
Michigan Math. J. 67 (2018), 227–251

Splitting Criteria for Vector Bundles Induced by
Restrictions to Divisors

Mihai Halic

Abstract. In this article we obtain criteria for the splitting and trivi-
ality of vector bundles by restricting them to partially ample divisors.
This allows us to study the problem of splitting on the total space of
fibre bundles. The statements are illustrated with examples.

For products of minuscule homogeneous varieties, we show that
the splitting of vector bundles can be tested by restricting them to sub-
products of Schubert 2-planes. By using known cohomological cri-
teria for multiprojective spaces, we deduce necessary and sufficient
conditions for the splitting of vector bundles on products of minus-
cule varieties.

The triviality criteria are particularly suited to Frobenius split vari-
eties. We prove that a vector bundle on a smooth toric variety, whose
anticanonical bundle has stable base locus of codimension at least
three, is trivial precisely when its restrictions to the invariant divisors
are trivial, with trivializations compatible along the various intersec-
tions.

Introduction

Although the problem of deciding the splitting of vector bundles is classical, only
relatively few cases have been settled despite numerous efforts: there are cohomo-
logical criteria for products of projective spaces and quadrics [9; 4], Grassman-
nians [25; 22], hypersurfaces in projective spaces [27; 5], and uniformity criteria
for vector bundles on minuscule homogeneous varieties [24].

Our guiding principle is that, for investigating the splitting of vector bundles,
we should consider restrictions in order to simplify the problem. Usually, this pro-
cess leads to (much) lower-dimensional subvarieties, where we can use further
techniques. Indeed, when the geometry of the base variety is involved, the coho-
mological characterization of the split vector bundles becomes very intricate; this
is apparent in the references cited above. For this reason, it is both computation-
ally and theoretically convenient to first reduce the dimension of the base and only
afterward to apply cohomological methods.

The statement is strongly supported by applications. In [14], we obtained an
algorithmic necessary and sufficient condition for the splitting of vector bundles
of arbitrary rank on minuscule homogeneous varieties, valid in any characteristic.
This goes beyond [24], where vector bundles of sufficiently low rank were consid-
ered. The techniques developed inhere show that the splitting of a vector bundle
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on a product of minuscule homogeneous varieties can be verified by restricting
it to the product of the two-dimensional Schubert subvarieties of the factors. By
combining this result with [9; 22], we deduce necessary and sufficient conditions
for the splitting. To our knowledge, currently there are no results in this direction;
even a product of Grassmannians is uncovered.

A vector bundle on Pn, n ≥ 3, splits precisely when its restriction to some
hyperplane Pn−1 does (see [18]). This was generalized in [3] for restrictions of
vector bundles on “Horrocks varieties”—a restrictive cohomological condition—
to ample divisors. The ampleness assumption excludes several natural situations,
for example, the case of morphisms, where we wish to restrict vector bundles
either to preimages of ample divisors or to relatively ample ones.

Here we generalize the works cited to include q-ample divisors; this covers
the case of morphisms mentioned before. We obtain two types of results, splitting
and triviality criteria.

Theorem (splitting criteria). Let (X,OX(1)) be a smooth complex projective va-
riety with dimX ≥ 3. Let V be a vector bundle on X, E := End(V ) the bundle of
its endomorphisms, L ∈ Pic(X), and D ∈ |dL|. The equivalence

[V splits ⇔ V ⊗OD splits]
holds in any of the following cases:

(a) (see Proposition 1.8, Remark 1.9) If L is (dimX − 3)-ample and H 1(ED ⊗
L−a

D ) = 0 for all a ≥ d . The parameter d is bounded from below by a linear
function in the regularity of E with respect to OX(1).

(b) (see Corollary 2.5) If X is 2-split, L is (dimX−4)-positive, and D is smooth.
(c) (see Theorem 3.4) If X is 1-split, L is globally generated and (dimX − 4)-

ample, and D is very general.

The conditions 1- and 2-split are respectively the notions of “splitting” and “Hor-
rocks variety” in [3]. The statements become more effective in the case where L is
relatively ample with respect to a morphism: in (a), it suffices D to be weakly nor-
mal and E ⊗L be relatively ample (see Theorem 1.10); in (b), D can be arbitrary
(see Corollary 2.5(b)); hence we strengthen Bakhtary’s result.

We illustrate the advantage of allowing q-ample line bundles by discussing
several explicit examples. The cohomological splitting criteria for products of
projective spaces and quadrics [9; 4; 22] involve numerous conditions. The effect
of restricting to “subproducts” is a massive reduction of the number of tests. As we
mentioned earlier, we obtain a splitting criterion for vector bundles on products of
minuscule homogeneous varieties; these include, for example, projective planes,
Grassmannian, quadrics, and spinor varieties.

Theorem (see Theorem 2.9). Let M(j), j = 1, . . . , t , be minuscule homogeneous
varieties, with dimM(j) ≥ 2. A vector bundle on X := M(1) × · · · × M(t) splits if
and only if it does on X2t := M

(1)
2 × · · · × M

(t)
2 , where M

(j)

2 ⊂ M(j) stands for
the union of the two-dimensional Schubert subvarieties.
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The result completely addresses the splitting problem for X as before. Indeed,

each factor M
(j)

2 is either a projective plane or a union of two planes (see [14]),
and hence X2t is a union of (P2)t . Together with [9; 22], we deduce necessary
and sufficient cohomological conditions to probe the splitting of vector bundles.

The trivializable vector bundles are particular cases of the split ones, so the
triviality criteria in the next theorem hold in greater generality. Notably, we can
eliminate the conditions 1- and 2-split.

Theorem (triviality criteria). Let X, L, V be as before, and let D ∈ |L|. The
equivalence [V is trivial ⇔ VD is trivial] holds in any of the following situa-
tions:

(a) (see Theorem 4.2)

– If L ∈ Pic(X) is semiample and (dimX − 3)-ample.

– If L is relatively ample for a morphism X
f→ Y of relative dimension at

least three.

(b) (see Corollary 4.4) If the anticanonical bundle ω−1
X is (dimX − 3)-ample, X

is Frobenius split by a power of a section σ in ω−1
X , and D = divisor(σ ).

Condition (b) is particularly suited for spherical varieties (e.g. toric varieties),
because they satisfy the assumption about the Frobenius splitting. We elaborate
the case of toric varieties.

Theorem (see Theorem 4.6). Let X be a smooth toric variety, and let � be its
boundary divisor. We assume that

codim(stable base locus(ω−1
X )) ≥ 3.

(By codim(·) we mean the maximal codimension of the components.)
Then, for a vector bundle V on X, we have the equivalences:

(a) [V splits ⇔ V�m splits] for m � 0.
(b) [V is trivial ⇔ V� is trivial].
The splitting criteria obtained in this article are based on two technical ingredi-
ents: the “universal” criterion Proposition 1.8, on one hand, and various Kodaira-
type vanishing theorems for q-ample line bundles, on the other hand. The article
discusses the splitting problem from the start. The necessary background about
partially ample line bundles is presented in the appendix. For this reason, the role
of the latter is twofold:

(a) to recall the definitions and properties of the q-ampleness (see [30; 26]) and
Frobenius splitting (see [8]), which are used in the body of the article;

(b) to present a few, possibly new, results:

– a Kodaira vanishing theorem for relatively ample line bundles on weakly
normal varieties (see Theorem A.5(iii)) and for q-ample line bundles on
Frobenius-split varieties (see Theorem B.3);

– a Picard–Lefschetz property in the relative setting (see Theorem A.7);
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– a q-ampleness criterion for line bundles, which are not necessarily globally
generated (see Theorem A.8).

In this article, X stands for a smooth projective variety over C of dimension at
least three.

1. The General Splitting Principle

Definition 1.1. Let T be a scheme defined over C, and let S be its closed sub-
scheme defined by the sheaf of ideals IS ⊂ OT ; we assume that H 0(OT ) = C. For
a locally free sheaf (a vector bundle) VT of rank r on T , we denote ET := End(VT )

its sheaf of endomorphisms; let VS := VT ⊗OT
OS , ES := ET ⊗OT

OS , and so on.
An eigenvalue of hT ∈ H 0(ET ) is a complex root of its characteristic polyno-

mial

phT
:= det(t1 − hT ) ∈ H 0(End(detVT ))[t] = H 0(OT )[t] = C[t]. (1.1)

We say that VT splits if it is isomorphic to a direct sum of r invertible sheaves
(line bundles) on T .

Remark 1.2. Let T and hT be as before. Note that if ε ∈ C is an eigenvalue
of phT

, then Ker(ε1 − hT ) ⊂ VT is a nonzero OT -module. Indeed, for a closed
point x ∈ T with residue field C(x) ∼= C, ε is a (usual) eigenvalue of hT ⊗C(x) ∈
End(VT ⊗C(x)).

Lemma 1.3 (see [14, Lemma 2.2]). The following statements hold:

(i) VT splits if and only if there is hT ∈ H 0(ET ) with r pairwise distinct eigen-
values.

(ii) If H 0(ET ) → H 0(ES) is surjective—in particular, if H 1(IS ⊗ ET ) = 0—then
VT splits if and only if VS splits.

Definition 1.4. Let L be an invertible sheaf (a line bundle) on T , and let D ∈
|dL| be an effective divisor. For m ≥ 0, the mth-order thickening Dm of D is the
subscheme of T defined by the ideal Im+1

D , where ID = OT (−D) ∼= L−d .

The structure sheaves of the successive thickenings fit into the exact sequences:

0 →L−dm
D →ODm → ODm−1 → 0, m ≥ 1. (1.2)

We will apply Lemma 1.3 mostly in the case T = X and S = Dm for suit-
able m. (Recall that X is a smooth, projective variety.) In the framework of formal
schemes, we have the following very general statement.

Proposition 1.5. Let D ⊂ X be an effective divisor, dimX ≥ 2, and let X̂ :=
lim−→
m

Dm denote the formal completion of X along D. If the cohomological di-

mension cd(X \ D) ≤ dimX−2, then V splits if and only if V ⊗ O
X̂

does. The
assumption is satisfied if D is (dimX−2)-ample.
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The proposition generalizes [3, Prop. 3.1], which corresponds to the case where
D is ample, so cd(X \ D) = 0.

Proof. By [16, Thm. 3.4], H 0(E ) → H 0(E
X̂
) is an isomorphism. The splitting

of V ⊗ O
X̂

yields ĥ ∈ H 0(E
X̂
) with r pairwise distinct eigenvalues. This is in

fact induced from H 0(EDm), m � 0, and we conclude by Lemma 1.3(ii). The last
claim is [26, Prop. 5.1]. �

Lemma 1.6. Let T be a projective equidimensional Cohen–Macaulay scheme with
H 0(OT ) = C. Suppose that L ∈ Pic(T ) is q-ample, q ≤ dimT − 2, and consider
D ∈ |Ld |. Then VT splits if and only if its restriction VDm splits for appropriate
m � 0.

Proof. We apply Lemma 1.3: it suffices to have H 1(ET ⊗ L−d(m+1)) = 0. The
Serre duality holds for T (see [17, Thm. III.7.6]), so the (dimT − 2)-ampleness
of L implies that this is indeed the case for m large enough. �

Remark 1.7. Since the surjectivity of H 0(EX) → H 0(ED) is implied by the van-
ishing of H 1(OX(−D) ⊗ EX), the (dimX − 2)-amplitude of OX(D) is, except
special cases, the weakest possible assumption that allows us to deduce the split-
ting of vector bundles by restricting them to D.

The following general splitting principle, corresponding to restrictions to partially
ample divisors, is the root of the results obtained in this article.

Proposition 1.8. Let T be a projective equidimensional Cohen–Macaulay
scheme such that H 0(OT ) = C. Suppose that L ∈ Pic(T ) is q-ample with
q ≤ dimT − 2 and that D ∈ |dL| is an effective divisor. We assume moreover
that

H 1(D,ED ⊗L−a
D ) = 0 for all a ≥ c. (1.3)

Then the following properties hold:

(i) H 1(T ,ET ⊗L−a) = 0 for all a ≥ c.
(ii) If d ≥ c and VD splits, then V splits too.

Proof. (i) Using the Serre duality, the (dimT − 2)-ampleness of L implies

a0 := max{a | H 1(T ,ET ⊗L−a) �= 0} < +∞.

The exact sequence 0 → L−d →OT →OD → 0 yields

· · · → H 1(ET ⊗L−d−a0) → H 1(ET ⊗L−a0) → H 1(ED ⊗L
−a0
D ) → ·· ·

with −d − a0 ≤ −(a0 + 1), so the leftmost term vanishes. If a0 ≥ c, then the
rightmost and the middle terms also vanish. This contradicts the definition of a0,
and hence a0 < c.

(ii) Since d ≥ c, H 0(ET ) → H 0(ED) is surjective. �
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Remark 1.9. (i) The uniform q-ampleness property [30, Thm. 6.4] implies that
there is a linear function l(r) = λr +μ, with λ, μ depending only on L, such
that Proposition 1.8(i) holds for all a ≥ l(reg(ET )), where reg(ET ) stands for
the regularity of ET with respect to a (fixed) ample line bundle OT (1).

(ii) Condition (1.3) involves only ED , which splits by assumption. This feature
is helpful because it is easier to decide the vanishing of the cohomology of
line bundles, rather than of vector bundles (i.e., Proposition 1.8(i)). Also, for
q ≤ dimT − 3, condition (1.3) is indeed fulfilled for c � 0.

(iii) There are two important classes of q-ample line bundles, the relatively ample
and the pull-back of ample line bundles with respect to a morphism. We shall
constantly elaborate these two situations; the case of a pull-back typically
requires stronger hypotheses.

Theorem 1.10. Let V be a vector bundle on X, E := End(V ), and let f : X → Y

be a surjective morphism with Y projective,

dimX − dimY ≥ 3, L ∈ Pic(X) f -relatively ample.

Let D ∈ |L| be a reduced weakly normal divisor, and assume that ED ⊗ LD is
relatively ample with respect to D → Y . (In particular, it suffices E ⊗ L to be
relatively ample.) Then we have the equivalence [V splits ⇔ VD splits].
The weak normality condition for a divisor (see [21, Prop. 4.1]) is explicit, but
it is somewhat technical. However, we can see that the condition is satisfied in
the following fairly general situation (a particular case of the WN1-property [10,
Def. 3.2]):

– D = D1 +· · ·+Dt is reduced, and D is normal away from its self-intersections
of a single irreducible component or of two different components;

– For any point p ∈ D, the local equations (in the analytic topology) of the
components of D that are passing through p form a regular sequence in
ÔX,p

∼= C{ξ1, . . . , ξdimX}. Hence the locus of the points that belong to at least
three branches of D have codimension at least two in D.

– D has generically normal crossings: at the generic intersection point of
two local (analytic) branches of D, there are local (analytic) coordinates
{ξ1, . . . , ξdimX} in ÔX,p such that the germ of D at p is given by {ξ1ξ2 = 0}.

Proof. Let � ∈ Pic(D) be a direct summand of ED ; by hypothesis, �a := � ⊗
La is relatively ample for all a ≥ 1. Note that D is Gorenstein, so it satisfies
Serre’s condition S2. Then Theorem A.5(iii) implies that H 1(D,�−1

a ) = 0, that is,
condition (1.3) is fulfilled, and we may apply Proposition 1.8. �

2. Splitting Along Divisors: A “Deterministic” Approach

Definition 2.1. For s ≥ 1, we say that a scheme T is s-split if

Hj(T , �) = 0, for j = 1, . . . , s,∀� ∈ Pic(T ). (s-split)
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Remark 2.2. For s = 1,2, we get respectively the “splitting” and “Horrocks
scheme” notions introduced in [3]. Examples of projective varieties that satisfy
(s-split) are as follows:

(i) arithmetically Cohen–Macaulay varieties X—for example, homogeneous
spaces, complete intersections in them—with cyclic Picard group (where
s = dimX − 1), and their products;

(ii) projective bundles: if Y is s-split and M1, . . . ,Mr , r ≥ s +2, are line bundles
on Y , then X := P(M1 ⊕ · · · ⊕Mr ) is also s-split (see [3, Example 4.9]).

Proposition 2.3. (i) Suppose T is a projective equidimensional Cohen–
Macaulay scheme and D is an effective q-ample divisor on T . The following
statements hold:
(a) If D is s-split with s ≤ dimT − (q + 1), then T is s-split.
(b) If D is s-split with q ≤ s ≤ dimT − (q + 1), then T is (s + 1)-split.

(ii) Suppose X is a smooth projective variety. If X is (s + 1)-split, then D is
s-split in the following cases:
(a) D is smooth, and OX(D) is (dimX − 4)-positive;
(b) D is arbitrary relatively ample for a morphism X → Y with projective Y

and dimX − dimY ≥ 4.

Proof. (i)(a) We consider the exact sequences

0 →OT ((k − 1)D) → OT (kD) → OD(kD) → 0, k ∈ Z,

and tensor them by L ∈ Pic(X). We obtain the surjective homomorphisms

Hi(T ,L((k − 1)D)) � Hi(T ,L(kD)) for i ≤ s.

The q-ampleness of D and the Serre duality on T imply that Hi(T ,L(kD)) = 0
for k � 0, which yields Hi(T ,L) = 0.

(b) We have to verify only that Hs+1(T ,L) = 0. The previous exact se-
quence yields inclusions Hs+1(T ,L((k − 1)D)) ⊂ Hs+1(T ,L(kD)) for all
k ∈ Z. Again, the q-ampleness of D implies Hs+1(T ,L(kD)) = 0 for k � 0,
so Hs+1(T ,L) = 0.

(ii) Since X is smooth, Theorem A.7 implies in both cases that the restriction
Pic(X) → Pic(D) is an isomorphism. Consequently, for any � ∈ Pic(D), there is
�̃ ∈ Pic(X) such that �̃D = �. It remains to take the cohomology of the sequence
0 → �̃(−D) → �̃ → � → 0. �

Theorem 2.4. Let T be a projective equidimensional Cohen–Macaulay scheme
with H 0(OT ) = C. Suppose D is an effective divisor on T such that D is 1-split
and OX(D) is (dimT − 2)-ample. Then we have the equivalence

[V splits ⇔ VD splits].
Proof. Since VD splits and D is 1-split, we have H 1(ED ⊗L−a

D ) = 0 for all a ≥ 1.
The conclusion follows from Proposition 1.8. �
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The interest in allowing partial ampleness for line bundles, which is consider-
ably weaker than the ampleness, is to apply the result for morphisms (e.g., fiber
bundles).

Corollary 2.5. Let X be a smooth 2-split projective variety, and let D be an

effective divisor on it; let X
f→ Y be a morphism with projective Y . Then the

splitting of VD implies the splitting of V in any of the following cases:

(a) f is smooth, D = f −1(DY ) with DY ⊂ Y a smooth (dimY − 4)-positive
divisor;

(b) D is arbitrary, f -relatively ample, and dimX−dimY ≥ 4.
(This generalizes [3, Cor. 4.14] to the relative case.)

Proof. In both situations, Proposition 2.3(ii) implies that D is 1-split. �

Example 2.6. Let X = X(1) × · · · × X(t) be a product of Fano varieties of di-
mension at least four, with Pic(X(j)) ∼= Z for all j . By applying Theorem 2.4 we
reduce the problem of splitting of a vector bundle on X to S

(1)
3 ×· · ·×S

(t)
3 , where

each S
(j)

3 ⊂ X(j) is an irreducible, three-dimensional complete intersection.

Example 2.7 (Projective bundles). Let Y be a smooth, projective, 1-split variety.
Consider M1, . . . ,Mt ∈ Pic(Y ), t ≥ 3, and define

X := P(OY ⊕M1 ⊕ · · · ⊕Mt )
f→ Y, D := P(M1 ⊕ · · · ⊕Mt ) ∈ |Of (1)|.

(D is 1-split by Remark 2.2(ii).) For any vector bundle V on X, we have

[V splits ⇔ VD splits].
By repeatedly applying this method we reduce the verification of the splitting of
V to a P2-subbundle of X over Y .

2.1. Vector Bundles on Products of Projective Spaces and Quadrics

A splitting criterion for vector bundles on X1 := Pn1 × · · · × Pnt is obtained in
[9, corrigendum, Thm. 1.4], [22, Prop. 3]. It generalizes Horrocks’ criterion and
involves the vanishing of (n1 + 1) · · · · · (nt + 1) cohomology groups.

The result has been extended in [4, Thms. 2.14 and 2.15] to products X1 ×
X2, where X1 is as before, and X2 is a product of hyperquadrics Qn ⊂ Pn+1.
The splitting criterion involves a large number of cohomological conditions. By
applying Corollary 2.5 we obtain the following:

Corollary 2.8. Let X1, X2 be as before.

(i) A vector bundle on X1 splits if and only if it splits along a P2 ×· · ·×P2 ⊂ X1.
(ii) A vector bundle on X1 ×X2 splits if and only if it splits along some X′

1 ×X′
2 ⊂

X1 × X2, where X′
1 is a product of projective planes P2, and X′

2 is a product
of copies of Q3.
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Let us remark that in both cases, by taking restrictions the number of cohomolog-
ical tests necessary to decide the splitting decreases dramatically.

2.2. Vector Bundles on Products of Minuscule Varieties

The minuscule homogeneous varieties are the following: the projective spaces,
Grassmannians, spinor varieties, quadrics, the Cayley plane, and Freudenthal’s
variety. In [14] it is proved that a vector bundle on a minuscule homogeneous
variety M , dimM ≥ 2, splits if and only if its restriction to the union M2 ⊂ M of
the two-dimensional Schubert subvarieties splits. (It turns out that M2 is either P2

or a union of two copies of P2 glued along a P1.) The proof, which does not fit
within the frame of this article, exploits the compatible F-splitting of the Schubert
varieties and the properties of the minuscule weights.

Rather surprisingly, our approach reduces the splitting problem for vector bun-
dles on products of minuscule varieties to (only) products of 2-planes. To our
knowledge, there are no results even for products of Grassmannians.

Theorem 2.9. Let M(j), j = 1, . . . , t , be minuscule homogeneous varieties with
dimM(j) ≥ 2, and let X := M(1) × · · · × M(t).

A vector bundle V on X splits if and only if its restriction to M
(1)
2 × · · · ×

M
(t)
2 splits, where each M

(j)

2 ⊂ M(j) stands for the union of the two-dimensional
Schubert subvarieties.

Proof. The proof is by induction on (t, rkV ). For t = 1, see [14]. Let us prove the
statement for X̃ = X × M with X as before and M minuscule: we assume that
VX2×M2 splits, where X2 := M

(1)
2 × · · · × M

(t)
2 ⊂ X. The proof consists of two

steps.

Claim 1. VX×M2 splits.

We prove by induction on rk(V ) for vector bundles on X × M2.

Recall that Zt+1 ∼= Pic(X̃)
∼=→ Pic(X2 × M2), so the line bundles on X̃ are of

the form O
X̃
(α̃) = OM(1) (α1) � · · · �OM(t) (αt ) �OM(k) = OX(α) �OM(k). We

deduce that
VX2×M2

∼=
⊕

(α,k)∈Zt+1

(OX(α) �OM2(k)dα,k ). (2.1)

Let us consider the diagram

X2 × M2

f

X × M2

f

M2 M2.

The induction hypothesis implies that V splits on the fibers of f , so

VX×{z} ∼=
⊕
α∈Zt

OX(α)dα(z), z ∈ M2.
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In fact, the multiplicities dα(z) are independent of z ∈ M2. By restricting to X2 ×
{z} and using (2.1) we deduce:

dα :=
∑
k∈Z

dα,k = dα(z), z ∈ M2.

Let a ∈ Zt be a maximal element of {α ∈ Zt | dα �= 0} for the lexicographic order.
Then f∗(OX(−a) ⊗ V ) is locally free on M2 of rank da , and (2.1) yields:

R := f∗(OX(−a) ⊗ V ) ∼=
⊕
k∈Z

OM2(k)da,k .

(For this, observe that H 0(X,OX(α − a)),H 0(X2,OX(α − a)) �= 0 if and only if
all the components of α−a are nonnegative; the only such α is a itself.) It follows
that we have the exact sequence 0 → OX(a) � R → V → V ′ → 0 on X × M2.

The first arrow is pointwise injective, so the quotient V ′ is locally free on
X × M2, its restriction to X2 × M2 splits, and rk(V ′) < rk(V ). Hence, by the
induction hypothesis, V ′ splits. Finally, we deduce that

V ∈ Ext1(V ′,OX(a) � R) = H 1(X × M2,Hom(V ′,OX(a) � R)) = 0

because X × M2 is 1-split and Hom(V ′,OX(a) � R) is a direct sum of line
bundles. We conclude by recurrence that VX×M2 splits.

Claim 2. VX×M splits.

We denote by Md the union of all the d-dimensional Schubert subvarieties
Sd ⊂ M . For any (d + 1)-dimensional Schubert variety Sd+1 ⊂ M , the intersec-
tion ∂Sd+1 := Md ∩ Sd+1 is reduced, and it is the union of the d-dimensional
Schubert subvarieties of Sd+1; usually, it is called the boundary of Sd+1. With
this notation, for d ≥ 2, the following properties hold (see [14] and the references
therein):

– Z ·OM(1) = Pic(M) → Pic(Sd) is an isomorphism;
– OM(1) ⊗OSd+1 = OSd+1(∂Sd+1);
– Sd and ∂Sd+1 are 1-split.

Thus, for any Schubert variety Sd+1 ⊂ M , the divisor X × ∂Sd+1 ⊂ X × Sd+1 is
1-split and dimX-positive. We deduce the implications:

VX×Md
splits

∂Sd+1⊂Md�⇒ VX×∂Sd+1 splits
Thm. 2.4�⇒ VX×Sd+1 splits.

Clearly, for S′
d+1, S

′′
d+1 ⊂ M , the splittings of VX×S′

d+1
and VX×S′′

d+1
coincide

along the (reduced) intersection X × (S′
d+1 ∩ S′′

d+1) ⊂ X × Md , so we get a split-
ting of VX×Md+1 . By repeating the argument we deduce that VX×M splits. �

Remark 2.10. The previous theorem holds over algebraically closed ground
fields of arbitrary characteristic, because [14]—used in the proof—does.

Table 1 further lists the minuscule homogeneous varieties and their two-
dimensional Schubert subvarieties (see [14]). Although the odd-dimensional
quadrics are not minuscule, we include them in the table because Corollary 2.5
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Table 1 Minuscule homogeneous varieties

Variety M Subvariety M2 to test splitting

Pn−1 P2

Gr(k;n), 1 < k < n − 1 P2 ∪P1 P2

spinor variety Sn P2

quadrics Q4, Q5 P2 ∪P1 P2

quadric Qn, n ≥ 6 P2

Cayley plane OP2 P2

Freudenthal variety P2

allows us to reduce the splitting problem to the case of the even-dimensional
quadrics by restricting to a hyperplane section.

Hence Theorem 2.9 reduces the splitting problem for a product of minuscule
varieties to a union of products (P2)t . Furthermore, the cohomological character-
ization of split vector bundles on multiprojective spaces is known.

Theorem ([9, corrigendum, Thm. 1.4], [22, Prop. 3]). Let W be a normalized
vector bundle on P := (P2)

t
such that:

Hk(P,W ⊗OP (δ1, . . . , δt )) = 0, −2 ≤ δj ≤ 0, j = 1, . . . , t, k = −1 −
t∑

j=1

δj .

(Here OP (δ1, . . . , δt ) stands for the tensor product of the line bundles OP2(δj ) on
the factors.) Then W contains OP as a direct summand.

By combining the two results (apply to W := VP and normalize) we obtain al-
gorithmically computable conditions to probe the splitting of vector bundles of
arbitrary rank on products of minuscule homogeneous varieties.

3. Splitting Along Divisors: A “Probabilistic” Approach

In this section we obtain splitting criteria for vector bundles by restricting them to
zero loci of generic sections of globally generated partially positive line bundles.
The global generation allows us to replace the (2-split) by the weaker (1-split)
condition, but we have to consider very general test divisors instead of arbitrary
ones. This explains the “probabilistic” attribute used in the title.

Note that if L is a q-ample line bundle on X such that Ld is globally generated
for some d ≥ 1, then L is q-positive, and the fibers of the morphism f : X → |Ld |
are at most q-dimensional (see [23, Thm. 1.4]), qnd thus

κ(L) ≥ dim(Image(f )) ≥ dimX − q.

Henceforth we replace Ld by L.
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Let the situation be as before. We start with general considerations: the equa-
tions defining X, L, V involve finitely many coefficients in C. By adjoining them
to Q we obtain a field extension Q ↪→ k of finite type (which depends on V ), so
we may assume that k ↪→ C; its algebraic closure is countable. After replacing
k by k̄, we may assume that X, L, V are defined over a countable algebraically
closed subfield k of C; we denote these objects by Xk, Lk, Vk.

The sheaf G := Ker(H 0(X,L) ⊗ OX → L) is locally free, and the incidence
variety

D := {([s], x) | s(x) = 0} ⊂ |L| × X

is naturally isomorphic to the projective bundle P(G) over X. The projections of
D onto |L|, X are denoted by π , ρ:

D
π ρ

|L| × X

|L| X.

For any open S ⊂ |L|, let DS := π−1(S); for s ∈ |L|, let Ds := divisor(s) ⊂ X.
All these objects are defined over k, and they are denoted by Lk, Dk, πk,

ρk. Let KC := C(|L|) and Kk := k(|Lk|) be the function fields of the projective
spaces |L| and |Lk|, respectively.

Definition 3.1. We say that a property holds for a very general point of some
parameter space if it holds on the complement of countably many proper subvari-
eties of that parameter space. In our case, we are interested in the splitting of VDs

for very general s ∈ |L|.
Lemma 3.2. (i) If VDs splits for a very general s ∈ |L|, then (ρ∗V )⊗ K̄C splits.
(ii) If (ρ∗V ) ⊗ K̄C splits, then there is an analytic open ball B ⊂ |L| such that

Ds is smooth, for all s ∈ B, and (ρ∗V )B splits over DB.

Proof. (i) Let τ : |L| → |Lk| be the trace morphism. Since k is countable and C

is not, τ(s) is the generic point of |Lk| for very general s ∈ |L|. Hence k(τ (s)) =
k(|Lk|) = Kk, and we obtain the Cartesian diagram

Ds DK̄k
Dk

Spec(C) Spec(K̄k) |Lk|.
For varieties defined over algebraically closed fields (C and K̄k in our case), the
property of a vector bundle to be split commutes with base change. Then VK̄k

splits on DK̄k
, so the same holds for VK̄C

.
(ii) We note that VDK̄C

in fact splits over an intermediate field KC ↪→ K ′ ↪→
K̄C finitely generated (and also algebraic) over KC. Thus there is an open affine
S ⊂ |L|, an affine variety S′ over C, and a finite morphism S′ σ→ S such that
the direct summands of VDK̄C

are defined over C[S′]; thus (ρ∗V )S′ splits. For

S sufficiently small, Bertini’s theorem implies that Ds is smooth for all s ∈ S.



Splittings Induced by Restrictions to Divisors 239

Finally, there are open balls B′ ⊂ S′ and B ⊂ S such that σ : B′ → B is an analytic
isomorphism. Then the splitting of (ρ∗V )B′ descends to (ρ∗V )B on DB. �

Remark 3.3. The previous lemma makes precise the meaning of a very general
point s ∈ |L|: its coordinates should be algebraically independent over the defini-
tion field of X, L, V . In particular, the notion of a very general point depends on
V itself, in fact on its field of definition.

Often we wish to have statements that involve general points, rather than
very general ones. The splitting of VDs for general s ∈ |L| means, by definition,
that (ρ∗V ) ⊗ KC splits. This condition is more restrictive than the splitting of
(ρ∗V ) ⊗ K̄C.

Theorem 3.4. Suppose that L ∈ Pic(X) is globally generated and (dimX − 4)-
positive and that D ∈ |L| is very general (thus smooth). If X is 1-split, then

[V splits ⇔ VD splits].
The interest in this result is that it allows us to test the splitting of vector bundles
along divisors that are not 1-split; this situation arises especially in low dimen-
sions. Otherwise, of course, we apply the “deterministic” Theorem 2.4.

Proof. Let B be as in Lemma 3.2. By [26, Prop. 5.1],the cohomological dimen-
sion cd(X \ Ds) ≤ dimX − 4 for all s ∈ B, which implies that, for all o, s, t ∈ B,
the intersections Dst := Ds ∩ Dt and Dost := Do ∩ Ds ∩ Dt are nonempty and
connected (see [16, Ch. III, Cor. 3.9]). Note that the intersections are generically
transverse, because L is globally generated.

Claim 1. Let s, t ∈ B such that Ds and Dt intersect transversally. Then we have:

resX
Ds

: Pic(X) → Pic(Ds) is an isomorphism;
resDs

Dst
: Pic(Ds) → Pic(Dst ) is injective.

The first statement is proved in Theorem A.7, and the second in Proposition A.6.

Claim 2. ρ∗ : Pic(X) → Pic(DB) is an isomorphism.

Indeed, fix o ∈ B and consider the diagram

Pic(Ds) resDs
Dos

Pic(X)

resXDs

resXDo

resXDos Pic(Dos).

Pic(Do) resDo
Dos

The composition Pic(X)
ρ∗
→ Pic(DB)

resDo→ Pic(Do) is bijective, so ρ∗ is injective.
For the surjectivity, take � ∈ Pic(DB). If �Do

∼= ODo , then �Ds ∈ Pic0(Ds),for all
s ∈ B, so

{s ∈ B | �Ds �ODs } = {s ∈ B | h0(�Ds ) = 0}
is open in B, and hence S := {s ∈ B | �Ds

∼= ODs } is closed.
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On the other hand, the diagram implies, by restricting to Dos , that S contains
all s such that Ds intersects Do transversally; thus S is dense, so S = B. It follows
that � ∼= ODB

. For an arbitrary � ∈ Pic(DB), let L ∈ Pic(X) be such that �Do
∼=

LDo , so ((ρ∗L−1) ⊗ �)Do
is trivial. This concludes the proof of Claim 2.

Since VB splits, we deduce that (ρ∗V )B
∼= ρ∗(

⊕
j∈J L

⊕dj

j ) with Lj ∈ Pic(X)

pairwise nonisomorphic (J is some index set). We consider the following partial
order on line bundles:

L ≺M ⇔ L�M and H 0(L−1 ⊗M) �= 0.

Note that for L�M, only the following mutually exclusive possibilities can oc-
cur: L,M are not comparable, or L ≺ M, or M ≺ L. It is not possible that L ≺ M

and M ≺L, because then necessarily holds L∼= M.
For s ∈ B, let Js,max ⊂ J be the set of maximal elements of {Lj ⊗ODs }j∈J ⊂

Pic(Ds) with respect to ≺. By semicontinuity the set {t ∈ B | Js,max ⊂ Jt,max} is
open. Thus, after shrinking B, we may assume that Js,max ⊂ J is independent of
s; we denote it by Jmax.

The maximality property implies that there is a natural pointwise injective ho-
momorphism:

h :
⊕

μ∈Jmax

ρ∗Lμ ⊗ π∗π∗(ρ∗(L−1
μ ⊗ V ))︸ ︷︷ ︸

�∼=O
⊕dμ
DB

→ (ρ∗V )DB
. (3.1)

Claim 3. h descends to X after a suitable base change in O
⊕dμ

DB
by an analytic

map β : B → ∏
μ∈Jmax

GL(dμ).

Indeed, we fix o ∈ B and a basis in H 0(Do,L
−1
μ ⊗ V ) ∼= Cdμ for all μ ∈ Jmax.

(Bases are represented as square matrices whose columns are the vectors of the
basis.) For any s ∈ B, Dos is nonempty and connected, so there is a unique basis in
H 0(Ds,L

−1
μ ⊗ V ) ∼= Cdμ whose restriction to Dos coincides with the restriction

of the basis along Do. (As s ∈ B varies, the transition matrices from the trivializa-
tion � in (3.1) to these new bases yield the map β .)

We observe that, after this reparameterization, h descends to the open set U :=
ρ(DB) ⊂ X. Indeed, define

h̄ :
( ⊕

μ∈Jmax

L
⊕dμ
μ

)
⊗OU → VU , h̄(x) := hs(x) for some s ∈ B, x ∈ Ds. (3.2)

To prove that h̄(x) is independent of s ∈ B, we must show that the restrictions
to Dst of the new bases in H 0(Ds,L

−1
μ ⊗ V ),H 0(Dt ,L

−1
μ ⊗ V ) coincide, for

all s, t ∈ B; it is enough to check this on the triple intersection Dost = Do ∩ Dst

(which is nonempty and connected), where both bases are induced from Do.
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The homomorphism (3.2) yields the extension of locally free sheaves on U :

0 →
( ⊕

μ∈Jmax

L
⊕dμ
μ

)
⊗OU → VU → WU → 0,

ρ∗(WU ) ∼= ρ∗
( ⊕

j∈J\Jmax

L
⊕dj

j ⊗OU

)
.

The homomorphism on the left is pointwise injective. Recursively, we deduce
that VU is obtained as a successive extension of the line bundles Lj ⊗OU , j ∈ J .
(Note that, in the gluing process, we did not use that V is defined on all X; we
used only its restriction to U .)

Since U is an analytic neighborhood of Do, we get induced extensions on the
thickenings (Do)m, m ≥ 0 (see Definition 1.4). However, X is 1-split, and Do is
(dimX − 4)-ample, so

0 = Ext1(L,M) → Ext1(L(Do)m,M(Do)m) (3.3)

is an isomorphism for all L,M ∈ Pic(X), m � 0. It follows that V(Do)m splits
for m � 0. By applying Lemma 1.6 we deduce that V splits on X. (Here it is
necessary to have V defined on the whole X.) �

Example 3.5. We have seen in Example 2.7 that the splitting of a vector bun-
dle on a projective bundle over a 1-split variety can be verified along an arbitrary
P2-subbundle. At this stage, the reduction process in Theorem 2.4 stops. How-
ever, in this example we show that Theorem 3.4 allows us to decrease further the
dimension of the test subvarieties.

Let (S,OS(1)) be an arithmetically Cohen–Macaulay surface with Pic(S) =
Z · OS(1). (A necessary and sufficient cohomological condition for the splitting
of vector bundles on such surfaces has been obtained in [15].) Let A be a very
ample multiple of OS(1). We observe that the four-fold

X := P(OS ⊕A−m ⊕A−m−n)
f→ S, m,n ≥ 0,

is 1-split. The line bundle L := Of (1)⊗f ∗A is very ample on X, and the general
D ∈ |L| is a smooth P1-fibre bundle over S. In particular, D is not 1-split, so The-
orem 2.4 does not apply. However, the “probabilistic” Theorem 3.4 still applies:
a vector bundle V on X splits if and only if it does on a very general D.

4. Triviality Criteria

Finally, in this section we restrict our discussion to the case of the trivializable
vector bundles. The motivation is, first, that the general “effective splitting crite-
rion”, Proposition 1.8, is not explicit enough, especially for partially ample line
bundles that are pulls-back (see Remark 1.9, Theorem 1.10). Second, it is desir-
able to remove the 1- and 2-split conditions that appear throughout Sections 2 and
3 and that are imposed precisely to ensure the vanishing (1.3).
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Unfortunately, the Kodaira vanishing does not hold for q-ample line bundles.
Thus, to obtain effective results in this situation, we must find appropriate condi-
tions that imply the Kodaira vanishing. These lines of thought lead to the triviality
criteria.

Lemma 4.1. Assume that L ∈ Pic(X) is (dimX − 2)-ample and satisfies

Hi(X,L−a) = 0 for all a ≥ 1 and i = 0,1,2.

For any vector bundle V on X and D ∈ |L|, we have [V ∼= O⊕r
X ⇔ VD

∼= O⊕r
D ].

Proof. The hypothesis implies that Hi(L−a
D ) = 0 for all a ≥ 1, i = 0,1, and that

H 0(ODa ) = C for a ≥ 0, so H 0(E ) → H 0(ED) = End(Cr ) is an isomorphism, by

Proposition 1.8. Hence V splits; let us write V = ⊕
j∈J M

dj

j with Mj pairwise
nonisomorphic and

∑
j∈J dj = r .

The previous discussion shows that the finite-dimensional C-algebra H 0(E )

is isomorphic to End(Cr ). The uniqueness of the Wedderburn–Malcev decom-
position implies that J consists of a single element, so V ∼= M⊕r for some
M ∈ Pic(X).

Since VD = O⊕r
D , both MD and M−1

D admit nontrivial sections, so MD
∼= OD .

According to Proposition A.6, Pic(X) → Pic(D) is injective, so M is trivial. �

Theorem 4.2. Consider a vector bundle V on X, L ∈ Pic(X), and D ∈ |L|. In
any of the following cases, we have [V ∼= O⊕r

X ⇔ VD
∼= O⊕r

D ]:
(a) L ∈ Pic(X) is semiample and (dimX − 3)-ample;

(b) L is relatively ample for a morphism X
f→ Y with dim(X) − dim(Y ) ≥ 3.

Proof. In both cases, Theorem A.5 implies Hi(X,L−a) = 0 for a ≥ 1, i = 0,1,2,
so we can apply Lemma 4.1. �

4.1. The Case of Frobenius Split (F-Split) Varieties

These objects are ubiquitous, especially in representation theory. Examples of F-
split varieties (defined in characteristic zero) include Fano varieties (see [8, Exer-
cise 1.6E(5)]), spherical varieties, in particular projective homogeneous varieties
and toric varieties (see [7], [29, Section 31]). The notions and properties that are
relevant for us are summarized in Appendix B.

Theorem 4.3. Let D be a (dimX − 3)-ample effective divisor, which is F-split.
Then

V ∼= O⊕r
X ⇔ VD

∼= O⊕r
D .

The F-splitting allows us to handle more “exotic” situations. Many examples arise
from varieties X that are compatibly split with respect to a divisor D.

Proof. Theorem B.3 implies H 1(D,OD(−aD)) = 0 for all a ≥ 1, since OD(D)

is (dimD−2)-ample. The conclusion follows from Propositions 1.8 and A.6. �
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Corollary 4.4. Let X be a smooth projective variety whose anticanonical line
bundle ω−1

X is (dimX − 3)-ample. Assume that X is F-split by σ ∈ H 0(ω−1
X ), and

denote D := divisor(σ ). Then [V ∼= O⊕r
X ⇔ VD

∼= O⊕r
D ].

The criterion applies, in particular, in the following cases:

(a) X is a Fano variety of dimension at least three;
(b) X is a spherical variety whose anticanonical bundle is (dimX − 3)-ample.

Proof. The hypothesis implies that D is F-split, compatibly with the splitting
defined by σ .

Fano and spherical varieties are Frobenius split, compatibly with suitable anti-
canonical divisors (see [8, 1.6.E(5), p. 56] and [7, Thm. 1], respectively). �

4.2. The Case of Toric Varieties

A nontrivial application of the ideas developed inhere arises when X := X� is the
smooth projective toric variety defined by the regular fan �.

Remark 4.5. (i) X is F-split, compatibly with the invariant divisors Dρ , ρ ∈
�(1), and their intersections (see [8, Exercise 1.3E(6)]).

(ii) Consider the torus-invariant anticanonical divisor

� :=
∑

ρ∈�(1)

Dρ. (4.1)

Then X \ � ∼= (C∗)dimX , so its cohomological dimension equals
cd(X \ �) = 0.

Theorem 4.6. Let V be an arbitrary vector bundle on the smooth toric variety X.
The following statements hold:

(i) Let X̂ := lim←−
m

�m be the formal completion of X along �. If dimX ≥ 2, then

we have the equivalence [V splits ⇔ V ⊗O
X̂

splits].
(ii) Assume that dimX, codim(base locus(ω−1

X )) ≥ 3. Then we have:
(a) [V splits ⇔ V�m splits] for m � 0. (See Remark 1.9(i) for a lower bound

on m.)
(b) [V is trivial ⇔ V� is trivial].

Proof. (i) See Proposition 1.5.
(ii) Theorem A.8 implies that ω−1

X is (dimX − 3)-ample. Now the conclusion
follows from Proposition 1.8 and Corollary 4.4, respectively. �

Remark 4.7. (i) We may wonder if it is possible to have a splitting criterion for
toric varieties that involves an irreducible torus-invariant (dimX − 2)-ample
divisor. In general, the answer is “no”; reducible divisors are necessary for
the following reason. If D is such an irreducible divisor, then cd(X \ D) ≤
dimX − 2, so D must intersect all the other torus-invariant divisors. Hence
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� has the following property: if ξD ∈ �(1) defines D, then ξD , ξ span a cone
of � for all ξ ∈ �(1) \ {ξD}. This condition is clearly not satisfied in general.

(ii) It is rather surprising that the issue concerning the bare existence of nontrivial
vector bundles on toric varieties is not settled yet in general (see [13]).

Appendix A: About q-Ample and q-Positive Line Bundles

In this section we summarize the notions and the results about partial positivity
for line bundles that are used in this note. Henceforth X stands for a smooth
projective variety of arbitrary dimension defined over C.

Definition A.1. Consider a line bundle L on X.

(i) (see [30]) L is q-ample if for any coherent sheaf F on X, there is mF > 0
such that Hi(X,F ⊗Lm) = 0 for all m ≥ mF and i > q .

(ii) (see [1; 12]) L is q-positive if it admits a Hermitian metric whose curvature
is positive definite on a subspace of TX,x of dimension at least dimX − q

for all x ∈ X; equivalently, the curvature has, at each point x ∈ X, at most q

negative or zero eigenvalues.
(iii) L is semiample if a tensor power of it is globally generated.
(iv) Assume that there exists a ≥ 1 such that H 0(X,La) �= 0. The Kodaira–Iitaka

dimension and the (stable) base locus of L are defined as follows (see [20,
Section 2.1]):

κ(L) := transcend. deg.C

(⊕
a≥0

H 0(X,La)

)
−1

= max
a≥1

dim(Image(X ��� |La|));

base locus(L) :=
⋂

s∈H 0(X,L)

divisor(s),

stable base locus(L) :=
⋂
a≥1

base locus(La)red.

Remark A.2. (i) Any q-positive line bundle is q-ample (see [1, Prop. 28], [12,
Prop. 2.1]), but the converse is false (see [26, Thm. 10.3]).

(ii) If �,L ∈ Pic(X) and L is q-ample, then � ⊗Lm is q-ample for m � 0. This
is a direct consequence of the uniform q-ampleness property [30, Thm. 6.4].

(iii) Definition A.1(i) makes sense for any projective scheme, not necessarily
smooth. This more general situation occurs in Theorem B.3.

(iv) If L is q-ample (positive), then it is also q ′-ample (positive) for any q ′ ≥ q;
the larger the value of q , the weaker the restriction on L. For example, the
dimX-ampleness (positivity) is an empty condition.

Theorem A.3. Suppose L is semiample and q-ample. Then, L is q-positive, and

dimX ≤ q + κ(L).
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Proof. See [23, Thm. 1.4]. For suitable a, the image of the morphism X → |La|
is κ(L)-dimensional; we denote the image by Y . Hence dimX − κ(L) equals the
dimension of the generic fibre of X → Y ; by the same theorem the dimension of
all the fibers is bounded above by q . �

Lemma A.4. Let X, Y be smooth projective varieties, and let f : X → Y be a
smooth surjective morphism of relative dimension δ. Then the following implica-
tions hold:

(i) If M ∈ Pic(Y ) is q-ample, then L := f ∗M is (δ + q)-ample;
(ii) If M ∈ Pic(Y ) is q-positive, then L := f ∗M is (δ + q)-positive;

(iii) If L ∈ Pic(X) is f -relatively ample, then L is dimY -positive.

Proof. Leray’s spectral sequence implies (i); for (ii), the pull-back metric on L

satisfies (A.1).
(iii) Note that L′ := L ⊗ f ∗A is ample for A ∈ Pic(Y ) sufficiently ample.

Then mL′, m � 0, defines an embedding ι : X → P into some projective space;
the morphism (f, ι) : X → Y × P is an embedding too, and Lm = (f, ι)∗(A−m �
OP(1)). The restriction to X of the product metric on A−m � OP(1) is positive
definite on Ker(df ). �

Theorem A.5. (i) Assume that L ∈ Pic(X) is semiample and q-ample, q ≤
dimX − 1. Then

Hi(X,L−a) = 0, ∀i ≤ dimX − q − 1,∀a ≥ 1.

(ii) (relative Kodaira vanishing) Consider a morphism X
f→ Y with Y projective,

and let L ∈ Pic(X) be f -relatively ample. Then

Hi(X,L−1) = 0, ∀i < dimX − dimY.

(iii) Let Z be a projective equidimensional reduced weakly normal variety that
satisfies the condition S2 of Serre. Let L ∈ Pic(Z) be relatively ample for

Z
f→ Y with Y projective and dimZ − dimY ≥ 2. Then H 1(Z,L−1) = 0.

Proof. (i) The Grauert–Riemenschneider theorem (see [28, Thm. 7.73]) yields
that, for all a ≥ 1 and i ≤ κ(L) − 1, we have Hi(X,L−a) = 0. Now, we use the
inequality in Theorem A.3.

(ii) The claim follows from [19, Thms. 1–3]: Rif∗(ωX ⊗L) = 0 for all i > 0.
Indeed, for i < dimX − dimY , the Leray-spectral sequence implies that

Hi(X,L−1) ∼= H dimX−i (X,ωX ⊗L) = H dimX−i (Y, f∗(ωX ⊗L)) = 0.

An independent proof can be obtained by following the lines of part (iii).
(iii) The previous argument does not apply because Z is not necessarily

smooth. Without loss of generality, we may assume that f is surjective. For
dimY = 0, the vanishing is proved in [2, Thm. 3.1]. Now take a very ample line
bundle A on Y such that L⊗ f ∗A is ample on Z. Bertini’s theorem implies that
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Z′ := f −1(Y ′) satisfies the same assumptions as Z for general Y ′ ∈ |A| (see [11,
Thm. 1] and also [10, Cor. 1.9]). Finally, observe that in the exact sequence

· · · → H 1(Z, (L⊗A)−1) → H 1(Z,L−1) → H 1(Z′, (L⊗OZ′)−1) → ·· · ,

both extremities vanish: by [2, Thm. 3.1] for the left-hand side, and by the induc-
tion hypothesis for the right-hand side. �

Proposition A.6. Let L ∈ Pic(X) be (dimX−2)-ample, and let D ∈ |L|. Assume
that

Hi(D,L−a
D ) = 0, ∀a ≥ 1 and i = 0,1.

(It suffices to have Hi(X,L−a) = 0,∀a ≥ 1, i = 0,1,2.)

Then the restriction Pic(X) → Pic(D) is injective.
The vanishing condition is satisfied if L is semiample with κ(L) ≥ 3, in par-

ticular, for L semiample and (dimX − 3)-ample.

Proof. We use the hypothesis in the exact sequence 0 → L−a
D → O×

Da
→

O×
Da−1

→ 0 (see, e.g., [16, p. 179]) and deduce that the homomorphism
Pic(Da) → Pic(Da−1) is injective for all a ≥ 1.

Take M ∈ Ker(Pic(X) → Pic(D)), so MD
∼= OD ; it follows that MDa

∼=
ODa for all a ≥ 0. Note that C ∼= H 0(OX) → H 0(ODa ) is an isomorphism
for all a ≥ 0, so H 0(MDa )

∼= C ∼= H 0(M−1
Da

). But the restrictions H 0(M) →
H 0(MDa ) and H 0(M−1) → H 0(M−1

Da
) are isomorphisms for a � 0, since L

is (dimX − 2)-ample, and thus M ∼= OX . The last statement follows from the
Grauert–Riemenschneider theorem [28, Thm. 7.73] and the inequality in Theo-
rem A.3. �

Theorem A.7. Let D ⊂ X be an effective divisor. The restriction Pic(X) →
Pic(D) is an isomorphism in the following cases:

(a) D is smooth and q-positive with q ≤ dimX − 4;
(b) (relative Picard–Lefschetz) D is arbitrary relatively ample for a morphism

X
f→ Y with Y quasi-projective and dimX − dimY ≥ 4.

Proof. (a) The q-positivity of L implies that Hi(X;Z) → Hi(D;Z), i ≤ 2,
are isomorphisms (see [6, Thm. III], [26, Lemma 10.1]), so the same holds

with C-coefficients. The Hodge decomposition yields Hi(X,OX) = H 0,i (X)
∼=→

H 0,i (D) = Hi(D,OD) for i ≤ 2. By comparing the exponential sequences for X

and D we deduce that Pic(X)
∼=→ Pic(D).

(b) We may assume that f is surjective and Y projective. For dimY = 0, this is
the Picard–Lefschetz theorem [16, IV§3, Thm. 3.1]. Now we make the inductive
step. Let A be a very ample line bundle on Y such that OX(D) ⊗ f ∗A is ample
on X. Bertini’s theorem implies that the general hyperplane section Y ′ ⊂ Y has
the following properties:

– X′ := f −1(Y ′) is smooth;
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– X′ does not contain the support of any irreducible component of D, that is, the
schematic intersection D · X′ of D, X′ is a divisor in X′.

The divisor D + X′ is ample on X, so the Picard–Lefschetz theorem (see idem)
implies that Pic(X) → Pic(D + X′) is an isomorphism. Since X′ intersects D

properly, a line bundle (an invertible sheaf) � ∈ Pic(D + X′) is uniquely deter-
mined by

– a pair (�D, �X′) ∈ Pic(D) × Pic(X′) and
– an isomorphism �D ⊗OD·X′ ∼= �X′ ⊗OD·X′ .1

By the induction hypothesis, Pic(X′) → Pic(D · X′) is an isomorphism, hence
Pic(D + X′) → Pic(D) is an isomorphism too. The conclusion follows. �

In this article, we often require the (dimX − 3)- or (dimX − 2)-ampleness of an
effective divisor, so we need a practical method to verify this condition.

Theorem A.8. Let � be an effective divisor on X, and let L := OX(�). We
assume:

(i) cd(X \ �) ≤ dimX − c,

(ii) codim(stable base locus(L)) ≥ c,
for c ≥ 2.

Then L is (dimX − c)-ample. (Concerning the case c = 1, note that L is auto-
matically (dimX − 1)-ample by [30, Thm. 9.1].)

In (i), the notation cd(·) stands for the cohomological dimension; according to
[26, Prop. 5.1], if � is q-ample, then cd(X \�) ≤ q . In (ii), by codim(·) we mean
the maximal codimension of the components.

Proof. Let us analyze assumption (ii). The statement of the theorem is invariant
after replacing L by a positive power La , and thus we may assume that

stable base locus(L) = base locus(L)red.

The codimension of the former is at least c, so there exist at least c alge-
braically independent sections in L, that is, κ(L) ≥ c − 1. Bertini’s theorem
implies that, for general divisors D1, . . . ,Dc−1 ∈ |L|, the schematic intersec-
tion Zt := D1 · · · · · Dt, t ≤ c − 1, has codimension t in X. Furthermore, since
codim(base locus(L)) ≥ codimZc−1 + 1, there is a section in L that vanishes
along a nontrivial divisor Zc ⊂ Zc−1; otherwise, some component of Zc−1 would
be contained in base locus(L).

We deduce the following exact sequences of sheaves on X for t = 1, . . . , c:

0 → Lm−1 ⊗OZt−1 → Lm ⊗OZt−1 → Lm ⊗OZt → 0, (Z0 := X). (A.1)

1Let U ⊂ Spec(C[ξ1, . . . , ξdimX−1, y]) be a local analytic chart on X such that {y = 0} and
{f (ξ, y) = 0} are the local equations of X′ and D, respectively. The exact sequence 0 →
C[ξ,y]
〈y·f 〉 → C[ξ,y]

〈y〉 ⊕ C[ξ,y]
〈f 〉 → C[ξ,y]

〈y,f 〉 → 0 shows that the germs of regular functions on D+X′ =
Var(y · f ) consist of pairs of regular functions on D, X′ that agree on D · X′ = Var(y, f ).
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Now we use (i): since cd(X \�) ≤ dimX − c, any coherent sheaf G on X satisfies
(see [26, Eq. (5.1)])

lim−→
m

Hi(X,G⊗Lm) = Hi(X \ �,G) = 0, ∀i > dimX − c. (A.2)

The proof of the theorem is by induction on c. Recall that it is enough to check
the q-ampleness property for locally free sheaves F on X; we fix one. For c = 1,
we tensor by F the sequence (A.1), t = 1, and obtain

H dimX(X,F ⊗Lm−1) → H dimX(X,F ⊗Lm) → 0.

Thus the sequence of the cohomology groups eventually becomes stationary. By
inserting into (A.2) we deduce that H dimX(X,F ⊗Lm) = 0 for m � 0.

Now we proceed with the inductive step: assume that the theorem holds for c

and prove it for c + 1. The induction hypothesis implies that we must only show
that H dimX−c(X,F ⊗Lm) = 0 for m � 0.

– The sequence (A.1), t = c + 1, tensored by F yields

H dimX−c(X, (F ⊗OZc) ⊗Lm−1) → H dimX−c(X, (F ⊗OZc) ⊗Lm) → 0,

because dimZc+1 = dimX − c − 1. For G = F ⊗ OZc , (A.2) implies, in the
same way as before, that

H dimX−c(X, (F ⊗OZc) ⊗Lm) = 0 for m � 0.

– Insert this into the long sequence in cohomology corresponding to (A.1), t = c,
and find for m � 0:

H dimX−c(X, (F ⊗OZc−1) ⊗Lm−1) → H dimX−c(X, (F ⊗OZc−1) ⊗Lm) → 0.

Then (A.2) with G = F ⊗ OZc−1 yields H dimX−c(X, (F ⊗ OZc−1) ⊗ Lm) = 0
for m � 0.

– Repeat this procedure—use (A.1) for t = c − 1, . . . ,1 and (A.2)—until we get

H dimX−c(X,F ⊗Lm) = 0 for m � 0.

This completes the proof of the theorem. �

Appendix B: About Frobenius Split (F-Split) Varieties

We recall the relevant definitions; the reference for the concept of Frobenius split-
ting is the book [8], and also [29, Section 31] for applications.

Definition B.1 (see [8, Def. 1.1.3 and Section 1.6]). Let Zp be a projective
variety over F̄p (the algebraic closure of the field Z/pZ). The absolute Frobenius
morphism F of Zp determines the sheaf homomorphism F� : OZp → F∗OZp . We
say that Zp is F-split if there is an OZp -linear homomorphism

ϕ : F∗OZp → OZp such that ϕ ◦ F� = 1OZp
.

A closed subscheme Y ⊂ X defined by the sheaf of ideals IY is compatibly split
if ϕ(F∗IY ) = IY .
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If Z is a smooth projective variety defined over a field of characteristic zero,
then there is a finite set s of primes, a finitely generated Z[s−1]-algebra R, and a
smooth Spec(R)-scheme Z such that Z = Z ×R C. If L ∈ Pic(Z), then we may
choose R so that L also extends over Spec(R).

Definition B.2. For a maximal ideal m ∈ Spec(R), the residue field k(m) is
a finite extension of Fp with p /∈ s. The variety Zp := Z ×R k(m) is called a
reduction modulo p of Z. (Note that k(m) ∼= Fp .)

We say that Z is F-split if Zp is F-split at infinitely many m ∈ Spec(R). (Such
a subset is automatically dense in Spec(R).)

In our context, the importance of the Frobenius splitting is captured in the follow-
ing Kodaira vanishing theorem for q-ample line bundles, which (apparently) has
not been observed so far.

Theorem B.3. Let Z be a projective equidimensional Cohen–Macaulay F-split
variety over C, and let L ∈ Pic(Z) be q-ample. Then Hi(Z,L−1) = 0 for all
i < dimZ − q .

In this note, we will apply the result in the case where Z is a compatibly split,
normal crossing divisor of a smooth variety X.

Proof of Theorem B.3. Consider Z π→ Spec(R) as before, that is, such that L ex-
tends to L → Z . Then for all primes p large enough, Lp ∈ Pic(Zp) is still q-
ample (see [30, Thm. 8.1]), so Hi(Zp,L −m

p ) = 0 for i < dimZ − q and m � 0
by Serre duality (see [17, Ch. III, Cor. 7.7]). The F-splitting property implies that
Hi(Zp,L −1

p ) = 0 (see [8, Lemma 1.2.7]). Finally, the generic rank of the coher-

ent sheaf Riπ∗L −1 on Spec(R) is constant, and the conclusion follows from the
fact that the vanishing holds for infinitely many primes p. �

Remark B.4. (i) The F-splitting of a nonsingular variety Xp (defined in char-

acteristic p) is given by an element in H 0(Xp,ω
1−p
Xp

) satisfying a cer-
tain algebraic equation, where ωXp stands for the canonical sheaf (see [8,
Thm. 1.3.8]).

(ii) In characteristic zero, an important source of F-splittings arises from vari-
eties X that have the property that their reduction Xp modulo p is split by
the (p − 1)th power of (the mod p reduction of) a section σ ∈ H 0(X,ω−1

X );
in this case, D := divisor(σ ) is a compatibly split subvariety of X (see
[8, Thm. 1.4.10]). By abuse of language, we say that X is F-split by σ ∈
H 0(X,ω−1

X ).
The latter category includes spherical varieties (see [7])—in particular projec-

tive homogeneous and toric varieties—and also Fano varieties (see [8, Exercise
1.6.E(5)]).
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