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A Topological Characterization of the Underlying
Spaces of Complete R-Trees

Paul Fabel

Abstract. We prove that a topological space (P, τ ) admits a com-
patible metric d such that (P, d) is a complete R-tree if and only if
P is a topological R-tree (i.e. metrizable, locally path-connected, and
uniquely arcwise connected) and also locally interval compact. The
latter notion means that each point x ∈ P has a closed neighborhood
U such that U ∩α is compact for each closed half interval α ⊂ P . For
topological R-trees, the property “locally interval compact” is strictly
stronger than topological completeness.

1. Introduction

An R-tree (P, d) is a uniquely arcwise connected metric space such that for each
pair of points {x, y} ⊂ P , the arc ([x, y], d) ⊂ P from x to y is isometric to
the Euclidean segment [0, d(x, y)]. R-trees have received considerable attention
as objects of study in their own right, and R-trees also play a prominent role
in geometric group theory, notably in the study of group actions on spaces of
nonpositive curvature [1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 14; 15; 16; 17; 18; 20;
21; 22; 23; 24; 25; 26; 29; 30].

However, the following fundamental question has apparently escaped collec-
tive inquiry: Which topological spaces (P, τ ) underly the complete R-trees?

To answer this question, observe that open metric balls in the metric R-tree
(P, d) are path connected and hence (P, τ ) is metrizable, uniquely arcwise con-
nected, and locally path connected, that is, R-trees are topological R-trees. Thanks
to a result of John Mayer and Lex Oversteegen [27], the converse is also true:
each topological R-tree (P, τ ) is the underlying space of some R-tree (P, d).
(A preprint of the author contains an alternate shorter proof [13].)

For the metric R-tree (P, d) to be complete, it is of course necessary that (P, τ )

is topologically complete, but somewhat surprisingly, this is not sufficient. Exam-
ple 1, the planar subspace ([0,1]×{0})∪(

⋃∞
n=1{ 1

n
}×[0, 1

n
)), shows it is false that

a topologically complete topological R-tree (P, τ ) is necessarily the underlying
space of some complete R-tree (P, d).

As mentioned in the abstract, to strengthen topological completeness and en-
sure that the topological R-tree (P, τ ) is the underlying space of a complete met-
ric R-tree, it is precisely adequate to demand that (P, τ ) has the following extra
property:
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Definition 1. The space (P, τ ) is locally interval compact if for each x ∈ P ,
there exists an open set U ⊂ P such that x ∈ U and α ∩ U is compact for all
closed subspaces α ⊂ P such that α is homeomorphic to [0,1).

We also establish that a metric R-tree (P, d) is locally interval compact if and
only if (P, d) is open in its metric completion, and in turn such spaces precisely
underly complete R-trees. With the exception of the reference to [27], this paper
is self contained, and the main result is the following.

Theorem 1. Suppose (P, τ ) is a topological space. The following are equiva-
lent:

(1) There exists a compatible metric d such that (P, d) is a complete R-tree.
(2) There exists a compatible metric d such that (P, d) is an R-tree and such that

(P, d) is an open subspace of its metric completion (P, d).
(3) P is metrizable, locally path connected, uniquely arcwise connected, and lo-

cally interval compact.

2. Preliminaries, Examples, Remarks, and Lemmas

An arc is a single point or a space homeomorphic to [0,1]. A p-based topological
R-tree (P, τ,p,≤,ˆ) is a metrizable, uniquely arcwise connected, locally path
connected space with p ∈ P and [x, y] ⊂ P denoting the unique arc from x to y.
The space P enjoys both the associative binary operation ˆ such that [p,x ˆy] =
[p,x] ∩ [p,y] and the partial order ≤ such that y ≤ x iff y ∈ [p,x]. Notationally,
we may suppress ≤ and ˆ if it is understood that p is the basepoint, and τ can be
replaced by d or D if P is equipped with the particular metric d or D. A metric
space (P, d) is complete if each Cauchy sequence has a limit, and we remind the
reader that every metric space can be embedded as a dense subspace of a complete
metric space [28], uniquely up to isometry.

Example 1. Let P denote the planar subspace ([0,1] × {0}) ∪ (
⋃∞

n=1{ 1
n
} ×

[0, 1
n
)). Note that P is not the underlying space of a complete R-tree since the

half open intervals { 1
n
}× [0, 1

n
) would be forced to have infinite geometric length,

violating the topological fact that xn → 0 if xn ∈ { 1
n
} × [0, 1

n
). Note that P is a

Gδ subspace of the plane (the intersection of countably many open planar sets),
and hence P is topologically complete.

The following fact follows easily from the algebraic properties of (P,ˆ,≤).

Lemma 1. Suppose (P,p, τ ≤,ˆ) is a p-based topological R-tree and [p, z] ∩
[x, y] = ∅. Then x ˆz = y ˆz.

Proof. Note that a ˆb ≤ b since a ˆb ∈ [p,b] and a ≤ b ⇒ a ˆb = a since [p,a] ∩
[p,b] = [p,a] = [p,a ˆb]. Note {x ˆz, x ˆy} ⊂ [p,x] and x ˆz < x ˆy (since oth-
erwise we obtain the contradiction x ˆz ∈ [p, z] ∩ [x ˆy, x] ⊂ [p, z] ∩ [x, y]). By
a symmetric argument we conclude y ˆz < y ˆx. Thus, {x ˆz, y ˆz} ⊂ [p,x ˆy].
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Note that y ˆz ∈ [p,x] ∩ [p, z] and thus y ˆz ≤ x ˆz. By a symmetric argument,
x ˆz ≤ y ˆz, and thus x ˆz = y ˆz. �

The following lemma is also a consequence of the fact that the metric completion
of an R-tree is an R-tree [19; 8].

Lemma 2. Suppose (P, d,p,≤,ˆ) is an incomplete p-based R-tree with metric
completion (P, d,p,≤,ˆ). Suppose y ∈ ∂P = (P, d) \ P . There exists an order-
preserving isometric embedding h : [0, d(x, y)) → (P, d) such that h(0) = p and
y = limt→d(x,y) h(t). In particular, since the compactum h([0, d(x, y)]) is closed
in the metric space (P, d), h([0, d(x, y)) = P ∩ h([0, d(x, y)]) is a closed sub-
space of P .

Proof. Obtain a sequence zn ∈ P with d(zn, y) → 0. For each N ∈ {1,2,3, . . . },
obtain MN > N such that [p, zN ] ∩ [zm, zn] = ∅ if MN ≤ m ≤ n. Define
yN = zN ˆzMN

and note that by Lemma 1 yN = zN ˆzm ˆzn = zN ˆzm if MN ≤
m ≤ n. Note that yn → y and by construction there exists a subsequence yk1 <

yk2 . . . . Let h : [0, d(x, y)) → ⋃∞
k=1[p,ynk

] ⊂ P be the natural isometry mapping
[d(p,ykn), d(p, ykn+1)] onto [ykn, ykn+1] ⊂ P . By construction, h is continuously
extendable at d(p,y). �

The following lemma establishes that locally interval compact R-trees are open
subspaces of their metric completions.

Lemma 3. Suppose that (P, d,p) is a p-based incomplete R-tree and ∂P =
(P, d,p) \P is not a closed subspace of the metric completion (P, d,p). Then P

is not locally interval compact.

Proof. Obtain x ∈ P ∩ ∂P . Suppose ε > 0. Obtain y ∈ ∂P such that d(x, y) < ε.
Obtain by Lemma 2 an isometric embedding [0, d(p, y)] → P such that 0 �→ p,
d(p,y) �→ y, and [0, d(x, y)) is order isometric to a closed subspace α ⊂ P . Let
δ = ε − d(x, y). Obtain z ∈ α with d(z, y) < δ. Note that if z < w and w ∈ α,
then d(w,x) = d(w, z) + d(z, x) < (ε − d(x, y)) + d(x, y) < ε. Thus, [z, y) is
a closed subspace of P , [z, y) is homeomorphic to [0,1), [z, y) ⊂ B(x, ε), and
[z, y) is not compact. �

Remark 1. If (P, d,p) is a p-based R tree and α ⊂ P is homeomorphic to [0,1),
then (α, d) is isometric to a unique finite Euclidean half open interval [0,R) for
some R > 0 or the infinite ray [0,∞). If α is closed in P and (α, d) is isometric
to the finite interval [0,R), then the preimage of the sequence R − 1

n
shows that

(P, d,p) is incomplete.

The following easy lemma is used in the proof of Lemma 6.

Lemma 4. Suppose that (X,D) is a metric space and A ⊂ X and 2X denotes the
collection of compact subsets of X with the Hausdorff distance. Define L : 2X →
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[0,∞) as L(C) = inf(c,a)∈C×A D(c, a). Then L is continuous. If (P, d,p,≤,ˆ)
is an R-tree, then λ is continuous if λ : P → 2P is defined as λ(x) = [p,x].
Proof. By definition the Hausdorff distance H(C,B) [28] between compacta
{B,C} ⊂ X satisfies 0 ≤ H(B,C) < ε iff for each b ∈ B , there exists c ∈ C with
D(b, c) < ε and for each c ∈ C, there exists b ∈ B with D(b, c) < ε. If b ∈ B and
c ∈ C with D(b, c) < ε, then |L(C) − L(B)| < ε, and in particular L is continu-
ous. If {x, y} ⊂ P with d(x, y) < ε, then H([p,x], [p,y]) = d(x, y) < ε, and in
particular λ is continuous. �

The following lemma and its proof also appear in another preprint of the author
[13].

Lemma 5. Suppose that (P,p, τ,≤,ˆ) is a p-based topological R-tree. Suppose
that the continuous function l : P → [0,∞) satisfies x < y ⇒ l(x) < l(y). Define
d : P ×P → [0,∞) as d(x, y) = l(x)+ l(y)−2l(x ˆy). Then d is a metric on the
set P , inclusion κ : (P, τ ) → (P, d) is a continuous bijection, each arc κ[x, y] ⊂
(P, d) is isometric to the Euclidean segment [0, d(x, y)], and d(x, x ˆxm) → 0 ⇒
x ˆxm → x in (P, τ ).

Proof. Note that d(x, x) = 0 since x ˆx = x and y �= x ⇒ x ˆy < x or x ˆy < y

and hence d(x, y) > 0. d(x, y) = d(y, x) since x ˆy = y ˆx. Note that 0 ≤
2(l(y) − l(x ˆy)) since x ˆy ≤ y. Note that d(x, z) ≤ d(x, y) + d(y, z) iff
−2l(x ˆz) ≤ 2l(y) − 2l(x ˆy) − 2l(x ˆz) iff 0 ≤ 2(l(y) − l(x ˆy)). The latter holds
since x ˆy ≤ y. Thus, d is a metric on the set P .

If xm → x in (P, τ ), then x ˆxm → x in (P, τ ). Thus, since l is continuous at
x, l(x)− l(xm) → 0 and l(x)− l(x ˆxm) → 0. Hence, (l(x)− l(x ˆxm))+ (l(xm)−
l(x)) + (l(x) − l(x ˆxm)) = d(x, xm) → 0.

Note that if {w,z} ⊂ (P, τ ) then w ≤ z iff w = z ˆw, and hence by definition,
d(w, z) = l(z) − l(w). Thus, if {x, y} ⊂ (P, τ ), then the natural homeomorphism
hx,y : κ[x ˆy, x] → [0, l(x) − l(x ˆy)] (defined as hx,y(z) = l(z) − l(x ˆy)) is an
isometry onto the Euclidean segment since w < u < z ⇒ d(z,w) = l(z)− l(w) =
(l(z) − l(u)) + (l(u) − l(w)) = d(z,u) + d(u, z). Pasting at 0 (h−1

y,x union the

reverse of h−1
x,y ) yields the natural isometry [l(x ˆy) − l(x), l(y) − l(x ˆy)] →

κ[x, y].
Suppose d(x, x ˆxm) → 0. Then {x ˆxm} is a sequence in the (metrizable) com-

pact arc [p,x] ⊂ (P, τ ). Since κ is continuous at y, if y ∈ [p,x] ⊂ (P, τ ) is a sub-
sequential limit of {x ˆxm}, then y = κ(y) = x. Hence, x ˆxm → x in (P, τ ). �

The standard fact that a space U is topologically complete if U is an open sub-
space of some complete metric space (X,d) is often established [28] via a closed
embedding φ : U → X ×R with u �→ (u, 1

∂(u,∂U)
). For several reasons, this proof

does not work “off the shelf” when trying to obtain a complete R-tree metric
for a connected open subspace P ⊂ Q of a complete R-tree (Q,D). Instead, we
build a strictly increasing length function l : P → [0,∞) such that l(xn) → ∞ if
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xn → ∂P , apply Lemma 5, and verify completeness of the metric and continuity
of the inverse mapping.

Lemma 6. Suppose that (Q,D) is a complete metric space, suppose that the
subspace P ⊂ Q is open, nonempty, and dense, and suppose tthat he metric space
(P,D,p,≤,ˆ) is a p-based R-tree. There exists a topologically compatible metric
d on P such that (P, d,p) is a complete R-tree.

Proof. Let ∂P = Q \ P . Define L : P → [0,∞) as L(x) = inf{D(y, z) | y ∈
[p,x] and z ∈ ∂P }. Note that L > 0 since [p,x] is compact and ∂P is closed.
Note that y ≤ x ⇒ L(y) ≥ L(x) since [p,y] ⊂ [p,x]. Define l : P → [0,∞) as
l(x) = D(p,x)+ 1

L(x)
. Note that l is continuous since D is continuous and by Re-

mark 4 L is continuous. Observe that {x, y} ⊂ P and x < y ⇒ D(p,x) < D(p,y)

(since (P,D) is an R-tree) and 1
L(x)

≤ 1
L(y)

since L(y) ≥ L(x), and hence
l(x) < l(y). Thus, applying Lemma 5, the metric d(x, y) = l(x)+ l(y)− 2l(x ˆy)

ensures that the inclusion κ : (P,D) → (P, d) is a continuous bijection, and
κ[x, y] ⊂ (P, d) is isometric to the Euclidean segment [0, d(x, y)]. By defini-
tion, D(x,y) = d(x, y) − l(x) − l(y) ≤ d(x, y). Hence, κ is a homeomorphism.
Thus, (P, d) is uniquely arcwise connected, and hence (P, d) is an R-tree.

Observe that for real numbers, if 0 < t < s, then 1 < 1
t
− 1

s
iff st < s − t .

To obtain a contradiction, suppose that (P, d) is incomplete. Let (P, d) de-
note the metric completion of (P, d). By Lemma 2 obtain y ∈ (P, d) \ P , and an
isometric embedding h : [0, d(p, y)] → (P, d), so that h(0) = p, h(d(p,y)) = y

and h|[0, d(p, y)) is an order-preserving embedding into P . Let ym = h(
d(p,y)m

m+1 ).
Note that {ym} is Cauchy in (P, d) and hence {ym} is Cauchy in (P,D) since
D ≤ d .

Note that for all m ≥ 1 and k ≥ 1, 0 < L(ym) ≤ D(ym,ym+k) since [p,ym] ⊂
[p,ym+k]. Thus, since {ym} is Cauchy in (P,D), the sequence L(ym) → 0. Hence
(applying the continuity of × : R×R → R and − : R×R → R (familiar multipli-
cation and substraction of real numbers)), for each M ≥ 1, we obtain NM > M so
that L(yM)×L(yn) < L(yM)−L(yn). Thus, if n ≥ NM > M , then yM = yM ˆyn,
and hence d(yn, yM) = D(yn, yM)+ ( 1

L(yn)
− 1

L(yM)
) ≥ ( 1

L(yn)
− 1

L(yM)
) > 1, con-

tradicting the fact that {ym} is Cauchy in (P, d). �

3. Proof of Theorem 1

For 3 ⇒ 2, suppose that (P, τ ) is a locally interval complete topological R-tree.
Obtain by [27] a topologically compatible metric d such that (P, d) is an R-tree.
If (P, d) = (P, d), then note that (P, d) is open in (P, d). If (P, d) �= (P, d), then
Lemma 3 ensures that P is open in (P, d). For 2 ⇒ 1, suppose that (P, d) is an R-
tree, open in its metric completion (P, d). Apply Lemma 6. For 1 ⇒ 3, suppose
that (P, d) is a complete R-tree. Note that, by definition, (P, d) is metrizable
and uniquely arcwise connected, and (P, d) is locally path connected since open
metric balls are path-connected. Recall Remark 1 and observe that the bounded
open metric balls of radius 1 establish that (P, d) is locally interval compact.
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spaces and representations in R-trees, Fund. Math. 207 (2010), no. 3, 197–210.

[11] A. Dranishnikov and M. Zarichnyi, Universal spaces for asymptotic dimension,
Topology Appl. 140 (2004), no. 2–3, 203–225.

[12] C. Drutu and M. V. Sapir, Groups acting on tree-graded spaces and splittings of
relatively hyperbolic groups, Adv. Math. 217 (2008), no. 3, 1313–1367.

[13] P. Fabel, A short proof characterizing topologically the underlying spaces of R-trees,
preprint.

[14] H. Fischer and A. Zastrow, Combinatorial R-trees as generalized Cayley graphs for
fundamental groups of one-dimensional spaces, Geom. Dedicata 163 (2013), 19–43.

[15] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ.,
8, pp. 75–263, Springer, New York, 1987.

[16] V. Guirardel and A. Ivanov, Non-nesting actions of Polish groups on real trees, J. Pure
Appl. Algebra 214 (2010), no. 11, 2074–2077.

[17] M. Hamann, On the tree-likeness of hyperbolic spaces, preprint.
[18] B. Hughes, Trees and ultrametric spaces: a categorical equivalence, Adv. Math. 189

(2004), no. 1, 148–191.
[19] W. Imrich, On metric properties of tree-like spaces, Contributions to graph theory and

its applications (Internat. Colloq., Oberhof, 1977), pp. 129–156, Tech. Hochschule
Ilmenau, Ilmenau, 1977.

[20] I. Kapovich and N. Benakli, Boundaries of hyperbolic groups, Combinatorial and
geometric group theory, Contemp. Math., 296, pp. 39–93, Amer. Math. Soc., Provi-
dence, RI, 2002.

[21] I. Kapovich and M. Lustig, Stabilizers of R-trees with free isometric actions of FN ,
J. Group Theory 14 (2011), no. 5, 673–694.

[22] W. A. Kirk, Hyperconvexity of R-trees, Fund. Math. 156 (1998), no. 1, 67–72.
[23] , Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory

Appl. 4 (2004), 309–316.



Complete R-Trees 887

[24] G. Levitt, Non-nesting actions on real trees, Bull. Lond. Math. Soc. 30 (1998), no. 1,
46–54.

[25] J. C. Mayer, L. K. Mohler, L. G. Oversteegen, and E. D. Tymchatyn, Characteriza-
tion of separable metric R-trees, Proc. Amer. Math. Soc. 115 (1992), no. 1, 257–264.

[26] J. C. Mayer, J. Nikiel, and L. G. Oversteegen, Universal spaces for R-trees, Trans.
Amer. Math. Soc. 334 (1992), no. 1, 411–432.

[27] J. C. Mayer and L. G. Oversteegen, A topological characterization of R-trees, Trans.
Amer. Math. Soc. 320 (1990), no. 1, 395–415.

[28] J. R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1975.

[29] F. Paulin, The Gromov topology on R-trees, Topology Appl. 32 (1989), no. 3, 197–
221.

[30] K. Ruane, CAT(0) groups with specified boundary, Algebr. Geom. Topol. 6 (2006),
633–649.

Department of Mathematics and
Statistics

Mississippi State University
Drawer MW
Mississippi State, MS 39762
USA

pfpoke@gmail.com

mailto:pfpoke@gmail.com

	Introduction
	Preliminaries, Examples, Remarks, and Lemmas
	Proof of Theorem 1
	References
	Author's Addresses

