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The Cotangent Bundle of a Cominuscule Grassmannian

V. Lakshmibai, Vijay Ravikumar, & William Slofstra

Abstract. A theorem of the first author states that the cotangent bun-
dle of the type A Grassmannian variety can be embedded as an open
subset of a smooth Schubert variety in a two-step affine partial flag
variety. We extend this result to cotangent bundles of cominuscule
generalized Grassmannians of arbitrary Lie type.

1. Introduction

An earlier work of Lusztig and Strickland suggests possible connections between
the conormal varieties to partial flag varieties on the one hand and affine Schubert
varieties on the other. In particular, Lusztig [8] relates certain orbit closures arising
from the type A cyclic quiver Âh to affine Schubert varieties. In the case h = 2,
Strickland [11] relates such orbit closures to conormal varieties of determinantal
varieties; furthermore, any determinantal variety can be canonically realized as an
open subset of a Schubert variety in the Grassmannian [6].

Inspired by these results, the first author was interested in finding a relationship
between affine Schubert varieties and conormal varieties to the Grassmannian.
As a first step, she showed that the compactification of the cotangent bundle to
the Grassmannian is canonically isomorphic to a Schubert variety in a two-step
affine partial flag variety [5]. In this paper, we extend her result to cominuscule
generalized Grassmannians of arbitrary finite type (such Grassmannians occur in
types A − E).

1.1. Preliminaries

Let G0 be a simple algebraic group over C with associated Lie algebra g0 and
simple roots {α1, . . . , αn}. A simple root αi is cominuscule if the coefficient of αi

in any positive root of g0 (written in the simple root basis) is less than or equal
to 1.

The Weyl group of G0 is generated by simple reflections S0 := {s1, . . . , sn}
corresponding to the simple roots {α1, . . . , αn}. For any subset K ⊂ S0, we let
PK ⊂ G0 denote the parabolic subgroup whose Weyl group is generated by the
elements of K . For 1 ≤ i ≤ n, set S0,i := S0 \ {si}, so that PS0,i

is a maximal par-
abolic subgroup of G0. The manifold G0/PS0,i

is called a generalized Grassman-
nian of type G0 and is said to be cominuscule if αi is cominuscule. For additional
background on cominuscule Grassmannians, see [1] or [7].
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Table 1 Finite type Dynkin diagrams with cominuscule simple root
marked in black (left column), and the corresponding affine Dynkin
diagrams with both the cominuscule and the additional affine root
marked in black (right column)

For the remainder of the paper, we fix m ∈ [1, n] and consider the general-
ized Grassmannian X := G0/PS0,m

associated with αm. Note that αm is not yet
assumed to be cominuscule.

Let g denote the affine untwisted Kac–Moody algebra associated to g0, and
let G be the corresponding affine Kac–Moody group (see [4, §6]).1 The Dynkin
diagram for g depends on the Dynkin diagram for g0 and is shown in Table 1 (see
[2, §18.1] or [3, §4.8]). We use the convention that the affine node (sometimes
called the special node) is labeled by zero, and similarly let α0 and s0 be the affine

1We use the calligraphic font (e.g., G and PJ ) for infinite-dimensional Kac–Moody groups and a non-
calligraphic font for finite-dimensional Lie groups (e.g., G0, PJ ).
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simple root and reflection, respectively. The Weyl group W of g is generated by
S := {s0, . . . , sn}, and there is a parahoric subgroup PK ⊂ G associated with any
subset K ⊂ S. We let XK := G/PK denote the associated affine flag variety, and
WK ⊂ W denote the Weyl group of PK or, in other words, the subgroup of W

generated by K . For any subsets I ⊂ K ⊂ S, let WI
K ⊂ WK denote the set of

minimal length coset representatives of WK/WI . In particular, WK := WK
S is

the set of minimal length coset representatives of W/WK , and elements w ∈ WK

index Schubert varieties XK(w) of XK .
Observe that S0 = S \ {s0}. Let Sm := S \ {sm} and J := S0,m = S \ {s0, sm}.

Let wi be the maximal element of WJ
Si

, where i ∈ {0,m}. It is a standard fact that
XSm(w0) ∼= XJ (w0) ∼= X (see Lemma 2.3). The basis of this note is the following
elementary but crucial observation.

Lemma 1.1. If αm is cominuscule in g0, then XJ (w0) and XJ (wm) are isomor-
phic.

Proof. The list of cominuscule simple roots in each type is well known. We indi-
cate the cominuscule simple roots for each Dynkin diagram (up to diagram auto-
morphism) in the left column of Table 1 and the corresponding untwisted affine
Dynkin diagram in the right column. In each case, the Dynkin diagram of WS0

is isomorphic to the Dynkin diagram of WSm , and this isomorphism identifies αm

with the affine root α0. Consequently, XJ (w0) and XJ (wm) are isomorphic. �

1.2. Main Results

Consider the Schubert variety Y := XJ (w0wm) in XJ . The Kac–Moody group G
acts on XJ by left multiplication, and since G0 is the Levi subgroup of PS0 ⊂ G,
we can regard Y as a G0-variety.

In fact, Y can naturally be considered as a G0-homogeneous fibre bundle
over X. More precisely:

Theorem 1.2. The affine Schubert variety Y = XJ (w0wm) is stable under the
left action of G0 ⊂ G, and the natural projection Y → XSm(w0) ∼= X is a G0-
homogeneous fiber bundle map with fiber XJ (wm). In particular, Y is smooth.

Our main result is that if X is cominuscule, then Y is a natural compactification
of the cotangent bundle T ∗X:

Theorem 1.3. If X is cominuscule, then the fiber XJ (wm) is isomorphic to X,
and there is a G0-equivariant map μ̃ : T ∗X → Y of fiber bundles over X under
which T ∗X is isomorphic to a dense open subset of Y .

We prove Theorem 1.2 in Section 2 and Theorem 1.3 in Section 3. In order to
prove Theorem 1.3, we explicitly construct the G0-equivariant embedding μ̃ :
T ∗X → Y that maps the base X isomorphically onto the Schubert variety XJ (w0)

and maps the fiber over the identity to a dense open subset of the Schubert variety
XJ (wm).
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When X is minuscule rather than cominuscule, it is natural to replace G with a
twisted affine Kac–Moody group. Theorem 1.2 still holds in this case, but as we
show in Section 4, Theorem 1.3 does not hold. In this case, the variety Y is not the
compactification of the cotangent bundle T ∗X, but of a different bundle over X.

We note that Manivel and Michalek [9] have recently studied the local geom-
etry of tangential varieties (which are compactifications of the tangent bundle) to
cominuscule Grassmannians. We do not know if there is a version of our com-
pactification for the tangent bundle.

2. The Fiber Bundle Structure on Y

We note that αm is not assumed to be cominuscule in this section. Given I ⊂ K ⊂
S, we can write any w ∈ WI uniquely as w = vu, where v ∈ WK and u ∈ WI

K . In
this case, the projection G/PI → G/PK induces a projection XI (w) → XK(v),
and the generic fiber of this projection is XI (u). We say that w = vu is a parabolic
decomposition with respect to K .

For any v ∈ W , we define Supp(v) := {s ∈ S | s ≤ v} to be the set of simple
reflections contained in a reduced expression for v. For any u ∈ W , let DI (u) :=
{s ∈ S | su ≤I u}, where ≤I is the Bruhat order on W/WI . We have the following
proposition from [10, Thm. 2.3 and Prop. 3.2].

Proposition 2.1. The projection XI (w) → XK(v) is a fiber bundle with fiber
XI (u) if and only if Supp(v) ∩ K ⊂ DI (u).

When the condition Supp(v) ∩ K ⊂ DI (u) is satisfied, we say that w = vu is a
Billey–Postnikov decomposition with respect to K .

Recall that for any s ∈ S, we have sw ≤I w if and only if XI (w) is stable
under left multiplication by the rank 1 parahoric subgroup P{s}. It follows that if
L = DI (w), then XI (w) is stable under the action of the parahoric subgroup PL

([1], see also [10, Lemma 3.9]).

Lemma 2.2. Let y = w0wm, so Y = XJ (y).

(a) y = w0wm is a Billey–Postnikov decomposition with respect to Sm.
(b) DJ (y) = S0.

Proof. Since wi is maximal in WJ
Si

, we know that DJ (wi) = Si for i ∈ {0,m}. It is
clear that w0wm is a parabolic decomposition with respect to Sm and Supp(w0) ∩
Sm = S0 ∩ Sm = J ⊂ DJ (wm), proving part (a).

For part (b), if z ∈ WS0 , then zw0 ≤J w0, and hence zw0 = v0z
′, where v0 ∈

WJ
S0

and z′ ∈ WJ . Similarly, z′wm = vmz′′, where vm ∈ WJ
Sm

and z′′ ∈ WJ . So

zy = v0vmz′′ ≤J y, and hence S0 ⊂ DJ (y). But DJ (y) must be a proper subset
of S, so DJ (y) = S0. �
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Given K ⊆ S, the Levi subgroup GK of PK is a Kac–Moody group with Weyl
group WK . Since G is affine, if K is a strict subset of S, then GK is finite-
dimensional, and similarly WK is finite. In order to prove Theorem 1.2, we need
the following standard lemma.

Lemma 2.3. If K,I � S and w ∈ WK∩I
K , then PK,I := GK ∩PI is the parabolic

subgroup of GK corresponding to the subgroup WK∩I ⊆ WK , and XI (w) is iso-
morphic to a Schubert variety in the flag variety GK/PK,I . In particular, if w is
the maximal element of WK∩I

K , then XI (w) is isomorphic to GK/PK,I .

Now the proof of Theorem 1.2 follows immediately from Lemma 2.2.

Proof of Theorem 1.2. By part (b) of Lemma 2.2 the variety Y = XJ (w0wm)

is stable under the left action of G0. The base XSm(w0) is clearly G0-stable
as well, and the natural projection Y → XSm(w0) is G0-equivariant. By part
(a) of Lemma 2.2 and Proposition 2.1 the projection Y → XSm(w0) is a G0-
homogeneous fiber bundle with fiber XJ (wm).

Now the Levi subgroup GS0 of PS0 is simply G0. Since Sm ∩S0 = J and w0 is
the maximal element of WJ

S0
, we can alternately set I = Sm in Lemma 2.3 to get

XSm(w0) ∼= XJ (w0) ∼= X = G0/PJ . Similarly, XJ (wm) is isomorphic to the flag
variety GSm/PJ . Since Y is a fiber bundle with smooth fiber and base, it follows
that Y is smooth. �

3. The Cotangent Bundle

If X is cominuscule, then XJ (wm) is isomorphic to X by Lemma 1.1. To prove
Theorem 1.3, we explicitly construct the map T ∗X ↪→ Y . Let B be the Borel
subgroup of the Kac–Moody group G (in the literature, B is also known as the
Iwahori subgroup of G). For convenience, we write Gi for the Levi subgroup GSi

of the parahoric subgroup PSi
⊂ G, where i ∈ {0,m} (in particular, G0 is the same

as before). We let Bi := Gi ∩B be the induced Borel of Gi , and Pi := BiWJ Bi =
Gi ∩ PJ . Finally, let Ui ⊂ Pi be the unipotent radical of Pi . As in the previous
section, P0 = PJ , X = G0/P0, and moreover XJ (wi) ∼= Gi/Pi for i ∈ {0,m}.
Note that P0 depends on αm as well as α0.

We will also need to use the underlying Lie algebras. We assume the standard
construction of g, in which

g ∼= g0 ⊗C C[z, z−1] ⊕Cc ⊕Cd

as a vector space (see [2, §18.1] or [3, §7.2]). Let h be the Cartan subalgebra of
the Kac–Moody algebra g. Let gi ⊂ g be the (finite-dimensional) Lie algebra of
Gi , where i ∈ {0,m}. Let ui ⊂ gi be the (nilpotent) Lie algebra of Ui . Finally, let
u−

m be the opposite nilpotent radical to um inside gm. We consider the linear map

φ : u0 → g defined by x → x ⊗ z−1.

In order to prove Theorem 1.3, we need the following lemma.
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Lemma 3.1. The map φ : u0 → u−
m is a P0-equivariant isomorphism of vector

spaces.

Proof. Let R denote the set of roots of g, with simple roots � := {α0, . . . , αn}.
The simple roots of g0 and gm are the subsets of � obtained by omitting α0
and αm, respectively. For any subalgebra a ⊂ g, we let R(a) denote the set of h-
weights of a, and let R+(a) and R−(a) denote the subsets of positive and negative
roots, respectively. Let θ be the highest root of g0, and let δ = α0 + θ be the basic
imaginary root of g ([2, §17.1] or [3, §5.6]).

We can describe the set of roots of g by

R(g) = {α + kδ | α ∈ R(g0), k ∈ Z} ∪ {kδ | k ∈ Z �=0}.
The set of positive roots of g is given by

R+(g) = R+(g0) ∪ {α + kδ ∈ R | α ∈ R(g0), k ∈ Z>0} ∪ {kδ | k ∈ Z>0}.
Note that R(u0) ⊂ R+(g0) and R(um) ⊂ R+(gm). Using the simple roots of g0
and gm, the roots of u0 and um can then be written

R(u0) =
{ n∑

i=1

aiαi ∈ R+(g)

∣∣∣∣ am = 1

}
and

R(um) =
{
a0α0 +

∑
i∈[1,n]\{m}

aiαi ∈ R+(g)

∣∣∣∣ a0 = 1

}
,

where the requirement that am = 1 (resp. a0 = 1) follows from the fact that αm is
cominuscule in g0 (resp. α0 is cominuscule in gm).

Every root of g0 can be written uniquely as θ − ∑n
i=1 aiαi , where ai ≥ 0 for

all 1 ≤ i ≤ n. Since αm is cominuscule, the coefficient of αm in θ is equal to 1.
Using the previous description of R(u0), it follows that α ∈ R(g0) is an element
of R(u0) if and only if

α = θ −
∑

i∈[1,n]\{m}
aiαi

for some coefficients ai ≥ 0 (in particular, note that any α of this form cannot
belong to R−(g0) since it will have a positive αm-coefficient).

Note that for any α ∈ R(u0), the homomorphism φ maps gα isomorphically
onto gα−δ . Thus, the h-weights of φ(u0) are precisely{

α − δ ∈ R

∣∣∣∣ α = θ −
∑

i∈[1,n]\{m}
aiαi, where ai ≥ 0 for i ∈ [1, n] \ {m}

}

=
{
−(−θ + δ) −

∑
i∈[1,n]\{m}

aiαi ∈ R−
∣∣∣∣ ai ≥ 0 for all i ∈ [1, n] \ {m}

}
.

This latter set is exactly the negative of the h-weights of um since (−θ + δ) = α0

and since α0 is cominuscule in gm as in Lemma 1.1. We conclude that φ(u0) =
u−

m. Since φ is a clearly bijective, it is a vector space isomorphism.
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Consider the left adjoint action of p0 := Lie(P0) on g. Under this action, each
element of the weight space gβ ⊂ p0 maps gα into gα+β whenever α + β ∈
R(g) and annihilates gα otherwise. Recall that R(p0) = R+(g0) ∪ {∑n

i=1 aiαi ∈
R−(g0) | am = 0} and observe that both u0 and u−

m are stable under the left ad-
joint action of p0 and, moreover, that φ is p0-equivariant. It follows that φ is
P0-equivariant. �

Using the map φ : u0 → u−
m, we construct a map

	 : u0 → XJ = G/PJ : x → [exp(φ(x)) ·PJ ].
Lemma 3.2. 	 is a P0-equivariant algebraic isomorphism from u0 to an open
dense subset of XJ (wm).

Proof. The exponential map u−
m → exp(u−

m) =: U−
m is an algebraic isomorphism,

and U−
m

∼= U−
m · [ePJ ] is an open dense subset of XJ (wm) = Gm/Pm, where e ∈

G is the identity. Since φ is a P0-equivariant bijection and P0 ⊂ PJ , the result
follows. �

We can now finish the proof of the main theorem.

Proof of Theorem 1.3. As in Section 2, we let Y = XJ (y), where y = w0wm. The
cotangent bundle of X is

T ∗X = G0 ×P0 u0,

the quotient of G0 × u0 by the P0-action p · (g, x) = (gp,p−1x). We can define
a map

μ : G0 × u0 →XJ (y) : (g, x) → g · 	(x),

where we use the fact that 	(x) ∈ XJ (wm) ⊂ XJ (y), which is stable under the
left action of G0 by Theorem 1.2. But μ is P0-equivariant, so we get an induced
map

μ̃ : G0 ×P0 u0 → XJ (y).

The cotangent bundle map T ∗X → X sends (g, x) → [gP0]. Since the projection
G → G/PSm sends g · 	(x) → [gPSm ], we conclude that the diagram

G0 ×P0 u0 XJ (y)

G0/P0 ∼= XSm(w0)

commutes, and thus μ̃ is a morphism of G0-homogeneous fibre bundles. Over
[eP0], this map restricts to 	 : u0 → XJ (wm), which is injective and has open
dense image in the fiber XJ (wm). We conclude that the total map G0 ×P0 u0 →
XJ (y) is injective and has an open image. �
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Table 2 Finite type Dynkin diagrams with minuscule simple root
marked in black (left column), and the corresponding twisted affine
Dynkin diagrams with both the minuscule and the additional affine root
marked in black (right column). We use Kac’s notation for the twisted

affine Dynkin diagrams. Note that in Dynkin’s notation, A
(2)
2n−1 is de-

noted B̃t
n, and D

(2)
n+1 is denoted C̃t

n

4. Minuscule Grassmannians

A Grassmannian X = G0/PS0,m
is minuscule if α∨

m is cominuscule in the dual root
system. The minuscule and cominuscule Grassmannians coincide in types A, D,
and E but are disjoint in the other types. There are just two families of Grassman-
nians that are minuscule but not cominuscule: SO(2n + 1)/PS0,n

, the Grassman-
nian corresponding to the root αn in type Bn, and Sp(2n)/PS0,1 , the Grassman-
nian corresponding to the root α1 in Cn. The corresponding Dynkin diagrams are
listed in Table 2. As algebraic varieties, Sp(2n)/PS0,1 is isomorphic to P2n−1, and
SO(2n + 1)/PS0,n

is isomorphic to SO(2n + 2)/Pn
∼= SO(2n + 2)/Pn+1, so each

minuscule Grassmannian is isomorphic to a cominuscule Grassmannian. How-
ever, the minuscule Grassmannians are distinct as homogeneous spaces, and their
cotangent bundles are distinct as homogeneous bundles.

Suppose that αm is minuscule but not cominuscule, and let g and G be the affine
twisted Kac–Moody algebra and group associated to g0 (see [2, §18.4] or [3], and
[4, §6]). The proof of Theorem 1.2 still works in this setting, and consequently
the affine Schubert variety Y = XJ (w0w1) ⊆ XJ := G/PJ is a fiber bundle over
X with fiber XJ (wm). Furthermore, following Lemma 1.1, we have XJ (wm) ∼=
XJ (w0) ∼= X (see Table 2 for the proof).

With all these pieces in place, we might expect that Y is a compactification of
T ∗X as in the cominuscule case. However, the argument from the cominuscule
setting breaks down at this point. Specifically, the argument from Section 3 shows
that Y is a compactification of the homogeneous vector bundle T := G0 ×P0 u

−
m

on X. However, T is not the cotangent bundle of X. Indeed, by the following
lemma, T splits as the direct sum of two G0-homogeneous vector bundles on X,
whereas T ∗X does not.

Lemma 4.1. As P0-modules, u−
m splits as the direct sum of two submodules,

whereas u0 does not.



The Cotangent Bundle of a Cominuscule Grassmannian 757

Proof. Let δ = α0 + θ0 be the basic imaginary root of g, where θ0 is the highest
short root of g0 ([2, §17.1] or [3, §8.3]). For any subalgebra a ⊂ g, let Rs(a) (resp.
Rl(a)) denote the set of real short (resp. long) h-weights of a (see [2, §17.2] or
[3, §5.1]). The set of roots of g is given by

{α + kδ : α ∈ Rs(g0), k ∈ Z} ∪ {α + 2kδ : α ∈ Rl(g0), k ∈ Z} ∪ {kδ : k ∈ Z �=0}.
Moreover, the h-weights of u0 and u−

m are given by

R(u0) =
{ ∑

i∈[1,n]
aiαi ∈ R+(g) : am ∈ {1,2}

}
and

R(u−
m) =

{
a0α0 +

∑
i∈[1,n]\{m}

aiαi ∈ R−(g) : a0 ∈ {−1,−2}
}
.

Write u−
m = u−

m,s ⊕ u
−
m,l , where u−

m,s := ⊕
α∈Rs(u

−
m) gα and u

−
m,l := ⊕

α∈Rl(u
−
m) gα .

The short (resp. long) h-weights of u−
m are precisely those with α0 coefficient

a0 = −1 (resp. a0 = −2) in the simple root basis. It follows that the left adjoint
action of P0 preserves the long and short roots of u−

m, and hence T = G0 ×P0

u−
m,s ⊕ G0 ×P0 u−

m,l is a direct sum of two homogeneous vector bundles. On the
other hand, u0 does not split as a P0-module since the Lie algebra p0 of P0 can
take short roots of u0 (which have αm coefficient 1) to long roots (which have αm

coefficient 2). �

Let h0 and H0 denote the Cartan subalgebra and subgroup of g0 and G0, respec-
tively. An H0-module M is attractive if there is some ω in h0 such that α(ω) > 0
for all h0-weights α of M . The fact that Y cannot be the compactification of T ∗X
follows from the following more general result.

Lemma 4.2. Given P0-modules U and V , suppose that there exists an element ω ∈
h0 with the property that α(ω) > 0 for any h0-weight α of U or V . Furthermore, if
both G0 ×P0 U and G0 ×P0 V embed as open dense homogeneous G0-bundles in
a homogeneous G0-fiber bundle Y , then U and V are isomorphic as P0-modules.

Proof. We can think of U and V as open dense subsets of the fiber over the
identity in Y . As such, the intersection of U and V is nonempty. Let y be a point
of the intersection. Since α(ω) > 0 for all h0-weights α of U or V , the limit

lim
n→∞ exp(−nω) · y

exists and is equal to both 0U and 0V , the zero elements of U and V , which in
particular must be equal. The sets U and V are both open, and 0 := 0U = 0V is a
P0-fixed point in both U and V , so U ∼= T0U = T0V ∼= V as P0-modules. �

Corollary 4.3. There is no open embedding of T ∗X into Y as G0-homogeneous
fiber bundles over X.

Proof. Suppose on the contrary that such an embedding exists. Note that α(ωm) >

0 for all α ∈ R(u0), where ωm ∈ h0 is the fundamental weight dual to the simple
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root αm. Moreover, the roots of u−
m are all of the form α − δ or α − 2δ with α ∈

R(u0). Since δ(ωm) = 0, it follows that β(ωm) > 0 for all β ∈ R(u−
m) (indeed, u0

and u−
m have the same h0-weights since δ(ω) = 0 for any ω ∈ h0). By Lemma 4.2

it follows that u0 and u−
m are isomorphic as P0-modules, contradicting Lemma 4.1.

�

Acknowledgments. The second author thanks K. N. Raghavan for useful dis-
cussions. The Dynkin diagrams in Tables 1 and 2 are based on the excellent TikZ
templates due to Oscar Castillo-Felisola. The first author was supported by NSA
Grant H98230-11-1-0197. The second author was partially supported by a fellow-
ship from the Infosys Foundation. The authors are grateful to the referees for their
useful comments.

References

[1] S. Billey and V. Lakshmibai, Singular loci of Schubert varieties, Birkhäuser Boston,
Boston, 2000.

[2] R. Carter, Lie algebras of finite and affine type, Cambridge University Press, Cam-
bridge, 2005.

[3] V. Kac, Infinite dimensional Lie algebras, third edition, Cambridge University Press,
Cambridge, 1990.

[4] S. Kumar, Kac–Moody groups, their flag varieties and representation theory,
Birkhäuser Boston, Boston, 2002.

[5] V. Lakshmibai, Cotangent bundle to the Grassmann variety, Transform. Groups 21
(2016), no. 2, 519–530.

[6] V. Lakshmibai and C. S. Seshadri, Geometry of G/P − II, Proc. Indiana Acad. Sci.
87A (1978), 1–54.

[7] J. M. Landsberg and L. Manivel, On the projective geometry of rational homogeneous
varieties, Comment. Math. Helv. 78 (2003), 65–100.

[8] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer.
Math. Soc. 3 (1990), 447–498.

[9] L. Manivel and M. Michałek, Secants of minuscule and cominuscule minimal orbits,
Linear Algebra Appl. 481 (2015), 288–312.

[10] E. Richmond and W. Slofstra, Billey–Postnikov decompositions and the fibre bundle
structure of Schubert varieties, Math. Ann. 366 (2016), no. 1, 31–55.

[11] E. Strickland, On the conormal bundle of the determinantal variety, J. Algebra 75
(1982), 523–537.

V. Lakshmibai
Department of Mathematics
College of Arts and Sciences
Northeastern University
567 Lake Hall
Boston, Massachusetts, 02115
USA

lakshmibai@neu.edu

V. Ravikumar
Chennai Mathematical Institute
H1, SIPCOT IT Park
Siruseri, Tamilnadu, 603103
India

vijayr@cmi.ac.in

mailto:lakshmibai@neu.edu
mailto:vijayr@cmi.ac.in


The Cotangent Bundle of a Cominuscule Grassmannian 759

W. Slofstra
Institute for Quantum Computing
University of Waterloo
200 University Ave. West
Waterloo, Ontario, N2L 3G1
Canada

weslofst@uwaterloo.ca

mailto:weslofst@uwaterloo.ca

	Introduction
	Preliminaries
	Main Results

	The Fiber Bundle Structure on Y
	The Cotangent Bundle
	Minuscule Grassmannians
	Acknowledgments
	References
	Author's Addresses

