defined inverse for the closure map since it
strongly depends on an arbitrary choice of cutting points; and, indeed, except for
Cl : SL1 −→ L1, the closure maps are not injective. A noteworthy consequence
of Corollary 2.6 is that, up to F moves, and consequently up to most local moves
considered in this paper, the procedure does provide a well-defined inverse, prov-
ing that the quotiented notions of welded string links and welded links coincide.

Proposition 4.1. The closure map induces one-to-one correspondences between
wSLμ

n and wLμ
n for μ = F, CC, VC, or wBP.

Proof. It is sufficient to prove that, up to welded Reidemeister and the considered
local moves, the opening procedure described above does not depend on the cho-
sen cutting points. The resulting map Op : wLμ

n −→ wSLμ
n would then clearly

satisfy Op ◦ Cl = IdwSLμ
n

and Cl ◦ Op = IdwLμ
n

. To prove such an independence,
it is sufficient, on the link side seen from the Gauss diagram point of view, to
show that a cutting point can cross an arrow endpoint. On the string link side, it
corresponds to moving the endpoint from one extremity of the strand to the other.
Because of Corollary 2.6, this can be done freely using F or any other local move
that w-generates F. �

Combined with the extension results given in the previous section, Proposition 4.1
induces similar statements for classical objects.
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Proposition 4.2. The closure map induces one-to-one correspondences between
SLμ

n and Lμ
n for μ = � or BP.

Proof. Let D1 and D2 be two classical string link diagrams that have, through
the closure map, the same image in L�

n and hence in wLF
n since F

w⇒ �. By
Proposition 4.1 they are connected by a sequence of welded Reidemeister and F
moves. However, by Proposition 3.15 and Lemma 3.13 they are hence connected
by classical Reidemeister and � moves and thus represent the same element of
SL�

n .
The statement for BP is proved similarly. �

This statement can be independently proved using the fact that linking numbers
simultaneously classify links [27, Thm. 1.1] and string links [24, Thm. 4.6] up
to �.

It follows from Propositions 4.1 and 4.2 that most classification and extension
results given in Section 3 hold the same for classical and welded links, as stated
in Theorems 1 and 2.

4.1.2. Unordered Links. There is an obvious action of the symmetric group Sn

on classical and welded links, which simply permutes the order on the compo-
nents. Classical and welded unordered links are the natural quotients under this
action. For each classification given in Theorem 1, an action of Sn can be defined
on the target space, so that it results in a classification for the considered local
move for unordered (welded) links. For instance, the target space of the classifi-
cation of welded links up to F is Z

n(n−1) ∼= Z
{(i,j)|1≤i �=j≤n}. For all σ ∈ Sn and

(aij )1≤i �=j≤n ∈ Z
n(n−1), we can set σ · (aij )1≤i �=j≤n := (aσ(i)σ (j))1≤i �=j≤n; un-

ordered welded links up to F are then classified by the symmetrized virtual linking
numbers vlkij : vSLDn −→ Z

n(n−1)/Sn. More generally, we have the following:

Proposition 4.3.

• Unordered links up to � are classified by the symmetrized linking numbers.
• Unordered links up to BP are classified by the symmetrized lkmod

i∗ s.
• Unordered welded links up to F are classified by the symmetrized virtual linking

numbers.
• Unordered welded links up to VC are classified by the symmetrized (vlkij +

vlkji)s.
• Unordered welded links up to CC are classified by the symmetrized (vlkij −

vlkji)s.
• Unordered welded links up to wBP are classified by the symmetrized vlkmod

i∗ ’s
and (vlkmod

ij + vlkmod
ji )s.

The target spaces of the classifications are, in general, not particularly nicely de-
scribed. A notable exception is the case of classical links up to BP, which reduces
to the number of i such that lkmod

i∗ is 1; see [22, Thm. 11.6.7] and [27, Thm. A.2].
These classifications can, in turn, be used to show extension results, that is, we

have a strict analogue of Theorem 2 in the unordered case.
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4.2. Welded Braids

It is well known that pure braids embed in string links (it was actually noticed by
Artin; see, for instance, Chapter 6, Proposition 1.1 of [28] for a complete proof)
and, similarly, welded pure braid embed in welded string links ([3, Rk 3.7]). How-
ever, this embedding is not, in general, preserved when we add other local moves.
For instance, elements of wPF

n, called unrestricted pure virtual braids in [7], do
not embed in wSLF

n. Indeed, in [7, Thm. 2.7], wPF
n is proved to be non-abelian,

whereas wSLF
n is; it follows that there are adjacent endpoints of arrows that do

not commute. This difference lies in the fact that, in the proof of Proposition 2.5,
we allowed for the introduction of nonhorizontal arrows and, in particular, self-
arrows. Indeed, in the sequence proving Proposition 2.5, the first and third strands
may be part of the same component if the two initial arrows have endpoints on the
same two strands. In this case, the R2 move creates two self-arrows.

In another direction, we may wonder if a given local move is strong enough
to make surjective the natural map from (welded) pure braids to (welded) string
links. In the classical case, the following is known.

Proposition 4.4. [17, p. 399] The natural embedding of Pn in SLn induces an
isomorphism between PSC

n and SLSC
n .

Note here that, since SC requires the presence of a self-crossing, which a pure
braid cannot contain, it should be understood in the statement that Pn stands for
its embedding in SLn. The same holds for the SV move in the welded settings,
addressed in the next result.

Proposition 4.5. The natural embedding of wPn in wSL induces:

• an isomorphism between wPSV
n and wSLSV

n ;
• an isomorphism between wPCC

n and wSLCC
n .

Proof. The first statement was proved in [3, Thm. 3.11]. The second follows from
the fact that the quotient of wPn by CC is isomorphic to the flat welded pure
braid group, introduced in [7, Sec. 5.2], which is isomorphic to Z

(n(n−1))/2; more-
over, a straightforward verification shows that this isomorphism is realized by the
(vlkij − vlkji)’s. The statement follows then from the classification of wSLCC

n

given in Proposition 3.8. �

On the other hand, it is known that wPSC
n does not coincide with wSLSC

n [4,
Lemma 4.8]. It seems interesting to analyze the case of other local moves, but
for this we should consider their oriented versions to have the right analogue for
welded pure braids.
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