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Infinite Groups Acting Faithfully on the Outer
Automorphism Group of a Right-Angled Artin Group

Corey Bregman & Neil J. Fullarton

Abstract. We construct the first known examples of infinite sub-
groups of the outer automorphism group of Out(A�), for certain right-
angled Artin groups A� . This is achieved by introducing a new class
of graphs, called focused graphs, whose properties allow us to ex-
hibit (infinite) projective linear groups as subgroups of Out(Out(A�)).
This demonstrates a marked departure from the known behavior of
Out(Out(A�)) when A� is free or free abelian since in these cases
Out(Out(A�)) has order at most 4. We also disprove a previous con-
jecture of the second author, producing new examples of finite-order
members of certain Out(Aut(A�)).

1. Introduction

Right-angled Artin groups, or RAAGs, comprise a class of groups that generalize
free groups and free Abelian groups. Every finite simplicial graph � with vertex
set V defines a RAAG A� in the following way. The generating set of A� is in
bijection with the vertices of �, and the only relations are that two generators
commute if their corresponding vertices share an edge in �. Thus, if � has no
edges, then A� is just the free group FV , whereas if � is a complete graph, then
A� is the free Abelian group Z〈V 〉.

In this paper, we consider the automorphism and outer automorphism groups of
general RAAGs in comparison with those of free groups and free Abelian groups.
More specifically, we investigate Out(Out(A�)) and Out(Aut(A�)). These groups
provide a measure of the algebraic rigidity of Out(A�) and Aut(A�), respectively,
and their study fits into a more general program of investigating rigidity of groups
throughout geometric group theory.

The main goal of this paper is to show that there exist infinitely many graphs �

for which Out(Out(A�)) is infinite. We achieve this by introducing a new class of
graphs, which we call focused graphs. A graph � is said to be focused if it has a
distinguished vertex c with the following two properties: (i) c is the unique vertex
of � that may dominate a vertex other than itself, and (ii) c is the only vertex
whose star disconnects �. Focused graphs are the key construction that allows us
to prove our following main theorem.

Theorem A. For each n ≥ 2, there exist infinitely many focused graphs � such
that Out(Out(A�)) contains PGLn(Z).
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Our construction of PGLn(Z) subgroups of Out(Out(A�)) may also be utilized
successfully for a subset of the graphs � that have no separating intersection of
links, a property of graphs introduced by Gutierrez, Piggott and Ruane [8]. We
discuss this generalized construction after we complete the proof of Theorem A.

Previous work has calculated the groups Out(Aut(A�)) and Out(Aut(A�))

when A� is a free or free Abelian group. A classical result of Hua and Reiner
[10] computes Out(Aut(Zn)) = Out(Out(Zn)) = Out(GLn(Z)) to be

Out(GLn(Z)) =

⎧⎪⎨
⎪⎩
Z/2 ×Z/2, even n,

Z/2, odd n > 1,

1, n = 1.

For the case of free groups, Dyer and Formanek [5] give an algebraic proof that
Out(Aut(Fn)) is trivial for all n. Khramtsov [11] gave another proof of this fact
and also showed that Out(Out(Fn)) is trivial for n ≥ 3. Using outer space and
auter space for free groups, Bridson and Vogtmann [1] gave a geometric proof
that, for n ≥ 3, both Out(Out(Fn)) and Out(Aut(Fn)) are trivial. Note that the
cases n = 1 and n = 2 for Out(Out(Fn)) are covered by the Hua–Reiner theorem
since F1 ∼= Z, and a theorem of Nielsen states that Out(F2) ∼= GL2(Z) (see [13]).

The results mentioned indicate that both Out(Aut(A�)) and Out(Out(A�)) are
either small or trivial for A� = Zn and A� = Fn, independent of n. For more
general RAAGs, the second author has shown in [7] that this behavior does not
hold. More precisely, he proves that, for any n > 0, there exist graphs �1,�2 such
that |Out(Aut(A�1))| > n and |Out(Out(A�2))| > n. Theorem A of this paper
substantially strengthens the second author’s result in the case of Out(Out(A�)).

Our approach is to compute explicitly a large subgroup of Out(Out(A�)) for
each focused graph �. In computing this, we first exhibit GLn(Z) subgroups in-
side Aut(Out(A�)), hence proving that any Z-linear group can be made to act
faithfully on Out(A�) via automorphisms for some RAAG A� . This provides a
stark constrast to the summarized work of Hua–Reiner, Bridson–Vogtmann, and
Dyer–Formanek.

The second author [7] also introduced the notion of an austere graph. If �

is austere, then Out(A�) is, in some sense, as simple as possible. The second
author previously conjectured that, for austere graphs �, the group Aut(A�) is
complete (see the remarks after Proposition 5.1 in [7]). However the following
theorem establishes that the order of Out(Aut(A�)) in the austere case is at least
exponential in |V |.
Theorem B. If � is austere, then |Out(Aut(A�))| ≥ 2K , where K = ∑

v∈V Kv ,
and Kv is the number of vertices of � not adjacent to v.

In particular, we are able to achieve the two main results of [7] simultaneously:

Corollary C. For each n ≥ 1, there exist infinitely many graphs � such that
|Out(Aut(A�))| > n and |Out(Out(A�))| > n.



Infinite Groups Acting Faithfully on Out(A�) 571

A Caveat

One might naïvely expect that to construct automorphisms of Out(A�), say, it
would suffice to find a finite index subgroup K ≤ Out(A�) that has a rich col-
lection of automorphisms as an abstract group. It could then be hoped that these
extend to give many automorphisms of Out(A�) since it is often the case that
group-theoretic properties pass easily between a group and its finite index sub-
groups. Indeed, this is our approach; however, the interplay between the finitely
many cosets of K in Out(A�) frequently prohibits any obvious attempts at ex-
tending such automorphisms to all of Out(A�).

Considering the abstract commensurator Comm(Out(A�)) instead of
Out(Out(A�)) circumvents some of these difficulties since Comm(Out(A�))

is precisely concerned with isomorphisms between finite index subgroups of
Out(A�). For details, see the remarks after Corollary 3.5.

Outline of the Paper

In Section 2, we recall some necessary background regarding automorphisms of
right-angled Artin groups. In Section 3, we prove Theorem A, whereas in Sec-
tion 4, we prove Theorem B.

2. Preliminaries

In this section we review basic properties of RAAGs and their automorphism
groups. Let � = (V ,E) be a simplicial graph. As stated in the introduction, �

defines a group A� with generating set V = {v1, . . . , vn} and relations vivj = vjvi

if and only if vi is adjacent to vj in �. For v ∈ V , denote by lk(v) the link of v,
by which we mean the set of vertices adjacent to v. The star of v, by which we
mean the set lk(v)∪{v}, will be denoted st(v). If u,v ∈ V and lk(v) ⊆ st(u), then
we say that u dominates v and write v ≤ u.

Elements of A� enjoy nice normal forms in terms of the generators V . Two
words w1 and w2 in the generators V (and their inverses) are said to be shuffle-
equivalent if w2 can be obtained from w1 by repeatedly exchanging pairs of ad-
jacent commuting generators. Hermiller and Meier [9] show that if w1 and w2
are minimal length words, then w1 = w2 in A� iff w1 is shuffle-equivalent to w2
and moreover that any word can be transformed into a minimal-length word by
swapping adjacent commuting generators and cancelling pairs of inverses when-
ever possible. This allows us to define the support of w ∈ A� , denoted supp(w),
to consist of all v ∈ V such that v (or v−1) appears in a minimal-length word
representing w. For a survey of RAAGs and their properties, see [2].

The automorphism group Aut(A�) of a RAAG A� is generated by the follow-
ing four types of automorphisms, known as the Laurence–Servatius generators:

1. Inversions: Given v ∈ V , the automorphism ιv sends v 
→ v−1 and fixes all
other generators.

2. Graph automorphisms: Any graph automorphism of � induces a permutation
of V that extends to an automorphism of A� .
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3. Transvections: If v ≤ u, the automorphism τuv sends v 
→ uv and fixes all
other generators.

4. Partial conjugations: If P is a connected component of � \ st(v) for some
v ∈ V , then the automorphism χv,P maps u 
→ vuv−1 for every u ∈ P and
acts as the identity elsewhere.

The fact that these four types of automorphisms generate Aut(A�) was conjec-
tured by Servatius [15], and later proven by Laurence [12]. If v ≤ u and v is
adjacent to u, then τuv is an adjacent transvection. Otherwise, τuv is a nonad-
jacent transvection. In the sequel, the subgroup generated by the inversions is
denoted I� , whereas the subgroup generated by partial conjugations and tranvec-
tions is denoted PCT(A�). The images of these four types of generators under the
quotient map Aut(A�) → Out(A�) generate Out(A�). We will use an overline to
indicate when we refer to elements or subgroups of Out(A�): for example, τ̄uv ,
χ̄v,P , and PCT(A�).

3. Proof of Theorem A

Let � = (V ,E) be a graph with a distinguished vertex c such that if v ≤ u for
distinct v,u ∈ V , then u = c, and for any v ∈ V \ {c}, the graph � \ st(v) is con-
nected. We will call such a graph focused (at c). Let L = {x1, . . . , xl} ⊂ V \ {c}
denote the set of vertices that are dominated by, but not adjacent to, the vertex c,
and let S = {xl+1, . . . , xm} ⊂ V \ {c} denote the set of vertices that are both dom-
inated by and adjacent to c. Finally, let Q = {P1, . . . ,Pk} denote the connected
components of the graph � \ st(c), where k ≥ l, and we set Pi = {xi} for 1 ≤ i ≤ l.
See Figure 1 a typical example of a focused graph.

Note that a focused graph � may have nontrivial graph automorphism group
Aut(�). From now on, we assume that Aut(�) is trivial since this simplifies the
following exposition. This is not a too restrictive condition; our construction still
yields infinite subgroups of Out(Out(A�)) if Aut(�) 
= 1; however, the obvious
action of Aut(�) on Out(A�) would force us to pass to proper subgroups of those
we find further. Precisely, the isomorphism given by Proposition 3.1 would be-
come

Out(A�) ∼= Zk+m−1 � (I� � Aut(�)),

and when extending automorphisms of Zk+m−1 to Out(A�) (which will be our
strategy), we would need to ensure that they satisfy additional relations arising
from the action of Aut(�).

Examining the Laurence–Servatius generators of Aut(A�) for a focused
graph �, we find that

Aut(A�) ∼= PCT(A�)� I�,

with the splitting following from the observation that I� injects into GLn(Z) un-
der the canonical map � : Aut(A�) → GLn(Z), and �(PCT(A�)) ∩ �(I�) = 1.
This splitting of Aut(A�) descends to one of Out(A�) since Inn(A�) ≤ PCT(A�).
The image PCT(A�) of PCT(A�) in Out(A�) is easy to describe, which we do
now explicitly.
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Figure 1 An example of a focused graph with l = 4, m = 7, and
k = 7. The distinguished vertex c is shown in red. Vertices dominated
by but not adjacent to c are shown in blue, whereas those dominated
by and adjacent to c are green. Connected components of � \ st(c) that
are not vertices are yellow

Proposition 3.1. Let � be focused at c. Then

Out(A�) ∼= Zk+m−1 � I�.

In particular, PCT(A�) ∼= Zk+m−1.

Remark. In Question 9 of [4], the authors ask when Out(A�) is abstractly com-
mensurable with a right-angled Artin group. This proposition implies that focused
graphs provide an infinite family of graphs such that Out(A�) is virtually free
abelian and hence abstractly commensurable with a RAAG.

Proof of Proposition 3.1. The group Out(A�) certainly splits as PCT(A�) � I�

by the preceding discussion. We must show that PCT(A�) is free abelian of rank
k + m − 1.

The group PCT(A�) ≤ Aut(A�) is generated by Inn(A�) ∼= A� and the m + k

mutually commuting Laurence–Servatius generators of the form τcxi
or χc,Pj

for
1 ≤ i ≤ m and 1 ≤ j ≤ k. For conciseness, we shall write τi = τcxi

and χj =
χc,Pj

.

The image PCT(A�) is, therefore, an Abelian group generated by the images
τ̄i and χ̄j of τi and χj (respectively), and we use an additive notation to reflect
this. Since

γc =
k∏

j=1

χj

in Aut(A�), where γc ∈ Inn(A�) denotes conjugation by c, we observe that

χ̄1 + · · · + χ̄k−1 = −χ̄k
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in Out(A�). We thus remove χ̄k from our generating set for Out(A�).
We now show that the product ω := τ1

r1 . . . τm
rmχ

s1
1 . . . χk−1

sk−1 ∈ Aut(A�)

(ri , sj ∈ Z) is inner if and only if it is trivial. First, observe that each of the ri
must be zero. Denoting by [ω] the induced action of ω on the abelianization of
A� , we have [ω] : [xi] 
→ [xi] + ri[c], where [xi] and [c] denote the equivalence
classes of xi and c in the abelianization of A� .

Hence we may assume ω := χ
s1
1 · · ·χk−1

sk−1 and suppose that ω is equal to
conjugation by p ∈ A� . Since ω acts trivially on st(c), we must have pvp−1 = v

for each v ∈ st(c). This implies that every u ∈ supp(p) is adjacent to each such
v since pvp−1 and v must be shuffle-equivalent. Each vertex in supp(p) hence
dominates the vertex c, and so supp(p) = {c} or ∅ since � is focused at c.

However, ω also acts trivially on Pk , so by the same argument we must have
that p is the identity since c is not adjacent to any vertex in Pk . Thus, if ω is
nontrivial in Aut(A�), its image is nontrivial in Out(A�), and so the set {τ̄i , χ̄j |
1 ≤ i ≤ m,1 ≤ j ≤ k − 1} is a free abelian basis for PCT(A�). �

Since the image of PCT(A�) in Out(A�) is torsion-free, and so is Inn(A�), we
obtain the following corollary.

Corollary 3.2. For a focused graph �, the group PCT(A�) is torsion-free.

Our goal is now to understand the action of I� on PCT(A�) ∼= Zk+m−1 suffi-
ciently to identify automorphisms of Zk+m−1 that may extend to well-defined
automorphisms of Out(A�) by declaring that they act trivially on I� .

Due to its distinguished role, we denote by ιc the automorphism of A� that
inverts c ∈ V and fixes every v ∈ V \ {c}. The action of I� is fully encoded by the
following six types of relation:

ιcχ̄j ιc = −χ̄j (1 ≤ j ≤ k − 1), (1)

ιcτ̄i ιc = −τ̄i (1 ≤ i ≤ m), (2)

ιr χ̄j ιr = χ̄j (1 ≤ j ≤ k − 1, ιr 
= ιc), (3)

ιr τ̄i ιr = τ̄i (1 ≤ i ≤ m, ιr 
= ιc or ιi), (4)

ιi τ̄i ιi = χ̄i − τ̄i (1 ≤ i ≤ l), (5)

ιi τ̄i ιi = −τ̄i (l + 1 ≤ i ≤ m). (6)

Note that relations (5) and (6) distinguish ιi τ̄i ιi depending upon whether τ̄i is a
nonadjacent or adjacent transvection, respectively. The action of I� on PCT(A�)

in the semidirect product decomposition of Out(A�) is given by a homomorphism

α : I� → Aut(Zk+m−1) ∼= GLk+m−1(Z).

Let C denote the centralizer of α(I�) in GLk+m−1(Z). We may view C as
a subgroup of Aut(Out(A�)) by extending each M ∈ C to an automorphism
M̃ ∈ Aut(Out(A�)) by declaring that M̃ restricts to the identity on I� (see [7,
Section 3.1] for a more detailed discussion).
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To give a tractable description of α(I�) and C, we order the free basis for
PCT(A�) found in Proposition 3.1 as follows:

(χ̄1, τ̄1, . . . , χ̄l , τ̄l , τ̄l+1, . . . , τ̄m, χ̄l+1, . . . , χ̄k−1).

As is usual, we denote the q × q identity matrix by Iq . Looking at relations (1)–
(6), we see that the subgroup α(I�) consists of −Ik+m−1 together with block-
diagonal matrices of the form Diag(D1,D2,D3), where D3 is ±Ik−l−1, and D2
is any diagonal matrix in GLm−l (Z). The matrix D1 is any matrix in GL2l(Z)

with block decomposition ⎛
⎜⎜⎜⎝

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · Al

⎞
⎟⎟⎟⎠ ,

where each Ai (1 ≤ i ≤ l) is either I2 or
(

1 1
0 −1

)
. We denote the subgroup of

GL2l (Z) consisting of such matrices by L.
With this description of α(I�), we now identify the centralizer C. We denote

by 
l[2] the principal level 2 congruence subgroup of GLl (Z) (that is, the kernel
of the epimorphism GLl(Z) → GLl (Z/2) that reduces matrix entries mod 2).

Proposition 3.3. The centralizer C of α(I�) in GLk+m−1(Z) is isomorphic to


l[2] × (Z/2)m × GLk−1(Z).

Proof. Let M ∈ GLk+m−1(Z), and suppose that M centralizes α(I�). We specify
a 3 × 3 block decomposition on M by declaring that the (1,1) block is 2l × 2l,
the (2,2) block is (m − l) × (m − l), and the (3,3) block is (k − 1) × (k − 1).
First, we show that M is block-diagonal with respect to this block decomposition.

Let M = (Mij ) where Mij is the matrix in the (i, j) block of M . Let

D = Diag(D1,D2,D3) ∈ α(I�),

as discussed prior to the statement of the proposition. Since DM = MD, it must
be the case that M32D2 = ±M32 and ±M23 = D2M23 for any choice of the diago-
nal matrix D2. This forces M23 and M32 to be the zero matrix. We must also have
M21D1 = D2M21 and M12D2 = D1M12 for any choice of D2 and D1. Taking D1
to be the identity matrix and choosing D2 appropriately allow us to conclude that
M21 and M12 are both the zero matrix. Finally, a similar argument forces M13 and
M31 to also be the zero matrix. Thus, M = Diag(M11,M22,M33).

Since M ∈ C and D are both block-diagonal, to determine C, it is necessary and
sufficient to centralize within the three diagonal blocks of D. For the second and
third diagonal blocks, these centralizers are the diagonal subgroup of GLm−l(Z)

and all of GLk−1(Z), respectively. The only task that remains is to determine the
centralizer in GL2l (Z) of the subgroup L defined previously.

Suppose that N ∈ GL2l (Z) lies in C(L), the centralizer of the subgroup L.
Endow N with a block decomposition compatible with that used to define L: let
N have an l × l block decomposition, where each block is of size 2 × 2, writing
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N = (Nij ), where Nij is the matrix in the (i, j) block of N . Carrying out block
matrix multiplication, we see that for N to centralize L, it is necessary that Nii

(1 ≤ i ≤ l) commutes with each member of the order 2 subgroup P := 〈( 1 1
0 −1

)〉
and that NijS = T Nij (1 ≤ i 
= j ≤ l) for all S,T ∈ P .

Let K = (
a b
c d

)
appear in some 2 × 2 block of N . If K lies in a diagonal block,

then by the preceding discussion we necessarily have

a = a + c,

a − b = b + d,

c = −c,

c − d = −d.

If K lies off the diagonal of N , then its entries must further satisfy the relations

b = b + d,

d = −d.

In summary, we conclude that in the block decomposition of N , the ith diago-
nal blocks are of the form

( 2bi+di bi

0 di

)
for some bi, di ∈ Z, and the off-diagonal

(i, j) block is of the form
( 2eij eij

0 0

)
for some eij ∈ Z. Notice that the even-

numbered rows each have precisely one nonzero entry, and so each di must lie
in {±1}. We have necessary conditions on the entries of the centralizing matrix
N ; we now use these even-numbered rows to obtain sufficient conditions.

To calculate the determinant of N , we may consider the determinants of the
minors obtained by expanding along these even-numbered rows. Since detN =
±1, this expansion allows us to conclude that the matrix

N ′ :=

⎛
⎜⎜⎜⎝

2b1 + d1 2e12 · · · 2e1l

2e21 2b2 + d2 · · · 2e2l

...
...

. . .
...

2el1 2el2 · · · 2bl + dl

⎞
⎟⎟⎟⎠

lies in GLl (Z). Indeed, N ′ ∈ 
l[2]. This observation allows us to define a func-
tion θ : 
l[2] → C(L) by declaring each di in θ(A) to be 1. Moreover, by the
placement of zeroes in N ∈ C(L), θ is a homomorphism, and an injective one
at that. The image of θ is clearly not surjective since it cannot contain matrices
whose di entries are −1; however, the image is finite index in C(L), as we shall
see.

Let {fi}li=1 be a basis for (Z/2)l . Define ξ : (Z/2)l → C(L) with ξ(fi) being
the diagonal matrix in C(L) with di = −1. We claim that

θ × ξ : 
l[2] × (Z/2)l → C(L)

is an isomorphism. Verifying this is a straightforward exercise.
Assembling the centralizers of the three diagonal blocks of M ∈ C ≤

GLk+m−1(Z), we thus obtain that C is isomorphic to the direct sum in the state-
ment of the proposition. �
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Remark. Note that in the proof of Proposition 3.3, we realized the principal
level 2 congruence subgroup 
l[2] as a finite index subgroup of a centralizer in
GL2l (Z) of a finite subgroup. We are not aware of this being exhibited elsewhere
in the literature, and it may be of independent interest.

Finally, we determine the image of C ≤ Aut(Out(A�)) in Out(Out(A�)) when we
take the quotient by Inn(Out(A�)).

Proposition 3.4. The image C̄ of C in Out(Out(A�)) is isomorphic to

((
l[2] × (Z/2)l)/L) × PGLk−1(Z).

Proof. Consider w ∈ Zk+m−1 ≤ Out(A�). Direct computation gives that for any
β := uh ∈ Out(A�) (where u ∈ Zk+m−1 and h ∈ I�), we have βwβ−1 = α(h)(w).
Since any member of C preserves Zk+m−1 inside Out(A�), we see that φ ∈ C
is inner in Aut(Out(A�)) if and only if there exists h ∈ I� such that φ(x̄i) =
α(h)(x̄i ) for all xi ∈ V . Precisely, we have that

C ∩ Inn(Out(A�)) ∼= α(I�).

We immediately see that C has infinite image in Out(Out(A�)), but we can deter-
mine its structure exactly.

Recall that

C ∼= (
l[2] × (Z/2)l) × (Z/2)m−l × GLk−1(Z)

by Proposition 3.3. Since α(I�) ∼= I�
∼= (Z/2)n, the (Z/2)m−l factor vanishes in

Out(Out(A�)), and we have

C̄ ∼= ((
l[2] × (Z/2)l)/L) × PGLk−1(Z). �

We have thus established Theorem A. Over the course of our proofs of Proposi-
tions 3.3 and 3.4, we also obtained the following corollary.

Corollary 3.5. Given any Z-linear (resp. projective Z-linear) group G, there
exist infinitely many right-angled Artin groups A� for which G acts faithfully on
Out(A�) via automorphisms (resp. outer automorphisms).

Generalizations

Although the statement of Theorem A is concerned only with focused graphs �,
our construction also produces large subgroups in Out(Out(A�)) for other types
of graphs.

As was shown in [3], if a graph � has no separating intersection of links, then
the group generated by the set of partial conjugations has free Abelian image in
Out(A�). Assuming that there is no domination in �, we have that Out(A�) splits
as a free Abelian-by-finite group

PCT(A�)� (I� � Aut(�)).
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We are then permitted to construct PGL�(Z) subgroups inside Out(Out(A�)) as
before, where the value of � will depend upon the rank of PCT(A�) and the action
of Aut(�).

It is also possible to assemble focused graphs together in such a way that the
properties required for our construction are preserved. Let {�i} be a finite set of
finite focused graphs with �i focused at the vertex ci . For each pair of graphs
�i and �j , select distinct connected components P i

1 , . . . ,P i
q of �i \ st(ci) and

P
j

1 , . . . ,P
j
q of �j \ st(cj ) such that P i

k
∼= P

j
k for each 1 ≤ k ≤ q . Build a graph �

by gluing the graphs {�i} along the isomorphic subgraphs P l
k . While � will not

be a focused graph, we will call it locally focused since it retains enough of the
necessary features to run the construction given in this section.

We end this discussion by noting that these three different classes of graphs
(focused, locally focused, and no SILs or transvections) have large pairwise inter-
section, but no single class lies in the union of the two others.

Commensurators

If we consider abstract commensurators Comm(Out(A�)) instead of
Out(Out(A�)), the discrepancy between our examples and free or free Abelian
groups is not quite so severe. We can make this observation precise as follows.

Let � = (V ,E) be a focused graph and suppose that k + m ≥ 4, where k and
m are as in the statement of Proposition 3.1. In particular, we have n = |V | ≥ k +
m ≥ 4. At one end, it is a result of Farb and Handel [6] that for n ≥ 4, the abstract
commensurator Comm(Out(Fn)) is just equal to Out(Fn). For our focused graph
�, by Proposition 3.1, Out(A�) is virtually free abelian of rank k + m − 1, and
hence its abstract commensurator is GLk+m−1(Q). On the other hand, a theorem
of Margulis (see [14; 16]) implies that for k ≥ 3, the abstract commensurator of
GLn(Z) is commensurable with GLn(Q).

4. Proof of Theorem B

First, we recall the definition of an austere graph as defined in [7]. A finite sim-
plicial graph � = (V ,E) is called austere if it has trivial symmetry group, no
dominated vertices, and � \ st(v) is connected for any v ∈ V . In particular, we
have that no vertex is adjacent to every other vertex, and hence the associated
RAAG A� has trivial center.

Let � be an austere graph. By inspecting the Laurence–Servatius generators,
this implies that Out(A�) consists only of inversions. In this case, we know that
the automorphism group is a semidirect product:

Aut(A�) ∼= Inn(A�)� Out(A�) ∼= A� � I�,

where I� is the group of inversions. It is easy to write down a presentation for
Aut(A�) in terms of the usual presentation for A� . If V = {v1, . . . , vn} is the
vertex set of �, then

Aut(A�) = 〈γi, ιj for 1 ≤ i, j ≤ n | R̃�〉.
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Here γi represents conjugation by vi , ιj is inversion of vj , and R̃� is comprised
of the following five types of relation:

[γi, γk] if vi commutes with vk in A�, (7)

[ιj , ιl], 1 ≤ j, l ≤ n, (8)

(ιj )
2, 1 ≤ j ≤ n, (9)

[γi, ιj ], 1 ≤ i 
= j ≤ n, (10)

(γi ιi)
2, 1 ≤ i ≤ n. (11)

Using this presentation, we are now ready to prove Theorem B.

Proof of Theorem B. Let πk : I� = (Z/2)n → Z/2 be the projection onto the kth
factor. Consider a function φ : {1, . . . , n} → I� satisfying the following two prop-
erties:

(i) πk(φ(k)) = 0 for 1 ≤ k ≤ n.
(ii) πj (φ(k)) = 0 whenever vk and vj commute in A� .

Then φ induces the map � : Aut(A�) → Aut(A�) defined by

�(γk) = γk · φ(k), �(ιk) = ιk.

Observe that � is an involution and hence a bijection. To see that � is moreover an
automorphism, we simply check that it preserves relations. Since � is the identity
on I� , it is clear that the relations of the form (8) and (9) hold. Moreover, since all
inversions commute with each other, it is clear that the relations of the form (10)
are preserved by �. Finally, condition (i) ensures that the relations of type (11)
are satisfied, and condition (ii) ensures that the relations of the form (7) still hold.

The automorphism � is not inner since it does not preserve the subgroup
Inn(A�), and by composing � with the projection onto I� we see that each dis-
tinct φ constructed before gives a distinct � ∈ Out(Aut(A�)). Thus, given any
two nonadjacent vertices, it is possible to define a nonzero function φ as before,
and hence if Ki denotes the number of vertices not adjacent to vi , then the number
of automorphisms we have constructed is 2K , where K = ∑

i Ki . �
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