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Motivic Zeta Function via Dlt Modification

Chenyang Xu

Abstract. Given a smooth variety X and a regular function f on it, by
considering its dlt modification, we define the dlt motivic zeta function
Zdlt

mot(s) which does not depend on the choice of the dlt modification.

1. Introduction

Let k be a field of characteristic 0. Kontsevich invented the concept of motivic
integration, which upgrades the p-adic integration with the value in a modification
of the Grothendieck ring K0(Vark). One main application of motivic integration
is to the definition and study of the motivic zeta function (see [DL98]), which is
a corresponding upgrade of Igusa’s p-adic zeta function. More precisely, let X

be a smooth k-variety of pure dimension, and let D = V (f ) be the zero divisor
for a k-morphism to the affine line. We define the (naive) motivic zeta function
Zmot(f, s) (or abbreviated as Zmot(s)) of (X,D) by

Zmot(s) =
∫
L(X)

L−(ordt D)s ∈ Mk[[L−s]].
Here L(X) is the arc space of X, ordt (D) is the function L(X) → N ∪ {∞}
associated to the vanishing order of the arc along the divisor D, and Mk =
K0(Vark)(L−1) where L = [A1

k].
In [DL98], an explicit formula for the motivic zeta function, using a log reso-

lution of (X,D) is given as follows. Let h : Y → (X,D) be a log resolution that
is an isomorphism over X \ D. Denote by Ei (i ∈ I ) the irreducible components
of the divisor E = h−1(D), and by (Ni, vi) the corresponding pair

(multEi
(h∗D),a(Ei,X) + 1),

where a(Ei,X) is the discrepancy. For any nonempty subset J of I , we put EJ =⋂
i∈J Ei and E0

J = EJ \ ⋃
i /∈J Ei . We denote by d the dimension of X. With this

notation, we have

Zmot(s) = L−d
∑
J⊂I

[E0
J ]

∏
i∈J

(L− 1)L−Nis−vi

1 −L−Nis−vi
∈ Mk[[L−s]].

It is clear that the candidates of the poles are of the form s = −vi/Ni . (We note
that Mk is not a domain, so for the precise meaning of a pole, see Remark 2.1.)
However, many of them will cancel out. Thus, determining the poles is a challeng-
ing problem. In fact, the famous monodromy conjecture predicts that any pole
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s of the motivic zeta function is a root of the Berstein–Sato polynomial bs(f ).
A weaker version predicts that e2πis is an eigenvalue of the local monodromy
action on the cohomology of the Milnor fiber of f at some point x ∈ D = V (f ).

In this paper, by looking at the divisorial log terminal (dlt) modification of the
pair (X,Dred) we define an alternative zeta function with coefficients in a finite
extension of Mk . We recall that a dlt modification is an (often nonunique) partial
resolution (Xdlt,Ddlt) → (X,D), which is introduced in the minimal model pro-
gram (MMP) theory, and turns out to be very useful in the study of singularities
of pairs.

In fact, for a log canonical pair (X,�), an effective Q-divisor M on X and
any dlt pair (Xdlt,Ddlt), which admits a birational morphism g : Xdlt → X, we
will define an associated motivic zeta function. More precisely, we consider the
stratification of (Xdlt,Ddlt) by its log canonical centers and write �Ddlt	 = ∑

Ei

(i ∈ I ) for the sum of reduced divisors. For any J ⊂ I , we can similarly define
E0

J = ⋂
j∈J Ej \ (

⋃
i /∈J Ei) as the union of open strata and write

(KXdlt + Ddlt)|E0
J

= KE0
J

+ D0
J .

In particular, we know that (E0
J ,D0

J ) is a disjoint union of klt pairs. Let Ni =
ordEi

(g∗M), and let vi be the log discrepancy a(Ei,X,�)+ 1 of Ei with respect
to (X,�). By our assumption,

(Ni, vi) ∈Q≥0 ×Q≥0 for any i.

We assume that
(Ni, vi) �= (0,0)

for any divisor Ei . Denote by r the least common multiple of the Cartier indices of
(X,�) and M , that is, r is the minimal positive integer such that both r(KX +�)

and rM are Cartier.

Definition 1.1. We define the dlt motivic zeta function corresponding to the
given data by

Zdlt
mot(X

dlt,Ddlt,M,KX + �,s)

:= L−d
∑
J⊂I

Est(E
0
J ,D0

J )
∏
i∈J

(L− 1)L−Nis−vi

1 −L−Nis−vi
∈ Mr

k[[L−s]],

where Mr
k is the finite extension of Mk obtained by adding L1/r , and Est(E

0
J ,D0

J )

is the stringy motive of the pair (E0
J ,D0

J ) (see [Bat99; Vey03]).

Since we usually fix M and (X,�) (but we may change (Xdlt,Ddlt)), we abuse
notation and write this zeta function as Zdlt

mot(X
dlt,Ddlt, s). It has the usual Euler

number specialization

Zdlt
top(X

dlt,Ddlt, s) :=
∑
J⊂I

χst(E
0
J ,D0

J )
∏
i∈J

1

Nis + vi

∈Q(s).

Our main theorem is the following.
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Theorem 1.2. For a fixed M and (X,�) as before, if (Xdlt
1 ,Ddlt

1 ) and (Xdlt
2 ,Ddlt

2 )

are crepant birational equivalent dlt pairs (see (1.4)), we have

Zdlt
mot(X

dlt
1 ,Ddlt

1 , s) = Zdlt
mot(X

dlt
2 ,Ddlt

2 , s).

In particular, the theorem says that (Ni, vi) �= (0,0) for all i ∈ I when we consider
the components of Ddlt

1 if and only if the same holds for the components of Ddlt
2 .

Suppose now that f is a regular function on a smooth variety X. If we
denote by g : (Xdlt,Ddlt) → X a dlt modification of (X, (f = 0)red), � = 0,
M = (f = 0) and define the dlt motivic zeta function of f by

Zdlt
mot(f, s) := Zdlt

mot(X
dlt,Ddlt,M,KX, s),

then we get an immediate corollary.

Corollary 1.3. The dlt motivic zeta function Zdlt
mot(f, s) does not depend on the

choice of dlt modification (Xdlt,Ddlt).

We note that since different dlt modifications are crepant birationally equivalent
to each other, they can be used to obtain useful information of singularities. For
instance, it is proved in [dFKX12] that dlt modifications can be used to define a
finer topological invariant than the dual complex of a singularity. Our note is also
motivated by this idea.

The paper is organized as follows. We prove Theorem 1.2 by studying the
stratification provided by lc centers (see Definition 2.3) and compare two different
ones in Section 3.1. This is inspired by the work in [dFKX12]. In Section 3.2, we
point out a generalization of Batyrev’s stringy Euler number for nonstrictly log
canonical singularities. In Section 3.3, we also discuss an analogous definition in
the case of degenerations of Calabi–Yau manifolds, for which the original global
motivic zeta function is studied in [HN11; HN12]. Finally, in Section 4, we pose
a few questions that could be interesting for further study.

Convention 1.4. We refer to [KM98] for the definitions of the basic notions
used in birational geometry. Two pairs (Xi,�i) (i = 1,2) are called crepant bi-
rationally equivalent if there are birational proper morphisms fi : Y → Xi such
that

f ∗
1 (KX1 + �1) = f ∗

2 (KX2 + �2).

2. Preliminaries

In this section, we discuss some background.

2.1. Motivic Zeta Function

The motivic zeta function is the motivic upgrade of Igusa’s p-adic zeta function.
It was first introduced in [DL98] using the technique of motivic integration (see
[DL99; DL98]). Here we briefly recall its definition, for more details, see [DL99,
Paragraph 2.1].
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We denote by Mk the ring K0(Vark)[L−1], where K0(Vark) is the Grothen-
dieck ring of varieties over k, and L is the Lefschetz motive. For a smooth variety
X of pure dimension d and a regular function f : X → A1, let Ln(X) be the n-
jet space of X, and fn the map on n-jet spaces induced by f . The motivic zeta
function of f is then defined as

Z(s) =
∑
n≥0

[Xn]L−nd−ns ∈ Mk[[L−s]],

where Xn := {γ ∈ Ln(X) | ordt fn(γ ) = n} for n ∈ Z≥0.
As we mentioned in the introduction, an explicit formula for the motivic zeta

function can be given in terms of a log resolution of (X,D) as follows. Fix a
log resolution h : Y → (X,D) that is an isomorphism over X \ D. Denote by Ei

(i ∈ I ) the irreducible components of the divisor E = h−1(D), and by (Ni, vi) the
corresponding pair (multEi

(h∗D),a(Ei,X) + 1), where a(Ei,X) is the discrep-
ancy of Ei with respect to X. For any subset J of I , we put EJ = ⋂

i∈J Ei and
E0

J = EJ \ ⋃
i /∈J Ei . We denote by d the dimension of X. Then

Zmot(s) = L−d
∑
J⊂I

[E0
J ]

∏ (L− 1)L−Nis−vi

1 −L−Nis−vi
∈ Mk[[L−s]].

Remark 2.1. Since the localized Grothendieck ring Mk is not a domain, we
should specify what is meant by a pole of a rational function over Mk . The defi-
nition we use is the following: if Z(L−s) is an element of

Mk

[
L−s ,

1

1 −La−bs

]
(a,b)∈Z×Z>0

⊂ Mk[[L−s]],

s0 is a rational number, and m is a nonnegative integer, then we say that Z(L−s)

has a pole at s0 of order at most m if there is a set S consisting of multisets in
Z × Z>0 such that each element of S contains at most m elements (a, b) such
that a/b = s0 and Z(L−s) belongs to the sub-Mk[L−s]-module of Mk[[L−s]]
generated by {

1∏
(a,b)∈S(1 −La−bs)

∣∣∣ S ∈ S
}
.

The same remark applies to Me
k .

Another application of motivic integration was to the definition of the stringy
motive Est(X,D) for a klt pair (X,D) (see [Bat99; Vey03]).

Definition 2.2. For every klt pair (X,D), let Y → (X,D) be a log resolution,
and let {Ei | i ∈ I } be the set consisting of exceptional divisors and birational
transforms of the components of D. If for every J ⊂ I , we define E0

J as before,
we then associate with (X,D) the object

Est(X,D) :=
∑
J⊂I

[E0
J ]

∏
i∈J

(1 −L)L−ai

L−ai − 1
,
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where 0 < ai = a(Ei,X,D)+ 1. This object lives in a finite extension of M̂k ob-
tained by adding L1/r , where r is the Cartier index of KX + D, and M̂k denotes
Kontsevich’s completed Grothendieck ring with respect to the decreasing filtra-
tion (Fm)m∈N of Mk , where Fm is the subgroup of M generated by the elements
[S]/Li with S an algebraic variety such that dim(S)− i ≤ −m. We call Est(X,D)

the stringy motive of (X,D).

Obviously, if (Xi,Di) (i = 1,2) are crepant birationally equivalent klt pairs, then
we have

Est(X1,D1) = Est(X2,D2).

2.2. Dlt Pairs

For the reader’s convenience, we give a short review of dlt singularities. For more
background, see [KM98; Kol13].

Definition 2.3 (Dlt singularity and stratification). A pair (X,D), with X a nor-
mal variety X and D a Q-divisor D with coefficients belonging to [0,1], is called
dlt if KX + D is Q-Cartier and if there is an open subset U ⊂ X such that for any
divisorial valuation v with center contained in X \ U , we have the discrepancy
a(v,X,D) > −1, and on U , all coefficients of D|U are equal to 1, and the pair
(U,D|U) has simple normal crossings.

Given a dlt pair (X,D), let us write �D	 = E = ∑
i∈I Ei . Then we know

that for any J ⊂ I , the intersection EJ = ⋂
i∈J Ei is normal, and we call its

components log canonical (lc) centers. If W is a component of

E0
J = EJ

∖ ⋃
i /∈J

Ei and (KX + D)|W = KW + DW,

then (W,DW) is a klt pair. Furthermore, if we denote by W̄ the closure and write
(KX + D)|W̄ = KW̄ + DW̄ , then (W̄ ,DW̄ ) is dlt. We call the stratification of X

by components W of E0
J the lc stratification. We call a component W of E0

J an
open stratum or simply a stratum.

We can define the dual complex DR(X,D) = DR(E) as in [dFKX12, Def. 8].
This captures the combinatorial intersection information of closures of the strata.

Obviously, the notion of a dlt pair is a generalization of a simple normal crossing
(snc) pair. In fact, it was first defined precisely to characterize the kind of singular-
ities obtained after running MMP for an snc pair. The log canonical stratification
is then a natural analogue of the snc stratification.

Definition 2.4 (Dlt modification). Let X be a normal variety, and D a Q-divisor
with coefficients in [0,1]. We say that gdlt : Xdlt → (X,D) is a dlt modification
if the following holds: if Ddlt is the sum of the divisorial part of the exceptional
locus of gdlt and of the birational transform of D, then (Xdlt,Ddlt) is dlt, and
KXdlt + Ddlt is nef over X.
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For a pair (X,D), a dlt modification can be constructed by running a relative
MMP for a log resolution, where the boundary is chosen to be the sum of the ex-
ceptional divisor and of the birational transform D. When KX + D is Q-Cartier,
a dlt modification always exists by [OX12]. It is not unique in general, but we
know that two dlt modifications (Xdlt

i ,Ddlt
i ) (i = 1,2) of (X,D) are crepant bira-

tionally equivalent to each other, following the proof of [KM98, Theorem 3.52]
(see also [dFKX12, Theorem 15]).

3. Dlt Motivic Zeta Functions

3.1. Proof of Theorem 1.2

Now we aim to prove Theorem 1.2, which says that the dlt motivic zeta function
does not depend on the choice of dlt modification Xdlt.

Proposition 3.1. Let (X1,D1) and (X2,D2) be two crepant birationally equiv-
alent dlt pairs. If the birational map X1 ��� X2 gives an isomorphism between
open subsets that contain all the generic points of the strata, then

Zdlt
mot(X1,D1, s) = Zdlt

mot(X2,D2, s).

Proof. By our assumption, there is a one-to-one correspondence between the
strata of (X1,D1) and (X2,D2). Since we know that (Xi,Di) are crepant bi-
rationally equivalent to each other, this implies that for each stratum W1 that is a
component of (E0

J )1, the correspondence gives a unique stratum W2 such that if
we write

(KXi
+ Di)|Wi

= KWi
+ DWi

,

then (Wi,DWi
) are crepant birationally equivalent. In particular, they have the

same stringy motive. Therefore the corresponding summands in the expressions
of Zdlt(Xi,�i) are equal. �

Proposition 3.2. Let g : X1 → X2 be a morphism of dlt modifications of a log
canonical pair (X,D) with an effective Q-divisor M . Let U ⊂ X2 be an open sub-
set containing all lc centers of (X2,D2) such that (U,D2|U) has simple normal
crossings. If (V = g−1(U),D1|V ) → (U,D2|U) is the blow up of a stratum, then

Zdlt
mot(X1,D1, s) = Zdlt

mot(X2,D2, s).

Proof. Let us assume that V → U is the blow up of U along a connected compo-
nent of DU

J = DJ ∩ U for some J . Let J ′ ⊃ J and G ⊂ D0
J ′ be an open stratum

of (X2,D2); thus,

GU := G ∩ U ⊂ DU
J ′ := D0

J ′ ∩ U ⊂ DU
J .

Let W be the maximal stratum of X1 that is over G. Over a Zariski neighborhood
G∗ of the generic point of G,

W̄ ∩ g−1(G∗) = G∗ × Pm = Pm
G∗ ,
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where m = |J ′| − 1. Furthermore, the birational transforms of the divisors (D1)j

(i ∈ J ′) intersecting with W̄ ∩ g−1(G∗) consist of m + 1 coordinate hyperplane
sections (xj = 0) on Pm

G∗ .
Write (KX2 + D2)|W̄ = KW̄ + DW̄ and (KX1 + D1)|G = KG + DG. We claim

that (W̄ ,DW̄ ) is crepant birationally equivalent to

(G,DG) ×
(
Pm,T :=

m∑
i=1

(xi = 0)

)
:= (G × Pm,DG × Pm + G × T ).

In fact, if we take p : W ′ → W̄ and q : W ′ → G×Pm to be a common resolution,
then we know that

p∗(KW̄ + DW̄ ) − q∗(KG×Pm + G × T )

is a vertical divisor, and hence it is the pull back of DG.
In order to compute Zdlt

mot(X2,D2, s)−Zdlt
mot(X1,D1, s), since the product of a

log resolution of (G,DG) with (Pm,T ) also gives a log resolution of (G,DG) ×
(Pm,T ), we can compare the difference on each piece and hence reduce to the
case where G is a point.

Write J ′ = J ∪ J1, where J and J1 are disjoint. In Zdlt
mot(X1,D1, s), the con-

tribution is ∏
j∈J

(L− 1)L−Nis−vi

1 −L−Nis−vi
·
∏
j∈J1

(L− 1)L−Nis−vi

1 −L−Nis−vi
.

If E0 is the exceptional divisor of X2 → X1, then its multiplicity along M is N0 =∑
i∈J Ni , and by the log pull-back formula we have v0 = ∑

i∈J vi . Therefore, in
Zdlt

mot(X2,D2, s), the contribution is

∑
K⊂J,K �=J

(L− 1)|J |−|K|−1 (L− 1)L−N0s−v0

1 −L−N0s−v0
·
∏
j∈K

(L− 1)L−Nis−vi

1 −L−Nis−vi

·
∏
j∈J1

(L− 1)L−Nis−vi

1 −L−Nis−vi
.

The fact that the two contributions are the same follows from the simple equal-
ity ∏

i∈J

1

ti − 1
= 1∏

i∈J ti − 1
·

∑
K⊂J,K �=J

∏
i∈K

1

ti − 1
.

�

Now we can prove Theorem 1.2.

Proof of (1.2). We first take a log resolution X̃j of (Xdlt
j ,Ddlt

j ) (j = 1 or 2). Fur-
thermore, by the weak factorization theorem (see [AKMW02]) we can connect
X̃1 and X̃2 by

X̃1 = Y1 ��� · · · ��� Ym = X̃2

such that

(1) each (Yi,EYi
) admits a morphism to either X̃1 or X̃2;
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(2) if Yi admits a morphism to X̃j (j = 1 or 2), then (Yi,EYi
) is a log resolution

of (Xdlt
j ,Ddlt

j ), where EYi
denotes the sum of the reduced exceptional divisor

over Xdlt
j and of the birational transform of Ddlt

j , and
(3) Yi ��� Yi+1 is either a blow up of a smooth irreducible center Gi having

simple normal crossing with EYi
or the inverse of such a blow up.

Assume that ψi : Yi+1 → Yi is a blow up; otherwise, we just reverse the arrow.
Running a relative MMP of KYi

+ EYi
over Xdlt

j following [BCHM10], we
obtain a dlt modification (Y dlt

i ,�dlt
i ) → (Xdlt

j ,Ddlt
j ). If Yi ��� Y dlt

i is not an iso-
morphism around Gi , then we know that for the exceptional divisor vi of ψi , we
have

a(vi, Y
dlt
i ,�dlt

i ) > −1.

Thus, if we run MMP of (Yi+1,EYi+1) over Xdlt
j , we obtain a dlt modification Y dlt

i+1
that is isomorphic to Y dlt

i near the generic points of all the lc centers. Therefore,
we can apply Proposition 3.1 to conclude that they give the same dlt motivic zeta
function, that is,

Zdlt
mot(Y

dlt
i+1,�

dlt
i+1, s) = Zdlt

mot(Y
dlt
i ,�dlt

i , s).

If Yi ��� Y dlt
i is an isomorphism around Gi , then we can find an open sub-

set Ui ⊂ Y dlt
i such that if we take the blow up of Gi |Ui

, then we get an open
subset of Y dlt

i+1 that also meets all the lc centers of (Y dlt
i+1,�

dlt
i+1). By [dFKX12,

Lemma 36] we can extend Ui+1 → Ui to a dlt modification ((Y ′
i+1)

dlt, (�′
i+1)

dlt)

of (Y dlt
i ,�dlt

i ). Thus, we apply Proposition 3.2 for

((Y ′
i+1)

dlt, (�′
i+1)

dlt) → (Y dlt
i ,�dlt

i ) → (Xdlt
j ,Ddlt

j )

and conclude that

Zdlt
mot(Y

dlt
i ,�dlt

i , s) = Zdlt
mot((Y

′
i+1)

dlt, (�′
i+1)

dlt, s).

Since Y dlt
i+1 ��� (Y ′

i+1)
dlt is an isomorphism near the generic points of all the lc

centers, we again know that

Zdlt
mot(Y

dlt
i+1,�

dlt
i+1, s) = Zdlt

mot((Y
′
i+1)

dlt, (�′
i+1)

dlt, s). �

3.2. A Generalization of Batyrev’s Stringy Invariant

Let (X,D) be a log pair such that KX + D is Q-Cartier. We assume that (X,D)

does not have strictly lc singularities. Let gdlt : (Xdlt,Ddlt) → (X,D) be a dlt
modification. We write

KXdlt + Ddlt + M = (gdlt)∗(KX + D)

and M = ∑
i NiEi , where the sum is over all the exceptional divisors Ei of gdlt.

Then by our assumption that (X,D) does not have strictly log canonical singular-
ities we know that the coefficient Ni of M along a gdlt-exceptional component is
always positive.
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Definition–Proposition 3.3. We define the stringy motive for a d-dimensional
log pair (X,D) without strictly log canonical singularities to be

Est(X,D) = Ld · Zdlt
mot(X

dlt,Ddlt,M,KXdlt + Ddlt,1)

=
∑
J⊂I

Est(E
0
J ,D0

J )
∏
i∈J

(L− 1)L−Ni

1 −L−Ni
,

which lives in a finite extension M̂r
k of M̂k obtained by adding L1/r , where r is

the least common multiple of the Cartier index of (Xdlt,Ddlt) and Ni . Similarly,
we can define its Euler number

χst(X,D) =
∑
J⊂I

est(E
0
J ,D0

J )
∏
i∈J

1

Ni

,

where est(E
0
J ,D0

J ) is Batyrev’s stringy Euler number of a klt pair (see [Bat99;
Vey03]).

If (Xdlt
i ,Ddlt

i ) → (X,D) (i = 1,2) are two dlt modifications of (X,D) and
pi : Y → (Xdlt

i ,Ddlt
i ) is a common resolution, then

p∗
1(KXdlt

1
+ Ddlt

1 ) = p∗
2(KXdlt

2
+ Ddlt

2 ) and p∗
1M1 = p∗

2M2.

These are the main properties that were used in the proof of Theorem 1.2. More
precisely, by [dFKX12, Proposition 37] we know that we can find dlt modifica-
tions gi : (X̃dlt

i , D̃dlt
i ) → (Xdlt

i ,Ddlt
i ) such that X̃1 and X̃2 are isomorphic around

the generic points of all log canonical centers of (X̃dlt
1 , D̃dlt

1 ) and (X̃dlt
2 , D̃dlt

2 ). We
then have

Zdlt
mot(X

dlt
1 ,Ddlt

1 ,M1,KXdlt
1

+ Ddlt
1 ,1)

= Zdlt
mot(X̃

dlt
1 , D̃dlt

1 , g∗
1M1,KXdlt

1
+ Ddlt

1 ,1) (by Theorem 1.2)

= Zdlt
mot(X̃

dlt
2 , D̃dlt

2 , g∗
2M2,KXdlt

2
+ Ddlt

2 ,1) (by Proposition 3.1)

= Zdlt
mot(X

dlt
2 ,Ddlt

2 ,M2,KXdlt
2

+ Ddlt
2 ,1) (by Theorem 1.2).

Therefore, we conclude that the previous definition of stringy motive does not
depend on the choice of a dlt modification.

When (X,D) is log terminal, then Xdlt = X, and Est(X,D) is trivially equal to
Batyrev’s original definition in [Bat99].

Remark 3.4. In [Vey03, Formula 3.2.1], Veys also attempted to give a definition

ZV(s) ∈ Mr
k[[L−s]],

which aims to generalize Batyrev’s stringy motive by taking s = 1. The most gen-
eral category of singularities for which Veys can possibly define a stringy invariant
is also nonstrictly lc singularities. However, in Section 5 of [Vey03], a technical
difficulty is discussed. This comes up since there can be log discrepancy 0 val-
uations even if the singularity is not strictly lc. However, this difficulty does not
appear in our definition since we only consider dlt modifications.
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In general, our definition is different from ZV(1) since if we calculate every-
thing on a log resolution, then it is clear that ZV(1) takes a sum over more strata
than ours. The relationship between the two extensions is worthy of further inves-
tigation.

3.3. Global Setting for Degenerations of Calabi–Yau Varieties

In [HN11; HN12], a global version of motivic zeta function is introduced for a de-
generation of a smooth Calabi–Yau variety. A similar question to the monodromy
conjecture is then asked in this setting. We can introduce a dlt motivic zeta func-
tion in this global case, whose only pole is equal to the minimal weight.

We will use the following formula as the definition of the motivic zeta function.
For the original conceptual definition, we refer to [HN11; HN12].

Definition 3.5. Fix R to be a complete DVR. Let X/K be a Calabi–Yau pro-
jective smooth variety, that is, KX is trivial. Let X be an sncd projective model of
X over Spec(R), that is, X×Spec(R) Spec(K) = X, and (X, (X0)red) is snc, where
(X0)red = ∑

i∈I Ei is the special fiber. We fix a canonical form ω on X whose re-
striction on X gives the volume form of X. Write X0 = ∑

i∈I NiEi and let μi − 1
be the vanishing order of ω along Ei . We call μi/Ni the weight of Ei . Then the
minimal weight is mini{μi/Ni}, which, as we easily see, does not depend on the
choice of the model X.

For any J ⊂ I , let EJ = ⋂
i∈J Ei , and denote by π a uniformizing parameter

of R. Let NJ = gcd{Ni | i ∈ J }, and let Y be the normalization of

X×Spec(R) Spec(R[x])/(xNJ − π).

Then we denote by Ẽ0
J the preimage of E0

J under the morphism Y → X. We
know that Ẽ0

J → E0
J is an étale morphism (see [DL02, Paragraph 2.3], [NS07,

Sect. 4]).
With this notation, the motivic zeta function of (X,ω) is

ZX,ω(s) =
∑

∅�=J⊂I

(L− 1)|J |−1[Ẽ0
J ]

∏
i∈J

L−sNi−μj

1 −L−sNi−μi
.

We can similarly define the dlt motivic zeta function. A model Xdlt of X/K is a
minimal dlt model if (Xdlt, (Xdlt

0 )red) is dlt and KXdlt + (Xdlt
0 )red ∼Q 0. We note

that since KX ∼ 0, semi-upper-continuity implies that in fact we have

KXdlt + (Xdlt
0 )red ∼ 0.

It follows from the existence of resolutions of singularities and MMP (see
[BCHM10; HX13]) that such minimal dlt models exist; in fact, a minimal dlt
model can be obtained by running MMP on (X, (X0)red) from an sncd model X
of X/K . Given a minimal dlt model Xdlt, write

(Xdlt
0 )red =

∑
i∈I0

Ei and Xdlt
0 =

∑
i∈I0

NiEi.
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For any J ⊂ I0, let EJ = ⋂
i∈J Ej and E0

J = EJ \⋃
i /∈J Ei . Let Ẽ0

J be the preim-
age of E0

J by the morphism Y →Xdlt, where Y is the normalization of

Xdlt ×Spec(R) Spec(R[x])/(xNJ − π),

and NJ = gcd{Ni | i ∈ J }. We then write

(KXdlt + (Xdlt
0 )red)|Ẽ0

J
= (KY + (Y0)red)|Ẽ0

J
= K

Ẽ0
J

+ D̃0
J .

Since E0
J is an open stratum, we know that

(KXdlt + (Xdlt
0 )red)|E0

J
= KE0

J
+ D0

J

is a klt pair. Since the pull back of KE0
J

+ D0
J on Ẽ0

J is K
Ẽ0

J
+ D̃0

J , this implies

that (Ẽ0
J , D̃0

J ) is klt. Therefore, we can make the following definition.

Definition 3.6. The dlt motivic zeta function of (X,ω) is

Zdlt
X,ω(s) =

∑
∅�=J⊂I0

(L− 1)|J |−1Est(Ẽ
0
J , D̃0

J )
∏
i∈J

L−sNi−μi

1 −L−sNi−μi
,

where μi is the vanishing order of ω on Ei .

Although two minimal dlt models are crepant birational to each other, we cannot
directly apply Theorem 1.2 because in the definition we use Ẽ0

J instead of E0
J

itself. However, we can apply the argument in the proof of Theorem 1.2.
More precisely, let us assume that Xdlt

2 → Xdlt
1 is obtained by compactifying

the blow up of a stratum E0
J as in Proposition 3.2. Then for a fixed proper subset

K of J and another subset J1 ⊂ I that is disjoint with J , we consider the corre-
sponding stratum F̃ 0

K∪J1
on Xdlt

2 , which is over Ẽ0
J∪J1

on Xdlt
1 with the fiber being

an étale cover of G
|J |−|K|−1
m described in [NS07, Lemma 7.4], where we have

a = 1. Therefore, F̃ 0
K∪J1

is also a G
|J |−|K|−1
m -bundle over Ẽ0

J∪J1
by [NS07, 7.4].

Thus, the previous calculation in Proposition 3.2 still holds.

Theorem 3.7. Zdlt
X,ω(s) does not depend on the choice of minimal dlt models.

Remark 3.8. Since μj − 1 is the vanishing order of ω along Ei and

KXdlt + (Xdlt
0 )red ∼ 0,

we know that for every i ∈ I0, vi/Ni is equal to the minimal value among {vj /Nj |
j ∈ I }.

4. Questions

The discussion in the previous sections leaves open a few questions.
The first conceptually important one is to give an intrinsic construction of

Zdlt
mot(f, s).
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Question 4.1. Find a motivic integral definition of Zdlt
mot(f, s) without passing to

the dlt modification.

Secondly, it is natural to consider the poles of Zdlt
mot(f, s). In particular, we can

ask similar questions to the monodromy conjecture for Zdlt
mot(f, s):

Question 4.2. For a pole s of Zdlt
mot(f, s), we conjecture that the following is

true:

(weak) e2πis is an eigenvalue of the local monodromy action on the Milnor fiber
of f at some point x ∈ (f = 0),

(strong) s is a root of Berstein–Sato polynomial.

In general, the sets of poles of Zmot and Zdlt
mot could be different, as illustrated by

the following simple example.

Example 4.3. Consider a general degree d > 1 homogenous equation fd(x1, . . . ,

xn) = 0 and consider its zero locus D in An, which has a cone singularity at the
origin.

When d < n, (An,D) is plt, and the only pole of Zdlt
mot is −1. To calculate the

poles of Zmot(s), we take the log resolution by blowing up the origin. Then we
see that there is another pole − n

d
for Zmot(s).

When d ≥ n, the dlt modification and the log resolution are given by blowing
up the original point, and so for both functions, the poles are −1 and − n

d
.

In fact, if we denote a dlt modification by

gdlt : (Xdlt,Ddlt) → (X,Dred),

where D = (f = 0), then by the definition of the dlt modification we have

(gdlt)∗(KX + D) ≥ KXdlt + Ddlt.

Therefore, all pole candidates for Zdlt
mot(s) lie in the interval [−1,0]. A more pre-

cise question concerning the relation between the two zeta functions can be asked
as follows.

Question 4.4. Are the poles of the dlt motivic zeta function Zdlt
mot(f, s) always

poles of Zmot(f, s)?

We admit that we do not have much evidence for these questions.
We further provide an example of a four-variable function whose (regular)

motivic zeta function has a pole in [−1,0] that is not a pole of the dlt motivic zeta
function.

Example 4.5. We consider the polynomial

f = uN−2(v2 + w2 + x2) + vN + wN + xN + uN+2 ∈ k[u,v,w,x].
We denote by D the zero locus of f in X = A4, which has an isolated singularity
at the origin. Let Y1 → X be the blow up at the origin. We denote the exceptional
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divisor by E1 ∼= P3. The strict transform D1 of D on Y1 has a unique singular
point y1 that is an A1-singularity: on the blow-up chart with coordinates

(u, v′ = v/u,w′ = w/u,x′ = x/u),

the divisor D1 is defined by the equation

x′2 + v′2 + w′2 + (x′)N + (v′)N + (w′)N + u2 = 0,

and y1 is the point (0,0,0).
We claim that if N ≥ 4, then (Y1,D1 +E1) is a dlt modification of (A3,D). In

fact, we know that

(KY1 + D1 + E1)|E1 = KP3 + D′

is nef, where deg(D′) = N , and (Y1,D1 + E1) is dlt.
Let Y2 → Y1 be the blow up at y1 with the exceptional divisor E2, and de-

note by D2 and E′
1 the strict transforms of D1 and E1 on Y2, respectively. The

composed morphism h : Y2 → X is a log resolution for the pair (X,D). We have

h∗D = D2 + NE′
1 + (N + 2)E2 and KY2/A

3 = 3E′
1 + 6E2.

Thus, the possible poles along of D at D2, E′
1, and E2 are given by 1, 4/N , and

7/(N + 2), respectively.
Clearly, E2 ∼= P3, and E′

1 is isomorphic to the blow up of a point on P3. The
intersection of the divisors D1 and E1 on Y1 is a surface S, which is defined by
the equation

u = x′2 + v′2 + w′2 + (x′)N + (v′)N + (w′)N = 0

on the blow-up chart with coordinates (u, v′,w′, x′) as before. The surface S has
precisely one singularity at y1, which is of A1-type, so that D2 ∩E′

1 ∩E2 consists
of a conic curve, and

E′
1 ∩ E2 ∼= P2 and E2 ∩ D2 ∼= P1 × P1.

To make the result more transparent, we compute the topological specializa-
tions Ztop(f ; s) and Zdlt

top(f ; s) using the models Y2 and Y1, respectively. We first
obtain

Ztop(f, s) = χ(A3 \ D) + χ(D) − 1

s + 1
+ 5 − N3 + 4N2 − 6N

Ns + 4
+ −1

(N + 2)s + 7

+ N3 − 4N2 + 6N − 2

(s + 1)(Ns + 4)
+ 2

(s + 1)((N + 2)s + 7)

+ 1

(Ns + 4)((N + 2)s + 7)
+ 2

(s + 1)((N + 2)s + 7)(Ns + 4)
,

where we use the fact that χ(S) = N3 − 4N2 + 6N − 1. Therefore, if N > 5, then
the (regular) zeta function has three distinct poles − 4

N
, − 7

N+2 , and −1 contained

in [−1,0]. On the other hand, since E1 is the unique exceptional divisor of Y1/A
3,

the dlt zeta function Zdlt
top(f, s) only has poles at 4

N
and −1.
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We also note that in the global setting for a degeneration of Calabi–Yau varieties,
the only pole of Zdlt

mot(X, s) is the minimal weight s. It was shown in [HN12,
Theorem 6.7] that s is a pole of Zmot(X, s), and e−2πis is an eigenvalue of the
monodromy action on Hd(XK̄,Ql ) where d = dim(X).
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