$S L_{2}$-Action on Hilbert Schemes and Calogero-Moser Spaces

Gwyn Bellamy \& Victor Ginzburg

Abstract

We study the natural $G L_{2}$-action on the Hilbert scheme of points in the plane, resp. $S L_{2}$-action on the Calogero-Moser space. We describe the closure of the $G L_{2}$-orbit, resp. $S L_{2}$-orbit, of each point fixed by the corresponding diagonal torus. We also find the character of the representation of the group $G L_{2}$ in the fiber of the Procesi bundle and its Calogero-Moser analogue over the $S L_{2}$-fixed point.

1. Introduction

The natural action of the group $G L_{2}$ on \mathbb{C}^{2} induces a $G L_{2}$-action on Hilb ${ }^{n} \mathbb{C}^{2}$, the Hilbert scheme of n points in the plane. There is also a similar action of the group $S L_{2}$ on $X_{\mathbf{c}}$, the Calogero-Moser space. The fixed points of the corresponding maximal torus $\mathbb{C}^{*} \times \mathbb{C}^{*}$, resp. \mathbb{C}^{*}, of diagonal matrices, are labeled by partitions. Let $y_{\lambda} \in \operatorname{Hilb}^{n} \mathbb{C}^{2}$, resp. $x_{\lambda} \in \mathrm{X}_{\mathbf{c}}$, denote the point labeled by a partition λ. It turns out that such a point is fixed by the group $S L_{2}$ if and only if $\lambda=(m, m-1, \ldots, 2,1)=: \mathbf{m}$ is a staircase partition. In the Hilbert scheme case, this has been observed by Kumar and Thomsen [KT]. The case of the CalogeroMoser space can be deduced from the Hilbert scheme case using "hyper-Kähler rotation". A different, purely algebraic proof is given in Section 3.

The theory of rational Cherednik algebras gives an $S L_{2} \times \mathfrak{S}_{n}$-equivariant vector bundle \mathcal{R} of rank n ! on the Calogero-Moser space. Thus, $\left.\mathcal{R}\right|_{x_{\mathrm{m}}}$, the fiber of \mathcal{R} over the $S L_{2}$-fixed point, acquires the structure of a $S L_{2} \times \mathfrak{S}_{n}$-representation. We find the character formula of this representation in terms of Kostka-Macdonald polynomials. The vector bundle \mathcal{R} is an analogue of the Procesi bundle \mathcal{P}, a $G L_{2} \times \mathfrak{S}_{n}$-equivariant vector bundle of rank $n!$ on $\operatorname{Hilb}^{n} \mathbb{C}^{2}$. Our formula agrees with the character of the representation of $G L_{2} \times \mathfrak{S}_{n}$ in $\left.\mathcal{P}\right|_{y_{\mathrm{m}}}$, the fiber of \mathcal{P} over the $G L_{2}$-fixed point, obtained by Haiman [H]. It is, in fact, possible to derive our character formula for $\left.\mathcal{R}\right|_{x_{\mathrm{m}}}$ from the one for $\left.\mathcal{P}\right|_{y_{\mathrm{m}}}$. However, the character formula for $\left.\mathcal{P}\right|_{y_{\mathrm{m}}}$, as well as the construction of the Procesi bundle itself, involves the $n!$-theorem.

In Section 2, we review some general results about $S L_{2}$-actions. In Section 3, we apply these results to show that, for any λ, the $S L_{2}$-orbit of x_{λ} is closed in $\mathrm{X}_{\mathbf{c}}$. The $G L_{2}$-orbit of y_{λ} is not closed in $\operatorname{Hilb}^{n} \mathbb{C}^{2}$, in general, and we describe the closure in Section 4.

[^0]
2. $\mathfrak{s l}_{2}$-Actions

Let $T \subset S L_{2}$ be the maximal torus of diagonal matrices. The group T acts on the Lie algebra $\mathfrak{s l}_{2}$ by conjugation. Let (E, H, F) be the standard basis of $\mathfrak{s l}_{2}$.

Let X be an algebraic variety equipped with a T-action, and let $\operatorname{Vect}(X)$ be the Lie algebra of algebraic vector fields on X. The T-action on X induces a T-action on $\operatorname{Vect}(X)$ by Lie algebra automorphisms. An algebraic variety X equipped with a Lie algebra homomorphism $\mathfrak{s l}_{2} \rightarrow \operatorname{Vect}(X)$ such that the action of Lie $T \subset \mathfrak{s l}_{2}$ can be integrated to a T-action will be referred to as an $\left(\mathfrak{s l}_{2}, T\right)$-variety.

Given a group G and a G-variety X, we write X^{G} for the fixed point set of G. Given an $\left(\mathfrak{s l}_{2}, T\right)$-variety X, we write $X^{\mathfrak{S l}_{2}}$ for the closed subset with reduced scheme structure of X defined as the zero locus of all vector fields contained in the image of the map $\mathfrak{s l}_{2} \rightarrow \operatorname{Vect}(X)$. Clearly, we have $X^{\mathfrak{s} l_{2}} \subset X^{T}$. Any variety with an $S L_{2}$-action has an obvious structure of an $\left(\mathfrak{s l}_{2}, T\right)$-variety. In such a case, we have $X^{S L_{2}}=X^{\mathfrak{S I}_{2}}$.

Theorem 2.1. Let X be smooth quasi-projective variety equipped with an $\left(\mathfrak{s l}_{2}, T\right)$-action. Then:
(i) If $x \in X^{T}$ is an isolated fixed point, then $x \in X^{\mathfrak{s l}_{2}}$ if and only if all the weights of T on $T_{x} X$ are odd.
(ii) If the $\left(\mathfrak{s l}_{2}, T\right)$-action on X comes from a nontrivial $S L_{2}$-action with dense orbit, then the set $X^{S L_{2}}$ is finite.

Proof. (i) Let $x \in X^{\mathfrak{s} L_{2}}$, and let \mathfrak{m} be the maximal ideal in the local ring $\mathcal{O}_{X, x}$ defining this point. Then $\mathfrak{s l}_{2}$ acts on $\mathfrak{m} / \mathfrak{m}^{2}$. Since x is a isolated fixed point for the T-action, the degree zero weight space is 0 , and so all $\mathfrak{s l}_{2}$-modules appearing in $\mathfrak{m} / \mathfrak{m}^{2}$ must have odd weight spaces only.

Conversely, assume that all nonzero weight spaces in $\mathfrak{m} / \mathfrak{m}^{2}$ have odd weight. We need to show that $\mathfrak{s l}_{2}$ acts in this case, that is, $\mathfrak{s l}_{2}(\mathfrak{m}) \subset \mathfrak{m}$. By Sumihiro's theorem [S] any T-orbit is contained in an affine T-stable Zariski open subset of X. Therefore, replacing $\mathcal{O}_{X, x}$ by some affine T-stable neighborhood, we may assume that X is an affine T-variety with $\mathfrak{s l}_{2}$-action and isolated fixed point defined by $\mathfrak{m} \triangleleft \mathbb{C}[X]$. Then $\mathbb{C}[X]=\mathbb{C} 1 \oplus \mathfrak{m}$ as a T-module. In particular, every homogeneous element of nonzero degree belongs to \mathfrak{m}. If $z \in \mathfrak{m}$ is homogeneous of degree $\neq-2$, then $\operatorname{deg} E(z)=\operatorname{deg} z+2 \neq 0$. Thus, $E(z) \in \mathfrak{m}$. On the other hand, if $\operatorname{deg} z=-2$, then our assumptions imply that $z \in \mathfrak{m}^{2}$, and hence $E(z) \in \mathfrak{m}$. A similar argument applies for F.

Part (ii) is a result of Bialynicki-Birula, [BB, Theorem 1].
Let $N(T)$ be the normalizer of T in $S L_{2}$. The Borel subgroup of upper-triangular matrices in $S L_{2}$ is denoted B. Its opposite is B^{-}. The following two lemmas follow directly from the classification of closed subgroups of $S L_{2}$. We include proofs for the reader's convenience.

Lemma 2.1. Let \mathcal{O} be a one-dimensional homogeneous $S L_{2}$-space. Then $\mathcal{O} \simeq$ $S L_{2} / B$.

Proof. Let $K=\operatorname{Stab}_{S L_{2}}(x)$ for some $x \in \mathcal{O}$, a closed subgroup of $S L_{2}$. Let \mathfrak{k} be the Lie algebra of K. Since $\operatorname{dim} \mathfrak{k}=2$, it is a solvable subalgebra of $\mathfrak{s l}_{2}$. Therefore it is conjugate to \mathfrak{b}. Without loss of generality, $\mathfrak{k}=\mathfrak{b}$. This means that $K^{\circ}=B \subset$ $K \subset N_{S L_{2}}(B)=B$.

Lemma 2.2. Let \mathcal{O} be an $S L_{2}$-orbit in an affine variety X. Assume that the stabilizer of $x \in \mathcal{O}$ contains T. Then \mathcal{O} is closed in X, and $\operatorname{Stab}_{S_{2}}(x)$ is one of $T, N(T)$, or $S L_{2}$.

Proof. Let X be an affine variety, and G a reductive group acting on X. If the stabilizer of a point x contains a maximal torus T of G, then \mathcal{O} is closed. Indeed, since $B \cdot x=U \cdot x$ in this case and every U-orbit in X is closed, it follows that $B \cdot x$ is closed in X. This implies that $G \cdot x$ is closed since G / B is projective. The lemma follows since $T, N(T)$, and $S L_{2}$ are the only reductive subgroups of $S L_{2}$.

Lemma 2.3. Let X be a complete $S L_{2}$-variety, and \mathcal{O} an orbit such that the stabilizer of $x \in \mathcal{O}$ equals T, resp. $N(T)$.
(1) There is a finite (surjective) equivariant morphism $\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \overline{\mathcal{O}}$, resp. $\mathbb{P}^{2} \rightarrow$ $\overline{\mathcal{O}}$, which is the identity on \mathcal{O}.
(2) This morphism is an isomorphism if and only if $\overline{\mathcal{O}}$ is normal.
(3) In all cases, $\overline{\mathcal{O}} \backslash \mathcal{O} \simeq \mathbb{P}^{1}$ and $\overline{\mathcal{O}}^{S L_{2}}=\emptyset$.

Proof. We explain how the lemma can be deduced from the results of [M].
Matsuchima's theorem implies that \mathcal{O} is affine. Therefore, by [EGA, Corollaire 21.12.7], the complement $Y=\overline{\mathcal{O}} \backslash \mathcal{O}$ has pure codimension one. By Theorem 2.1(ii) there are only finitely many zero-dimensional orbits in Y. Therefore Lemma 2.1 implies that each irreducible component Y_{i} of Y (being onedimensional) must contain an orbit $\simeq S L_{2} / B$. Since this orbit is complete, it is closed in Y_{i}, that is, $Y_{i} \simeq S L_{2} / B$. Moreover, this implies that $Y_{i} \cap Y_{j}=\emptyset$ for $i \neq j$, and hence $\overline{\mathcal{O}}^{S L_{2}}=Y^{S L_{2}}=\emptyset$.

The space $\overline{\mathcal{O}}$ is an $S L_{2}$-equivariant completion of \mathcal{O} in the sense of [M, Definition 1.1.1]. By [M, Theorem 5.1], $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is the unique (up to equivariant isomorphism) normal completion of $\mathcal{O} \simeq S L_{2} / T$ with \mathcal{O} being equivariantly identified with the compliment $\mathbb{P}^{1} \times \mathbb{P}^{1} \backslash \Delta$ of the diagonal. Similarly, loc. cit. implies that \mathbb{P}^{2} is the unique (up to equivariant isomorphism) normal completion of $\mathcal{O} \simeq S L_{2} / N(T)$ with \mathcal{O} being equivariantly identified with the complement $\mathbb{P}^{2} \backslash C$, where C is a nondegenerate quadric. In both cases, the complement is equivariantly identified with $S L_{2} / B$.

3. Calogero-Moser Spaces

Let (W, \mathfrak{h}) be a finite Coxeter group with S the set of all reflections in W and \mathbf{c} : $S \rightarrow \mathbb{C}$ a conjugate invariant function. For each $s \in S$, we fix eigenvectors $\alpha_{s} \in \mathfrak{h}^{*}$ and $\alpha_{s}^{\vee} \in \mathfrak{h}$ with eigenvalue -1 . Associated to this data is the rational Cherednik
algebra $\mathrm{H}_{\mathbf{c}}(W)$ at $t=0$. It is the quotient of the skew group ring $T^{*}\left(\mathfrak{h} \oplus \mathfrak{h}^{*}\right) \rtimes W$ by the relations

$$
[y, x]=-\sum_{s \in S} \mathbf{c}(s) \frac{\alpha_{s}(y) x\left(\alpha_{s}^{\vee}\right)}{\alpha_{s}\left(\alpha_{s}^{\vee}\right)}, \quad \forall x \in \mathfrak{h}^{*}, y \in \mathfrak{h}
$$

and $\left[x, x^{\prime}\right]=\left[y, y^{\prime}\right]=0$ for $x, x^{\prime} \in \mathfrak{h}^{*}$ and $y, y^{\prime} \in \mathfrak{h}$. We choose a W-invariant inner product $\left(-,-\right.$) on \mathfrak{h}. The form defines a W-isomorphism $\mathfrak{h}^{*} \xrightarrow{\sim} \mathfrak{h}, x \mapsto \check{x}$.

3.1. The centre of $\mathrm{H}_{\mathbf{c}}(W)$

The center $Z\left(\mathrm{H}_{\mathbf{c}}(W)\right)$ of $\mathrm{H}_{\mathbf{c}}(W)$ has a natural Poisson structure, making $\mathrm{H}_{\mathbf{c}}(W)$ into a Poisson module. Let x_{1}, \ldots, x_{n} be a basis of \mathfrak{h}^{*}, and y_{1}, \ldots, y_{n} the dual basis. Then the elements

$$
\begin{equation*}
E=-\frac{1}{2} \sum_{i} x_{i}^{2}, \quad F=\frac{1}{2} \sum_{i} y_{i}^{2}, \quad H=\frac{1}{2} \sum_{i} x_{i} y_{i}+y_{i} x_{i} \tag{3.1}
\end{equation*}
$$

are central and form an $\mathfrak{s l}_{2}$-triple under the Poisson bracket. Their action on $\mathrm{H}_{\mathbf{c}}(W)$ is given by

$$
\begin{aligned}
& \{E, x\}=\{F, \check{x}\}=0, \quad\{E, \check{x}\}=x, \quad\{F, x\}=\check{x}, \\
& \{H, x\}=x, \quad\{H, \check{x}\}=-\check{x},
\end{aligned}
$$

and $\left\{\mathfrak{s l}_{2}, w\right\}=0$ for all $w \in W$. Their action on $\mathrm{H}_{\mathbf{c}}(W)$ is locally finite. Therefore this action can be integrated to get a locally finite action of $S L_{2}(\mathbb{C})$ on $\mathrm{H}_{\mathbf{c}}(W)$ by algebra automorphisms. Explicitly, this action is given on generators by

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot x=a x+c \check{x}, \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot \check{x}=b x+d \check{x}, \\
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot w=w, \quad \forall x \in \mathfrak{h}^{*}, w \in W
\end{aligned}
$$

The Calogero-Moser space $X_{\mathbf{c}}(W)$ is an affine variety defined as $\operatorname{Spec} Z\left(\mathrm{H}_{\mathbf{c}}(W)\right)$. The action of $S L_{2}(\mathbb{C})$ restricts to $Z\left(\mathrm{H}_{\mathbf{c}}(W)\right)$ and induces a Hamiltonian action on $\mathrm{X}_{\mathbf{c}}(W)$ such that its differential is the action of $\mathfrak{s l}_{2}$ given by the vector fields $\{E,-\},\{F,-\}$, and $\{H,-\}$.

There are only finitely many T-fixed points on $\mathrm{X}_{\mathbf{c}}(W)$. When the CalogeroMoser space is smooth, the T-fixed points are naturally labeled x_{λ} with $\lambda \in$ $\operatorname{Irr}(W)$. These fixed points are uniquely specified by the fact that the simple head $L(\lambda)$ of the baby Verma module $\Delta(\lambda)$ is supported at x_{λ}; see [G] for details.

Consider the element $w_{0}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ in $S L_{2}$. It normalizes T.
Lemma 3.1. Assume that $\mathrm{X}_{\mathbf{c}}(W)$ is smooth. Let $x_{\lambda} \in \mathrm{X}_{\mathbf{c}}(W)$ be the T-fixed point labeled by the representation $\lambda \in \operatorname{Irr}(W)$. Then $w_{0} \cdot x_{\lambda}$ is the fixed point labeled by $\lambda \otimes \operatorname{sgn}$, where sgn is the sign representation.

Proof. The automorphism of $\mathrm{H}_{\mathbf{c}}(W)$ defined by w_{0} is the Fourier transform \mathbb{F} of order 4; it is defined by

$$
\mathbb{F}: \quad x \mapsto \check{x}, \quad y \mapsto-\check{y}, \quad w \mapsto w, \quad \forall x \in \mathfrak{h}^{*}, y \in \mathfrak{h}, w \in W
$$

see [EG, p. 283]. The fixed point $w_{0} \cdot x$ is the support of ${ }^{w_{0}} L(\lambda)$. Thus, it suffices to show that ${ }^{w_{0}} L(\lambda) \simeq L(\lambda \otimes \operatorname{sgn})$. This is a standard result.

Definition 3.1. An $\left(\mathrm{H}_{\mathbf{c}}, \mathfrak{s l}_{2}\right)$-module M is both a left $\mathrm{H}_{\mathbf{c}}(W)$-module and left $\mathfrak{s h}_{2}$ module such that the morphism $\mathrm{H}_{\mathbf{c}}(W) \otimes M \rightarrow M$ is a morphism of $\mathfrak{s l}_{2}$-modules.

Every finite-dimensional $\left(\mathrm{H}_{\mathbf{c}}(W), \mathfrak{s l}_{2}\right)$-module is set-theoretically supported at an $S L_{2}$-fixed point. However, not every finite-dimensional $\mathrm{H}_{\mathbf{c}}(W)$-module settheoretically supported at an $S L_{2}$-fixed point has a compatible $\mathfrak{s l}_{2}$-action.

Let e denote the trivial idempotent in $\mathbb{C} W$. Then e is $S L_{2}$-invariant, and hence $\mathrm{H}_{\mathbf{c}}(W) e$ is an $\left(\mathrm{H}_{\mathbf{c}}, \mathfrak{s l}_{2}\right)$-module. Thinking of $\mathrm{H}_{\mathbf{c}}(W) e$ as a finitely generated $Z\left(\mathrm{H}_{\mathbf{c}}(W)\right.$)-module, we get an $S L_{2} \times W$-equivariant coherent sheaf \mathcal{R} on $\mathrm{X}_{\mathbf{c}}(W)$. When the latter space is smooth, \mathcal{R} is a vector bundle of rank $|W|$.

3.2. Type A

Let $\mathrm{H}_{\mathbf{c}}$ be the rational Cherednik algebra for the symmetric group \mathfrak{S}_{n} at $t=0$ and $\mathbf{c} \neq 0$. In this case, both the set of T-fixed points in the CM-space $X_{\mathbf{c}}:=X_{\mathbf{c}}\left(\mathfrak{S}_{n}\right)$ and the set of (isomorphism classes of) simple irreducible representations of \mathfrak{S}_{n} are labeled by partitions of n. We write \mathfrak{m}_{λ} for the maximal ideal of the T-fixed point corresponding to a partition λ.

Notation 3.1. From now on, the staircase partition ($m, m-1, \ldots, 1$) will be denoted \mathbf{m}. Given a partition λ, the corresponding representation of the symmetric group will be denoted π_{λ}. The finite-dimensional irreducible $S L_{2}$-module with highest weight $m \geq 0$ will be denoted $V(m)$.

7	5	3	1
5	3	1	
3	1		
1			

Let x be a box of the partition λ. The hook length $h(x)$ of x is the number of boxes strictly to the right of x plus the number of boxes strictly below plus one. In the staircase partition (3.2), the entry of the box is the corresponding hook length. The hook polynomial of λ is defined to be

$$
H_{\lambda}(q)=\prod_{x \in \lambda}\left(1-q^{h(x)}\right)
$$

Let $(q)_{n}=\prod_{i=1}^{n}\left(1-q^{i}\right)$ and denote by $n(\lambda)$ the partition statistic $\sum_{i \geq 1}(i-1) \lambda_{i}$. We write $\chi_{T}(U)$ for the character of a finite-dimensional T-representation U.

Lemma 3.2. Let x_{λ} be the T-fixed point of X_{c} labeled by the partition λ. Then

$$
\chi_{T}\left(T_{x_{\lambda}} \mathrm{X}_{\mathbf{c}}\right)=\sum_{x \in \lambda} q^{h(x)}+q^{-h(x)}
$$

Proof. It is known that the graded multiplicity of π_{λ} in the coinvariant ring $\mathbb{C}[\mathfrak{h}] /\left\langle\mathbb{C}[\mathfrak{h}]_{+}^{W}\right\rangle$ is given by $(q)_{(n)} q^{n(\lambda)} H_{\lambda}(q)^{-1}$, the so called "fake polynomial". If we decompose $T_{x_{\lambda}} \mathrm{X}_{\mathbf{c}}=\left(T_{x_{\lambda}} \mathrm{X}_{\mathbf{c}}\right)^{+} \oplus\left(T_{x_{\lambda}} \mathrm{X}_{\mathbf{c}}\right)^{-}$into its positive and negative weight parts, then Theorem 4.1 and Corollary 4.4 of [B2] imply that

$$
\chi_{T}\left(\left(T_{x_{\lambda}} \mathrm{X}_{\mathbf{c}}\right)^{+}\right)=\sum_{x \in \lambda} q^{h(x)}, \quad \text { since } \chi_{T}\left(\mathbb{C}\left[\left(T_{x_{\lambda}} \mathrm{X}_{\mathbf{c}}\right)^{+}\right]\right)=\frac{1}{H_{\lambda}(q)}
$$

The fact that T preserves the symplectic form on $X_{\mathbf{c}}$ implies that $\chi_{T}\left(\left(T_{x_{\lambda}} \mathrm{X}_{\mathbf{c}}\right)^{-}\right)=$ $\sum_{x \in \lambda} q^{-h(x)}$.

The following observation is elementary.
Lemma 3.3. Let λ be a partition such that every hook length in λ is odd. Then λ is a staircase partition.

Lemma 3.3, together with Lemma 3.2 and Theorem 2.1, implies that $S L_{2}$-fixed points in X_{c} are very rare:

Theorem 3.1. If $n=\frac{m(m+1)}{2}$ for some integer m, then $X_{\mathbf{c}}^{\mathfrak{s l}}=\left\{x_{\mathbf{m}}\right\}$. Otherwise, $\chi_{\mathbf{c}}^{\mathfrak{s l} l_{2}}=\emptyset$.

The lemma, together with Theorem 2.1, implies the following:
Proposition 3.1. There exists a finite-dimensional $\left(\mathrm{H}_{c}, \mathfrak{s l}_{2}\right)$-module if and only if $n=\frac{m(m+1)}{2}$ for some m. In this case, any such module M is set-theoretically supported at the fixed point $x_{\mathbf{m}}$ labeled by the staircase partition.

Proof. If M is an $\left(\mathrm{H}_{\mathbf{c}}, \mathfrak{s l}_{2}\right)$-module, then its set-theoretic support must be $S L_{2}$ stable. If M is also finite dimensional, then this support is a finite collection of points. These points must be $S L_{2}$-fixed since the group is connected. The result follows from Theorem 3.1.

Finally, we must show that there exists at least one $\left(\mathrm{H}_{\mathbf{c}}, \mathfrak{s l}_{2}\right)$-module supported at $x_{\mathfrak{m}}$. Let $\mathfrak{m} \triangleleft Z\left(\mathrm{H}_{\mathbf{c}}\right)$ be the maximal ideal of $x_{\mathfrak{m}}$. Then $\{\mathfrak{s l}, \mathfrak{m}\} \subset \mathfrak{m}$. Recall that the $\mathrm{H}_{\mathbf{c}}$-module $\mathrm{H}_{\mathbf{c}} e$ is an $\left(\mathrm{H}_{\mathbf{c}}, \mathfrak{s l}_{2}\right)$-module. Thus, $\mathrm{H}_{\mathbf{c}} e / \mathfrak{m H}_{c} e$ is a (simple) $\left(\mathrm{H}_{\mathbf{c}}, \mathfrak{s l}_{2}\right)$-module supported at $x_{\mathbf{m}}$.

Recall that there is a unique simple $\mathrm{H}_{\mathbf{c}}$-module $L(\lambda)$ supported at each of the T-fixed points x_{λ}. Notice that we have shown the following:

Corollary 3.1. The simple module $L(\mathbf{m}) \simeq \mathrm{H}_{\mathbf{c}} e / \mathfrak{m}_{\mathbf{m}} \mathrm{H}_{\mathbf{c}} e$ is an $\left(\mathrm{H}_{\mathbf{c}}, \mathfrak{s l}_{2}\right)$-module.
Equivalently, the above arguments show that $\mathfrak{s l}_{2}$ acts on the fiber $\mathcal{R}_{\mathbf{m}}$ of \mathcal{R} at $x_{\mathbf{m}}$. The formula for the character of the tangent space of $X_{\mathbf{c}}\left(\mathfrak{S}_{n}\right)$ at $x_{\mathbf{m}}$ given by Lemma 3.2 shows that

$$
\begin{equation*}
T_{x_{\mathrm{m}}} \mathrm{X}_{\mathbf{c}} \simeq V(m) \otimes V(m-1) \tag{3.3}
\end{equation*}
$$

as $S L_{2}$-modules.

Next, we describe the $S L_{2}$-orbits $\mathcal{O}_{\lambda}:=S L_{2} \cdot x_{\lambda}$ of the T-fixed points x_{λ}. First, we note that Lemma 2.2 implies the following:

Lemma 3.4. The orbit \mathcal{O}_{λ} is closed, and $\operatorname{Stab}_{S_{2}}\left(x_{\lambda}\right)$ is reductive.
Lemma 3.1, Theorem 3.1, and Lemma 3.4 imply that
Proposition 3.2. Let λ be a partition of n. Then, we have the following three alternatives:

1. $\lambda \neq \lambda^{t}$ and $\mathcal{O}_{\lambda}=\mathcal{O}_{\lambda^{t}} \simeq S L_{2} / T$;
2. $\lambda=\lambda^{t} \neq \mathbf{m}$ and $\mathcal{O}_{\lambda} \simeq S L_{2} / N(T)$;
3. $\lambda=\mathbf{m}$ and $\mathcal{O}_{\lambda}=\left\{x_{\mathbf{m}}\right\}$.

3.3. The $S L_{2}$-Structure of $\mathcal{R}_{\mathbf{m}}$

We define the $S L_{2}$-module

$$
U_{m}:=(V(m-1) \oplus V(m-2)) \otimes \bigotimes_{i=1}^{m-2}(V(i) \oplus V(i-1))^{\otimes 2}
$$

Proposition 3.3. There is an isomorphism of $S L_{2}$-modules:

$$
\begin{equation*}
\mathcal{R}_{\mathbf{m}} \simeq\left[U_{m} \otimes U_{m-2} \otimes \cdots \otimes U_{2,1}\right]^{\oplus \operatorname{dim} \pi_{\mathbf{m}}} \tag{3.4}
\end{equation*}
$$

where the final term $U_{2,1}$ is either U_{2} or U_{1} depending on whether m is even or odd.

Proof. As an $\left(\mathrm{H}_{\mathbf{c}}, \mathfrak{s l}_{\mathbf{2}}\right)$-module, $\mathcal{R}_{\mathbf{m}}$ equals $\mathrm{H}_{\mathbf{c}} e / \mathfrak{m H}_{\mathbf{c}} e$. As an $\mathrm{H}_{\mathbf{c}}$-module, $\mathrm{H}_{\mathbf{c}} e / \mathfrak{m H}_{\mathbf{c}} e$ is isomorphic to $L(\mathbf{m})$. Thus, it suffices to show that the character of $L(\mathbf{m})$ as an $S L_{2}$-module equals the character of the right-hand side of equation (3.4). The character of $L(\mathbf{m})$ is given in [B1, Lemma 3.3]. However, we must shift the grading on $L(\mathbf{m})$ from that given in loc. cit., so that the isomorphism $\mathrm{H}_{\mathbf{c}} e / \mathfrak{m H}_{\mathbf{c}} e \rightarrow L(\mathbf{m})$ is graded, that is, we require that the one-dimensional space $e L(\mathbf{m})$ lies in degree zero. Then,

$$
\chi_{T}(L(\mathbf{m}))=q^{-n(\mathbf{m})} \frac{H_{\mathbf{m}}(q)}{(1-q)^{n}} \operatorname{dim} \pi_{\mathbf{m}}
$$

Note that $n(\mathbf{m})=\frac{1}{6}(m-1) m(m+1)$. For the staircase partition, the character of $L(\mathbf{m})$ has a natural factorization. The largest hook in \mathbf{m} is $\left(m, 1^{m-1}\right)$, and $\mathbf{m}=$ $\left(m, 1^{m-1}\right)+[m-2]$; therefore peeling away the hooks gives $q^{-n(\mathbf{m})} / q^{-n([m-2])}=$ $q^{-(m-1)^{2}}$ and

$$
\begin{aligned}
\frac{H_{\mathbf{m}}(q)}{(1-q)^{2 m-1} H_{[m-2]}(q)} & =\frac{1}{(1-q)^{2 m-1}}\left(\left(1-q^{2 m-1}\right) \prod_{i=1}^{m-1}\left(1-q^{2 i-1}\right)^{2}\right) \\
& =\frac{1-q^{2 m-1}}{1-q} \prod_{i=1}^{m-1}\left(\frac{1-q^{2 i-1}}{1-q}\right)^{2}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\frac{H_{\mathbf{m}}(q) q^{-(m-1)^{2}}}{(1-q)^{2 m-1} H_{[m-2]}(q)}= & \left(q^{m-1}+q^{m-2}+\cdots+q^{-(m-1)}\right) \\
& \cdot \prod_{i=1}^{m-2}\left(q^{i}+q^{i-1}+\cdots+q^{-i}\right)^{2}
\end{aligned}
$$

This is precisely the character of U_{m}.
We would like to refine this character by taking into account the action of W too. We decompose $L(\mathbf{m})$ as a $W \times S L_{2}$-module,

$$
\begin{equation*}
L(\mathbf{m})=\bigoplus_{\lambda \vdash n} \pi_{\lambda} \otimes V_{\lambda} . \tag{3.5}
\end{equation*}
$$

Then the exponents of λ are defined to be the positive integers $0 \leq e_{1} \leq e_{2} \leq \cdots$ such that $V_{\lambda}=\bigoplus_{i} V\left(e_{i}\right)$. The fact that $L(\mathbf{m})$ is the regular representation as a W-module implies that

$$
\operatorname{dim} \pi_{\lambda}=\sum_{i}\left(e_{i}+1\right)=\operatorname{dim} V_{\lambda} .
$$

Example 3.1. For $m=3$, we have $n=6$ and

λ	e_{1}, e_{2}, \ldots
(6)	0
$(5,1)$	1,2
$(4,2)$	$1,2,3$
$(4,1,1)$	$0,1,2,3$
$(3,3)$	0,3
$(3,2,1)$	$0,1^{2}, 2^{2}, 4$
$(3,1,1,1)$	$0,1,2,3$
$(2,2,2)$	0,3
$(2,2,1,1)$	$1,2,3$
$(2,1,1,1,1)$	1,2
$(1,1,1,1,1,1)$	0

Lemma 3.5. The exponents of λ equal the exponents of λ^{t}.
Proof. There is an algebra isomorphism sgn : $\mathrm{H}_{\mathbf{c}} \xrightarrow{\sim} \mathrm{H}_{-\mathbf{c}}$ defined by $\operatorname{sgn}(x)=x$, $\operatorname{sgn}(y)=y$, and $\operatorname{sgn}(w)=(-1)^{\ell(w)} w$, where $x \in \mathfrak{h}^{*}, y \in \mathfrak{h}, w \in \mathfrak{S}_{n}$, and ℓ is the length function. It is clear from (3.1) that sgn is $S L_{2}$-equivariant. Moreover, ${ }^{\operatorname{sgn}} L(\lambda) \simeq L\left(\lambda^{t}\right)$. In particular, ${ }^{\text {sgn }} L(\mathbf{m}) \simeq L(\mathbf{m})$. This isomorphism maps V_{λ} to $V_{\lambda^{t}}$ since ${ }^{\mathrm{sgn}} \pi_{\lambda} \simeq \pi_{\lambda} \otimes \operatorname{sgn} \simeq \pi_{\lambda^{t}}$.

Using the deeper combinatorics of Macdonald polynomials, we prove the following:

Proposition 3.4. $\chi_{T}\left(V_{\lambda}\right)=\widetilde{K}_{\lambda, \mathbf{m}}\left(q, q^{-1}\right)$.

Proof. Let s_{λ} denote the Schur polynomial associated to the partition λ so that $s_{\lambda}\left[\frac{Z}{1-q}\right]$ is a particular plethystic substitution of s_{λ}; we refer the reader to $[\mathrm{H}]$ for details.

The module $L(\mathbf{m})$ is a graded quotient of the Verma module $\Delta(\mathbf{m})=$ $\mathrm{H}_{\mathbf{c}}(W) \otimes_{\mathbb{C}\left[\mathfrak{h}^{*}\right] \rtimes W} \pi_{\mathbf{m}}$. The graded W-character of $\Delta(\mathbf{m})$ is given by $s_{\mathbf{m}}\left[\frac{Z}{1-q}\right]$. As shown in [G], the graded multiplicity of $L(\mathbf{m})$ in $\Delta(\mathbf{m})$ is given by

$$
(q)_{n}^{-1} q^{-n(\mathbf{m})} f_{\mathbf{m}}(q)=H_{\mathbf{m}}(q)^{-1}=\prod_{i=1}^{m}\left(1-q^{2 i-1}\right)^{-(m-i)}
$$

Therefore, the graded W-character, shifted by $q^{-n(\mathbf{m})}$ so that $e L(\mathbf{m})$ is in degree zero, of $L(\mathbf{m})$ equals $q^{-n(\mathbf{m})} H_{\mathbf{m}}(q) s_{\mathbf{m}}\left[\frac{Z}{1-q}\right]$. This implies that

$$
\begin{equation*}
\chi_{T}\left(V_{\lambda}\right)=\left\langle s_{\mu}, q^{-n(\mathbf{m})} \prod_{i=1}^{m}\left(1-q^{2 i-1}\right)^{m-i} s_{\mathbf{m}}\left[\frac{Z}{1-q}\right]\right\rangle . \tag{3.6}
\end{equation*}
$$

The fact that the right-hand side of (3.6) equals $\widetilde{K}_{\lambda, \mathbf{m}}\left(q, q^{-1}\right)$ follows from the property of transformed Macdonald polynomials [H, Proposition 3.5.10].

3.4. Other Coxeter Groups

In this section we sketch how we can perform a similar analysis for other Coxeter groups W. First, $X_{\mathbf{c}}(W)$ might be singular. In this case the torus fixed points x_{Ω} are labeled by Calogero-Moser families $\Omega \subset \operatorname{Irr} W$. Lemma 3.1 still holds, except now $w_{0} \cdot x_{\Omega}=x_{\Omega \otimes \operatorname{sgn}}$, where $\Omega \otimes \operatorname{sgn}:=\{\lambda \otimes \operatorname{sgn} \mid \lambda \in \Omega\}$ is another CalogeroMoser family. Thus, if x_{Ω} is fixed by $S L_{2}$, then necessarily $\Omega=\Omega \otimes \operatorname{sgn}$. Next, provided that the fixed point $x=x_{\lambda}$ is smooth, the analogue of Lemma 3.2 still holds. Using Theorem 4.1 and Corollary 4.4 of [B2], we can compute the character $\chi_{T}\left(T_{x_{\lambda}} \mathrm{X}_{\mathbf{c}}\right)$, though it is hard to give a formula in general. For instance, when W is a Weyl group of type B / C and \mathbf{c} generic, then $\lambda=\left(\lambda^{(1)}, \lambda^{(2)}\right)$ is a bipartition of n, and

$$
\begin{equation*}
\chi_{T}\left(T_{x_{\lambda}} \mathrm{X}_{\mathbf{c}}\right)=\sum_{x \in \lambda^{(1) \cup \lambda^{(2)}}} q^{2 h(x)}+q^{-2 h(x)} \tag{3.7}
\end{equation*}
$$

These two observations give partial information on $\mathrm{X}_{\mathbf{c}}(W)^{\mathfrak{s l}_{2}}$, which is sufficient in some cases to determine all $S L_{2}$-fixed points. Again, if W is a Weyl group of type B / C and \mathbf{c} generic, then (3.7) implies that all weights of T on the tangent space $T_{x_{\lambda}} \mathrm{X}_{\mathbf{c}}$ are even. Thus, it cannot be an $\mathfrak{s l}_{2}$-module. This implies that $X_{c}^{\mathfrak{s t}}=\emptyset$.

Similarly, if W is of type G_{2} and \mathbf{c} is generic, then there are five T-fixed points, four of which are smooth and one is singular. This is the unique isolated singularity. Since the singular locus is $S L_{2}$-stable, this singular point is fixed by $S L_{2}$. The other four T-fixed points are not $S L_{2}$-fixed (already w_{0} as in Lemma 3.1 does not fix any of these points).

More generally, $S L_{2}$ preserves the symplectic leaves in $X_{\mathbf{c}}(W)$. In particular, the zero-dimensional leaves give $S L_{2}$-fixed points. These zero-dimensional leaves
are labeled by cuspidal Calogero-Moser families; see [BT]. Therefore each cuspidal Calogero-Moser family gives rise to an $S L_{2}$-fixed point. The cuspidal families for Coxeter groups of type A, B, D and $I_{2}(m)$ are classified in loc. cit.

4. The Hilbert Scheme of Points in the Plane

The group $S L_{2}$ also acts naturally on the Hilbert scheme $\operatorname{Hilb}^{n} \mathbb{C}^{2}$ of n points in the plane. This is the restriction of a $G L_{2}$-action induced by the natural action of $G L_{2}$ on \mathbb{C}^{2}.

4.1. Fixed points

The T-fixed points y_{λ} in Hilb \mathbb{C}^{2} are also labeled by partitions λ of n. If I is the T-fixed codimension n ideal labeled by λ, then it is uniquely defined by the fact that the corresponding quotient $\mathbb{C}[x, y] / I_{\lambda}$ has basis given by $x^{i} y^{j}$ with

$$
(i, j) \in Y_{\lambda}:=\left\{(i, j) \in \mathbb{Z}^{2} \mid 0 \leq j \leq \ell(\lambda)-1,0 \leq i \leq \lambda_{j}-1\right\}
$$

the Young tableau of λ. The orbit $G L_{2} \cdot y_{\lambda}$ is denoted \mathcal{O}_{λ}. We identify \mathbb{C}^{\times}with the scalar matrices in $G L_{2}$. Then $\left(\operatorname{Hilb}^{n} \mathbb{C}^{2}\right)^{\mathbb{C}^{\times}}$is the moduli space of homogeneous ideals of codimension n in $\mathbb{C}[x, y]$, as studied in [I]. It is a smooth projective $G L_{2}$ stable subvariety of $\operatorname{Hilb}^{n} \mathbb{C}^{2}$ containing the points y_{λ}. Notice that the $G L_{2}$-orbits and $S L_{2}$-orbits in $\left(\mathrm{Hilb}^{n} \mathbb{C}^{2}\right)^{\mathbb{C}^{\times}}$agree since the action factors through $P G L_{2}$.

Lemma 4.1. If $n=\frac{m(m+1)}{2}$ for some integer m, then $\left(\operatorname{Hilb}^{n} \mathbb{C}^{2}\right)^{G L_{2}}=\left\{y_{\mathbf{m}}\right\}$. Otherwise, $\left(\operatorname{Hilb}^{n} \mathbb{C}^{2}\right)^{G L_{2}}=\emptyset$.

Proof. This follows from [KT, Lemma 12]. Alternatively, notice that if y_{λ} is fixed by $G L_{2}$, then $\mathbb{C}[x, y] / I_{\lambda}$ is a $G L_{2}$-module. Since each graded piece of $\mathbb{C}[x, y]$ is an irreducible $G L_{2}$-module, this implies that there is some m such that $I_{\lambda}=$ $\mathbb{C}[x, y]_{\geq m}$ and hence $\lambda=\mathbf{m}$.
We say that a partition λ is steep if $\lambda_{1}>\cdots>\lambda_{\ell}>0$.
Proposition 4.1. Let $\lambda \neq \mathbf{m}$ be a partition of n and set $K=\operatorname{Stab}_{S L_{2}}\left(y_{\lambda}\right)$.
(1) If λ is steep, then $K=B$, and if λ^{t} is steep, then $K=B_{-}$. In both cases, $\mathcal{O}_{\lambda} \simeq \mathbb{P}^{1}$.
(2) If neither λ nor λ^{t} is steep, then $K=T$ if $\lambda \neq \lambda^{t}$ and $K=N(T)$ if $\lambda=\lambda^{t}$. In both cases the complement to \mathcal{O}_{λ} in $\overline{\mathcal{O}_{\lambda}}$ equals \mathbb{P}^{1}.
(3) The orbit \mathcal{O}_{λ} is closed if and only if λ or λ^{t} is steep.

Proof. If λ is steep, then [KT, Lemma 12] shows that $B \subset K$. If $\operatorname{dim} K>\operatorname{dim} B$, then $\operatorname{dim} K=3$, that is, $K=S L_{2}$ and $\lambda=\mathbf{m}$ (notice that \mathbf{m} is the only partition such that both λ and λ^{t} are steep). Therefore $\operatorname{dim} B=\operatorname{dim} K$, and hence $K^{\circ}=B$. But then $N_{S L_{2}}(B)=B$ implies that $K=B$. Since $y_{\lambda^{t}}=w_{0} \cdot y_{\lambda}$, if λ^{t} is steep, then $K=w_{0} B w_{0}^{-1}=B_{-}$. This proves part (1).

Assume now that neither λ nor λ^{t} is steep. Let Lie $K=\mathfrak{k}$. Since $\mathfrak{k} \supset \mathfrak{t}$, but $\mathfrak{k} \nsucceq \mathfrak{b}, \mathfrak{s l}_{2}$, we have $\mathfrak{k}=\mathfrak{t}$, and hence $K=T$ or $N(T)$. Then part (2) follows from

Lemma 2.3. Notice that Lemma 2.3 is applicable here even though $\operatorname{Hilb}^{n} \mathbb{C}^{2}$ is not complete; this is because \mathcal{O}_{λ} is contained in the punctual Hilbert scheme $\operatorname{Hilb}_{0}^{n} \mathbb{C}^{2} \subset \operatorname{Hilb}^{n} \mathbb{C}^{2}$ of all ideals supported at $0 \in \mathbb{C}^{2}$. This $S L_{2}$-stable subvariety is complete.

Part (3) follows directly from parts (1) and (2).
Question 4.1. For which λ is $\overline{\mathcal{O}}_{\lambda}$ normal?
Associate with a partition λ the diagonals $d_{k}:=\left|\left\{(i, j) \in Y_{\lambda} \mid i+j=k\right\}\right|$, where $k=0,1, \ldots$. That is, d_{k} is the number of boxes lying on the line $x+y=k$. For instance, if $\lambda=(4,3,3,1,1)$, then the diagonals $\left(d_{0}, d_{1}, \ldots\right)$ are $(1,2,3,4,2)$. Now construct a new partition $U(\lambda)$ from λ by setting $U(\lambda)_{i}=\left|\left\{d_{k} \mid d_{k} \geq i\right\}\right|$. It is again a partition of $|\lambda|$. Pictorially, if we visualize the Young tableau Y_{λ} in the English style, as in (3.2), then on the k th diagonal (where there are d_{k} boxes), we have simply moved all boxes as far to the top-right as possible. For example, $U(4,3,3,1,1)=(5,4,2,1)$. If instead we move all boxes on the k th diagonal as far to the bottom left as possible, we get $U(\lambda)^{t}$.

Lemma 4.2. Let λ be a partition.
(1) The partition $U(\lambda)$ is steep, and $U(\lambda)=\lambda$ if and only if λ is steep.
(2) $U(\lambda)=\mathbf{m}$ if and only if $\lambda=\mathbf{m}$.

Proof. It is clear from the construction that $U(\lambda)$ is steep; if $\lambda_{i-1}=\lambda_{i}$ for some i, then we can move the box at the end of i th row further up and to the right on the diagonal that it belongs to. Similarly, if λ is steep, then $\lambda_{i-1}>\lambda_{i}$ for all i such that $\lambda_{i} \neq 0$ implies that there is always a box "above and to the right" of a given box, that is, if $(i, j) \in Y_{\lambda}$ and $i \neq 0$, then $(i-1, j+1) \in Y_{\lambda}$ (this can be viewed as an alternative definition of steep).

Part (2) is also immediate from the construction.
Proposition 4.2. Let λ be a partition such that neither λ nor λ^{t} is steep. Then $\overline{\mathcal{O}_{\lambda}}=\mathcal{O}_{\lambda} \sqcup \mathcal{O}_{U(\lambda)}$.

Proof. Grade $\mathbb{C}[x, y]$ by putting x and y in degree one. Then every $I \in \mathcal{O}_{\lambda}$ is graded, $I=\bigoplus_{k \geq 0} I_{k}$, and $\operatorname{dim} I_{k}$ is independent of I. Since $\operatorname{dim}\left(I_{\lambda}\right)_{k}=k+1-$ d_{k}, we deduce that $\operatorname{dim} I_{k}=k+1-d_{k}$ for all $I \in \mathcal{O}_{\lambda}$. By Proposition 4.1 (2) and Lemma 2.3 we know that $\overline{\mathcal{O}_{\lambda}}=\mathcal{O}_{\lambda} \sqcup \mathcal{O}^{\prime}$, where $\mathcal{O}^{\prime} \simeq S L_{2} / B$. Thus, there exists a steep partition $\mu \neq \mathbf{m}$ such that $\mathcal{O}^{\prime}=\mathcal{O}_{\mu}$.

The Hilbert-Mumford criterion implies that there exists $I \in \mathcal{O}_{\lambda}$ such that $J=$ $\lim _{t \rightarrow 0} t \cdot I$ is a T-fixed point in \mathcal{O}_{μ}. Thus, either $J=I_{\mu}$ or $J=I_{\mu^{t}}$. Without loss of generality, $J=I_{\mu}$. This implies that $\operatorname{dim}\left(I_{\mu}\right)_{k}=k+1-d_{k}$. Since μ is steep, $\left(I_{\mu}\right)_{k}$ is a B-submodule of $\mathbb{C}[x, y]_{k}$; cf. Proposition 4.1 (1). Therefore, $\left\{x^{k}, x^{k-1} y, \ldots, x^{k+1-d_{k}} y^{d_{k}-1}\right\}$ is a basis of $\left(\mathbb{C}[x, y] / I_{\mu}\right)_{k}$, that is, $\left\{(i, j) \in Y_{\mu} \mid\right.$ $i+j=k\}$ equals $\left\{(k, 0),(k-1,1), \ldots,\left(k+1-d_{k}, d_{k}-1\right)\right\}$. But $U(\lambda)$ is uniquely defined by this property. Hence $\mu=U(\lambda)$.

Remark 4.1. For any (homogeneous) ideal $I \in\left(\operatorname{Hilb}^{n} \mathbb{C}^{2}\right)^{\mathbb{C}^{\times}}, I$ is fixed by B if and only if each I_{k} is a B-submodule of $\mathbb{C}[x, y]_{k}$. But the B-submodules of $\mathbb{C}[x, y]_{k}$ are the same as the U-submodules of $\mathbb{C}[x, y]_{k}$. This implies that I is B-fixed if and only if it is U-fixed.

It is known (see, e.g., [GS, Theorem 5.6]) that the Hilbert scheme fits into a flat family $p: \mathfrak{X} \rightarrow \mathbb{A}^{1}$ such that $p^{-1}(0) \simeq \operatorname{Hilb}^{n} \mathbb{C}^{2}$ and $p^{-1}(\mathbf{c}) \simeq X_{\mathbf{c}}$ for $\mathbf{c} \neq 0$. Moreover, $S L_{2}$ acts on \mathfrak{X} such that the map p is equivariant with $S L_{2}$ acting trivially on \mathbb{C}. The identification of the fibers is also equivariant. The set-theoretic fixed point set \mathfrak{X}^{T} decomposes

$$
\mathfrak{X}^{T}=\bigsqcup_{\lambda \vdash n} \mathbb{A}_{\lambda},
$$

into a union of connected components \mathbb{A}_{λ}, where $\mathbb{A}_{\lambda} \simeq \mathbb{A}^{1}$ with $p^{-1}(\mathbf{c}) \cap \mathbb{A}_{\lambda}=$ $\left\{x_{\lambda}\right\}$ for $\mathbf{c} \neq 0$ and $p^{-1}(0) \cap \mathbb{A}_{\lambda}=\left\{y_{\lambda}\right\}$. The only thing that is not immediate here is that the parameterization of the fixed points in X_{c} match those of $\operatorname{Hilb}^{n} \mathbb{C}^{2}$. But this can be seen from Lemma 3.2, [H, Lemma 5.4.5], and from the fact that a partition is uniquely defined by its hook polynomial.

Then the $S L_{2}$-varieties $S L_{2} \cdot \mathbb{A}_{\lambda}$ are connected. Assume that neither λ nor λ^{t} is steep. Then there are equivariant trivializations

$$
S L_{2} \cdot \mathbb{A}_{\lambda} \simeq S L_{2} / N(T) \times \mathbb{A}^{1} \quad \text { or } \quad S L_{2} \cdot \mathbb{A}_{\lambda} \simeq S L_{2} / T \times \mathbb{A}^{1}
$$

depending on whether $\lambda=\lambda^{t}$ or not.
Let $\widetilde{\mathfrak{s}}_{2} \rightarrow \mathfrak{s l}_{2}$ be Grothendieck's simultaneous resolution and write ϖ for the composition $\widetilde{\mathfrak{S l}_{2}} \rightarrow \mathfrak{s l}_{2} \rightarrow \mathfrak{s l}_{2} / / S L_{2} \cong \mathbb{A}^{1}$, where the second map is $a \mapsto \frac{1}{2} \operatorname{Tr} a$.

Conjecture 4.1. Let $\lambda \neq \mathbf{m}$ be a steep partition. There exists an $S L_{2}$-equivariant embedding $\widetilde{\mathfrak{s l}_{2}} \hookrightarrow \mathfrak{X}$ sending the B-fixed point $[1: 0] \in \mathbb{P}^{1} \subset \widetilde{\mathfrak{s h}_{2}}$ to y_{λ} and such that the following diagram commutes:

Remark 4.2. Conjecture 4.1 has been confirmed by Li Yu in the case $n=3$.

4.2. The Procesi Bundle

The Procesi bundle \mathcal{P} on $\operatorname{Hilb}^{n} \mathbb{C}^{2}$ is a $G L_{2} \times \mathfrak{S}_{n}$-equivariant vector bundle of rank $n!$. See $[H]$ and references therein for details. The fiber $\mathcal{P}_{\mathbf{m}}$ is a $G L_{2} \times \mathfrak{S}_{n^{-}}$ module, decomposing as

$$
\mathcal{P}_{\mathbf{m}}=\bigoplus_{\mu \vdash n} V_{\mu} \otimes \pi_{\mu}
$$

As $G L_{2}$-modules, we have a decomposition $V_{\mu}=\bigoplus_{i} V\left(m_{i}, n_{i}\right)$ into a direct sum of irreducible $G L_{2}$-modules $V\left(m_{i}, n_{i}\right)$ with highest weight (m_{i}, n_{i}); here $m_{i}, n_{i} \in$
\mathbb{Z} with $m_{i} \geq n_{i}$. We call $\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right), \ldots$ the graded exponents of μ. Let H denote the 2-torus of diagonal matrices in $G L_{2}$. The character of V_{μ} is given by the cocharge Kostka-Macdonald polynomial

$$
\begin{equation*}
\chi_{H}\left(V_{\lambda}\right)=\widetilde{K}_{\lambda, \mathbf{m}}(q, t) \tag{4.1}
\end{equation*}
$$

Notice that this implies $\widetilde{K}_{\lambda, \mathbf{m}}(q, t)=\widetilde{K}_{\lambda, \mathbf{m}}(t, q)$. This can also be deduced directly from the definition of Macdonald polynomials (see e.g. [H, Proposition 3.5.10]). Similarly, equation (4.1), together with standard properties [H, Proposition 3.5.12] of Macdonald polynomials, implies that

$$
V_{\lambda^{t}} \simeq V_{\lambda}^{*} \otimes \operatorname{det}^{\otimes n(\mathbf{m})}
$$

Thus, if the exponents of λ are $\left(m_{1}, n_{1}\right), \ldots$, then the exponents of λ^{t} are

$$
\left(n(\mathbf{m})-n_{1}, n(\mathbf{m})-m_{1}\right), \ldots
$$

Question 4.2. Is there an explicit formula for the graded exponents of λ ?
Next, we explain how Lemma 3.5 and Proposition 3.4 can be deduced from the statements of Section 4.2, provided that we use Haiman's n ! theorem.

Let u be a formal variable, and $\mathrm{H}_{u c}$ the flat $\mathbb{C}[u]$-algebra such that $\mathrm{H}_{u c} /\langle u\rangle \simeq$ H_{0} and $H_{u c} /\langle u-1\rangle \simeq H_{\mathbf{c}}$. By [GS, Theorem 5.5], the space \mathfrak{X} can be identified with a moduli space of λ-stable $\mathrm{H}_{u \mathbf{c}}$-modules L such that $\left.L\right|_{\mathfrak{S}_{n}} \simeq \mathbb{C} \mathfrak{S}_{n}$. Here λ is a generic stability parameter; see loc. cit. for definitions. As such, \mathfrak{X} comes equipped with a canonical bundle $\widetilde{\mathcal{P}}$ such that each fiber is an $\mathrm{H}_{u \mathbf{c}}$-module. The action of $S L_{2}$ on \mathfrak{X} lifts to $\widetilde{\mathcal{P}}$.

THEOREM 4.1. For $\mathbf{c} \neq 0,\left.\widetilde{\mathcal{P}}\right|_{p^{-1}(\mathbf{c})} \simeq \mathcal{R}$ and $\left.\widetilde{\mathcal{P}}\right|_{p^{-1}(0)} \simeq \mathcal{P}$.
Proof. The first claim follows from [EG, Section 3], and the second is a consequence of Haiman's proof of the $n!$-conjecture; see the proof of [GS, Theorem 5.3] and references therein.

Corollary 4.1. As $\mathfrak{S}_{n} \times S L_{2}$-modules, $\mathcal{R}_{\mathbf{m}} \simeq \mathcal{P}_{\mathbf{m}}$, and hence $\chi_{T}\left(V_{\lambda}\right)=$ $\left.\chi_{H}\left(V_{\lambda}\right)\right|_{t=q^{-1}}$.

Acknowledgments. The authors would like to thank the referees for useful comments and, in particular, for a concise proof of Lemma 2.2.

References

[B1] G. Bellamy, On singular Calogero-Moser spaces, Bull. Lond. Math. Soc. 41 (2009), no. 2, 315-326.
[B2] , Endomorphisms of Verma modules for rational Cherednik algebras, Transform. Groups 19 (2014), no. 3, 699-720.
[BT] G. Bellamy and U. Thiel, Cuspidal Calogero-Moser and Lusztig families for Coxeter groups, J. Algebra 462 (2016), 197-252.
[BB] A. Bilyanicki-Birula, On action of $\operatorname{SL}(2)$ on complete algebraic varieties, Pacific J. Math. 86 (1980), 53-58.
[EG] P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243-348.
[G] I. G. Gordon, Baby Verma modules for rational Cherednik algebras, Bull. Lond. Math. Soc. 35 (2003), no. 3, 321-336.
[GS] I. G. Gordon and S. P. Smith, Representations of symplectic reflection algebras and resolutions of deformations of symplectic quotient singularities, Math. Ann. 330 (2004), no. 1, 185-200.
[EGA] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, 32, Inst. Hautes Études Sci. Publ. Math. 1967, 361 pp .
[H] M. Haiman, Combinatorics, symmetric functions, and Hilbert schemes, 2002, Current developments in mathematics, pp. 39-111, Int. Press, Somerville, MA, 2003.
[Ha] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York, 1977.
[I] A. Iarrobino, Punctual Hilbert schemes, Mem. Amer. Math. Soc. 10 (1977), no. 188, viii+112.
[KT] S. Kumar and J. F. Thomsen, A conjectural generalization of the n ! result to arbitrary groups, Transform. Groups 8 (2003), no. 1, 69-94.
[M] T. Mabuchi, On the classification of essentially effective $\operatorname{SL}(n, \mathbb{C})$-actions on algebraic n-folds, Osaka J. Math. 16 (1979), no. 3, 745-759.
[S] H. Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), no. 1, 1-28.
G. Bellamy

School of Mathematics and Statistics
University of Glasgow
University Gardens
Glasgow, G12 8QW
UK
gwyn.bellamy@glasgow.ac.uk

V. Ginzburg
Department of Mathematics
University of Chicago
Chicago, IL 60637
USA

ginzburg@math.uchicago.edu

[^0]: Received February 8, 2016. Revision received August 24, 2016.
 The work of the first author was partially supported by the EPSRC grant EP/N005058/1. The work of the second author was supported in part by the NSF grant DMS-1303462.

