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Moduli of Sheaves Supported on Quartic Space Curves

J inwon Choi, Kiryong Chung, & Mario Maican

Abstract. As a continuation of the work of Freiermuth and Traut-
mann, we study the geometry of the moduli space of stable sheaves on
P3 with Hilbert polynomial 4m + 1. The moduli space has three irre-
ducible components whose generic elements are, respectively, sheaves
supported on rational quartic curves, on elliptic quartic curves, or on
planar quartic curves. The main idea of the proof is to relate the moduli
space with the Hilbert scheme of curves by wall crossing. We present
all stable sheaves contained in the intersections of the three irreducible
components. We also classify stable sheaves by means of their free
resolutions.

1. Introduction

1.1. Motivations and Results

For a fixed polynomial P(m) with rational coefficients, it is well known that the
space parameterizing Gieseker-stable sheaves on a smooth projective variety X

with Hilbert polynomial P(m) is a projective scheme ([30]). In this paper, we are
specifically interested in the case where P(m) = dm + χ is a linear polynomial,
as the moduli space is closely related to the relative Jacobian of families of curves.
When X is the complex projective plane P2, Le Potier [21] showed that the mod-
uli space is an irreducible projective variety of dimension d2 + 1, that it is locally
factorial, and that its Picard group is generated by two explicitly constructed divi-
sors. When the leading coefficient d is small, the moduli spaces have been studied
by many authors. Stratifications in terms of the free resolution of sheaves [11; 24;
25], topological invariants such as Poincaré polynomials [8; 5; 7; 37], stable base
locus decompositions [7] are known.

In this paper we study the case where X is P3. Let M(P (m)) denote the mod-
uli space of stable sheaves on P3 with Hilbert polynomial P(m). Freiermuth and
Trautmann [12] examined M(3m + 1). They gave a complete classification of
sheaves in M(3m+1) and proved that this moduli space has two irreducible com-
ponents intersecting transversally. The first component, which we denote by R3,
parameterizes the structure sheaves of twisted cubic curves. The second compo-
nent parameterizes the sheaves of the form OC(p), where C is a planar cubic
curve, and p ∈ C.
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From the point of view of the birational geometry, R3 is related to the moduli
space of twisted cubic curves. Let M0(Pr , d) be the moduli space of genus zero
stable maps to Pr of degree d . It is known that this is a projective normal variety
containing a Zariski dense open subset consisting of irreducible rational curves of
degree d . Specially, if r = 3 and d = 3, then the moduli space M0(P3,3) of stable
maps is the unique flipping space of the component R3 over the (normalization of
the) Chow variety (see [2]). We remark that the flipping locus is exactly the locus
of multiple covers of its image or the stable sheaves supported on nonreduced
curves. More generally on Pr , Chen, Coskun, and Crissman [3] proved that the
moduli space of stable maps M0(Pr ,3) is one of the flip models of the compacti-
fied space of stable sheaves supported on rational curves. On the other hand, in [9;
10], by extending the flip map between the compactified moduli spaces of ratio-
nal curves the authors established an explicit birational relation between M0(X,3)

and R3(X) when X is a projective homogenous variety, which is a natural gener-
alization of the projective space. Until now, to the knowledge of the authors, there
are no such results for higher degrees d . Thus, our project can be regarded as a
starting point of understanding the various compactified moduli spaces of curves
in Pr .

In this paper we investigate M(4m + 1).

Definition 1.1.

• The dual of a one-dimensional sheaf F on P3 is defined by F D = Ext2(F,ωP3).
• We call a sheaf F planar if F � F |H for some plane H ⊂ P3 or, equivalently,

the schematic support of F is contained in H .

Our main result is that the space M(4m + 1) consists of three irreducible compo-
nents.

Theorem 1.2. Let M(4m + 1) be the moduli space of stable sheaves in P3 with
Hilbert polynomial 4m + 1. Then M(4m + 1) consists of three irreducible com-
ponents whose general points are

(1) R: the structure sheaves of rational quartic curves;
(2) E: the dual sheaves ID

p,C of the ideal sheaves Ip,C of points p on elliptic
quartic curves C;

(3) P: the planar sheaves.

The component R is the compactification of the space of rational quartic curves
that is predicted as a birational flip model of the space of finite maps (see [4]).
The general member of E is a line bundle of the form OC(p), where p ∈ C, for
a smooth elliptic quartic curve C. Since Ext1(Cp,OC) = C, this line bundle fits
into the unique nonsplit extension

0 →OC →OC(p) →Cp → 0.

Using the results in [1], we can easily see that E is birational to the universal ellip-
tic quartic curve (for detail, see Lemma 3.5). As the supports of sheaves in E de-
generate to singular quartic curves of arithmetic genus 1, two complications arise.
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Firstly, the dimension of Ext1(Cp,OC) may jump to 2 (Lemma 3.3). Secondly,
some extension sheaves may fail to be stable because they may have a destabiliz-
ing subsheaf that is isomorphic to a structure sheaf OL of a line L, which is given
by the push-out of Ext1(Cp,OL(−1)) = C, where we have an exact sequence

0 →OL(−1) → OC → OC0 → 0

for some planar cubic curve C0. We overcome these difficulties by regarding such
a locus as a bundle space over other base spaces.

The main idea of the proof of Theorem 1.2 is to relate M(4m + 1) with the
Hilbert scheme of degree 4 curves by using wall crossing, which we review in
Section 2. It is known that this Hilbert scheme consists of four irreducible com-
ponents. One component consists of curves corresponding to unstable sheaves and
is irrelevant for our purposes. The other three components are modified by wall
crossing into R, E, and P.

In Section 5 we describe the intersections of R, E, and P by using the elemen-
tary modifications of sheaves. The sheaves in R ∩ P and E ∩ P can be classified
by using the description of the incident variety of the planar quartic curves with
points (concretely, the relative Hilbert scheme); see [5]. The intersection R ∩ E is
more complicated. A natural candidate for the general element in the intersection
is provided by a pair of a nondegenerate singular elliptic curve and its singular
point. The key issue is to prove that every degeneration of stable sheaves in R ∩ E
is a limit of such pairs. It seems hard to describe the boundary of R in the Hilbert
scheme, so, instead, we use the modification technique developed in [9; 10]. The
authors in [9; 10] compare the moduli space of stable maps (or finite maps) with
the moduli space of stable sheaves when the degree of the maps (or sheaves) is
at most 3. Starting from the canonical family of pure sheaves obtained as direct
images of stable maps, they extend the birational maps into the birational regular
maps after performing modifications of sheaves several times along the excep-
tional divisors of blowing-ups of the stable maps space. In our case of degree
4, even though we do not have a full picture of the blowing-ups and modifica-
tions of sheaves, we can find the normal direction of the space of stable maps that
provides the indicated stable sheaves. By combining with the computation of the
deformation space we show that R ∩ E is a single irreducible divisor in R.

For completeness, we present in the last section the possible free resolutions
of the sheaves in M(4m + 1). These can be used in the local analysis of each
component in a forthcoming work.

2. Review of the Wall Crossing

2.1. General Framework

In this section we review the wall crossing technique that we will use in the
paper. Motivated by the Donaldson–Thomas/Pandharipande–Thomas correspon-
dence [28], Stoppa and Thomas [31] studied a GIT wall-crossing between the
Hilbert scheme of curves and the moduli space of stable pairs. A stable pair here
is a pair of a one-dimensional sheaf and a section that generates the sheaf away
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from finitely many points. Both of the Hilbert scheme and the moduli space of
stable pairs are equipped with a perfect obstruction theory, and hence the vir-
tual invariants are defined by integrating the cohomology cycle against the virtual
fundamental classes ([33; 28]). Stoppa and Thomas realized both spaces as GIT
quotients of a certain space of pairs, and by altering the linearization they showed
that these two moduli spaces are related by GIT wall crossing.

We can go further. In [5], the authors study the wall-crossing for the moduli
space Mα(P (m)) of α-stable pairs, where α is a nonnegative rational number.

Definition 2.1.

(1) A pair is a pair of a sheaf and a nonzero section.
(2) A sheaf F is pure if for every nonzero subsheaf G ⊂ F , the dimension of the

support of G is the same as the dimension of the support of F .
(3) A pair (s,F ) is called α-semistable if

(a) F is a pure sheaf and
(b) for any proper nonzero subsheaf F ′ ⊂ F ,

χ(F ′(m)) + δ · α
r(F ′)

≤ χ(F (m)) + α

r(F )

for m 	 0. Here r(F ) is the leading coefficient of the Hilbert polyno-
mial χ(F (m)), and δ = 1 if the section s factors through F ′ and δ = 0
otherwise.

When the strict inequality holds, (s,F ) is called α-stable. If a pair is α-
semistable but not α-stable, then it is called strictly α-semistable.

A pair is a special case of the coherent system by Le Potier [22] (see also [17]).
A coherent system is a pair of a sheaf with a subspace V of H 0(F ). So, a pair
is a coherent system when the dimension of V is one. We will use the notation
(1,F ) to denote the pair of the sheaf F with its nonzero section and (0,F ) when
the section is taken to be zero. Although by definition the section in a pair must
be nonzero, these notation is convenient when we study the α-stability. The short
exact sequence

0 → (1,G) → (1,F ) → (0,F/G) → 0

indicates that G is a subsheaf of F and the section s of F is in fact in H 0(G) so
that δ = 1. Similarly, the short exact sequence

0 → (0,G) → (1,F ) → (1,F/G) → 0

now means that the section s of F does not factor through G and hence δ = 0 and
we take the image of the section s in F/G.

Similarly as in the sheaf case, we can define a Jordan–Hölder filtration and
S-equivalence classes. The S-equivalence classes of α-semistable pairs form a
projective moduli space Mα(P (m)) [22]. We say that α ∈ Q is a wall if there
is a strictly α-semistable pairs. As we change α, the moduli space Mα(P (m))

changes only at walls [32]. A simple reason for this is that if there is no strictly
semistable pairs, then α-stability does not change by a small perturbation of α

because the stability condition is defined by a strict inequality. After we fix the
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Hilbert polynomial P(m), it is easy to see there are only finitely many walls. By
the wall crossing at α0 we mean to compare the moduli spaces for α− < α0 < α+
that are sufficiently close to α0, that is, there is no other walls between α− and α+.

What happens at the wall α0 is roughly as follows. Let (1,G) ⊕ (0,H) be a
strictly α0-semistable pair, where (1,G) and (0,H) are α0-stable pair. Then the
pair (1,F ) obtained by a nonsplit extension

0 → (0,H) → (1,F ) → (1,G) → 0 (1)

is certainly not α−-stable. But in a good situation as in our case, it can be checked
that they are all α+-stable. Meanwhile, the pair (1,F ′) obtained by a nonsplit
extension

0 → (1,G) → (1,F ′) → (0,H) → 0 (2)

is certainly not α+-stable, but in a good situation it is α−-stable. So when crossing
the wall, the pairs of the form (1) are replaced by the pairs of the form (2). This
can be explained by the elementary modification of the pair. See [5; 32] for more
details.

By the definition of α-stability, as α tends to infinity (for short, α = ∞), the
cokernel of the pair s : O → F is supported on a zero-dimensional scheme (pos-
sibly empty). In other words, we get the moduli space of Pandharipande–Thomas
stable pairs. On the other hand, when α is sufficiently small (for short α = 0+), α-
stability is equivalent to the Gieseker stability of the sheaf. Thus, by wall-crossing,
conditions on the section are replaced by conditions on the sheaf. Now, since there
is no condition on sections, we get a map to our moduli space M(P (m)) of sheaves
by forgetting the section.

When P(m) = 4m+1, we see that there is only one wall at α = 3 ([5]). Strictly
α-semistable pair in this case is (0,OL) ⊕ (1,G), where L is a line, and G is a
sheaf with Hilbert polynomial 3m. The pair given by the extension

0 → (0,OL) → (1,F ) → (1,G) → 0

is unstable for α < 3 because 1
1 > 1+α

4 . After crossing the wall, this pair is modi-
fied into a pair given by the “flipped” extension

0 → (1,G) → (1,F ) → (0,OL) → 0.

The wall crossing picture is as follows.

Hilb
P3 (4m + 1) flip M∞(4m + 1) flip M0+

(4m + 1)

forgetful map

Chow Mα=3(4m + 1) M(4m + 1)

Here the Chow variety is defined by

Chow =
∐

g=0,1,3

[CM4m+1−g × Sg(P3)]
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where CM4m+1−g is the space of Cohen–Macaulay (shortly, CM) curves with
Hilbert polynomial 4m + 1 − g, and Sg(P3) is the g-fold symmetric prod-
uct. Note that there does not exist any CM curve of genus g = 2 in P3 ([16,
Thm. 3.3]).

Lemma 2.2.

(1) If a pair (s,F ) is α-semistable, then the (scheme theoretic support) of F is a
CM-curve.

(2) A pair (s,F ) is ∞-stable if and only if the cokernel of s is supported on a
zero-dimensional subscheme of the support of F .

(3) Assume that gcd(d,χ) = 1. Then (s,F ) is 0+-stable if and only if F is a
stable sheaf.

Proof. Part (1) is by the purity of F . Part (2) directly comes from [28, Sec-
tion 1.3]. For part (3), when gcd(d,χ) = 1, there is no strictly (Gieseker)
semistable sheaves. When α = 0, the α-stability is the same as the Gieseker stabil-
ity by definition, and a small perturbation of α does not change the stability. �

Remark 2.3.

(1) By a simple calculation we can see that there are no walls for d = 1,2, so
Mα(dm + 1) does not change as α varies.

(2) As a first nontrivial case, where the Hilbert polynomial is P(m) = 3m + 1,
Freiermuth and Trautmann proved that M(3m+ 1) consists of two smooth ir-
reducible components R ∪ E. Here R parameterizes the structure sheaves
of the twisted cubic curves, and E is isomorphic to the universal cubic
plane curve. By analyzing the deformation space of each sheaf in R ∩ E

they showed that R and E meet transversally. This can be explained as
follows by using wall crossing. According to Piene and Schlessinger [36],
the Hilbert scheme HilbP3(3m + 1) consists of two irreducible components,
rational cubic curves and elliptic curves with a point. After wall-crossing,
M∞(3m + 1) consists of two irreducible components R ∪ E as before. Note
that the locus of elliptic curves with a free point is excluded after perform-
ing the wall-crossing. There is no wall-crossing for pairs, and all sheaves F

satisfy h0(F ) = 1, so that the forgetful map is an isomorphism. Thus, we
have

M∞(3m + 1) � M0+
(3m + 1) � M(3m + 1).

2.2. Geometry of the Hilbert Scheme

The irreducible components of the Hilbert scheme HilbP3(4m + 1) have been
described in [4].

Proposition 2.4 ([4, Thm. 4.9]). The Hilbert scheme of curves with Hilbert poly-
nomial 4m + 1 in P3 consists of four irreducible components:

(1) The closure of the locus of the rational quartic curves.
(2) The closure of the locus of the unions of a line and a planar cubic curve.
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(3) The closure of the elliptic quartic curves with one isolated point.
(4) The closure of the planar quartic curves with three isolated points.

The space of elliptic quartic curves in (3) has been studied in [1; 4]. We remark
that every connected CM-curve of degree d = 4 and genus g = 1 is a ACM-curve
and nonplanar ([16, Thm. 3.3 and Prop. 3.5]).

Proposition 2.5.

• ([1, Section 5]) The closure of CM-curves component in HilbP3(4m) is obtained
from the Grassmannian Gr(2,10) by blowing up twice, where the blow-up loci
are degeneracy loci of determinantal varieties.

• ([1, Thm. 5.2]) The possible types (up to projective equivalence) of defining
ideals for the connected CM-curve C are:

(1) IC = 〈q1, q2〉, where q1 and q2 are quadratic polynomials.
(2) IC = 〈xy, xz, yq1 + zq2〉; here C is the union of a planar cubic curve and

a line meeting at a point.
(3) IC = 〈x2, xy, xq1 + yq2〉; here C is the union of a planar conic curve and

a double line with genus −2.

• ([4, Example 2.8 (b)]) The ideal sheaf of the CM-curve C with Hilbert polyno-
mial 4m has the resolution

0 → O(−4) ⊕O(−3) →O(−3) ⊕O(−2)⊕2 → IC → 0.

3. The Moduli Space M∞(4m + 1)

In this section we describe all stable pairs in M∞
P3(4m + 1). Considering the

Hilbert–Chow morphism and the Hilbert scheme described in Section 2.2, we
classify all stable pairs according to their supports.

Lemma 3.1. Let (s,F ) ∈ M∞
P3(4m + 1) be a stable pair. Then:

(1) s : OC
�→ F where C is a rational quartic curve or the disjoint union of a line

and a planar cubic curve. Note that χ(OC(m)) = 4m + 1.
(2) s : OC ↪→ F such that Coker(s) = Cp for a point p ∈ C. Note that

χ(OC(m)) = 4m.
(3) s : OC ↪→ F such that K = Coker(s) has dimension zero and length 3. Note

that χ(OC(m)) = 4m − 2.

Proof. By stability the cokernel of s must be supported on a zero-dimensional
subscheme of the support of the sheaf (Lemma 2.2). By using the classification of
CM-curves given at Section 2.2 and comparing Hilbert polynomials we can check
that the given list is complete. �

Remark 3.2. In case (1) of Lemma 3.1 the set of rational quartic curves is nothing
but the Hilbert scheme of connected CM-curves with Hilbert polynomial 4m + 1,
which is well known to be irreducible (see [27]). We denote this component by
R∞. We denote by X∞ the component consisting of disjoint unions of a line and
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a planar cubic curve. This component will be dropped from the moduli space after
wall-crossing.

In case (3) the sheaf F must be planar. Let F be the pure sheaf fitting into the
short exact sequence

0 →OC → F → K → 0

with l(K) = 3. By the genus-degree formula the curve C has degree 4 and is
contained in a plane H ⊂ P3. Let us consider the natural restriction map

φ : F � F |H .

Since F |H has the subsheaf OC , Ker(φ) is zero-dimensional or zero. In the first
case the purity of F gets contradicted. Thus, F � F |H , that is, F is planar. Such
sheaves form an irreducible component, denoted P∞, which is isomorphic to the
relative moduli space M∞(PU ,4m + 1), where U is the universal rank three bun-
dle over Gr(3,4) = (P3)∗.

In case (2) of Lemma 3.1 the sheaf F is given by the extension

0 →OC → F →Cp → 0,

where C is as in Proposition 2.5. However, unlike in the degree 3 case studied
by Freiermuth and Trautmann, the sheaf F may not be uniquely determined by a
pair (p,C), that is, the extension group Ext1(Cp,OC) can have dimension greater
than one. In fact, dim Ext1(Cp,OC) ≤ 2 (see Lemma 3.3). We denote the locus
of such pairs by E∞ = E∞

1 ∪ E∞
2 , where the lower index is dim Ext1(Cp,OC).

Lemma 3.3. Let C be a CM-curve with Hilbert polynomial 4m, and let p ∈ C.
Then

1 ≤ dim Ext1(Cp,OC) ≤ 2.

Moreover, Ext1(Cp,OC) � C2 precisely when (up to projective equivalence)

(1) IC = 〈xy, xz, yq1 + zq2〉 and q1(p) = q2(p) = 0,
(2) IC = 〈x2, xy, xq1 + yq2〉 and q1(p) = q2(p) = 0.

Proof. By Serre duality ([18, Thm. 3.12]) and using the short exact sequence

0 → IC →OP3 →OC → 0,

we have the isomorphisms

Ext1(Cp,OC) � Ext2(OC,Cp)∗ � Ext1(IC,Cp)∗.

From the resolution of IC at Proposition 2.5 we get the exact sequence

0 → Ext0(IC,Cp) → Ext0(O(−3) ⊕ 2O(−2),Cp)

δ−→ Ext0(O(−4) ⊕O(−3),Cp) → Ext1(IC,Cp) → 0. (3)

Now we calculate the rank of δ for each case described in Proposition 2.5. Without
loss of generality, we may assume that p = [0 : 0 : 0 : 1].
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(1) If C is general, meaning IC = 〈q1, q2〉, then δ is given by the matrix⎡⎣0 −q2
0 q1
1 0

⎤⎦ ,

which has rank 1 at p. Thus, Ext1(Cp,OC) � C.
(2) Assume that C is the union of the line L and cubic curve C0. Write

IC = 〈xy, xz, yq1 + zq2〉, IL = 〈y, z〉, IC0 = 〈x, yq1 + zq2〉.
Then δ is given by the matrix⎡⎣−q1 z

−q2 −y

x 0

⎤⎦ ,

whose rank at p depends on the position of p as follows:
(a) rank(δ(p)) = 0 if and only if p ∈ sing(C0) (i.e., q1(p) = q2(p) = 0) and

p ∈ L. In this case, Ext1(Cp,OC) � C2;
(b) rank(δ(p)) = 1 otherwise. In this case, Ext1(Cp,OC) � C.

(3) Assume that C is the union of a conic curve and a double line of genus −2.
Write

IC = 〈x2, xy, xq1 + yq2〉, IL = 〈x, y〉, IQ = 〈x, q2〉.
Then δ is given by the matrix⎡⎣−q1 −y

−q2 x

x 0

⎤⎦ .

As before, we see that Ext1(Cp,OC) � C2 if and only if q1(p) = q2(p) = 0.
This happens when p ∈ L ∩ Q and q1(p) = 0. �

We denote by 〈C〉 the maximal linear space containing the curve C. From
Lemma 3.3 we obtain the following:

Proposition 3.4. The moduli space M∞(4m+ 1) is the union R∞ ∪ E∞ ∪ P∞ ∪
X∞. Furthermore, E∞ = E∞

1 ∪ E∞
2 , where

(1) E∞
1 is the set of nonsplit extensions of Cp by OC such that one of the following

holds:
(a) IC = 〈q1, q2〉;
(b) IC = IL∪C0 , where C0 is a planar cubic curve, L is a line meeting C0 at

a point, and p is a point in C0 such that either p /∈ sing(C0) or p /∈ L;
(c) IC = 〈x2, xy, xq1 + yq2〉 after a change of coordinates, and p is a point

on C such that p /∈ L or q1(p) �= 0 or q2(p) �= 0;
(2) E∞

2 is the set of nonsplit extensions of Cp by OC such that one of the following
holds:
(a) IC = IL∪C0 , L � 〈C0〉, {p} = C ∩ L ⊂ sing(C0) for a line L and a cubic

curve C0;
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(b) IC = 〈x2, xy, xq1 + yq2〉 after a change of coordinates, and p is a point
on C such that p ∈ L and q1(p) = q2(p) = 0.

In the cases (1)(c) and (2)(b) we frequently write C = L2Q, where Q is the conic
defined by 〈x, q2〉, and L is the line 〈x, y〉, because C is a union of Q and a double
line supported on L.

Lemma 3.5. Let E ⊂ HilbP3(4m) be the locus of connected locally CM-curves.
Let C = {(p,C) | C ∈ E,p ∈ C} be the universal family of E. Then C is an ir-
reducible variety of dimension 17. Consequently, E∞

1 is an irreducible variety of
dimension 17.

Proof. The projection map π : C ⊂ E × P3 → E is flat. By [1] we know that
E is an irreducible variety. Now we apply [15, III. Prop. 9.6]. For each e ∈ E,
every irreducible component of the fiber π−1(e) has dimension one. Thus, every
irreducible component of C has dimension 16 + 1 = 17. By Proposition 2.5, E

is a blown-up space of a Grassmannian variety. Thus, the inverse image of π

away from the exceptional locus in E is irreducible. But the inverse image of
the exceptional locus in E has dimension 16, and hence it does not form a new
irreducible component of C. �

4. Proof of the Main Theorem

We use the wall-crossing of α-stable pairs to relate M∞(4m + 1) with
M0+

(4m + 1). Note that since a sheaf in M(4m + 1) has at least one nonzero
section, the forgetful map from M0+

(4m + 1) to M(4m + 1) is surjective. More-
over, we have the following:

Lemma 4.1. For F ∈ M(4m+1), we have 1 ≤ h0(F ) ≤ 2. Moreover, if h0(F ) = 2,
then F must be planar.

Proof. This is clear from the possible resolutions of F found at Section 6. �
When F is nonplanar, by choosing the unique nonzero section, we will regard a
sheaf as a pair. The locus of planar sheaves was studied in [5].

We will use the following well-known lemma frequently.

Lemma 4.2. Let X be a projective scheme, and Y ⊂ X a closed subscheme. Let
F be a coherent OX-module, and let G be a coherent OY -module. Then there is
an exact sequence of vector spaces

0 → Ext1OY
(F|Y ,G) → Ext1OX

(F,G) → HomOY
(T or

OX

1 (F,OY ),G)

→ Ext2OY
(F|Y ,G) → Ext2OX

(F,G). (4)

In particular, if F is an OY -module, then there is an exact sequence

0 → Ext1OY
(F|Y ,G) → Ext1OX

(F,G) → HomOY
(F ⊗OX

IY ,G)

→ Ext2OY
(F|Y ,G) → Ext2OX

(F,G). (5)
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Proof. The results directly come from the existence of the base change spectral
sequence ([26, Thm. 12.1]):

ExtpOY
(T orOX

q (F,OY ),G) ⇒ Extp+q

OX
(F,G). �

Remark 4.3. In view of the lemma, the results in [12, Thm. 1.1] can be read
as follows. Using the wall-crossing (Remark 2.3), we can see that M(3m + 1)

consists of two components:

(1) Nonplanar sheaves, that is, the structure sheaves of CM-curves of degree 3;
(2) Planar sheaves.

The dimensions of each component are 12 and 13, respectively. Moreover,
it was shown in [12, Thm. 1.1] that the intersection of these two components
consists of singular planar sheaves, that is, planar sheaves that are not locally free
on their support. The space of CM-curves is quasi-projective and smooth, cf. [36,
Section 4]. Let F be a stable sheaf supported on a curve C that is contained in a
plane H ⊂ P3. From (5) we have

0 → Ext1H (F,F ) → Ext1
P3(F,F ) → HomH (F,F (1))

→ Ext2H (F,F ) = Ext0H (F,F (−3))∗ = 0.

By the Grothendieck–Riemann–Roch theorem, dim Ext1H (F,F ) = 10. Now, if F

is a locally free OC -module, then

HomH (F,F (1)) � H0(C,F ∗ ⊗ F(1)) � H0(OC(1)) � C3;
hence, F gives a smooth point in the moduli space M(3m + 1). If F is not locally
free on its support, then from the exact sequence

0 → OC → F → Cp → 0

we deduce that dim Hom(F,F (1)) ≤ 4. According to [12, Thm. 1.1], this is actu-
ally an equality, and hence F gives a singular point in M(3m + 1).

The numerical type of wall of the spaces Mα(4m + 1) is given by the following
lemma.

Lemma 4.4. The wall-crossing on Mα(4m + 1) occurs at α = 3 with the Jordan–
Hölder filtration

(0,OL) ⊕ (1,OC0),

where C0 is a planar cubic curve.

Proof. By numerical computation the possible type of wall is given by

(0,Fm+1) ⊕ (1,F3m),

where the subscripts indicate the Hilbert polynomials of the sheaves (Section 2.1).
Obviously, Fm+1 � OL. The sheaf F3m is planar because it has a section and is
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pure. Thus, F3m is isomorphic to the structure sheaf of a planar cubic curve ([11,
p. 18]). �

By wall-crossing the pairs in M∞(4m + 1) of the form

0 → (0,OL) → (1,F ) → (1,OC0) → 0 (6)

are modified into pairs in M0+
(4m + 1) of the form

0 → (0,OC0) → (1,F ) → (1,OL) → 0.

We call the set of such pairs the wall-crossing locus.
The immediate consequence of Lemma 4.4 is that X∞ is dropped after the

wall-crossing. We denote by R+, E+
1 , E+

2 , and P+ the loci in M0+
(4m + 1) cor-

responding to R∞, E∞
1 , E∞

2 , and P∞, respectively. Away from the wall-crossing
locus, the moduli space is unchanged. By Lemma 4.1, after forgetting the section,
we have R+ � R, E+

1 � E1, and E+
2 � E2.

Lemma 4.5.

(1) The locus R∞ does not intersect the wall-crossing locus. Thus, R∞ � R+.
(2) The locus P+ is the relative 0+-stable pairs space M0+

(PU ,4m + 1), where
U is the universal rank three bundle over the Grassmannian Gr(3,4) = (P3)∗.
In particular, P+ is irreducible.

Proof. The structure sheaf OC of a connected CM-rational quartic curve C ∈ R∞
does not fit into the short exact sequence (6) because of h0(OC) = 1, and hence (1)
follows. For (2), we can apply the wall-crossing of [5]. Note that, by the results of
[5, Prop. 4.4], M0+

P2 (4m+1) is a blow-up of MP2(4m+1) along the Brill–Noether
locus, and hence it is irreducible. It follows that P+ is irreducible. �

Thus far, we have shown that R+ and P+ are irreducible components of
M0+

(4m + 1). We denote the nonplanar wall crossing loci by W∞ and W+,
respectively. We will next show that M0+

(4m + 1) \ (R+ ∪ P+) is contained in
the closure of E+

1 \ W+, denoted E+, which is irreducible by Lemma 3.5.
Recall that in Proposition 3.4 we decomposed E∞

2 into two subsets according
to whether the support of the sheaf is the union of a line with a cubic curve or the
union of a double line with a conic curve. After wall-crossing, we also have the
two corresponding loci, which we denote E+

2a and E+
2b .

Proposition 4.6. We have the decomposition E+
2 \ W+ = E+

2a ∪ E+
2b , where

(1) E+
2a is the union of sets of the form P(Ext1(Cp,OC)) \ P(Ext1(Cp,

OL(−1))) � P1 \ {pt}, with C = L ∪ C0 for a cubic curve C0, L � 〈C0〉,
{p} = C ∩ L ⊂ sing(C0);

(2) E+
2b is the union of sets of the form P(Ext1(Cp,OC)) \ P(Ext1(Cp,

OL(−1))) � P1 \ {pt}, with C = L2 ∪ Q for a conic curve Q, L ⊂ 〈Q〉,
p ∈ L, p1(p) = p2(p) = 0.
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Proof. Consider the exact sequence

0 = Ext0(Cp,OC0) → Ext1(Cp,OL(−1)) � C

→ Ext1(Cp,OC)
δ−→ Ext1(Cp,OC0) � C.

If F ∈ P(Ext1(Cp,OC)) has the nonzero image G = δ(F ), then F fits into the
nonsplit short exact sequence

0 →OL(−1) → F → G → 0.

By Lemma 4.7, F is a stable sheaf, and, thus, it does not contain OL. �

Lemma 4.7. Let G be a stable sheaf with Hilbert polynomial (d − 1)m + 1. Let
L be a line. Then, every sheaf F fitting into the nonsplit short exact sequence

0 →OL(−1) → F → G → 0 (7)

is stable with Hilbert polynomial dm + 1.

Proof. Let F ′ be a subsheaf of F . Let G′ be its image in G, and K = F ′ ∩
OL(−1). We have χ(K) ≤ 0. If G′ �= G, then χ(G′) ≤ 0, and hence χ(F ′) ≤ 0.
If G′ = G, then K �= 0 and K �= OL(−1), hence χ(K) ≤ −1, and hence
χ(F ′) ≤ 0. �

Next, we will show that the wall-crossing locus is contained in E+.

Lemma 4.8. The variety W+∪E+
2a is irreducible of dimension 15 and is contained

in E+.

Proof. Consider the extension

0 → OC0 → F →OL → 0. (8)

Denote {p} = L ∩ C0. Let H be the plane containing C0. Tensoring (8) with OH ,
we get the exact sequence

0 = T or
O

P3

1 (OL,OH ) →OC0 → F|H → Cp → 0,

from which we see that F|H � OC0(p) because Ext1H (Cp,OC0) = C. We obtain
the extension

0 → OL(−1) → F → OC0(p) → 0. (9)

Conversely, by Lemma 4.7 any sheaf of this form is stable. Let

T = {(p,C0,L) | {p} = L ∩ C0 and L� H = 〈C0〉},
where C0 is a planar cubic curve contained in the plane H . Consider the subset
Tsing ⊂ T given by the condition p ∈ sing(C0). Obviously, T is a (P2 \P1)-bundle
over the universal planar cubic curve. Here P2 \ P1 parameterizes the choice of
line L. The space Tsing has the same bundle structure over the singular cubic
curves, and hence T and Tsing are smooth of dimensions 15 and 13, respectively.
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We claim that W+ ∪ E+
2a is irreducible. Let us consider a P1-bundle over T

defined by a relative extension sheaf. Let us denote the natural projection maps:

q1 : T × P3 → P3 × P3, q2 : T × P3 → Gr(2,4) × P3,

q3 : T × P3 → P(Sym3 U) × P3, p : T × P3 → T ,

where U is the universal rank 3-bundle over Gr(3,4) = (P3)∗. Let F1, F2, and
F3 be the universal families of points, lines, and planar cubics, respectively. Let

π : P := P(Ext1
p(q∗

1F1, q
∗
2F2(−1) ⊕ q∗

3F3)) → T

be the structure morphism of the projectivized relative extension sheaf over T .
Then the tautological family F parameterized by P ([19, Example 2.1.12]) de-
fines a rational map

	 : P ���W+ ∪ E+
2a.

By some diagram chasing the map 	 is well defined on the complement of the
union of two disjoint sections s(T )∪s′(T ) ⊂ P consisting of sheaves of the forms
{OL(−1)⊕OC0(p)}∪{OL ⊕OC0} because it has the destabilizing quotient sheaf
OL(−1) and OC0 , respectively. Because of the existence of relative Quot scheme,
it forms a flat family of sheaves Q over s(T ). Let g : P̃ → P be the blowing-up
of P along s(T ). Let s̃(T ) be the exceptional divisor. Let

F ′ := ker(F̃ � F̃ |s̃(T )×P3 � Q̃)

be the composition of the surjective maps, where F̃ denotes the pull-back of a
sheaf F along the map g × id : P̃ × P3 → P × P3. Then the modification has the
effect of the change of the subsheaf and quotient sheaf (cf. [5, Def. 2.5]). To finish
the proof of our claim, it is enough to show that all stable sheaves parameterized
by W+ ∪ E+

2a aries from this modification. That is, let us show that the normal
space

Ns(T )/P,s � Ext1
P3(OC0(p),OL(−1))

is surjective, where s := g(v) = [OL(−1)⊕OC0(p)] for v ∈ s̃(T ). Note that there
is an inclusion NTsing/T ,π(s) ⊂ Ns(T )/P,s , and the former space is isomorphic to
Ext1C0

(Cp,Cp)∗ ([20, Section 3.1.1]). Also,

Ext1C0
(Cp,Cp)∗ ∼= HomC0(Ip,C0,Cp)∗ ∼= Ext1C0

(Cp, Ip,C0)
∼= Ext1H (Cp, Ip,C0)

∼= Ext1
P3(OL(−1), Ip,C0)

∼= Ext1
P3(OC0(p),OL(−1)),

where the first one comes from 0 → Ip,C0 → OC0 → Cp → 0. The second one
comes from the fact that the dualizing sheaf ωC0 is a line bundle, and thus we can
apply a version of Serre duality. The third and fourth ones come from equation
(4) and OL(−1)|H ∼= Cp . The last one is [23, Thm. 13]. Hence, we proved that
there exists a surjective (rational) map

	̃ : P̃ → W+ ∪ E+
2a,

which finishes the proof of our claim. Since general points in W+ ∪ E+
2a are con-

tained in E+ and since it is irreducible, W+ ∪ E+
2a itself is contained in E+. �
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It remains to show that E∞
2b \ W∞ = E+

2b \ W+ is contained in E+. To this end,
let Z be the locus of the extension sheaves F fitting into the short exact sequence

0 → OL(−1) → F → OLQ(p) → 0

such that p ∈ Q. Clearly, E+
2b is contained in Z. We will show that Z is irre-

ducible. Since general elements in Z are contained in E+, this proves our asser-
tion. Consider the map

φ : Z → HilbP2(m + 1) × MP2(3m + 1), [F ] �→ (L, [OLQ(p)]).
It will turn out that φ is a projective bundle over some irreducible variety. This
will prove that Z is an irreducible variety.

Lemma 4.9. The locally closed subset S ⊂ HilbP2(m + 1) × MP2(3m + 1) of
pairs (L, [OC0(p)]) for which C0 = L ∪ Q and p ∈ Q for a conic curve Q ⊂ P2

is irreducible.

Proof. Let M∞
P2(2m + 2) be the moduli space of pairs with Hilbert polynomial

2m+2. We can easily see that it is isomorphic to the universal conic curve, which
is a P4-bundle over P2, so is irreducible ([5, Lemma 2.3]). The morphism

HilbP2(m + 1) × M∞
P2(2m + 2) → S, (L,p,Q) �→ (L,OQ∪L(p))

is well defined and surjective. Thus, S is irreducible. �

Proposition 4.10. The locus Z is irreducible of dimension 14.

Proof. In view of Lemma 4.9, it is enough to show that the morphism Z → S is
surjective and that its fibers are irreducible of the same dimension. We will prove
that

Ext1O
P3

(OC0(p),OL(−1)) � C4

for all (L, [OC0(p)]) ∈ S. From (4) we have the exact sequence

0 → Ext1OL
(OC0(p)|L,OL(−1)) → Ext1O

P3
(OC0(p),OL(−1))

→ Hom(T or
O

P3

1 (OC0(p),OL),OL(−1)) → Ext2OL
(OC0(p)|L,OL(−1)) = 0.

Assume firstly that p /∈ L. The long exact sequence of torsion sheaves associated
with the short exact sequence

0 → OC0 →OC0(p) → Cp → 0

yields the isomorphisms

OC0(p)|L � OC0 |L � OL,

T or
O

P3

1 (OC0(p),OL) � T or
O

P3

1 (OC0 ,OL) � OL(−1) ⊕OL(−3).

We obtain the isomorphisms

Ext1OL
(OC0(p)|L,OL(−1)) = 0,

Hom(T or
O

P3

1 (OC0(p),OL),OL(−1)) � C4.
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Assume now that p ∈ L. We have the exact sequence

0 → 2O(−3)
δ−→ 3O(−2) ⊕O(−1)

γ−→ O(−1) ⊕O →OC0(p) → 0,

δ =

⎡⎢⎢⎣
x 0
0 x

−y −z

0 −q2

⎤⎥⎥⎦ , γ =
[
y z x 0
0 q2 0 x

]
,

where p is given by the ideal 〈x, y, z〉, L is given by the ideal 〈x, y〉, and Q

is given by the ideal 〈x, q2〉 ([12, Prop. 3.5]). Tensoring with OL shows that
OC(p)|L is isomorphic to the cokernel of the morphism

OL(−2)

[
z|L
q2|L

]
−−−−→ OL(−1) ⊕OL

and that T or
O

P3

1 (OC0(p),OL) is isomorphic to the middle cohomology of the
sequence

2OL(−3)
δL−→ 3OL(−2) ⊕OL(−1)

γL−→ OL(−1) ⊕OL,

δL =

⎡⎢⎢⎣
0 0
0 0
0 −z|L
0 −q2|L

⎤⎥⎥⎦ , γL =
[

0 z|L 0 0
0 q2|L 0 0

]
,

which is isomorphic to the cokernel of the morphism

OL(−3)

[
0

z|L
q2|L

]
−−−−→ 2OL(−2) ⊕OL(−1).

By hypothesis, p is a point on Q, and hence z|L divides q2|L. It now becomes
clear that

OC0(p)|L � Cp ⊕OL and T or
O

P3

1 (OC0(p),OL) � Cp ⊕OL(−2)⊕OL(−1).

We obtain the isomorphisms

Ext1OL
(OC0(p)|L,OL(−1)) � C,

Hom(T or
O

P3

1 (OC0(p),OL),OL(−1)) � C3. �

Summarizing the results obtained thus far, we have the following:

Proposition 4.11. The space M0+
(4m + 1) consists of three irreducible compo-

nents R+, E+, and P+.

By forgetting the section, we arrive at our main theorem.

Theorem 4.12. The moduli space MP3(4m+1) consists of three irreducible com-
ponents R, E, and P, whose dimensions are 16, 17, and 20, respectively.
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5. The Intersections of the Irreducible Components

In this section, we describe the intersections R ∩ P and E ∩ P, and we give a
nonexhaustive list of sheaves in R ∩ E.

5.1. The Intersections R ∩ P and E ∩ P

We begin by collecting some known facts about the relation of the space of finite
maps to the component R. When a finite map is birational to its image, we call
it a birational finite map. By the following proposition the birational finite maps
give sheaves in the boundary of the locus of structure sheaves of smooth rational
quartic curves.

Proposition 5.1. Let F0(Pr , d) be the space of finite maps from a genus 0 curve
of degree d to Pr . Then:

(1) The space F0(Pr , d) is an irreducible projective variety of dimension (d +
1)(r + 1) − 3.

(2) Consider the rational map

	 : F0(P
r , d) ��� MPr (dm + 1), [f : C → Pr ] �→ f∗OC.

Then 	 is injective over the locus of birational finite maps.

Proof. By [14, Thm. 2] the moduli space M0(Pr , d) of stable maps of genus
0 and degree d is an irreducible variety. Also, there exists a small contraction
morphism M0(Pr , d) → F0(Pr , d) ([3, Prop. 3.11]). This proves the first claim.
Part (2) follows directly from the proof of [3, Prop. 3.18]. �

Proposition 5.2. Let H ⊂ P3 be a plane, and let C ⊂ H be an irreducible quartic
curve having three distinct nodal singular points P1, P2, P3. Then the unique
extension of CP1 ⊕CP2 ⊕CP3 by OC , denoted OC(P1 + P2 + P3), gives a point
in R ∩ P. We denote by (R ∩ P)0 the set of such sheaves. The intersection R ∩ P
is irreducible and is the closure of (R ∩ P)0.

Proof. Let v : P1 → C be the normalization map. Since the degree deg(v) = 4, v

is an element of the moduli space F0(P3,4) of finite maps of degree 4. By Proposi-
tion 5.1, F0(P3,4) is an irreducible variety, and the locus Mapsm(P1,P3)/PGL(2)

of finite maps whose images are smooth is a Zariski dense open subset. We can
choose a one-parameter family of finite maps it : Ct → P3 such that the general
fibers are smooth rational quartic curves and limt→0 OCt = v∗OP1 . But by part
(2) of Proposition 5.1 we know that the direct image sheaf v∗OP1 is stable. This
is exactly the unique stable extension given by the normalization sequence

0 → OC → v∗OP1 → CP1 ⊕CP2 ⊕CP3 → 0.

We deduce that OC(P1 + P2 + P3) lies in R ∩ P.
Assume that F gives a point in R ∩ P, where supp(F ) ⊂ H . We have F =

limt→0 OCt for smooth rational quartic curves Ct , t �= 0. Let us choose a pro-
jection center O ∈ P3 that does not lie on H or on any of the curves Ct . Let
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π : P3 \ {O} → H be the projection with center O . Then π∗OCt are stable
sheaves for t �= 0 by the argument of the previous paragraph. Also, π∗F = F

because supp(F ) ⊂ H . Thus, limt→0(π∗OCt ) = π∗(limt→0 OCt ) = F . Since
π∗OCt ∈ (R ∩ P)0, F is an element of the closure of (R ∩ P)0. Obviously, the
open part (R ∩ P)0 of the intersection has a fibration structure over the Grass-
mannian Gr(3,4) = (P3)∗. The fibers are birational with the irreducible variety
F0(P2,4) of finite maps. Thus, (R ∩ P)0 is irreducible. �

Proposition 5.3. For any F ∈ R, we have h0(F ) = 1.

Proof. For any plane H ⊂ P3 and any sheaf F giving a point in MH (4m+ 1), the
exact sequence (5) reads

0 → Ext1OH
(F,F ) � C17 → Ext1O

P3
(F,F ) → Hom(F (−1),F )

→ Ext2OH
(F,F ) � Hom(F,F (−3))∗ = 0.

Assume now that F gives a generic point in R ∩ P of the form OC(P1 + P2 +
P3), where C is an irreducible planar quartic curve having distinct nodes at P1,
P2, P3. Then Hom(F (−1),F ) � C5. This shows that ext1(F,F ) ≥ 22. Since
the embedding dimension is upper semicontinuous and R ∩ P is irreducible, this
estimate holds for all sheaves in R ∩ P.

Suppose now that h0(F ) = 2. Then we have F � OC(−p)(1) for some pla-
nar quartic curve C and a point p ∈ C ([11, Prop. 3.3.4]). Let H be the plane
containing C. From the exact sequence

0 → OC(−p) → OC →Cp → 0

we get the exact sequence

0 = Hom(Cp,F ) → Hom(OC,F ) � C2 → Hom(OC(−p),F )

→ Ext1OH
(Cp,F ) � Ext1OH

(F,Cp)∗.

From the resolution

0 → OH (−3) ⊕OH (−1) → 2OH → F → 0

we see that Ext1OH
(F,Cp)∗ is isomorphic to C or C2, depending on whether p is

a regular or a singular point of C.
Thus, hom(F (−1),F ) ≤ 4. In view of the exact sequence at the beginning

of the proof, we deduce that ext1(F,F ) ≤ 21, from which it follows that F /∈
R ∩ P. �

Remark 5.4. More generally, let Rd(Pr ) be the space of irreducible rational
curves in Pr of degree d . By using elementary modifications of sheaves ([19,
Thm. 2.B.1]) we can easily see that every stable sheaf F ∈ Rd(Pr ) ⊂ MPr (dm +
1) satisfies h0(F ) = 1.

Similar arguments as in Proposition 5.2 yield the following:
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Proposition 5.5. Let H ⊂ P3 be a plane, and let C ⊂ H be an irreducible quartic
curve having two distinct nodal singular points P1 and P2 and no other singular-
ities. Let P be a regular point of C. Then OC(P1 + P2 + P) gives a point in
E ∩ P. We denote by (E ∩ P)0 the set of such sheaves. The intersection E ∩ P is
irreducible and is the closure of (E ∩ P)0.

Remark 5.6. Since R ∩ P ⊂ E ∩ P, it follows that R ∩ P ⊂ R ∩ E.

5.2. The Intersection R ∩ E

The intersection R ∩ E is difficult to describe. We further provide a list of general
sheaves in R ∩ E. By Proposition 5.1 all sheaves in R are flat limits of sheaves
of the form f∗OC̃

for finite maps f . When f is not birational, the flat limit can
be described by the elementary modification technique, which we will repeatedly
use in this section. For the general setting of modification of sheaves, see [19,
Thm. 2.B.1]. For the version concerning maps, see [9; 10].

Our first order of business is to show that W+ is disjoint from R ∩ E. Recall
that W+ is the locus of nonplanar sheaves F that fit into an exact sequence

0 → OC0 → F →OL → 0

for a planar cubic curve C0 and an incident line L that is not coplanar with C0.

Proposition 5.7. Assume that F gives a point in W+. Then ext1(F,F ) = 17, so
F is a smooth point of E.

Proof. From (9) we have the exact sequence

Ext1(F,OL(−1)) → Ext1(F,F ) → Ext1(F,OC0(p)).

Denote {p} = L ∩ C0. From (4) we have the exact sequence

0 → Ext1OL
(F|L,OL(−1)) → Ext1O

P3
(F,OL(−1))

→ Hom(T or
O

P3

1 (F,OL),OL(−1)) → Ext2OL
(F|L,OL(−1)) = 0.

From (8) and (9) we have the exact sequences

Cp = OC0 |L → F|L → OL → 0 and 0 → OL(−1) → F|L →OC0(p)|L → 0.

Note that OC0(p)|L is isomorphic to Cp if p ∈ reg(C0), respectively, to Cp ⊕Cp

if p ∈ sing(C0). It follows that F|L is isomorphic to OL if p ∈ reg(C0), respec-
tively, to Cp ⊕ OL if p ∈ sing(C0). From (8) we get the long exact sequence of
torsion sheaves of OP3 -modules

Cp � T or1(OC0 ,OL) → T or1(F,OL) → T or1(OL,OL)

� 2OL(−1) → Cp → F|L → OL → 0.

From this we see that

T or1(F,OL)/T 0(T or1(F,OL)) �
{
OL(−2) ⊕OL(−1) if p ∈ reg(C),

2OL(−1) if p ∈ sing(C).
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In the first case we have the exact sequence

0 = Ext1OL
(F|L,OL(−1)) → Ext1O

P3
(F,OL(−1))

→ Hom(OL(−2) ⊕OL(−1),OL(−1)) � C3 → 0.

In the second case we have the exact sequence

0 → Ext1OL
(F|L,OL(−1)) � C → Ext1O

P3
(F,OL(−1))

→ Hom(2OL(−1),OL(−1)) � C2 → 0.

In both cases we get the isomorphism Ext1O
P3

(F,OL(−1)) � C3.

Let H be the plane containing C0. From (4), taking into account that F|H �
OC0(p), we get the exact sequence

0 → Ext1OH
(F|H ,OC0(p)) � C10 → Ext1O

P3
(F,OC0(p))

→ Hom(T or
O

P3

1 (F,OH ),OC0(p)) → Ext2OH
(F|H ,OC0(P )) = 0.

The long exact sequence of torsion sheaves associated to (8) reads in part

0 = T or2(OL,OH ) → T or1(OC0 ,OH ) � OC0(−1)

→ T or1(F,OH ) → T or1(OL,OH ) = 0.

We obtain the exact sequence

0 → C10 → Ext1O
P3

(F,OC0(p)) → Hom(OC0(−1),OC0(p)) → 0.

Thus, Ext1O
P3

(F,OC0(p)) � C14. From the exact sequence at the beginning of the

proof we get the inequality ext1(F,F ) ≤ 17. This must be an equality because the
moduli space has dimension 17 at F ([19, Cor. 4.5.2]). �

In view of Proposition 5.1, whenever the reduced support of a sheaf F ∈ R is of
degree 4, F � f∗OC̃

for some birational finite map f : C̃ → P3. The list of such
sheaves is as follows.

Proposition 5.8. Let F ∈ R ∩ E have reduced support of degree 4. Then one of
following holds:

(1) F is the unique nonsplit extension of Cp by OC , where either
(a) C has an ideal 〈q1, q2〉 generated by two quadratic polynomials and p is

a singular point of C; or
(b) C is the union of a planar cubic C0 that is singular at p and a line L

meeting C0 at a regular point.
(2) When C is the union of a planar cubic C0 that has a node at p and a line L

passing through p, only two sheaves in the extension P(Ext1(Cp,OC)) � P1

belong to R ∩ E.
(3) When C is the union of a planar cubic C0 that has a cusp at p and a line L

passing though p, precisely one sheaf in the extension P(Ext1(Cp,OC)) � P1

belongs to R ∩ E.

The sheaves from (3) lie in the closure of the set of sheaves from (2).
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Proof. Let C be the reduced support of F . From Proposition 2.5 we see that either
IC = 〈q1, q2〉 or IC = 〈xy, xz, yq1 + zq2〉 after a change of coordinates, where q1

and q2 are quadratic polynomials. In order to lie in R ∩ E, F must be of the form
f∗OC̃

, with p a singular point of C. By the classification of sheaves in E∞ found
at Proposition 3.4 we see that case (1) occurs precisely when Ext1(Cp,OC) � C.
Indeed, we may take C̃ to be the partial normalization of C at p. The same argu-
ment applies in case (3). In case (2) we may take two different partial normaliza-
tions of C at p, each yielding a sheaf in R ∩ E. �

Note that, in case (2), by Proposition 4.6(1) there is a nonstable sheaf in the exten-
sion Ext1(Cp,OC). By the properness of the moduli space the flat limit of sheaves
in this extension must lie in W+ and hence outside of R. We will see below that in
the case of Proposition 4.6(2) the flat limit of sheaves in the said extension is still
in R. This does not contradict Proposition 5.7 because in this case the flat limit is
a planar sheaf and hence not in W+.

Corollary 5.9. In each of the following cases the sheaf F gives a point in R∩E:

(1) F = OC(p), where C is a singular curve of type (2,2) on a smooth quadric
surface, and p ∈ sing(C);

(2) F = OC(p), where C is a quadruple line supported on L (the intersection
of a double plane containing L with the union of two distinct planes each
containing L), and p ∈ L;

(3) F = OC(p), where C is the union of a singular planar curve C0 with an
incident line L, and p ∈ sing(C0) \ L.

Proof. The sheaves from (1) are limits of sheaves from Proposition 5.8(1)(a) be-
cause the set of singular curves of type (2,2) on P1 × P1 is irreducible ([34,
Thm. 3.1]). In particular, if C is a double conic (meaning the intersection of a
double plane with a smooth quadric S) and p ∈ C, then OC(p) ∈ R ∩ E. The
sheaves from (2) are limits of such sheaves (make S converge to the union of two
distinct planes). Finally, the sheaves from (3) are limits of sheaves from Proposi-
tion 5.8(1)(a). �

We will next examine the case where the support of the sheaf is the union of
a double line and a conic. The picture becomes more complicated. Case (1) of
Proposition 5.10 was already dealt with at Corollary 5.9(1), but we treat it also
using modifications of sheaves in order to better illustrate the argument.

Proposition 5.10. In each of the following cases, all stable sheaves F ∈
P(Ext1(Cp,OC)) belong to R ∩ E:

(1) C = L2Q is a union of a double line on L and a conic Q with L and Q

meeting at a point, and p ∈ L;
(2) C = L2Q is a union of a genus −2 double line L2 and a conic Q, and p ∈

Q ∩ L.
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Proof. (1) We can see that the unique extension sheaf F ∈ Ext1(Cp,OC) = C fits
into the exact sequence

0 →OL(−1) → F →OL∪Q → 0 (10)

by using the isomorphism Ext1(Cp,OL(−2)) � Ext1(Cp,OC), which is given by
the exact sequence 0 → OL(−2) → OC → OL∪Q → 0. Also by direct compu-
tation, stable sheaves in (10) are parameterized by Ext1(OL∪Q,OL(−1)) = C3.
We prove that the sheaves in (10) arise as elementary modifications of sheaves by
using finite maps. Let f : C → P3 be a map whose domain C is the pair of two
lines L1 ∪ L2 such that f|L1 is a degree two map onto L and f|L2 is a bijection
onto Q. Then obviously f can be regarded as an element in the moduli space
F0(P3,4). Let � ⊂ F0(P3,4) be the locus of the finite maps whose image is the
union of lines and smooth conics meeting at a point. Then, the direct image sheaf
f∗OC fits into the exact sequence

0 →OL∪Q → f∗OC → OL(−1) → 0. (11)

We show by modifications of sheaves that all sheaves in (10) lie in R. For ex-
ample, see [9]. To apply the modification technique, we need to choose a smooth
chart of F0(P3,4) at f . Around f , by [29, Thm. 0.1], the maps space F0(P3,4)

can be obtained as the SL(2)-quotient of the moduli space F0(P1 × P3, (1,4))

of finite maps in P1 × P3 of bidegree (1,4), where Aut(P1) = SL(2) canonically
acts on F0(P1 × P3, (1,4)). Among the fibers f along the GIT-quotient map, let
us choose the graph map f ′ whose restriction on L1 is of bidegree (1,2) and
which doubly covers P1 × L ⊂ P1 × P3; then f ′ has only the trivial automor-
phism. Hence, around f , the space F0(P1 × P3, (1,4)) is a smooth chart that is
compatible with SL(2)-action. This implies that the argument in [9, Lemma 4.6]
about the construction of the Kodaira–Spencer map of the maps space can be nat-
urally applied in our setting. Now, let us compute the normal space by the same

technique as in [9]. We write f as a composition C
h−→ C′ g−→ P3, where C′ is a

pair of lines. Here h is a two-to-one covering from L1 and a bijection from L2.
Also, g is an isomorphism of degree 3. By the octahedron axiom for the derived
category we have the exact sequence

0 → Def(h) → Def(f ) → Ext1(h∗[g∗�P3 → �C′ ],OC)

→ Ob(h) � Ext1(�C,OC) → 0.

Since the higher direct images R•h∗(−) vanish, we have an isomorphism

Ext1(h∗[g∗�P3 → �C′ ],OC) � Ext1([g∗�P3 → �C′ ], h∗OC).

But the later space is decomposed into

0 → Ext1([g∗�P3 → �C′ ],OC′) → Ext1([g∗�P3 → �C′ ], h∗OC)

→ Ext1([g∗�P3 → �C′ ],OL(−1)) (12)

by the exact sequence

0 → OC′ → h∗OC → OL(−1) → 0.
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The first term in (12) is the deformation space of g in P3. By using the local
isomorphism F0(P3,3) � HilbP3(3m + 1) around g associating g to g∗OC′ =
OL∪Q ([9, Thm. 1.4 and Prop. 3.3 (1)]) we can easily see that there exists a natural
surjective homomorphism

ψ : Ext1([g∗�P3 → �C′ ],OC′) � Hom(IL∪Q,OL∪Q)

→ Ext1(�L∪Q,OL∪Q) � C,

where the map comes from the short exact sequence

0 → IL∪Q/I 2
L∪Q → �P3 |L∪Q → �L∪Q → 0.

The kernel of ψ is the deformation space of the map g while fixing the node p of
the curve L ∪ Q. In conclusion, we have a commutative diagram

Ker(ψ) Ext1([g∗�P3 → �C′ ],OC′) Ext1(�L∪Q,OL∪Q)

Def(h) Def(f ) Ext1([g∗�P3 → �C′ ], h∗OC) Ob(g)

Ext1([g∗�P3 → �C′ ],OL(−1))

Combining with the deformation space Def(h) � C2 ([9, Lemma 4.10]), we see
that the normal space of � in F0(P3,4) at f is isomorphic to

N�/F0(P
3,4),f � Ext1([g∗�P3 → �C′ ],OL(−1)).

Since the curve L ∪ Q is a locally complete intersection, the two-term complex
[g∗�P3 → �C′ ] is quasi-isomorphic to g∗N∗

L∪Q/P3[1]. Thus,

N�/F0(P
3,4),f � Ext1(N∗

L∪Q/P3[1],OL(−1)) = Hom(N∗
L∪Q/P3,OL(−1)).

Since the choice of the normal vectors in the tangent space of maps space at f

makes the switch of the sub/quotient sheaf of the original sheaf in (11) (see [10]),
the Kodaira–Spencer map Tf F0(P3,4) → Ext1(f∗OC,f∗OC) descents to

N�/F0(P
3,4),f = Hom(N∗

L∪Q/P3,OL0(−1)) � Ext1(OL∪Q,OL0(−1)),

which is the compatible with the coboundary map given by the structure sequence

0 → IL∪Q →O →OL∪Q → 0.

Therefore, the normal directions to � correspond exactly to the sheaves in the
extension (10). This shows that such sheaves are obtained by elementary modifi-
cations and hence lie in R.

(2) Similar arguments as before can be applied. Again, we want to show that
all sheaves in the extension

0 →OL(−1) → F →OL∪Q(p) → 0 (13)
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lie in R. Recall that in our convention OL∪Q(p) is the unique nonsplit extension
of Cp by OL∪Q. First, let us fix the point p ∈ P3. Let �1,3 be the locus of sta-
ble maps f : L1 ∪ L3 → P3 such that degrees of f on L1 and L3 are 1 and 3,
respectively, and f maps L1 ∩ L3 to p. Let D be the locus in the boundary of
�1,3 consisting of the finite maps f : L1 ∪ (L′

1 ∪ L2) → P3 such that the image
f |L′

1∪L2
is the union of a line L and a coplanar conic and the restriction f |L1 is a

bijection with the line L. Then the two spaces are smooth around f .
Let us describe the restricted Kodaira–Spencer map

ξ : ND/�1,3,f → Ext1
P3(OL∪Q(p),OL(−1)).

The normal space of D in �1,3 consists of the two-dimensional contribution from
smoothing two nodes of L ∪ Q and the two-dimensional contribution from mov-
ing L away from the plane containing Q. By definition, p is one node. We let q

be the other node. From the exact sequence

0 → OQ(−q) → OL∪Q(p) → OL → 0

we have

0 → Ext1
P3(OL,OL(−1)) → Ext1

P3(OL∪Q(p),OL(−1))

→ Ext1
P3(OQ(−q),OL(−1)) → 0.

The first term

Ext1
P3(OL,OL(−1)) � H0(NL/P3(−1)) � C2

is the deformation of L while fixing the point p. The third term

Ext1
P3(OQ(−q),OL(−1)) � Ext1L(Cp ⊕Cq,OL(−1)) � C⊕C

is the deformation space of smoothing the two nodes of the plane cubic curve
L ∪ Q in the moduli space HilbP3(3m + 1) while fixing the point p. After a
diagram chase, we check that ξ is an isomorphism, and thus the modified sheaf
lies in R. Thus, we see that all sheaves in (13) belong to R. �

Finally, we show that R∩E is irreducible. In fact, R∩E is the closure of the locus
of sheaves from Proposition 5.8(1)(a). Since it is straightforward that all other loci
of R ∩ E are in the closure, we will show the sheaves from Propostion 5.10(2) do
not form a new irreducible component. We denote this locus by E2b following the
notation in the previous section. We remark that E2b is irreducible.

Lemma 5.11. If F ∈ E2b is generic, then ext1(F,F ) ≤ 19.

Proof. Since E2b is irreducible, it is enough to prove the estimate for a single
sheaf. Let F be given by the resolution

0 → 3O(−3)
ψ−→ 5O(−2)

ϕ−→O(−1) ⊕O → F → 0,
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ψ =

⎡⎢⎢⎢⎢⎣
−y −z 0
x 0 0
0 x 0
0 −y x

0 0 −y

⎤⎥⎥⎥⎥⎦ , ϕ =
[
x y z 0 0
0 0 y2 xy x2

]
. (14)

This resolution is one of three possible resolution types we will encounter in Sec-
tion 6. The support of F is the subscheme defined by the ideal 〈x2, xy, y3〉, and
the point p is defined by 〈x, y, z〉. Thus, F lies in E2b . It is easy to check, with
the help of the computer program Macaulay2 ([13]), that Ext1(F,F ) ∼= C19. �

Theorem 5.12. The variety R ∩ E is irreducible.

Proof. Suppose that the variety E2b ⊂ R ∩ E forms a new irreducible component.
Choose a regular point y of E2b . Then

dimTyMP3(4m + 1) ≥ dimTyR + dimTyE − dimTyE2b

≥ 16 + 17 − 13 = 20. (15)

Since we may choose y to be generic, this contradicts the estimate at Lemma 5.11.
�

6. The Resolutions of the Sheaves in M(4m + 1)

We fix a four-dimensional vector space V over C and a basis {X,Y,Z,W } of
V ∗. We identify P3 with P(V ). Let F be a one-dimensional sheaf on P3. The
relevant part of the E1-level of the Beilinson spectral sequence ([35, Thm. 3.1.4])
converging to F is displayed in the following tableau:

H1(F (−1)) ⊗O(−3)
ϕ1−→ H1(F ⊗ �2(2)) ⊗O(−2)
ϕ2−→ H1(F ⊗ �1(1)) ⊗O(−1)

ϕ3−→ H1(F ) ⊗O,

H0(F (−1)) ⊗O(−3)
ϕ4−→ H0(F ⊗ �2(2)) ⊗O(−2)
ϕ5−→ H0(F ⊗ �1(1)) ⊗O(−1)

ϕ6−→ H0(F ) ⊗O.

The E2-level has the tableau

Ker(ϕ1)
ϕ7

Ker(ϕ2)/Im(ϕ1)

ϕ8

Ker(ϕ3)/Im(ϕ2) Coker(ϕ3)

Ker(ϕ4) Ker(ϕ5)/Im(ϕ4) Ker(ϕ6)/Im(ϕ5) Coker(ϕ6)

The spectral sequence degenerates at E3, where all maps are zero:

Ker(ϕ7) Ker(ϕ8) Ker(ϕ3)/Im(ϕ2) Coker(ϕ3)

Ker(ϕ4) Ker(ϕ5)/Im(ϕ4) Coker(ϕ7) Coker(ϕ8)
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Thus ϕ7 is an isomorphism, ϕ3 is surjective, ϕ4 is injective, Ker(ϕ5) = Im(ϕ4),
and we have the exact sequence

0 →Ker(ϕ2)/Im(ϕ1)
ϕ8−→ Coker(ϕ6) → F → Ker(ϕ3)/Im(ϕ2) → 0.

Denote p = h0(F ⊗�1(1)), q = h0(F ⊗�2(2)). Assume that F is semistable and
has Hilbert polynomial PF (m) = 4m + 1. According to [6], we have the relations

h0(F (−1)) = 0, h1(F ) = 0 or 1.

The Beilinson monad with middle cohomology F yields an exact sequence

0 → 3O(−3) ⊕ qO(−2)
ψ−→ (q + 5)O(−2) ⊕ pO(−1)

ϕ−→ Ker(ϕ3) ⊕ H0(F ) ⊗O → F → 0, (16)

in which ψ12 = 0 and ϕ12 = 0. We recall two well-known facts. The sheaves
giving points in MP3(m + 1) are precisely the structure sheaves of lines. The
sheaves giving points in MP3(2m+ 1) are precisely the structure sheaves of conic
curves.

Theorem 6.1. Let F give a point in MP3(4m + 1). Then precisely one of the
following is true:

(i) h0(F ⊗ �2(2)) = 0, h0(F ⊗ �1(1)) = 0, h0(F ) = 1;
(ii) h0(F ⊗ �2(2)) = 0, h0(F ⊗ �1(1)) = 1, h0(F ) = 1;

(iii) h0(F ⊗ �2(2)) = 1, h0(F ⊗ �1(1)) = 3, h0(F ) = 2.

The sheaves satisfying conditions (i) are precisely the sheaves having a reso-
lution of the form

0 → 3O(−3)
ψ−→ 5O(−2)

ϕ−→ O(−1) ⊕O → F → 0,

ϕ =
[

l1 l2 l3 l4 l5
q1 q2 q3 q4 q5

]
, (17)

where dim(span{l1, l2, l3, l4, l5}) ≥ 3.
The sheaves satisfying conditions (ii) are precisely the sheaves having a reso-

lution of the form

0 → 3O(−3)
ψ−→ 5O(−2) ⊕O(−1)

ϕ−→ 2O(−1) ⊕O → F → 0, (18)

where ϕ12 = 0, and ϕ11 : 5O(−2) → 2O(−1) is not equivalent to a morphism of
the form [

� � 0 0 0
� � � � �

]
or

[
� � � � 0
� � � � 0

]
.

The sheaves satisfying conditions (iii) are precisely the sheaves having a reso-
lution of the form

0 → O(−4) ⊕O(−2)
ψ−→ O(−3) ⊕ 3O(−1)

ϕ−→ 2O → F → 0,
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ψ =

⎡⎢⎢⎣
l 0
0 l

−f1 −l1
−f2 −l2

⎤⎥⎥⎦ , ϕ =
[
f1 l1 l 0
f2 l2 0 l

]
, (19)

where l, l1, l2 are linearly independent one-forms. If H ⊂ P3 is the plane given
by the equation l = 0, then F has resolution

0 → OH (−3) ⊕OH (−1)
ϕ̄−→ 2OH → F → 0,

ϕ̄ =
[
f̄1 l̄1
f̄2 l̄2

]
, (20)

where f̄1, f̄2, l̄1, l̄2 denote classes modulo l.

Proof. (i) Assume first that h0(F ) = 1. The exact sequence (16) becomes

0 → 3O(−3) ⊕ qO(−2)
ψ−→ (q + 5)O(−2) ⊕ pO(−1)

ϕ−→ (p + 1)O(−1) ⊕O → F → 0.

We claim that p = 0 or 1. Indeed, if p = 2, then we would get a commutative
diagram

pO(−1)
ϕ22 O OL 0

(q + 5)O(−2) ⊕ pO(−1)
ϕ

(p + 1)O(−1) ⊕O F 0

Both OL and F are stable, and p(OL) = 1 > p(F ); hence, Hom(OL,F ) = 0.
Thus, O → F is the zero morphism. On the other hand, H0(O) → H0(F ) is in-
jective because H0(Coker(ψ)) = 0. We have obtained a contradiction. If p = 3
or p ≥ 4, then Coker(ϕ22) would be the structure sheaf of a point, respectively, it
would be zero. Both cases would yield contradictions as before.

Assume that p = 0. Then q = 0 because ϕ5 is injective. We obtain the resolu-
tion

0 → 3O(−3) → 5O(−2)
ϕ−→O(−1) ⊕O → F → 0,

ϕ =
[

l1 l2 l3 l4 l5
q1 q2 q3 q4 q5

]
.

If dim(span{l1, l2, l3, l4, l5}) = 1, then we may assume that l1 �= 0 and that l2, l3,
l4, l5 are zero. We would get a commutative diagram

5O(−2)
ϕ O(−1) ⊕O F 0

O(−2)
l1 O(−1) OH (−1) 0

showing that F maps surjectively to OH (−1). This is absurd because
dim(supp(F )) = 1. Likewise, if dim(span{l1, l2, l3, l4, l5}) = 2, then F would
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have a quotient sheaf of the form OL(−1), in violation of semistability. We con-
clude that F has resolution (17).

Conversely, we assume that F has resolution (17), and we must show that
F is semistable. At every point P ∈ P3, we have hdP (F ) ≤ 2, and hence
depthP (F ) ≥ 1. From Grothendieck’s criterion we deduce that H0{P }(F ) = 0, that
is, F has no sections supported on {P }. Thus, F has no zero-dimensional tor-
sion. Assume that F had a destabilizing subsheaf E. We may assume that E is
semistable. Since h0(E) ≤ h0(F ) = 1, the Hilbert polynomial of E may be one of
the following: m + 1, 2m + 1, 3m + 1. In the first case, E � OL, and its standard
resolution fits into a commutative diagram

0 O(−2)

γ

2O(−1)

β

O
α

E 0

0 3O(−3) 5O(−2) O(−1) ⊕O F 0

Since α �= 0, we have Ker(α) = 0, and hence Ker(γ ) � Ker(β) = 2O(−1). This
is absurd. In the second case, E is the structure sheaf of a conic curve, and its
standard resolution fits into a commutative diagram

0 O(−3)

γ

O(−2) ⊕O(−1)

β

O
α

E 0

0 3O(−3) 5O(−2) O(−1) ⊕O F 0

Since α �= 0, we have Ker(γ ) � Ker(β). It follows that O(−1) is a subsheaf
of Ker(γ ). This is absurd. Finally, assume that PE(m) = 3m + 1. The quotient
G = F/E has no zero-dimensional torsion, and PG(m) = m. It follows that G �
OL(−1). We have a commutative diagram

0 3O(−3)

γ

5O(−2)
ϕ

β

O(−1) ⊕O

α

F 0

0 O(−3) 2O(−2) O(−1) G 0

From the commutativity of the middle square we see that

ϕ ∼
[
� � 0 0 0
� � � � �

]
.

This contradicts our hypothesis. We conclude that there are no destabilising sub-
sheaves E ⊂ F .

(ii) We next examine the case where h0(F ⊗ �1(1)) = 1 and h0(F ) = 1.
Since ϕ5 is injective, we see that q = 0 or 1. If q = 1, then ϕ6 would be
generically zero, hence ϕ6 = 0, and hence Ker(ϕ6)/Im(ϕ5) � OH (−1). Recall
that ϕ7 : Ker(ϕ1) → Ker(ϕ6)/Im(ϕ5) is an isomorphism. It would follow that
OH (−1) is a subsheaf of 3O(−3). This is absurd. Thus, q = 0, and we have a
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resolution

0 → 3O(−3) → 5O(−2) ⊕O(−1)
ϕ−→ 2O(−1) ⊕O → F → 0.

If ϕ11 were equivalent to a morphism of the form[
� � 0 0 0
� � � � �

]
,

then F would have a quotient sheaf of the form OH (−1) or of the form OL(−1).
This, as we saw before, yields a contradiction. If ϕ were equivalent to a morphism
of the form ⎡⎣� � � � 0 0

� � � � 0 0
� � � � q l

⎤⎦ ,

then we would have a commutative diagram

O(−2) ⊕O(−1)
[q l] O OC 0

5O(−2) ⊕O(−1)
ϕ

2O(−1) ⊕O F 0

in which C is the conic curve given by the equations q = 0, l = 0. Both OC and
F are stable with p(OC) = 1/2 > p(F ), and hence Hom(OC,F ) = 0. Thus, the
map O → F is zero. This, as we saw before, yields a contradiction. We conclude
that F has resolution (18).

Conversely, if F has resolution (18), then, by arguments analogous to the ar-
guments in the case of resolution (17), we can show that F is semistable.

(iii) Finally, we consider the case where h0(F ) = 2. Then p ≥ 3, and resolution
(16) takes the form

0 → 3O(−3) ⊕ qO(−2)
ψ−→ (q + 5)O(−2) ⊕ pO(−1)

ϕ−→ �1 ⊕ (p − 3)O(−1) ⊕ 2O → F → 0.

The morphism ϕ32 : pO(−1) → 2O cannot be equivalent to a morphism repre-
sented by a matrix of the form[

� · · · � 0 0
� · · · � l1 l2

]
;

otherwise, we would have a commutative diagram

2O(−1)
[l1 l2] O OL 0

(q + 5)O(−2) ⊕ pO(−1) �1 ⊕ (p − 3)O(−1) ⊕ 2O F 0

But Hom(OL,F ) = 0, and hence the morphism 2O → F is not injective. On
the other hand, H0(2O) → H0(F ) is injective because H0(Coker(ψ)) = 0. This
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yields a contradiction. Thus, p ≤ 5. Denote E = Coker(ϕ32). Assume first that
p = 5. We may write

ϕ32 =
[
X Y Z W 0
0 l1 l2 l3 l4

]
.

If X and l4 are linearly independent, then E is supported on the line L given by
the equations X = 0, l4 = 0. Thus,

E/T 0(E) � OL(d1) ⊕ · · · ⊕OL(dn).

Since F is stable, Hom(OL(d),F ) = 0 if d ≥ 0. Thus, H0(E) → H0(F ) is the
zero morphism, and hence H0(2O) → H0(F ) is also the zero morphism. This is
a contradiction. We have reduced to the case where

ϕ32 =
[
X Y Z W 0
0 l1 l2 l3 X

]
,

where l1, l2, l3 are linearly independent one-forms in the variables Y , Z, W . Note
that [

Y Z W

l1 l2 l3

]
�

[
0 � �

� � �

]
;

hence, the maximal minors of this matrix

q1 =
∣∣∣∣Z W

l2 l3

∣∣∣∣ , q2 =
∣∣∣∣Y W

l1 l3

∣∣∣∣ , q3 =
∣∣∣∣Y Z

l1 l2

∣∣∣∣
are linearly independent and have no common factor. It follows easily that there
is an exact sequence

0 → O(−4)
β−→O(−3) ⊕ 3O(−2)

α−→ 5O(−1)
ϕ32−−→ 2O → E → 0,

where

α =

⎡⎢⎢⎢⎢⎣
0 −Y −Z −W

q1 X 0 0
−q2 0 X 0
q3 0 0 X

0 −l1 −l2 −l3

⎤⎥⎥⎥⎥⎦ , β = [−X q1 −q2 q3
]
.

From this we get PE = 3, hence Hom(E,F ) = 0, and hence 2OL → F is the zero
morphism. This, as we saw before, yields a contradiction.

Assume now that p = 4. We examine first the case where

ϕ32 ∼
[
X Y Z 0
0 l1 l2 l3

]
.

If X and l3 are linearly independent, then E/T 0(E) is supported on a line, and
we get a contradiction as before. Thus, we may write

ϕ32 =
[
X Y Z 0
0 l1 l2 X

]
,
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where l1 and l2 are linear forms in the variables Y , Z, W . It is easy to see that
there is an exact sequence

0 → 2O(−2)
α−→ 4O(−1)

ϕ32−−→ 2O → E → 0,

where

α =

⎡⎢⎢⎣
−Y −Z

X 0
0 X

−l1 −l2

⎤⎥⎥⎦ .

We have that PE(m) = 2m + 2 and E has no zero-dimensional torsion. From the
semistability of F we see that the morphism E → F is zero or it factors through
a subsheaf F ′ ⊂ F with PF ′(m) = m − k, k ≥ 0. Thus, H0(F ′) = 0, so, at any
rate, H0(E) → H0(F ) is the zero map. It follows that the map H0(2O) → H0(F )

is zero, which yields a contradiction.
Assume next that

ϕ32 =
[
l11 l12 l13 l14
l21 l22 l23 l24

]
�

[
� � � 0
0 � � �

]
.

Then we may assume that

ϕ′ =
[
l11 l12 l13
l21 l22 l23

]
�

[
0 � �

� � �

]
.

Note that the maximal minors of ϕ′ are linearly independent and have no common
factor. According to [12] and [23], the sheaf E′ = Coker(ϕ′) gives a point in
MP3(3m + 2). Note that E is a quotient sheaf of E′. Since Hom(E′,F ) = 0, it
follows that Hom(E,F ) = 0, and hence 2O → F is the zero morphism. We have
reached again a contradiction.

Thus far, we have proved that p = 3. Resolution (16) takes the form

0 → 3O(−3) ⊕ qO(−2)
ψ−→ (q + 5)O(−2) ⊕ 3O(−1)

ϕ−→ �1 ⊕ 2O → F → 0.

The morphism ϕ22 : 3O(−1) → 2O has linearly independent maximal minors.
We claim that these maximal minors have a common linear factor. If this were
not the case, then, as mentioned before, Coker(ϕ22) would give a point in
MP3(3m + 2), and we would reach the contradictory conclusion that 2O → F

is the zero morphism. It is clear now that Ker(ϕ22) � O(−2). The isomorphism
ϕ7 : Ker(ϕ1) → Ker(ϕ22)/Im(ϕ5) shows that q = 1. Resolving �1 in the previ-
ous sequence gives the resolution

0 → O(−4) ⊕ 3O(−3) ⊕O(−2)
ψ−→ 4O(−3) ⊕ 6O(−2) ⊕ 3O(−1)

ϕ−→ 6O(−2) ⊕ 2O → F → 0,

ψ =
⎡⎣ψ11 ψ12 0

0 ψ22 0
0 ψ32 ψ33

⎤⎦ , ϕ =
[
ϕ11 ϕ12 0
0 ϕ22 ϕ23

]
,
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ψ11 =

⎡⎢⎢⎣
X

Y

Z

W

⎤⎥⎥⎦ , ψ33 =
⎡⎣ l1

−l2
l3

⎤⎦ , ϕ23 =
[
l11 l12 l13
l21 l22 l23

]
,

where

ul1 =
∣∣∣∣ l12 l13
l22 l23

∣∣∣∣ , ul2 =
∣∣∣∣ l11 l13
l21 l23

∣∣∣∣ , ul3 =
∣∣∣∣ l11 l12
l21 l22

∣∣∣∣
for some u ∈ V ∗. We claim that rank(ψ12) = 3. To see this, we dualize the last
exact sequence. According to [23, Lemma 3], we have the exact sequence

0 → 2O(−4) ⊕ 6O(−2)
ϕT

−→ 3O(−3) ⊕ 6O(−2) ⊕ 4O(−1)

ψT

−→ O(−2) ⊕ 3O(−1) ⊕O → F D → 0.

According to [23], F D gives a point in MP3(4m − 1). If ψ12 were zero, then we
would get a commutative diagram

4O(−1)
ψT

11 O 0

3O(−3) ⊕ 6O(−2) ⊕ 4O(−1)
ψT

O(−2) ⊕ 3O(−1) ⊕O F D 0

showing that the morphism O → F D is zero. But the map H0(O) → H0(F D)

is injective because H0(Coker(ϕT)) = 0. If rank(ψ12) = 1, then the map O →
F D would factor through the structure sheaf of a point, so it would be zero. If
rank(ψ12) = 2, then the map O → F D would factor through the structure sheaf
OL of a line, so it would be zero because Hom(OL,F D) = 0. We reach again
contradictions. This proves the claim.

Canceling 3O(−3), we get the resolution

0 → O(−4) ⊕O(−2) → O(−3) ⊕ 6O(−2) ⊕ 3O(−1)
ϕ−→ 6O(−2) ⊕ 2O → F → 0.

We have rank(ϕ12) = 6 since otherwise F would map surjectively to OH (−2) for
a plane H ⊂ P3. This is clearly impossible. Canceling 6O(−2), we finally get the
resolution

0 →O(−4) ⊕O(−2)
ψ−→ O(−3) ⊕ 3O(−1)

ϕ−→ 2O → F → 0

with

ψ =

⎡⎢⎢⎣
l 0
f1 l1
f2 −l2
f3 l3

⎤⎥⎥⎦ , ϕ =
[
g1 l11 l12 l13
g2 l21 l22 l23

]
.

The sheaf E = Coker(ϕ12 : 3O(−1) → 2O) is supported on H ∪ {P }, where H

is the plane given by the equation u = 0, and P is the point given by the ideal
〈l1, l2, l3〉. Since F is a quotient sheaf of E and since F has no zero-dimensional
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torsion, we see that supp(F ) ⊂ H . Applying the snake lemma to the commutative
diagram in which the middle row is the dual of the last exact sequence

0 0

O(−1)
l O OH ′ 0

0 2O(−4)
ϕT

3O(−3) ⊕O(−1)
ψT

O(−2) ⊕O F D 0

3O(−3)
[l1 −l2 l3] O(−2) CP 0

0 0

we get the exact sequence

OH ′ → F D → CP → 0.

Since F D has no zero-dimensional torsion, we see that P ∈ H ′, that is, l ∈
span{l1, l2, l3}. Moreover, supp(F D) ⊂ H ′, and hence also supp(F ) ⊂ H ′. It fol-
lows that H = H ′ since otherwise F would be supported on a line, yet a vector
bundle of rank greater than one on P1 is not stable. Thus, we may assume that
u = l, and we may write

ψ =

⎡⎢⎢⎣
l 0
f1 l

f2 −l2
f3 −l3

⎤⎥⎥⎦ , ϕ =
[
g1 l2 l 0
g2 l3 0 l

]
.

From the relations

g1l + l2f1 + lf2 = 0, g2l + l3f1 + lf3 = 0

we see that f1 is divisible by l. Performing column operations on ψ , we may
assume that f1 = 0. Thus, g1 = −f2, g2 = −f3. We have obtained resolution
(19).

Conversely, given resolution (19), we also have resolution (20), and hence, by
[11, Thm. 3.2.1], F is semistable. �

Remark 6.2. The general sheaves in R and E have the same resolution of the
form (17). The general sheaves in P and the sheaves in the wall-crossing have
resolution (18). The stable sheaves F with h0(F ) = 2 have resolution (19).
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