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Manifolds Which Admit Maps with Finitely Many
Critical Points Into Spheres of Small Dimensions

Louis Funar & Cornel Pintea

Abstract. We construct, for m ≥ 6 and 2n ≤ m, closed manifolds
Mm with finite nonzero ϕ(Mm,Sn), where ϕ(M,N) denotes the min-
imum number of critical points of a smooth map M → N . We also
give some explicit families of examples for even m ≥ 6 and n = 3,
taking advantage of the Lie group structure on S3. Moreover, there
are infinitely many such examples with ϕ(Mm,Sn) = 1. Eventually,
we compute the signature of the manifolds M2n occurring for even n.

1. Motivation

We set ϕ(M,N) for the minimum number of critical points of a smooth map
M → N between compact manifolds, which extends the F-category defined and
studied by Takens [24]. Following the work of Farber (see [7; 8]), we have:

ϕ(M,S1) =

⎧⎪⎨⎪⎩
ϕ(M,R) if H 1(M,Z) = 0,

0 if Mfibers over S1,

1 otherwise.

(1)

More precisely, for any nonzero class ξ in H 1(M,Z), there exists a function
f : M → S1 in the homotopy type prescribed by ξ with at most one critical
point. This was extended in [8] to closed 1-forms in a prescribed nonzero class
in H 1(M,R) having at most one zero. The question on whether there is a closed
nonsingular 1-form (i.e., a fibration over S1 for integral classes) was answered
by Thurston [25] in dimension 3 and Latour [17] for dim(M) ≥ 6. Notice that
ϕ(M,R) ≤ dimM + 1 (see [24]).

The aim of this paper is to show that there are examples of manifolds Mm

with nontrivial (i.e., finite nonzero) ϕ(Mm,S[m/2]−k), for m ≥ 6, m ≥ 2k ≥ 0,
where, when present, the superscripts denote the dimensions of the corresponding
manifolds, and to describe how to construct all of them for (m,n) = (6,3).

Recall that in [1] the authors found that ϕ(Mm,Nn) ∈ {0,1,∞} when
0 ≤ m − n ≤ 2, except for the exceptional pairs of dimensions (m,n) ∈
{(2,2), (4,3), (4,2)}. Further, if m − n = 3 and there exists a smooth func-
tion Mm → Nn with finitely many critical points, all of them cone-like, then
ϕ(Mm,Nn) ∈ {0,1} except for the exceptional pairs of dimensions (m,n) ∈
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{(5,2), (6,3), (8,5)}. On the other hand, in [11] the authors provided many non-
trivial examples and showed that ϕ(Mm,Sn) can take arbitrarily large even values
for m = 2n−2, n ∈ {3,5,9}; these examples were classified in [10] for n ∈ {3,5}.

In the first part of the present paper, we approach this question by elementary
methods. In [10] the first author outlined a method for constructing manifolds
with finite ϕ(M6, S3) using generalized Hopf links, which was further detailed
in [4]. Our goal is to show that a slight extension of this construction provides
nontrivial examples for all dimensions of the form (m, [m

2 ] − k), where m ≥ 6,
k ≥ 0, and in particular, we can find manifolds with ϕ(M,N) = 1 in this range
of dimensions. In some sense, these provide other high-dimensional analogs of
Lefschetz fibrations. The simplest approach comes from a closed formula com-
puting the Euler characteristic χ(M2n) in terms of the combinatorial data used
in the construction. We also give some explicit families of examples for dimen-
sions (m ≥ 6,3), taking advantage of the Lie group structure on S3. In particular,
we find that ϕc(S

6, S3) = ∞, where ϕc counts the minimum number of critical
points of smooth functions with only cone-like singularities. The last part is de-
voted to computation of signatures, which are obstructions to fibration over even-
dimensional spheres. We obtain manifolds with boundary whose signatures are
nonzero.

It would be interesting to know how accurate are our estimates—compare with
the lower bounds for ϕ(M2n−2, Sn) obtained in [11]—in order to characterize the
set of values taken by ϕ(Mm,Sn).

Notice that no nontrivial examples are known for m < 2n − 2 and the present
methods do not apply, though as polynomials maps with isolated singularities do
exist for m − n ≥ 4 [18].

2. Constructions of Manifolds with Finite ϕ and Statement of Results

2.1. Fibered Links and Local Models for Isolated Singularities

Recall, following Looijenga [18], that the isotopy class of the oriented subman-
ifold K = Km−n−1 of dimension (m − n − 1) of Xm−1 with a trivial normal
bundle is called generalized Neuwirth–Stallings fibered (or (Xm−1,Km−n−1) is
a generalized Neuwirth–Stallings pair) if, for some trivialization θ : N(K) →
K × Dn of the tubular neighborhood N(K) of K in Xm−1, the fiber bun-
dle π ◦ θ : N(K) − K → Sn−1 admits an extension to a smooth fiber bundle
fK : Xm−1 − K → Sn−1. Here π : K × (Dn − {0}) → Sn−1 is the composi-
tion of the radial projection Dn − {0} → Sn−1 with the second factor projec-
tion. The data (Xm−1,K,fK, θ) is then called an open book decomposition with
binding K , whereas K is called a fibered link. This is equivalent to the condition
that the closure of every fiber is its compactification by the binding link. When
Xm−1 = Sm−1, we have the classical notions of Neuwirth–Stallings fibrations and
pairs.
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Recall now from [18; 15; 23] that open book decompositions (Sm−1,K,fK, θ)

give rise to isolated singularities ψK : (Dm,0) → (Dn,0) by means of the for-
mula

ψK(x) =

⎧⎪⎨⎪⎩
λ(‖x‖)fK( x

‖x‖ ) if x
‖x‖ /∈ N(K),

λ(‖x‖ · ‖π2(θ( x
‖x‖ ))‖)fK( x

‖x‖ ) if x
‖x‖ ∈ N(K),

0 if x = 0,

where π2 : K × Dn → Dn is the projection on the second factor, and λ : [0,1] →
[0,1] is any smooth strictly increasing map sufficiently flat at 0 and 1 such that
λ(0) = 0 and λ(1) = 1. If K is in generic position, namely the space generated
by vectors in Rm with endpoints in K coincides with the whole space Rm, then
(dψK)0 = 0, that is, ψK has rank 0 at the origin. We then call such ψK local
models of isolated singularities.

Looijenga [18] proved that a Neuwirth–Stallings pair (Sm−1,Lm−n−1) can be
realized by a real polynomial map if L is invariant and the open book fibration fL

is equivariant with respect to the antipodal maps. In particular, the connected sum
(Sm−1,K)	((−1)mSm−1, (−1)m−nK) is a Neuwirth–Stallings pair isomorphic to
the link of a real polynomial isolated singularity ψK : (Rm,0) → (Rn,0).

2.2. Cut and Paste Local Models

We can glue together a patchwork of such local models to obtain maps Mm →
Nn with finitely many critical points. Let 
 be a bicolored decorated graph with
vertices of two colors. Each black vertex v of 
 is decorated by a fibered link
Lm−n−1

v of Sm−1. With every vertex v, there is associated an open book fibration
fLv : Sm−1 − N(Lv) → Sn−1 that extends to a smooth local model map with one
critical point ψv = ψLv : Dm

v → Dn. Its generic fibers are called local fibers. Each
white vertex w is labeled by some (m − n)-manifold F(w) whose boundary has
as many connected components as the degree of w.

If there are no white vertices, then we glue together the disks Dv using the
pattern of the graph 
 by identifying one component of N(Lv) to one component
of N(Lw) if v and w are adjacent in 
. The identification has to respect the
trivializations N(Lv) → Dn, and hence we can take them to be the same as in
the double construction. Note that N(Lv) = Lv × Dn, and thus identifications
respecting the trivialization correspond to homotopy classes [L,Diff(Dn, ∂)].

Otherwise, we glue together the disks Dv and F(w) × Dn along part of their
boundaries using the pattern of the graph 
. We identify a component of N(Lv)

with a component of ∂F (w) × Dn whenever there is an edge between v and w

such that the two trivializations of these manifolds do agree and the fibers of the
open book and of the trivial fibration glue together. In such a case, ∂F (w) and
the link Lv should have the same number of components. When F(v) is a bunch
of cylinders, we recover the former construction. We then obtain a manifold with
boundary X(
) endowed with a smooth map f
 : X(
) → Dn whose singulari-
ties correspond to the black vertices.
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The restriction of f
 to the boundary is a locally trivial F -fibration over Sn−1.
Let now 
1,
2, . . . ,
p be a set of bicolored decorated graphs whose associ-
ated fibrations are cobounding, namely such that there exists a fibration over
Sn \ ⊔p

i=1 Dn, generally not unique, extending the boundary fibrations restric-
tions ψ
i

:= f
i
|∂X(
), 1 ≤ i ≤ p. Any such set 
1,
2, . . . ,
p determines a

closed manifold M(
1,
2, . . . ,
p) endowed with a map with finitely many crit-
ical points into Sn.

In particular, we can realize the double of f
 by gluing together f
 and its
mirror image. We could also generalize this to maps taking values into an arbitrary
closed manifold Nn.

2.3. Constructions of Fibered Links in Dimensions (2n,n), n ≥ 3

Let us recall the construction from [10; 4]. It is known that, for n ≥ 3, there is only
one embedding of Sn−1 in S2n−1. The situation undergoes only little changes in
the case of links. By Haefliger’s classification theorem (see [13; 12]) the link
L = ⊔d

j=0 Sn−1
j is uniquely determined, up to isotopy, by its linking matrix lkL,

and we denote it as LlkL. Note that the diagonal entries of lkL are not defined,
and by convention we set them to 0.

The generalized Hopf links with d + 1 ≥ 2 components are those links L =⊔d
j=0 Sn−1

j for which the spheres Sn−1
1 , . . . Sn−1

d ⊂ S2n−1 are Hopf duals to a

fixed preferred Sn−1
0 ⊂ S2n−1, namely their linking number lk(S0, Sj ) = ±1 for

j ≥ 1. We will further suppose that lk(S0, Sj ) = 1 for j ≥ 1, so that the most im-
portant information is the linking submatrix lkL◦ of the sublink L◦ = ⊔d

j=1 Sn−1
j .

Denote by Ã a (−1)n-symmetric matrix obtained from a d ×d matrix A by adding
a first line and a first column of 1s with 0s on the diagonal.

In [10], it was observed that, for every integral (−1)n-symmetric d × d ma-
trix A with trivial diagonal, the link LÃ has the property that its complement
S2n−1 \ N(LÃ) naturally fibers over Sn−1. The fibers of this fibration are holed
disks that intersect transversally every component Sn−1

j with j ≥ 1 in one point,

whereas their closure contains Sn−1
0 . Note that this fibration comes along with

a trivialization of the boundary: ∂N(Sn−1
0 ) is foliated by preferred longitudinal

spheres, whereas ∂N(Sn−1
j ) for j ≥ 1 are foliated by preferred meridian spheres.

The fibration of S2n−1 \ N(LÃ) does not satisfy the last condition in the defi-
nition of a Neuwirth–Stallings pair. Although a link is always fibered if its com-
plement fibers (not necessarily as an open book decomposition) when n = 2, by a
suitable change of the framing, this is not so in higher dimensions. However, there
is a simple way to convert transversal intersections of the fiber with Sn−1

j into one

of binding type by doing surgery. Specifically, we denote by X2n−1
A the result of

gluing together S2n−1 \N(LÃ) and (d +1) solid tori Sn−1 ×Dn
⊔d

j=1 Dn ×Sn−1

such that:

(1) for j = 0, the solid torus Sn−1 × Dn is glued along ∂N(Sn−1
0 ) such that

Sn−1 × {pt} correspond with the preferred longitude spheres;
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(2) for j ≥ 1, the j th copy of the solid torus Dn ×Sn−1 is glued along ∂N(Sn−1
j )

such that {pt} × Sn−1 correspond to the preferred meridian spheres.

The cores of the newly attached solid tori form a (d + 1)-component link
Kn−1

A = ⊔d
0 Sn−1 ⊂ X2n−1

A . Though as X2n−1
A might not be a sphere in general,

(X2n−1
A ,KA) is a generalized Neuwirth–Stallings pair. Note that the link com-

plements XA \ N(KA) and S2n−1 \ LÃ are diffeomorphic and the corresponding
fibrations match each other. Thus the fibers of the corresponding open book fi-
bration fKA

: XA \ KA → Sn−1 are still holed disks. We warn the reader that the
notions of longitude/meridian spheres do not correspond for the two link comple-
ments.

When X2n−1
A is diffeomorphic to S2n−1, we obtain a classical Neuwirth–

Stallings pair (S2n−1,KA). Furthermore, X2n−1
A is homeomorphic to a sphere

S2n−1 if and only if A is unimodular, that is, detA = ±1 [4]. This provides al-
ready examples of fibered links KA in those dimensions when there are no exotic
spheres, for instance, when n = 3. Moreover, when n = 3, every fibered link over
S2 is isotopic to some KA [4; 10] since their fibers should be simply connected
and hence holed disks. This is equally true for n > 3 if we restrict ourselves to
those links whose components are spheres. However, when n > 3, links of iso-
lated singularities might be nonsimply connected links.

Furthermore, since the connected sum X2n−1
A 	X2n−1

A is diffeomorphic to S2n−1

for any n, in [4, Corollary 4.2], it was obtained that the links of the form
KA⊕−A ⊂ S2n−1 are fibered for any n > 3 if A is unimodular. Notice that the
number of components in this construction satisfies d ≡ 1 (mod 4). Further, we
also have that 	θ2n−1X

2n−1 is diffeomorphic to S2n−1, where θ2n−1 denotes the
order of the group of homotopy spheres in dimension (2n − 1). The connected
sum construction by Looijenga [18] shows that K⊕θ2n−1

1 A
is fibered for any n > 3

when A is unimodular.
We can therefore use fibered links of the form Kn−1

A ⊂ S2n−1, which we call
generalized Hopf links. The cut-and-paste procedure from Section 2.2 then pro-
duces manifolds with boundary X2n(
) endowed with maps ψ
 : X2n(
) → Dn

with finitely many critical points. The generic fiber of ψ
 is 	gS
1 ×Sn−1, where g

is the rank of H1(
). If we allow orientation-reversing gluing homeomorphisms,
then we can also obtain nonorientable fibers homeomorphic to a twisted Sn−1-
fibration over the circle.

The restriction of ψ
 to the boundary is a 	gS
1 × Sn−1-fibration over Sn−1.

Let 
1,
2, . . . ,
p be a set of graphs associated with a family of cobounding

fibrations, namely such that there exists a fibration over Dn \⊔p−1
i=1 Dn extending

the boundary fibrations restrictions of f
i
, 1 ≤ i ≤ p. We remark that H1(
i)

should be isomorphic. Then we can glue together ψ
j
to obtain some manifold

M(
1, . . . ,
p) endowed with a smooth map with finitely many critical points
onto Sn.

When n = 3, all 6-manifolds M6 admitting a smooth map M6 → S3 with
finitely many cone-like singularities arise by this construction.
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2.4. Fibered Links in Dimensions (2n + 1, n), Where n ≥ 2

We can construct a much larger family of examples from existing ones by
means of a method of Looijenga [18] to construct nontrivial local isolated sin-
gularities. Specifically, we consider the spinning of Hopf links in a similar
manner as the spinning of a knot. Consider a link L = ⊔d

j=0 Sn−1
j ⊂ S2n−1

with a choice of one component Sn−1
i to be spin off. We isotope L so that

all components but Sn−1
i lie in the interior of the upper half-space H 2n−1+ :=

{(x1, . . . , x2n−1) ∈ R2n−1;x2n−1 ≥ 0}, whereas the intersection of Sn−1
i with

the lower half-space consists of a hemisphere. We now spin H 2n−1+ in R2n

around R2n−2 so that each point (x1, . . . , x2n−1) ∈ H 2n−1+ sweeps out the cir-
cle (x1, . . . , x2n−2, x2n−1 cos θ, x2n−1 sin θ), θ ∈ [0,2π]. The spinning orbits of
the hemisphere along

⊔
j �=i S

n−1
j form a link of the form SL = Sn

i

⊔
j �=i (S

1 ×
Sn−1

j ) ⊂ S2n (for more details on the knot counterpart, see [9]). When L is
a fibered link, the spinning links SL are all fibered. In particular, this is the
case when L = KA. If Fn = Sn \ ⊔d

j=0 Dn
j is the fiber of L, then SFn+1 =

Sn+1 \ (Dn+1
i

⊔d
j �=i S

1 × Dn
j ) is the fiber of SL.

Note that we can iterate this procedure k times, and by choosing each time the
same spinning component we obtain links of the form Sn+k−1 ⊔d

1(S1)k ×Sn−1 ⊂
S2n+k−1.

2.5. Fibered Links in Dimensions (2n, k) and (2n + 1, k), Where n ≥ k ≥ 2

The rank of a critical point is the rank of the differential at that point. Given a
smooth map ψ : (Dm,0) → (Dk,0), k ≥ 2, with an isolated singularity at 0 of
rank zero, we consider the map �ψ : (Dm,0) → (Dk−1,0) obtained by compos-
ing ψ with the projection � : Dk → Dk−1. This is again a smooth map with an
isolated singularity at the origin of rank zero.

According to [14; 3], the local Milnor fiber F�ψ of �ψ around 0 is homeo-
morphic to Fψ × [0,1] if ψ is a real polynomial.

Starting from a smooth map ψL : (D2n,0) → (Dn,0) as constructed in Sec-
tion 2.3 out of a generalized Hopf link L in generic position, we deduce by it-
erated projections smooth maps with an isolated singularity at the origin �kψ :
(D2n,0) → (Dn−k,0) in all dimensions (2n,n − k) with 0 ≤ k ≤ n − 1. We call
the links Kn+k−1 ⊂ S2n−1 obtained from these maps generalized Hopf links in
dimensions (2n,n − k).

Assume that ψL is the local model associated with a fibered generalized Hopf
link L with (d + 1) components in generic position. Then the local fiber FψL

is
diffeomorphic to an n-disk with d handles of index (n−1) attached along trivially
embedded and unlinked spheres Sn−2 ⊂ ∂Dn.

The link L�ψL
⊂ S2n−1 associated with �ψL is the union of local fibers

f −1
L (�

−1
(0)), where � : Sn−1 → Dn−1 is the projection. Now �

−1
(0) = {n, s}
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is a pair of points, the north and the south pole of Sn−1 with respect to the projec-
tion �. Therefore L�ψL

is the closure of the union of the two local fibers f −1
L (n)

and f −1
L (s) of fL, that is, their union with L.

The link L�ψL
⊂ S2n−1 associated with �ψL is

S2n−1 ∩ (�ψL)−1(0)

= S2n−1 ∩ ψ−1
L (�−1(0)) = S2n−1 ∩ ψ−1

L ([sn])
= [(S2n−1 \ N(L)) ∩ f −1

L ([sn])] ∪ [N(L) ∩ ψ−1
L ([s0) ∪ {0} ∪ (0n])]

= [(S2n−1 \ N(L)) ∩ f −1
L ({s, n})] ∪ L ∪ [N(L) ∩ ψ−1

L ([s0) ∪ (0n])],
as ψL|S2n−1\N(L) = fL|S2n−1\N(L). Note that ψL|N(L) �= fL|N(L) as ψL(L) = 0

whereas fL(L) ⊆ Sn−1. Since N(L) ∩ ψ−1
L ([s0)) is homeomorphic with N(L) ∩

f −1
L (s) and N(L)∩ψ−1

L ((0n]) is homeomorphic with N(L)∩f −1
L (n), we obtain

that the link L�ψL
⊂ S2n−1 associated with �ψL is homeomorphic with the clo-

sure of the union of the two local fibers f −1
L (n) and f −1

L (s) of fL, that is, their
union with L.

Furthermore, the open book fibration fL�ψ : S2n−1 \ L�ψ → Sn−2 is obtained
as fL�ψ (x) = R�f (x), where R : Dn+1 \ {0} → Sn−2 is the radial projection.
If x ∈ Sn−2, then let γx ⊂ Sn−1 be the great arc passing through n, s and x =
�

−1
(x) ∈ Sn−1. Then the local fiber F�ψL

of �ψL is the union of fibers f −1
L (γx).

It follows that F�ψL
is homeomorphic to FψL

× [0,1].
By induction the local fiber of �kf is an (n + k)-disk with d handles of index

(n − 1) attached along trivially embedded and unlinked Sn−2 ⊂ ∂Dn+k . It fol-
lows that the local fiber F�kf = 	∂dSn−1 ×Dk+1, where 	∂ denotes the boundary
connected sum of manifolds with boundary. In particular, the corresponding link
L�kf ⊂ S2n−1 is diffeomorphic to a connected sum 	d

j=1S
n−1 ×Sk . Note that the

link L�kf is connected when k ≥ 1.
It follows that, for k ≥ 1, any decorated graph 
 that occurs in the previous

construction consists of two black vertices and an edge joining them or else a
single white vertex connected to several black vertices. Note that the gluing map
in the former case is highly not unique, the result depending on the corresponding
element of mapping class group of 	d

j=1S
k × Sn−1.

2.6. Statement of Results

Our first result shows that all these examples are nontrivial:

Theorem 2.1. Let 
1,
2, . . . ,
p be bicolored graphs decorated by generalized
Hopf links in dimensions (2n,n − k) as in Section 2.5 such that the fibrations
f
1, f
2 . . . , f
p cobound. When n − k is even, we assume that the total number
s of black vertices of the graphs 
1,
2, . . . ,
p is odd. Then we have the inequal-
ities

1 ≤ ϕ(M2n(
1,
2, . . . ,
p), Sn−k) ≤ s. (2)
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Remark 2.1. The fibrations with fiber F over Sn−1, n ≥ 3, are classified by
their characteristic elements in the group πn−2(Diff(F )). A collection of fibra-
tions cobound if the sum of their characteristic elements is trivial. This provides
abundant examples verifying the assumptions of the theorem for odd n − k. No-
tice that, for even n− k, it is not clear that there exists a collection 
1,
2, . . . ,
p

of bicolored decorated graphs with odd total number of vertices in order to be able
to use Theorem 2.1 for finding nontrivial examples.

Let now ϕc count the minimum number of critical points of smooth maps with
only cone-like singularities (see [15]).

Theorem 2.2. If ϕc(M
6, S3) is finite nonzero, then M is diffeomorphic to

M6(
1, . . . ,
p) for some decorated bicolored graphs 
i . In particular, π1(M)

is a (closed) 3-manifold group.
Moreover, if π1(M

6) = 1 and χ(M) ≥ −1, then either ϕc(M
6, S3) = 0, or

ϕc(M
6, S3) = ∞.

Since S6 does not fiber over S3 (see, e.g., [1]), we derive the following:

Corollary 2.1. We have ϕc(S
6, S3) = ∞.

We think that it is possible to classify all manifolds M6 with finite ϕc(M
6, S3).

We further show that this method can indeed produce explicit examples with
ϕ equal to one in all dimensions. We state our result below separately for odd and
even dimensions, as the combinatorial data is slightly different.

Theorem 2.3. Suppose that n ≥ 3 and the decorated graph is as follows:

(1) for k = 0, a tree 
0 with one black vertex decorated by a generalized Hopf
link and several white vertices decorated by disks;

(2) for k ≥ 1, the graph 
0 has a single black vertex v decorated by a general-
ized Hopf link L�kL, where L is an (n − 1)-dimensional generalized Hopf
link with d + 1 ≥ 5 components and a white vertex, the two vertices being
connected by an edge. The white vertex w is decorated by Fw = 	∂dDn × Sk .

Then
ϕ(M2n(
0), S

n−k) = 1.

Theorem 2.4. Suppose that n ≥ 3 and the decorated graph is as follows:

(1) for k = 0, the graph 
0 is a tree consisting of one black vertex decorated
by the fibered link SKA adjacent to d + 1 ≥ 2 white vertices, one of which
being decorated by the disk Dn+1, and the remaining white vertices being
decorated by S1 × Dn;

(2) for k ≥ 1, the graph 
0 has a single black vertex v decorated by L�kSL, where
L is an (n−1)-dimensional generalized Hopf link with d +1 ≥ 5 components
and a white vertex, the two vertices being connected by an edge. The white
vertex w is decorated by the manifold Fw = (	∂

d
j=1D

n ×Sk+1)	∂(	∂
d
j=1S

k ×
Dn+1).
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Then
ϕ(M2n+1(
0), S

n) = 1.

The gluing map between the decoration and the local fiber associated with the
black vertex will be specified in the proof.

The only drawback of this method is that we have no explicit description of
the manifolds of the form Mm(
1, . . . ,
p). Using different tools, we can provide
a first sample of easy to understand examples in arbitrary high dimensions, which
might be interesting by themselves, as follows.

Proposition 2.1. We have

1 ≤ ϕ(S4 × S4 × · · · × S4, S3) ≤ 2m

when we have m factors S4. Moreover, we have

1 ≤ ϕ((	r1S
2 × S2) × (	r2S

2 × S2) × · · · × (	rmS2 × S2), S3)

≤ 2m(r1 + 1) · · · (rm + 1).

The existence of the Hopf fibration S3 → S2 implies the following:

Corollary 2.2. We have

ϕ((	r1S
2 ×S2)× (	r2S

2 ×S2)×· · ·× (	rmS2 ×S2), S2) ≤ 2m(r1 +1) · · · (rm +1).

When m = 1 and r1 = 1, the left-hand side vanishes. It seems that otherwise it is
positive.

Corollary 2.3. There exist examples with nontrivial ϕ(M2n, S3) for every
n ≥ 2.

This is a consequence of Theorem 2.1 and the proof of Proposition 2.1.
The second part of this paper aims at a deeper understanding of these examples

when n is even and, in particular, approaching the case where n − k is even in
Theorem 2.1.

A necessary condition for M2n to admit a fibration over Sk is that χ(M2n) = 0
when k is odd and χ(M2n) ≡ 0 (mod 2) for even k. When n is even, there are
stronger requirements for a manifold to be a fibration over Sn. Recall that the
signature of the compact oriented M is set to be zero unless its dimension is
multiple of 4; in the latter case, the signature of the symmetric bilinear form on
the middle dimension cohomology is given by the cup product evaluated on the
fundamental class. A classical theorem due to Chern, Hirzebruch, and Serre [6]
states that whenever we have a fibration E → B with fiber F of oriented compact
manifolds such that the action of π1(B) on the cohomology H ∗(F ) is trivial, then
the signature is multiplicative, namely

σ(M) = σ(B)σ(F ).

In particular, this happens when π1(B) is trivial. This is known not to be true for
general fibrations as, for instance, in the case of the Atiyah–Kodaira fibrations (see
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[5; 16]), which are fibrations of some 4-manifolds of signature 256 over surfaces.
In particular, if σ(M) �= 0, then ϕ(M,Sp) ≥ 1 for any p and thus also for even
values of p.

Our next goal is the explicit computation of σ(M(
1,
2, . . . ,
p)). Observe
that, for even n, we have σ(M2n(
1,
2, . . . ,
p)) ≡ s (mod 2).

Theorem 2.5. For even n, there exist graphs 
 decorated by generalized Hopf
links in dimensions (2n,n − k) as in Section 2.5 such that

σ(M(
)) �= 0.

3. Proofs of Theorems 2.1, 2.2, 2.3, and 2.5

3.1. Preliminaries on Fibered Generalized Hopf Links in Dimensions (2n,n)

Denote by Ki , 0 ≤ i ≤ d , the components of KA indexed as the components of
LÃ. Note that unlike arbitrary fibered links KA also have a canonical framing

in XA, namely a set of isotopy classes of parallel copies K
	
i ⊂ ∂N(Ki) obtained

by intersecting the generic fiber of the given open book decomposition with the
boundary of the link complement. In particular, it makes sense to consider the
diagonal of the linking matrices of KA with entries lk(K

	
i ,Ki). We can actually

identify the link KA when A is unimodular as follows.

Lemma 3.1. If A is unimodular, then KA = LA∗ , where the linking matrix in the
canonical framing A∗ is the (−1)n-symmetric matrix with entries

A∗
ij =

⎧⎪⎨⎪⎩
(A−1)ij if 1 ≤ i, j ≤ d,

−∑d
k=1(A

−1)kj if i = 0,1 ≤ j ≤ d,∑d
k=1

∑d
l=1(A

−1)kl if i = j = 0.

Proof. Let Xs denote the result of filling all but the sth boundary components
using surgery as before. Then Xs is (n − 2)-connected, and the Mayer–Vietoris
sequence reads

Hn−1

( d⊔
j=0,j �=s

Ki × ∂Dn

)

→ Hn−1(S
2n−1 \ N(LÃ)) ⊕ Hn−1

( d⊔
j=0,j �=s

Ki × Dn

)
→ Hn−1(Xs) → 0.

If XA is homeomorphic to a sphere Hn−1(Xs) ∼= Z, then the linking number
lk(Kj ,Ks) in XA is the image of the class of Kj in Z. Moreover, Hn−1(S

2n−1 \
N(LÃ)) ∼= ⊕d

j=0 Zμj , where the classes μj correspond to the meridians spheres
around each boundary component. Let δj denote the generator of Hn−1(Kj ×
Dn). We give Kj the orientation induced as a boundary component of the fiber
(which disagrees with the convention in [4]).
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If s �= 0, then it follows (see the computations from [4], proof of Lemma 3.4)
that we have the presentation

Hn−1(Xs) =
d⊕

j=0

Z〈μj 〉
d⊕

i=0,i �=s

Z〈δi〉
/

(
Z

〈
δ0 +

d∑
j=1

μj

〉 ⊕
1≤i≤d,i �=s

Z〈μi − δi〉

⊕Zμ0

⊕
1≤i≤d,i �=s

Z

〈 d∑
j=1

Aijμj

〉)
.

Further, the homomorphism ev : Hn−1(Xs) → Z given on the generators by

ev(μi) = (A−1)is , 1 ≤ i ≤ d, ev(μ0) = 0,

ev(δi) = (A−1)is , 1 ≤ i ≤ d, i �= s, and ev(δ0) = −
∑
i �=s

(A−1)is

is well defined, and it is an isomorphism since A is invertible over Z. The class of
Kj and respectively K

	
s in Hn−1(Xs) is represented by μj if j �= s, and hence

lk(Kj ,Ks) = A∗
js , j �= 0, lk(K	

s ,Ks) = A∗
ss .

Further, the class of K0 is represented by −∑d
j=1 μj , and hence

lk(K0,Ks) = −
d∑

j=1

A∗
js = A∗

0s .

If s = 0, then we have a similar presentation of Hn−1(X0):

Hn−1(X0) =
⊕d

j=0 Z〈μj 〉⊕d
i=1 Z〈δi〉⊕

1≤i≤d Z〈μi − δi〉⊕
1≤i≤d Z〈μ0 + ∑d

j=1 Aijμj 〉
.

Further, the homomorphism ev : Hn−1(X0) → Z given on the generators by

ev(μi) = −
d∑

j=1

(A−1)ij , 1 ≤ i ≤ d, ev(μ0) = 1,

and

ev(δi) = −
d∑

j=1

(A−1)ij (A
−1)is , 1 ≤ i ≤ d,
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is also an isomorphism. We derive:

lk(Kj ,K0) = −
d∑

i=1

(A−1)ji = A∗
j0, j �= 0,

lk(K
	
0,K0) =

d∑
j=1

d∑
k=1

(A−1)jk = A∗
00.

�

3.2. Proof of Theorem 2.1

We only need to prove that M(
1, . . . ,
p) does not fiber over Sn−k . For sim-
plicity of exposition, we will only consider the case where there are no insertion
of trivial fiber bundles here and hence we can drop the decoration. Note that this
implies that 
i only contain black vertices and that there are no univalent vertices
of 
i .

Now the Euler characteristic χ is multiplicative in locally trivial fiber bun-
dles, namely for any locally trivial fibration π : E → B with fiber F , we have
χ(E) = χ(B)χ(F ). This is well known to hold in the case where the action of
π1(B) on the cohomology H ∗(F ) is trivial, in particular, where π1(B) = 0. The
standard argument to prove this uses spectral sequences. Nevertheless, the mul-
tiplicativity of the Euler characteristic holds in full generality as soon as E, F ,
and B are finite CW complexes, by induction on the number of cells of the basis.
This is obviously true when B has only one cell, in which case E is a prod-
uct. Assume that the multiplicativity is true for fiber bundles over CW complexes
with at most N cells, and consider a complex B with N + 1 cells. Let en be
an n-cell of B . The restriction π−1(B − en) → B − en is a fiber bundle, so that
χ(π−1(B −en)) = χ(B −en)χ(F ). By excision we have H ∗(E,π−1(B −en)) =
H ∗(en × F,∂en × F). This implies that χ(E,π−1(B − en)) = (−1)nχ(F ), and
hence χ(E) = χ(π−1(B − en) + χ(E,π−1(B − en)) = χ(B)χ(F ). This proves
the induction step.

Thus a necessary condition for a space E to fiber over the Sn−k is that χ(E) =
0 if n − k is odd and χ(E) ≡ 0 (mod 2) if n − k is even.

We can compute χ(M(
1, . . . ,
p)) using the local picture description of each
singularity.

Consider first the case k = 0. A critical point associated with a vertex of 
i of
valence (d + 1) comes with a local model whose link has (d + 1) components. As
in the case of Lefschetz fibrations, we obtain the local model from a fibration over
the punctured disk Dn − {0} with fiber Dn − ⊔d

i=1 Dn
i by adjoining one singular

fiber over 0 that is the cone over the boundary. This amounts to adjoin to the trivial
fibration over Dn a number of d handles of index n, corresponding to crushing the
vanishing cycle

∨
d Sn−1

i to a point. This handlebody description can be turned
into a cell-decomposition, and therefore each local model corresponds to a fibra-
tion with d cells of dimension n adjoined. Gluing together all local models by the
patchwork explained in the introduction produces a block X(
j ) obtained from
a fibration over Dn with tj cells of dimension n added, where tj = 2mj − sj ,



Critical Points 597

mj being the total number of edges in the 
j , and sj being the total number
of vertices. Since each vertex has valence at least 2, we have mj − sj ≥ 0. An
alternative argument is to observe that X(
j ) deformation retracts onto the sin-
gular fiber, which is obtained from the regular fiber by contracting the attaching
(n− 1)-spheres corresponding to the n-handles. This shows that the dimension of
the cokernel of Hn(∂X(
j )) → Hn(X(
j )) equals tj .

Therefore

χ(M(
1,
2, . . . ,
p)) = χ(Sn)χ(	gS
1 × Sn−1) + (−1)nt

= −g((1 + (−1)n)2 + (−1)nt,

where t is the sum of all tj . When n is odd, χ(M(
1,
2, . . . ,
p)) = −t �= 0,
and hence it cannot be a fibration over some n-manifold. When n is even,
χ(M(
1,
2, . . . ,
p)) ≡ −t ≡ s �≡ 0 (mod 2), and thus it cannot fiber over Sn.

Let now consider the case k ≥ 1 by first analyzing the local picture. The link of
each critical point is now connected. However, there exists a collection of disjoint
embedded spheres Sn−1 embedded in the local fiber F�kψL

, which is diffeomor-
phic to an (n+k)-disk with d copies of (n−1)-handles attached to it. The singular
fiber is then homeomorphic to a cone over the link. Therefore a regular neighbor-
hood of the singular fiber is homeomorphic to the result of attaching d handles of
index n to the regular neighborhood of a generic fiber. This description allows us
to use the previous arguments for k = 0. We conclude as before.

Remark 3.1. When singular points arise from the fibered links as before, each
critical point s contributes with χ(Fs) − 1 to χ(M), where Fs is the local fiber
around s. This holds more generally for all fibered links. On the other hand, if
dimensions were of the form (2n+1, k), then local fibers should verify χ(Fs) = 1
according to [2; 14; 21]. This shows that the contribution of every critical point is
trivial in odd dimensions, and hence the previous arguments cannot work.

3.3. Proof of Theorem 2.2

Every open book fibration S5 − N(K) → S2 has a simply connected fiber F 3

(see, e.g., [4]). By Perelman’s solution to the Poincaré conjecture F 3 is a disk with
holes, and thus K is a disjoint union of spheres S2. Therefore K is a generalized
Hopf link LQ for some matrix Q. Moreover, LQ is fibered if and only if Q = Ã,
where A is unimodular according to [4]. Thus, for any smooth map f : M6 →
S3 with finitely many cone-like critical points, there are neighborhoods of the
critical points to which the restriction of f is equivalent to some local model.
Outside these neighborhoods the restriction of f should be a locally trivial fiber
bundle. Therefore M6 is diffeomorphic to some M6(
1,
2, . . . ,
p), where 
i

are bicolored decorated graphs, and f arises as before. We suppose that M6 is not
a fibration over S3. Every graph 
i has at least one black vertex, as otherwise we
could remove it. Each decorated graph 
i determines f
̃i

: X6(
i) → D3, whose
generic fiber is some closed 3-manifold F , which is independent on i.
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Notice that the union V of singular fibers of f is a CW complex of dimension
3 embedded in M , so that π1(M

6 − V 3) → π1(M
6) is an isomorphism. The long

exact sequence in homotopy associated with the fibration f |M−V implies that
π1(F

3) → π1(M
6) is surjective, with free Abelian kernel. Let Fij and Dij =

D3 −⊔nij

s=1 D3
s denote the 3-manifolds with boundaries that occur as labels of the

white vertices and black vertices, respectively, of the graph 
i . The key point is
that local fibers Dij are simply connected. Then the generic fiber F is obtained
from the (graph) connected sum of Fij and Dij . The block X6(
i) \ V is the
union of fibered pieces D6

v \ V associated with black vertices v and Fij × (D3 \
{0}) associated with decorated white vertices. Moreover, we glue together two
such adjacent pieces along the submanifold N(L

˜A(v)
) \ L

˜A(v)
, which is simply

connected by transversality. Also, π1(D
6
v \ V ) = 1. Then Van Kampen’s theorem

implies that the inclusion of F into X6(
i) \ V induces an isomorphism at the
level of fundamental groups, and hence π1(X

6(
i)\V ) is isomorphic to π1(F ) ∼=
∗jπ1(Fij ) ∗ Fr , where r is the rank of H1(
i). We obtain M6 \ V by first gluing
together several blocks X6(
i) \ V along neighborhoods of boundary fibers and
second gluing to the result a trivial fibration F × D3 along the whole boundary
F × S2. Further use of Van Kampen’s theorem shows that the inclusion of F into
M is also an isomorphism at the fundamental group level.

Every black vertex v of some 
i has associated a link of the form LÃ, where
A is unimodular [4]. However, unimodular skew-symmetric matrices have to be
of even size, so that every black vertex v has odd degree. Assume that π1(M) has
no free factor, so that r = 0. Then each 
i should have only one black vertex,
since otherwise the valence of a black vertex being odd it would be at least 3,
and this would produce a free factor in π1(F ). The local fiber associated with
this black vertex is D3 \⊔d

s=1 D3
s . Each Fij must have one boundary component;

if some Fij had at least two boundary components, then gluing the local fiber
D3 \ ⊔d

s=1 D3
s would produce a free factor in π1(F ). Thus the generic fiber F of

f is diffeomorphic to 	d
s=1Fs .

Suppose now that π1(M) = 1. Then F is simply connected and hence, by
Perelman, is diffeomorphic to S3. Moreover, each Fij is diffeomorphic to a disk.
The computation of the Euler characteristic from the previous section gives us

χ(M6(
1,
2, . . . ,
p)) = −
p∑

i=1

di,

where 1+di ≥ 3 is the degree of the black vertex of 
i . In particular, if π1(M) = 1
and χ(M) ≥ −1, then ϕc(M,S3) = ∞, as we supposed that M6 does not fiber.
This proves the claim.

3.4. Proof of Theorem 2.3

We first need the following:
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Lemma 3.2. In dimensions (2n,n), let the graph 
0 be a tree consisting of one
black vertex decorated by the fibered link KA that is adjacent to d + 1 ≥ 2
white vertices decorated by disks Dn. The gluing maps correspond to the de-
composition of Sn as the union of two smooth disks Dn along an equatorial
sphere. Then ∂X2n(
0) is diffeomorphic to Sn ×Sn−1, and the boundary fibration
ψ
0 : ∂X2n(
0) → Sn−1 is trivial.

Proof. We obtain ∂X(
0) by doing surgery on the link KA, namely gluing to
S2n−1 \ N(KA) the disjoint union of (d + 1) solid tori

⊔d
j=0 Dn × Sn−1 such

that the j th copy of the solid torus Dn × Sn−1 is glued along ∂N(Kn−1
j ) so that

∂Dn × {pt} correspond to the preferred longitude spheres. This is the same as
doing surgery on LÃ corresponding to the framings given by the longitude around
S0 and the meridian spheres along Sj , j ≥ 2. Surgery along meridian spheres
restores the sphere S2n−1 \ N(S0), whereas surgery along the longitude of S0

yields Sn−1 ×Sn. The fibration structure of ψ
0 corresponds then to the projection
onto Sn−1. �

Lemma 3.3. In dimensions (2n,n − k) with k ≥ 1, let the graph 
0 with a single
black vertex v decorated by L�kL, where L is an (n−1)-dimensional generalized
Hopf link with d+1 ≥ 5 components and a white vertex connected by an edge. The
white vertex w is decorated by Fw = 	∂

d
j=1D

n ×Sk . The gluing along ∂Fw corre-
sponds to surgery of the core k-dimensional spheres, and hence the global fiber F

is diffeomorphic to Sn+k . Then ∂X(
0) is diffeomorphic to Sn+k × Sn−k−1, and
the boundary fibration ∂X(
0) → Sn−k−1 is trivial.

Proof. We have the decomposition

∂X(
0) = (S2n−1 \ ((	d
j=1S

n−1 × Sk) × Dn−k)) ∪ (	∂
d
j=1D

n × Sk) × Sn−k−1

along ∂(Ev)k = (	d
j=1S

n−1 × Sk) × Sn−k−1. The result follows for k = 0 from
Lemma 3.2. We use further induction on k. We add the subscript k to all ob-
jects defined so far. If the claim holds for k, then (Ev)k ⊂ Sn+k × Sn−k−1, and
the projection fk : (Ev)k → Sn−k−1 is the restriction of the second factor projec-
tion. Note that (Ev)k+1 = (R�)−1(Sn−k−1 \ (Dn−k−1(s) ∪ Dn−k−1(n))), where
Dn−k−1(s) and Dn−k−1(n) are two disk neighborhoods of the north and south
poles n, s of Sn−k−1. Then the fibration fk+1 : (Ev)k+1 → Sn−k−2 is the compo-
sition (fk)|(Ev)k+1 : (Ev)k+1 → Sn−k−1 \ (Dn−k−1(s)∪Dn−k−1(n)) with the pro-
jection R� : Sn−k−1 \ (Dn−k−1(s)∪Dn−k−1(n)) → Sn−k−2. Further, (Ev)k+1 is
a subfibration of the product fibration

Sn+k × Sn−k−1 \ (Dn−k−1(s) ∪ Dn−k−1(n)) → Sn−k−2,

which itself is a subfibration of Sn+k+1 × Sn−k−2 → Sn−k−2.
It remains to observe that, during the process of filling, we adjoined the

fibration (Ev)k+1 along the boundary ((Fw)k+1 × [0,1]) × Sn−k−2, namely
(Fw)k+1 × Sn−k−2. This proves the induction claim. �
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If k = 0, then we consider the manifold M(
0) = X(
0)
⋃

∂X(
0)
Sn × Dn. First,

π1(M(
0)) = 0, and further by Mayer–Vietoris Hj(M(
0)) = 0 for 1 ≤ j ≤ 2n−
1, j �= n, and Hn(M(
0)) = Zd+2. Thus M(
0) is (n − 1)-connected.

Assume that M(
0) fiber over Sn with fiber Fn. Then the long exact sequence
of the fibration shows that Fn must be (n − 2)-connected. Further, the Wang
sequence first yields

→ Hn(F) → H2n−1(M) → Hn−1(F
n) → H2n−2(F

n) → H2n−2(M) →,

and thus Hn−1(F
n;Q) = 0 for n ≥ 3, and second:

→ 0 = H1(F ) → Hn(F) → Hn(M) → H0(F
n) → Hn−1(F

n) = 0,

and hence H0(F ) has rank d , a contradiction, thereby proving the claim.
When k ≥ 1, we consider M(
0) = X(
0)

⋃
∂X(
) S

n+k × Dn−k . It follows
that π1(M(
0)) = 0, and by Mayer–Vietoris Hj(M(
0)) = 0 for 1 ≤ j ≤ 2n − 1,
j /∈ {n− k,n+ k}, whereas Hn(M(
0)) = Zd , Hn−k(M(
0)) = Hn+k(M(
0)) =
Z. Assume that M(
0) fibers over Sn−k with fiber Fn+k . Then the long exact
sequence of the fibration shows that F is connected and simply connected. The
Wang exact sequence

Hq(F ) → Hq(M(
0)) → Hq−n+k(F ) → Hq−1(F ) → Hq−1(M(
0)) →
for q = 2n − 1,2n − 2, . . . , n + k + 2 yields

Hn+k−1(F ) = Hn+k−2(F ) = · · · = H2k+2(F ) = 0.

Further, for q = n + k + 1, we obtain the exact sequence

0 = Hn+k+1(M(
0)) → H2k+1(F ) → Hn+k(F ) → Hn+k(M(
0))

→ H2k(F ) → Hn+k−1(F ) = 0,

which implies that

rkH2k+1(F ;Q) = rkH2k(F ;Q) = u ∈ {0,1}.
If n ≥ 2k + 2, then we can consider q = n + k − 1, . . . , n and derive

H2k−1(F ) = H2k−2(F ) = · · · = Hn(F) = 0.

From the exactness of

0 = Hn(F) → Hn(M(
0)) → Hk(F ) → Hn−1(F )

we obtain rkHk(F ;Q) ≥ d . However, Hn(F ;Q) = 0 for n ≥ 2k, and this contra-
dicts the Poincaré duality for Fn+k .

If n = 2k + 1, then from the exact sequence

H2k+1(F ) → H2k+1(M(
0)) → Hk(F ) → H2k(F ) → H2k(M(
0))

we derive that both the kernel and the cokernel of the map H2k+1(M(
0);Q) →
Hk(F ;Q)) have rank at most rk(H2k+1(F ;Q) ≤ 1. This implies that rkHk(F ;
Q) ≥ d − 2. However, rkHn(F ;Q) ≤ 1 by the preceding, and this contradicts the
Poincaré duality for Fn+k .
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If 2k ≥ n, then let a be the smallest positive integer such that a(n − k − 1) ≥
2k − n. Using induction and the Wang sequence, we obtain that, for all natural
m ≤ a,

Hn+k−m(n−k−1)(F ) = · · · = H2k+2−m(n−k−1)(F ) = 0,

rkH2k+1−m(n−k−1)(F ;Q) = rkH2k−m(n−k−1)(F ;Q) = u ∈ {0,1}.
By letting q = n + k − 1, . . . , n ≥ 2k − a(n − k) we derive again that

rkHn(F ;Q) ≤ 1, whereas rkHk(F ;Q) ≥ d − 2, a contradiction. This shows that
M(
0) cannot fiber over Sn−k .

3.5. Proof of Theorem 2.4

Lemma 3.4. In dimensions (2n + 1, n), let the graph 
0 be a tree consisting of
one black vertex decorated by the fibered link SKA that is adjacent to d + 1 ≥ 2
white vertices, one of which is decorated by the disk Dn+1, and the remaining
white vertices are decorated by S1 × Dn. The gluing maps correspond to the
decomposition of Sn+1 into the union of two disks Dn+1 along an equatorial
sphere. Then ∂X2n+1(
0) is diffeomorphic to Sn+1 ×Sn, and the boundary fibra-
tion ψ
0 : ∂X2n+1(
0) → Sn is trivial.

Proof. Let assume that the component Sn−1
0 of KA = LA∗ is spun. We consider

the link LÃ = ⊔d
j=0 Sn−1

j ⊂ S2n−1 as the boundary of a holed disk. The spun

component Sn
0 inherits a longitude by spinning the one of Sn−1

0 , whereas the other
components S1 ×Sn−1

j inherit well-defined meridians by taking their product with

S1. We obtain ∂X(
0) by doing surgery on the link SKA, namely gluing to S2n \
N(SKA) the disjoint union Dn

0 ×Sn
⊔d

j=1 S1 ×Sn−1 ×Dn
j such that the j th copy

of S1 × Sn−1 ×Dn
j is glued along ∂N(Kn

j ) and Dn
0 × Sn is glued along ∂N(Kn

0 ).

Surgery along ∂N(Kn
j ) identifies ∂Dn

0 with the longitude of Sn
0 and S1 × ∂Dn

j

with the meridian of S1 × Sn−1
j . By completing the last surgeries we restore the

sphere S2n \ N(S0), whereas surgery along the longitude of Sn
0 yields Sn+1 × Sn.

The fibration structure of ψ
0 then corresponds to the projection onto Sn. �

We consider the manifold M(
0) = X(
0)
⋃

∂X(
0)
Sn+1 × Dn. First,

π1(M(
0)) = 0, and further by Mayer–Vietoris Hj(M(
0)) = 0 for 1 ≤ j ≤ 2n,
j /∈ {n,n + 1}, Hn(M(
0)) = Hn+1(M(
0)) = Zd+1. Thus M(
0) is (n − 1)-
connected.

Assume that M(
0) fibers over Sn with fiber Fn+1. Then the long exact se-
quence of the fibration shows that Fn+1 must be (n − 1)-connected and the in-
duced map πn(S

n) → πn−1(F ) is surjective, so that πn−1(F ) ∼= Hn−1(F ) has
rank at most 1. Further, the Wang sequence first yields

→ H2n(F ) → H2n(M(
0)) → Hn(F) → H2n−1(F
n+1) → H2n−1(M(
0)) →,
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and thus Hn(F
n+1;Q) = 0 for n ≥ 3, and second:

→ 0 = H1(F ) → Hn(F) → Hn(M(
0)) → H0(F ) → Hn−1(F )

→ Hn−1(M(
0)) = 0,

and hence H0(F ) has rank at least (d + 1), which contradicts the (n − 1)-
connectedness of F . This proves the claim.

Lemma 3.5. Consider the dimensions (2n + 1, n − k), k ≥ 1, and the graph

0 with a single black vertex v decorated by L�kSL, where L is an (n − 1)-
dimensional generalized Hopf link with d + 1 ≥ 5 components and a white vertex
connected by an edge. The white vertex w is decorated by Fw = (	∂

d
j=1D

n ×
Sk+1)	∂(	∂

d
j=1S

k ×Dn+1). The gluing along ∂Fw is the one arising in surgery of
the (k + 1) and k-dimensional core spheres, and the global fiber F is then diffeo-
morphic to Sn+k+1. Then ∂X(
0) is diffeomorphic to Sn+k+1 × Sn−k−1, and the
boundary fibration ψ
0 : ∂X(
0) → Sn−k−1 is trivial.

Proof. If L is fibered and L = ∂Fn, where the fiber Fn = Dn \ ⊔d
j=1 Dn

j , then

SL is fibered, and its associated fiber is SFn+1 = Dn+1 \ ⊔d
j=1 S1 × Dn

j . We

obtain SFn+1 from Dn+1 \ ⊔d
j=1 Dn+1

j by adjoining for each boundary compo-

nent ∂Dn+1
j one (n − 1)-handle along a trivially embedded Sn−2 ⊂ Sn. There-

fore SFn+1 is obtained from Dn+1 by first adding d handles of index n and fur-
ther d handles of index (n − 1), as before. The attaching spheres bound disjoint
disks, and hence SFn+1 is the boundary connected sum of d copies of the cor-
responding result for d = 1, the later being D2 × Sn−1 \ Dn+1

0 . Further, L�kSL

is fibered with fiber SFn+k+1
(k) = SFn+1 × Dk , which has the same description of

handles addition along Dn+k+1 as before. We obtain SFn+k+1
(k) = 	∂

d
j=1D

2+k ×
Sn−1	∂

d
j=1S

n × Dk+1. Note that L�kSL = 	d
j=1S

1+k × Sn−1	d
j=1S

n × Sk for
k ≥ 1, and in particular it is connected.

The global fiber of X(
0) is the union of SFn+k+1
(k)

and Fw . The gluing is the

connected sum of gluings occurring in the two spheres decompositions D2+k ×
Sn−1 ∪ S1+k × Dn = Sn+k+1 and Sn × Dk+1 ∪ Dn+1 × Sk = Sn+k+1, and thus
the global fiber is Sn+k+1.

The triviality of the Sn+k+1-fibration ∂X(
0) → Sn−k follows by induction on
k as before. �

Let now k ≥ 1 and consider M(
0) = X(
0)
⋃

∂X(
) S
n+k+1 × Dn−k . It follows

that π1(M(
0)) = 0 and by Mayer–Vietoris Hj(M(
0)) = 0 for 1 ≤ j ≤ 2n − 1,
j /∈ {n − k,n,n + 1, n + k + 1}, whereas Hn(M(
0)) = Hn+1(M(
0)) = Zd ,
Hn−k(M(
0)) = Hn+k+1(M(
0)) = Z. Thus M(
0) is (n − k − 1)-connected.
Assume that M(
0) fibers over Sn−k with fiber Fn+k+1. Then the long exact
sequence of the fibration shows that F is connected and simply connected. The
Wang exact sequence

→ Hq(F ) → Hq(M(
0)) → Hq−n+k(F ) → Hq−1(F ) → Hq−1(M(
0)) →
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for q = 2n,2n − 1, . . . , n + k + 3 yields inductively:

Hn+k(F ) = Hn+k−1(F ) = · · · = H2k+3(F ) = 0.

Further, by taking q = n + k + 2 we find that

0 = Hn+k+2(M(
0)) → H2k+2(F ) → Hn+k+1(F ) → Hn+k+1(M(
0))

→ H2k+1(F ) → Hn+k(F ) = 0.

Therefore
rkH2k+2(F ;Q) = rkH2k+1(F ;Q) = u ∈ {0,1}.

If n+1 ≥ 2k +3, then we can consider q = n+ k,n+ k −1, . . . , n+1 and derive

H2k(F ) = H2k−1(F ) = · · · = Hn+1(F ) = 0.

From the exactness of

0 = Hn+1(F ) → Hn+1(M(
0)) = Zd → Hk+1(F ) → Hn(F) → Hn(M(
0))

we obtain that rkHk+1(F ;Q) ≥ d . However, rkHn(F ;Q) ≤ 1 for n ≥ 2k + 2,
which contradicts the Poincaré duality for Fn+k+1.

If n = 2k + 1, then from the exact sequence

H2k+2(F ) → H2k+2(M(
0)) → Hk+1(F ) → H2k+1(F ) → H2k+1(M(
0))

we derive that both the kernel and the cokernel of the map H2k+2(M(
0);Q) →
Hk+1(F ;Q)) have rank at most rkH2k+2(F ;Q) ≤ 1. This implies that
rkHk+1(F ;Q) ≥ d − 2. However, rkHn(F ;Q) ≤ 1 by the preceding, and this
contradicts the Poincaré duality for Fn+k+1.

If 2k ≥ n, then let a be the smallest positive integer such that a(n − k − 1) ≥
2k + 1 − n. By using induction and the Wang sequence we obtain, for all natural
m ≤ a,

Hn+k−m(n−k−1)(F ) = · · · = H2k+3−m(n−k−1)(F ) = 0,

rkH2k+2−m(n−k−1)(F ;Q) = rkH2k+1−m(n−k−1)(F ;Q) = u ∈ {0,1}.
By letting q = n+k, . . . , n+1 ≥ 2k+1−a(n−k−1) we derive as before that

rkHn(F ;Q) ≤ 1, whereas rkHk+1(F ;Q) ≥ d − 2, a contradiction. This shows
that M(
0) cannot fiber over Sn−k .

3.6. Proof of Proposition 2.1

Let F : X → Y be a differentiable map. We denote by dxF : Tx(X) → TF(x)(Y )

its differential at x ∈ X. If (G, ·) is a Lie group, then the left and right translations
by g ∈ G are the maps Lg : G → G, Lg(z) = gz and Rg : G → G, Rg(z) =
zg, respectively. Smooth maps A : M → G and B : N → G have a well-defined
multiplication by setting A�B : M ×N −→ G and (A�B)(z,w) = A(z)B(w).

Lemma 3.6. Let Mm and Nn be smooth manifolds, and let (G, ·) be a Lie group of
dimension dimG ≤ min(m,n). For any smooth maps A : M → G and B : N →
G, we have

C(A � B) ⊆ C(A) × C(B). (3)
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Proof. We first need the following easy formula (for the particular case M = N =
G and A = B = idG, see [19, p. 42]):

[d(x,y)(A � B)](u, v) = (dB(y)LA(x))(dyB(v)) + (dA(x)RB(y))(dxA(u)) (4)

for all (u, v) ∈ Tx(M) × Ty(N) ∼= T(x,y)(M × N). This implies that the image of
d(A � B)](x,y) is the subspace

(dB(y)LA(x))(dyB(Ty(N))) + (dA(x)RB(y))(dxA(Tx(M))).

If (x, y) ∈ (M × N) \ (C(A) × C(B)), then either x is a regular point for A, or y

is a regular point for B . By symmetry we may assume that x is a regular point of
A and hence, by our assumptions on the dimensions, (dxA)(Tx(M)) = TB(y)(G).
Then, by the previous formula the range of d(A � B)(x,y) contains

(dA(x)RB(y))(dxA)(Tx(M)) = (dA(x)RB(y))(TA(x)(G)).

Since RB(y) is a diffeomorphism of G, the last vector space is the same as
TA(x)B(y)(G) = T(A�B)(x,y)(G). This shows that (x, y) is a regular point of
A � B . �
Therefore, if Mm and Nn and smooth manifolds and (G, ·) is a Lie group of
dimension dimG ≤ min(m,n) such that ϕ(M,G) and ϕ(N,G) are finite, then
for any closed subgroup H ⊂ G, we have that ϕ(M × N,G/H) is finite and

ϕ(M × N,G/H) ≤ ϕ(M,G)ϕ(N,G). (5)

The right-hand side inequalities follow from this inequality and the facts that
ϕ(S4, S3) = 2 (see [1]) ϕ(	sS

2 × S2, S3) = 2s + 2 (see [10; 11]).
The left-hand side inequalities follow from the fact that the manifolds consid-

ered do not fiber over S3, by the same argument as in the proof of Proposition 2.1.
In fact, we first have χ(S4 × · · · × S4) = 2m. Further, the Euler characteristic
is almost additive, namely χ(M	N) = χ(M) + χ(N) − (1 + (−1)n) for closed
n-manifolds M and N . Therefore we can compute:

χ((	r1S
2 × S2) × (	r2S

2 × S2) × · · · × (	rmS2 × S2)) = 2m(r1 + 1) · · · (rm + 1).

Remark 3.2. If f : Mm −→ Sn+1 (m ≥ n + 1 ≥ 3) is a smooth map with r

critical points, then we can construct a map F with rs critical points by using
fiber connected sums (see [11], proof of Prop. 3.1). The target manifolds are of
the form 	g(S

1 × Sn). Thus there are examples with finite ϕ(M4m, 	g(S
1 × S2)).

4. Signatures

4.1. Signature Definition

To compute the signature σ(X(
)), we need a description of the cup prod-
uct ∪. Recall that, for a 2n-manifold with boundary M , we have Hn(M,∂M) ∼=
Hn(M), whereas Hn(M,∂M) ∼= Hn(M,∂M)∗ by the universal coefficients the-
orem. The signature of M is the one of the (−1)n-symmetric bilinear form
φM : Hn(M,∂M) × Hn(M,∂M) → R given by

φM(x, y) = 〈x ∪ y, [M]〉.
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The adjoint of this bilinear form is the homomorphism φM : Hn(M) → Hn(M)∗,
which can be identified (see, e.g., [26]) with the inclusion induced morphism in
the long exact sequence

Hn(∂M) → Hn(M)
φM→ Hn(M,∂M) → Hn−1(∂M).

It follows that kerφM is precisely the image of Hn(∂M) into Hn(M).
Our purpose is an explicit description of the bilinear form and its kernel in the

case of X(
). Unless explicitly stated, we consider here k = 0, the last subsection
being concerned with the modifications to the present arguments for k ≥ 1.

4.2. Notation

Assume that we have a graph 
 with vertices decorated by generalized fibered
(n − 1)-links Lv such that (S2n−1,Lv) are Neuwirth–Stallings pairs. We assume
that n ≥ 3.

On one hand, Lv are links of the form KAv for some unimodular integer ma-
trices Av . The linking matrices in the canonical framing A∗

v of KAv are given by
Lemma 3.1. For simplicity, we assume that only white vertices, which are labeled
by disks, can occur, and their effect is to cap off the boundary components. In
particular, we can realize trees 
 whose leaves are white vertices of this kind.

If v is a vertex of 
, then we denote by 
v the set of edges issued from v and
by E(
) the set of all edges of 
. The link Lv has d(v) components indexed by
the edges in 
v .

Let Ev = S2n−1 −N(Lv) denote the link complement endowed with its canon-
ical boundary trivialization. Thus ∂Ev = ⊔

e∈
v
(Sn−1 × Sn−1)e, boundary com-

ponents being indexed by the edges e in 
v .

4.3. Homology of X(
)

We have the map f
 : X(
) → Dn with one critical value and one singular
fiber V n(
) = f −1


 (0). The retraction Dn → {0} lifts to a deformation retraction
X(
) → V n(
), so that

H∗(X(
)) ∼= H∗(V (
)).

On the other hand, the singular fiber V n(
) is obtained from the regular fiber Fn

by crushing vanishing cycles to points. Vanishing cycles on the local fiber Fv cor-
respond to the attaching spheres described before. Specifically, these are (d(v) −
1) embedded (n−1)-spheres carrying the homology of Fn = Sn \⊔d(v)

i=1 Dn
i . The

contribution of a white vertex v to Vn(
) is just the fiber Fv , which is a disk.
We can also obtain V n(
) by gluing along the pattern 
 the local singular

fibers Vv that are cones along the boundary spheres in ∂Fv . Thus each edge e of

 gives raise to a topological sphere Sn

e ⊂ Vv obtained by suspending the sphere
Sn−1

e ⊂ ∂Vv
∼= ∂Fv associated with the edge e at two points corresponding to the

two vertices of e. Gluing together all the spheres Sn
e by identifying the cone points
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corresponding to the same vertex of 
, we obtain V n(
). It follows that

H∗(V n(
)) ∼=
{⊕

e∈E(
) H∗(Sn
e ) for ∗ �= 1,

H1(
) for ∗ = 1.

In particular, we have the following:

Lemma 4.1. There is a preferred basis {βe, e ∈ E(
)} of Hn(V (
)) given by the
n-cycles Sn

e .

Note that the links Lv are naturally oriented, as they bound the local fiber Fv . This
induces a well-defined orientation of the n-cycle representing βe.

Recall that F is diffeomorphic to 	
g

1S1 × Sn−1, where g is the rank of H1(
),
and thus H2(F ) ∼= Hn−2(F ) = 0 if n �= 3.

Now the boundary E = ∂X(
) is endowed with a fibration over Sn−1 = ∂Dn

with fiber F . The Wang sequence in homology with rational coefficients first gives
us

Hn+1(F ) → Hn+1(E) → H2(F ),

so that Hn+1(E) = 0 and by duality Hn−2(E) = 0. Further, the Wang sequence
reads

0 → Hn(F) → Hn(E) → H1(F ) → Hn−1(F ) → Hn−1(E) → H0(F ) → 0.

4.4. The Cup Product Bilinear Form

Let A∗
v denote the d(v) × d(v) linking matrix in the canonical framing of the link

Lv . We define the matrix A∗

 indexed by the set of edges E(
):

A∗(
)ef =

⎧⎪⎨⎪⎩
(A∗

v)ef if e ∩ f = v,

(A∗
v)ef + (A∗

w)ef if e ∩ f = {v,w},
0 if e ∩ f = ∅.

Lemma 4.2. The cup product bilinear form φX(
) is expressed by the matrix
A∗(
) in the basis {βe, e ∈ E(
)} of Hn(V (
)).

Proof. The inclusions F → E, E → X(
) induce a morphism Hn(F) →
Hn(X(
)) whose image lies in the kernel of ϕX(
). If we identify Hn(X(
))

to Hn(V (
)), then this has a simple description. Specifically, the fundamental
class [F ] of F is sent into

∑
e∈E(
) βe . By the previous discussion this element

belongs to the kernel of φX(
).
Consider now two cycles βe1 and βe2 in Hn(X(
)). If e1 ∩ e2 = ∅, then the

intersection of these two cycles is trivial. Therefore

φX(
)(βe1 , βe2) = 0 if e1 ∩ e2 = ∅. (6)

Recall that V n
v ⊂ D2n

v is a cone over Lv = ⊔
e∈
v

Sn−1
e . Let ei = vwi with distinct

wi . There are two n-cycles in D2n
v that bound Sn−1

e1
and Sn−1

e2
; after putting them

in general position, their algebraic intersection number is lk(Sn−1
e1

, Sn−1
e2

) (see,
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e.g., [22], 5.D, Ex. 9, p. 134 for n = 2). Moreover, Sn−1
e1

and Sn−1
e2

also bound
disjoint n-cycles in D2n

w1
and D2n

w2
, respectively. Therefore we can perturb βe1 and

βe2 to have algebraic intersection number lk(Sn−1
e1

, Sn−1
e2

). Since this algebraic
intersection number is an invariant of their homology classes, we derive:

φX(
)(βe1 , βe2) = lk(Sn−1
e1

, Sn−1
e2

) = (A∗
v)e1e2 . (7)

Note that A∗
v is the d(v)×d(v) linking matrix in the canonical framing of the link

Lv ⊂ ∂Dv .
Moreover, if both edges e �= f have the same endpoints v �= w, then a similar

argument shows that

φX(
)(βe,βf ) = (A∗
v)ef + (A∗

w)ef . (8)

Suppose further that e1 = e2. If n is odd, then the antisymmetry of the bilinear
form yields

φX(
)(βe,βe) = 0. (9)

If n is even, then as
∑

e∈E(
) βe lies in the kernel of ϕX(
), we derive:

φX(
)

( ∑
e∈E(
)

βe,βe0

)
=

∑
e∩e0 �=∅

φX(
)(βe,βe0) = 0.

Writing e0 = vw, we derive

φX(
)(βe0, βe0) = −
∑

e∈
v\{e0}
(A∗

v)ee0 −
∑

e∈
w\{e0}
(A∗

w)e0e

= (A∗
v)e0e0 + (A∗

w)e0e0 . (10)
�

4.5. Geometric Interpretation of the Kernel of φX(
)

By induction on the number of boundary components we find:

Hi(Ev) =
{

0 if i /∈ {0, n − 1},
Qd(v) if i = n − 1.

This makes sense also when v is a white vertex and hence d(v) = 1.
We can represent classes in Hn−1(Ev) by means of meridian (n − 1)-spheres

on ∂Ev , which are represented as {p} × ∂Dn ⊂ Lv × Dn ⊂ S2n−1 after its iden-
tification with a regular neighborhood N(Lv) of Lv in S2n−1 given by the trivial-
ization. We have then a preferred basis of Hn−1(Ev) = Q〈μe, e ∈ 
v〉.

To compute H∗(E), we will use a refined version of the Mayer–Vietoris exact
sequence. If we have an open covering Ui of E such that Ui ∩ Uj ∩ Uk = ∅ for
distinct i, j, k, then the following sequence is exact:

→
⊕
i<j

Hk(Ui ∩ Uj ) →
⊕

i

Hk(Ui) → Hk(E) →
⊕
i<j

Hk−1(Ui ∩ Uj) → .
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By taking Ui to be small neighborhoods of Ev , we derive that

Hn(E) = ker

( ⊕
e∈E(
)

Hn−1((S
n−1 × Sn−1)e) →

⊕
v

Hn−1(Ev)

)
, (11)

where the map Hn−1((S
n−1 ×Sn−1)e) → ⊕

v Hn−1(Ev) is the morphism induced
by inclusion if v is a vertex of e and zero otherwise.

Let us give explicit cycles for classes in Hn(E). An (n − 1)-cycle (ze) ∈⊕
e∈
v

Hn−1((S
n−1 × Sn−1)e) is called bounding if its image by the inclusion-

induced morphism in Hn−1(Ev) vanishes. Thus Hn(E) is identified with the space
of cycles (ze)e∈E(
) that restrict to bounding (n − 1)-cycles on every 
v . There
exists an n-cycle Zv in Ev such that ∂Zv = ∑

e∈
v
ze in Ev . Therefore the union

Z = ⋃
v Zv is an n-cycle in E representing the class (ze)e∈E(
).

Recall that (Sn−1 × Sn−1)e is endowed with a canonical trivialization issued
from the open book structure of Lv , namely it is foliated by the (n − 1)-spheres
arising as intersections between ∂Ev and the local fibers. This provides a family
of isotopic (n − 1) spheres to be called preferred longitudinal spheres, in the
homology class of the canonical framing. Now

Hn−1(∂Ev) = Q〈λe,μe, e ∈ 
v〉
has a basis consisting in classes of the form λe represented by the preferred lon-
gitudinal (n − 1)-sphere in (Sn−1 × Sn−1)e and the classes of meridian spheres
μe. We want to describe the map

ie,v : Hn−1((S
n−1 × Sn−1)e) →

⊕
v

Hn−1(Ev)

in the basis defined. By the definition of the meridian classes

ie,v(μe) = μe. (12)

Recall that by Hurewicz there exists an isomorphism (for n ≥ 3)

πn−1(Ev) → Hn−1(Ev;Z) → Z
v .

The image of the class of an embedded sphere Sn−1 in Ev is given by the vector
(lk(Sn−1, Sn−1

e ))e∈
v . Note that the image of μe is the vector (δef )f ∈
v . Further,
the preferred longitudinal spheres λe and λf are isotopic in Ev to Sn−1

e and Sn−1
f ,

respectively, so that the linking number between the corresponding embedded
spheres is

lk(λe, S
n−1
f ) = (A∗

v)ef .

Since the union of all preferred longitudinal spheres λe for e ∈ 
v bounds a copy
of the local fiber Fv , we have

∑
e∈
f

ie,v(λe) = 0, and hence∑
e∈
v

lk(λe, S
n−1
f ) = 0.

This yields

lk(λe, S
n−1
e ) = −

∑
f �=e,f ∈
v

(A∗
v)ef = (A∗

v)ee.
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This proves that the image of λe by the Hurewicz isomorphism is the vector
((A∗

v)ef )f ∈
v . Therefore

ie,v(λe) =
∑
f ∈
v

(A∗
v)ef μf . (13)

This identifies ker ie,v with the kernel of the linear map expressed by the matrix
(1|A∗

v) consisting of two square blocks in the basis. Note that A∗
v is not of maximal

rank.
The description of the map Hn(E) → Hn(V (
)) is as follows. The retraction r

respects the decomposition of E = ⋃
v∈
 Ev and V (
) = ⋃

v∈
 Vv , and it induces
a commutative diagram:

Hn(E) Hn(V (
))

⊕
v∈


Hn−1(∂Ev)
⊕
v∈


Hn−1(∂Vv)

⊕
v∈


Hn−1(Ev)
⊕
v∈


Hn−1(Vv)

Suppose that the class in Hn(E) is given by the vector (ze)e∈E(
). Then the
retraction r : E → V (
) acts at the level of ∂Ev as the parallel transport in the
trivial boundary fibration toward ∂Vv . This means that the image of ze = neλe +
meμe in Hn−1(∂Vv) is neλe. Therefore we obtain

kerφX(
) =
{ ∑

e∈E(
)

neβe; ∃me ∈ Z, such that (neλe + meμe)e ∈ ker ie,v,

∀e ∈ E(
),∀v ∈ e

}
. (14)

Now (neλe + meμe)e ∈ ker ie,v if and only if

mf = −
∑
e∈
v

ne(A
∗
v)ef .

Let e = vw. When computing ie,w , we have to note a change in orientation since
Ev and Ew induce different orientations on their common boundary. We find that
(neλe + meμe)e ∈ ker ie,w if and only if

mf =
∑
e∈
w

ne(A
∗
w)ef .

Therefore

kerφX(
) =
{ ∑

e∈E(
)

neβe;
∑
e∈
v

ne(A
∗
v)ef +

∑
e∈
w

ne(A
∗
w)ef = 0,∀f ∈ 
v ∩ 
w

}
.
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This coincides indeed with the left kernel of the linear map given by A∗(
).
When 
 is a tree, H1(F ) = 0, and the inclusion-induced map Hn(F) →

Hn(E) is an isomorphism. In this case the map Hn(E) → Hn(X) can be iden-
tified with the inclusion-induced map Hn(F) → Hn(X). After the identification

Hn(X)
�→ Hn(V

n(
)), the previous map is the same as that induced by the re-
traction Hn(F) → Hn(V

n(
)). In this case the kernel is one-dimensional by the
previous Wang sequence, and hence

kerφX(
) = Q

〈 ∑
e∈E(
)

βe

〉
. (15)

4.6. Signature Computation When 1 ≤ k ≤ n − 2

For simplicity, we denote L�kψL
as L�kL.

We only consider the following cases:

(1) the graph 
 consists of two black vertices v, w and an edge. The decoration
is given by links of the form Lv = L�kL1

and Lw = L�kL2
, obtained by the

procedure of Section 2.5 from the (n−1)-dimensional generalized Hopf links
L1 and L2 in S2n−1;

(2) the graph 
0 consists of one black vertex v and a white vertex w connected
by an edge. The white vertex w is decorated by Fw = 	∂d−1D

n × Sk . The
gluing along ∂Fv is the identity map of 	∂d−1S

n−1 × Sk , and the global fiber
F is then diffeomorphic to Sn+k .

We define the matrices A∗

 and A∗


0
indexed by the set of edges {1,2, . . . , d} (and

not by the edges of the corresponding graphs):

(A∗

)ef = (A∗

v)ef + (A∗
w)ef , (A∗


0
)ef = (A∗

v)ef .

Lemma 4.3. The cup product bilinear forms φX(
) and φX(
0) are expressed by
the matrices A∗


 and A∗

0

, respectively, in their basis {βe, e ∈ {1,2, . . . , d}}.

Proof. If Ev = S2n−1 \N(Lv), then ∂X(
), which is also denoted E = Ev ∪Ew ,
is obtained by gluing together the link complements in a way that respects the
trivialization on the boundary.

The generic fiber F of the map X(
) → Dn−k is the union of the local fibers
Fv ∪ Fw along the link Lv

∼= Lw
∼= 	d−1S

n−1 × Sk . Each local fiber Fv or Fw

is diffeomorphic to 	∂d−1S
n−1 × Dk+1. The homeomorphism between Fw and

(Sn \ ⊔d
i=1 Dn

i ) × [0,1]k also provides an embedding of the (n − 1)-dimensional

link L1 = ⊔d
e=1 Sn−1

e ⊂ Fv . Here the subscript e ∈ {1,2, . . . , d} corresponds to
the numbering of the spheres in the link as in the previous section. Their homology
classes {βe,1 ≤ e ≤ d} generate Hn−1(F ), and according to Mayer–Vietoris, we
have:

H∗(F ;Q) =

⎧⎪⎨⎪⎩
Qd−1 if ∗ ∈ {k + 1, n − 1},
Q if ∗ ∈ {0, n + k},
0 otherwise,
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where, by notation abuse for (n, k) = (3,1), the set {k + 1, n − 1} reduces to a
singleton {2}. Therefore Hn−1(F ;Q) is identified with the quotient

Hn−1(F ;Q) = Q〈βe,1 ≤ e ≤ d〉
/( d∑

e=1

βe = 0

)
.

As in the case k = 0, the block X(
) retracts onto the singular fiber V (
),
which is the suspension �(	d−1S

n−1 × Sk) of the link Lv , and therefore:

H∗(X(
);Q) =

⎧⎪⎨⎪⎩
Qd−1 if ∗ ∈ {k + 1, n},
Q if ∗ ∈ {0, n + k},
0 otherwise.

Similar computations also provide:

H∗(X(
0);Q) =

⎧⎪⎨⎪⎩
Qd−1 if ∗ = n,

Q if ∗ = 0,

0 otherwise.

Observe that, for k = 0, the homology of Hn(�(	d−1S
n−1 × Sk);Q) = Qd

according with the previous section.
The boundary fibration ∂Ev → Sn−k−1, which is the restriction of the cor-

responding fibration of Ev , extends over Dn−k , and hence ∂Ev = (	d−1S
n−1 ×

Sk) × Sn−k−1. Denote by λe ∈ Hn−1(∂Ev) the preferred longitudinal classes of
the cycles Sn−1

e ×{pt}× {pt} obtained by pushing the cycles Sn−1
e along a direc-

tion of the local fiber. We also defines the meridian classes μe ∈ Hn−1(∂Ev) as
being the classes of the cycles {pt} × Sk

e × Sn−k−1, where Sk
e is a k-cycle linking

once Sn−1
e and trivially the others Sn−1

f for f �= e corresponding to the bound-

ary of the fiber disk Dk of �k . It is immediate that Hn−1(∂Ev) = Q2(d−1) and a
specific basis is deduced from the generators system

Hn−1(∂Ev) = Q〈μe,λe;1 ≤ e ≤ d〉
/( d∑

e=1

μe =
d∑

e=1

λe = 0

)
.

We denote by the same symbols μe and λe the images of these classes in the
homology of Ev . Using Mayer–Vietoris, we deduce that

Hn(Ev) =
{
Qd−1 if k = n − 2,

0 otherwise,

and a description in the nontrivial case k = n − 2 is provided by the quotient

Hn(Ev) = Q〈λe × S1,1 ≤ e ≤ d〉
/( d∑

e=1

λe × S1 = 0

)
.

Further, we have

Hn−1(Ev) = Q〈μe,1 ≤ e ≤ d〉
/( d∑

e=1

μe = 0

)
.
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Again by Mayer–Vietoris we obtain that the boundary map induces an isomor-
phism for k �= n − 2:

Hn(E) = ker(Hn−1(∂Ev) → Hn−1(Ev) ⊕ Hn−1(Ew)).

However, this also holds when k = n − 2. Indeed, the map Hn(Ev) → Hn(V (
))

factors through Hn(Vv) = 0. To understand Hn(E), we need to describe the map
iv : Hn−1(∂Ev) → Hn−1(Ev). It is clear that

iv(μe) = μe.

The inclusion map Ev ⊂ S2n−1 \ L1 induces a homomorphism Hn−1(Ev) →
Hn−1(S

2n−1 \ L1) ∼= Qd . Its image is the subspace Qd−1 of vectors whose sum
vanishes. By the computations from the previous section we have

iv(λe) =
d∑

f =1

(A∗
v)ef μf .

Note that the right-hand is well-defined in Hn−1(Ev).
The description of the map Hn(E) → Hn(V (
)) is similar to the case k = 0.

The retraction r respects the decomposition of E = Ev ∪Ew and V (
) = Vv ∪Vw

and induces a commutative diagram

Hn(E) Hn(V (
))

Hn−1(∂Ev) ⊕ Hn−1(∂Ew) Hn−1(∂Vv) ⊕ Hn−1(∂Vw)

Hn−1(Ev) ⊕ Hn−1(Ew) Hn−1(Vv) ⊕ Hn−1(Vw)

Suppose that the class in Hn(E) is given by the vector (zv, zw) ∈ Hn−1(Ev) ⊕
Hn−1(Ew). Then the retraction r : E → V (
) acts at the level of ∂Ev as the
parallel transport in the trivial boundary fibration toward ∂Vv . This means that the
image of zv = ∑d

e=1 neλe + meμe in Hn−1(∂Vv) is
∑d

e=1 neλe.
Further, the arguments of Section 4.4 carry over without essential changes. �

4.7. Indefinite Bilinear Forms

Since A has zero diagonal, the associated bilinear form is indefinite. Now, the
classification of indefinite symmetric unimodular bilinear forms over Z is known
up to equivalence. Recall that bilinear forms associated with matrices A and B are
equivalent if there exists an invertible integral matrix M such that A = MBM⊥,
where M⊥ denote its transpose. Then, any indefinite unimodular symmetric A is
equivalent to pE8 ⊕ qH for some p,q ∈ Z+, q ≥ 1 (see [20], II.5.3). Here E8

denotes the Cartan matrix for the unimodular E8 lattice, and H is the metabolic
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matrix:

E8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, H =

(
0 1
1 0

)
.

Let {ei,s , i = 1,8} and {f1,t , f2,t } be bases for the inner product space associated
with the sth factor E8 and the t th factor H , respectively. The unimodular change
of basis

e′
i,s = ei,s + f1,1 − f2,1, f ′

j,t = fj,t ,1 ≤ i ≤ 8,1 ≤ s ≤ p,1 ≤ j ≤ 2,1 ≤ t ≤ q,

shows that pE8 ⊕ qH is equivalent to pE′
8 ⊕ qH , where

E′
8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 −2 −2 −2 −2 −2 −2
−1 0 −1 −2 −2 −2 −2 −2
−2 1 0 −1 −2 −2 −2 −2
−2 −2 −1 0 −1 −2 −2 −2
−2 −2 −2 −1 0 −1 −2 −1
−2 −2 −2 −2 −1 0 −1 −2
−2 −2 −2 −2 −2 −1 0 −2
−2 −2 −2 −2 −1 −2 −2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore unimodular symmetric matrices with zeros on the diagonal are equiva-
lent to pE′

8 ⊕ qH , q ≥ 1.

4.8. Proof of Theorem 2.5

If 
 is a tree and k = 0, then the generic global fiber is F = Sn. Assume that KA

is fibered, for example, A = ⊕
θ2n−1

A0 for some unimodular symmetric A0. The

matrix associated with φX(
) is the matrix A∗that has the nonsingular minor A−1.
Since A is symmetric and unimodular AA−1A⊥ = A, so that A−1 is equivalent
over Z to A. We know that A is equivalent to pE′

8 ⊕ qH for some q ≥ 1 and
p ≥ 0. We derive that

σ(X(
)) = 8p.

Then it suffices to consider A0 = p0E
′
8 ⊕ q0H with p0, q0 ≥ 1 to obtain blocks

X(
) of nonzero signature.
Novikov’s additivity of the signature shows that the resulting manifold M2n(
)

has signature 8p �= 0. In particular, ϕ(M2n(
), Sn) = 1 for even n, thereby ob-
taining another proof of Theorem 2.3.

If k ≥ 1, then we consider either of the graphs 
 or 
0 from Section 4.6. The
matrix associated with φX(
) is A∗


 . Then, as before, we take Av = Aw equivalent
to pE′

8 ⊕ qH to obtain blocks X(
) and X(
0) of signature 8p �= 0.
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Then we can consider M(
) = X(
)∪Sn+k ×Dn−k . By Novikov’s additivity
of signatures σ(M(
)) = σ(X(
)). By taking A = pE′

8 ⊕ qH with p,q ≥ 1 we
obtain σ(M(
)) = 8pm �= 0. Note that if n − k is even, then M(
) cannot fiber
over Sn−k by the signature criterion.

Remark 4.1. Observe that gluing several such blocks X(
i) is only possible
when the boundary fibrations ∂X(
i) are cobounding. The examples obtained in
the case where n is odd are doubles of such blocks, namely obtained by gluing
X(
) and X(
). Doubles of oriented manifolds are bounding, and therefore their
signatures vanish.

Remark 4.2. All examples obtained by this procedure have signature divisible by
8θ2n−1. We can drop the factor θ2n−1 if we work instead of the smooth category
in the topological category.
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