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Veronesean Representations of Moufang Planes

O. Krauss, J . Schillewaert, & H. Van Maldeghem

Abstract. In 1901 Severi [18] proved that the complex quadric
Veronese variety is determined by three algebraic/differential geo-
metric properties. In 1984 Mazzocca and Melone [10] obtained a
combinatorial analogue of this result for finite quadric Veronese va-
rieties. We make further abstraction of these properties to characterize
Veronesean representations of all the Moufang projective planes de-
fined over a quadratic alternative division algebra over an arbitrary
field. In the process, new Veroneseans over a nonperfect field of char-
acteristic 2 (related to purely inseparable field extensions) are found,
and their corresponding projective representations of the associated
groups studied. We show that these representations are indecompos-
able, but reducible, and determine their (irreducible) quotient and ker-
nel.

1. Introduction

The Veronesean representation of the Moufang projective plane P(O) related to
any Cayley–Dickson division algebra O is the geometry of the real form E28

6,2
of a group of exceptional type E6 [20]. One of its nice features is that it pro-
vides a homogeneous description of these projective planes, which otherwise
must be defined via the projective closures of the corresponding affine planes
(and this places a certain line in a special role). The subplanes of P(O) related
to its subalgebras have induced representations and similar properties. Three of
these properties have been used by Mazzocca and Melone [10] to characterize
the finite quadric Veroneseans. More generally, the objects satisfying these ax-
ioms are called Veronesean caps. Despite many special cases of Veronesean caps
have been classified (among which all finite ones), until now, there was no full
classification. In the present paper, we present such a classification, and we find
besides the “classical” Veronesean caps, also a class related to inseparable field
extensions in characteristic 2 (which can also be viewed as quadratic algebras).
The classical Veronesean caps include, besides the split form 1A(1)

2,2 of groups of
type A2, the natural geometries of the mentioned real form of groups of type E6,
and also the geometries of the real form 2(A2 × A2)

(1)
2 of groups of type A2 × A2

and geometries of the real form A(2)
5,2 of groups of type A5.
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The Veronesean representations of the projective planes related to inseparable
field extensions in characteristic 2 possibly have infinite dimension, which slightly
complicates the classification. We study the corresponding projective representa-
tions of the group G := PSL3(A), with A a nonperfect field of characteristic 2,
in some more detail in Section 7. We show that they possess a unique invariant
subspace U , and we give a detailed description of the irreducible representations
induced in U and in the quotient with U . Comparing this situation with [4], we
see that, although G is not a group of mixed type, it behaves much like it, certainly
concerning representations.

The results of the present paper, together with the main results of [14; 15],
provide a common characterization of the varieties related to the second row
of the Freudenthal–Tits magic square, both the split and nonsplit versions. This
corresponds to a characterization of the class of all “projective planes” defined
over quadratic alternative composition algebras (among which for instance the
so-called Hjelmslev–Moufang planes—equivalent with geometries and groups of
type E6—introduced by Springer and Veldkamp [11]). In the nonsplit case, addi-
tionally inseparable cases occur, whereas in the split case, additionally only some
other sporadic varieties occur such as those related to the half-spin D5-geometry,
to the line Grassmannian of projective 4-space and the Segre varieties of the direct
product of a projective line with projective spaces of dimensions 2 or 3.

The first three cells of the second row of the Freudenthal–Tits magic square ad-
mit a generalization to higher dimensions (Veronesean representations of projec-
tive spaces over quadratic alternative division algebras). These can also be char-
acterized using a similar approach, but we will do this elsewhere. A big part of
this is also contained in the first author’s thesis [9]. The split case has recently
been treated in [16].

Some Notation

In this paper, the n-dimensional projective space over the skew field K is denoted
by P

n(K) (it arises from a right (n+1)-dimensional vector space). The projective
space arising from a right vector space V is denoted by P(V ). We will use a
slightly different notation for the projective plane (space) defined over a quadratic
alternative division ring A, which we will write as P2(A) (Pn(A)). This should
clearly distinguish the geometries we represent (the P(A)s) and those in which
we represent these (the P(V )s).

Concerning projective planes, we will use the following terminology. A
collineation is a bijection between two projective planes preserving the line sets
in both ways (it is allowed that the two planes are identical, and then we have a
permutation of the point set inducing a permutation of the line set). A transla-
tion line in a projective plane is a line L with the property that the collineations
fixing L pointwise and not fixing any point off L act transitively on the set of
points off L. A projective plane containing a translation line is called a transla-
tion plane. A Moufang plane, or a plane satisfying the Moufang condition, is a
projective plane in which every line is a translation line. The projective planes
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P2(A) with A a quadratic alternative division ring are all Moufang planes. Con-
versely, every Moufang plane is isomorphic to such a P2(A) or to a projective
plane coordinatized by a skew field.

Concerning projective spaces P(V ), with V a right vector space over some
skew field K, we will denote the subspace spanned by a (point) set S with 〈S〉.
We usually view subspaces as sets of points. Also, we will need to consider pro-
jections. These are maps with a projection center U and an image W , where U

and W are complementary subspaces, that is, U ∩W = ∅ and 〈U,W 〉 is the whole
projective space. The projection from U to W maps a point p /∈ U to the point
〈U,p〉 ∩ W . The projection from U onto W is not defined on the points of U ,
and if we consider a subspace S intersecting U , then by the projection of S we
mean the subspace 〈U,S〉 ∩ W (so for subspaces, we do not project pointwise
since otherwise we always have to avoid the points of U ∩ S, which only makes
the notation cumbersome).

We end this introduction by mentioning that large parts of Section 6 are taken
from the PhD thesis of the first author, who obtained a partial characterization of
V2(K,A) (mainly for the case of charK �= 2).

2. Definitions and Statement of the Main Result

An ovoid O in a possibly infinite-dimensional projective space � is a set of points
of � such that no line of � intersects O in more than two points, and for every
point x ∈ O , there is a unique hyperplane π through x intersecting O in only x

and containing all lines through x that meet O in only x. The hyperplane π is
called the tangent hyperplane at x to O and denoted Tx(O). The dimension of the
ovoid is equal to −1 + dim� (and this can be infinite).

Let V be a possibly infinite-dimensional right vector space over some skew
field K, and let P(V ) be the corresponding projective space. Let X be a spanning
point set of P(V ), and let � be a collection of subspaces of P(V ), which we
shall refer to as the elliptic spaces of X, such that, for any ξ ∈ �, the intersection
ξ ∩ X is an ovoid X(ξ) in ξ of dimension at least 1 (and then, for x ∈ X(ξ), we
sometimes denote Tx(X(ξ)) simply by Tx(ξ)). We call (X,�), or briefly X, a
Veronesean cap if the following properties (V1), (V2), and (V3) hold.

(V1) Any two points x and y of X lie in a unique element of �, denoted by [x, y].
(V2) If ξ1, ξ2 ∈ � with ξ1 �= ξ2, then ξ1 ∩ ξ2 ⊂ X.
(V3) For every x ∈ X and every triple of distinct elliptic spaces ξ1, ξ2, ξ3 ∈ �

containing x, we have Tx(ξ3) ⊆ 〈Tx(ξ1), Tx(ξ2)〉.
If V is finite-dimensional, then we say that (X,�) is finite-dimensional. An

ovoid that is the intersection of an elliptic space with X will be called an X-ovoid.
If all X-ovoids have the same dimension d , then we say that X has subdimen-
sion d . We will prove in Lemma 4.1 that every Veronesean cap has a subdimen-
sion. Also, we will show in Lemma 4.10 that (X,�) is completely determined by
X alone, and so we sometimes speak of the Veronesean cap X. We shall denote
the geometry of X endowed with the X-ovoids by P(X,�).
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The axioms (V1), (V2), and (V3) express elementary properties of the smooth
real Veronesean varieties of the projective planes over the alternative real division
algebras, that is, the real, complex, quaternion, and octonion algebras.

We now present a class of examples of Veronesean caps.
Let A be a quadratic alternative division algebra over the field K, where we

assume that K ⊆ A. This means that A is a (not necessarily associative) division
ring, the multiplication is alternative (thus, (ab)b = ab2 and a(ab) = a2b, for
all a, b ∈ A), K is a subfield of the center of A, and every element x ∈ A satis-
fies a quadratic equation with coefficients in K. Recall that one of the following
situations holds [8]:

• A = K (and dimKA = 1);
• A is a quadratic Galois extension of K (and dimKA = 2);
• A is a quaternion division algebra with center K (and dimKA = 4);
• A is a Cayley–Dickson division algebra with center K (and dimKA = 8);
• A is a purely inseparable extension of K in characteristic 2 such that all squares

of A are contained in K (and either dimKA is infinite or dimKA = 2� with
� ≥ 1).

In each case there exists a unique involution σ on A, which is an antiautomor-
phism, which is the identity on K and for which both a + aσ and aaσ belong to
K (and we call σ the standard involution). In fact, every a ∈ A then satisfies the
quadratic equation x2 − (a + aσ )x + aσ a = 0.

Then we can define the following 1-spaces of the vector space V := K⊕K⊕
K⊕A⊕A⊕A:

• K(1,0,0;0,0,0);
• K(xxσ ,1,0;0,0, x), x ∈A;
• K(xxσ , yyσ ,1;y, xσ , xyσ ), x, y ∈A.

The corresponding set X of points of P(V ) is a Veronesean cap of subdimen-
sion dimA (see Theorem 3), which we denote by V2(K,A). In fact, if A is not a
purely inseparable extension of K, then X is the standard Veronesean embedding
of the projective plane P2(A) over A (or, in other words, coordinatized by A):
either the quadratic Veronesean (A = K), or the Hermitian Veronesean (A is a
quadratic Galois extension of K), or the quaternion Veronesean (A is a quater-
nion division algebra with center K), or the octonion Veronesean (A is a Cayley–
Dickson division algebra with center K). If A is an inseparable extension of K,
then this is a new type of Veronesean, which is, as far as we know, not yet studied
in the literature, and which we shall call an inseparable Veronesean. In all cases,
the points of P2(A) are in bijective correspondence with the elements of X, and
the lines of P2(A) correspond with the X-ovoids, which are all quadrics of Witt
index 1.

If A is associative, then we can define the Veronesean Vn(K,A) of Pn(A)

over K, n ≥ 2, explaining the index 2 in the notation. We will not be concerned
with Vn(K,A) for n �= 2, but the present paper lays the foundation to characterize
Vn(K,A) with n finite in a similar way, as was done in the finite case in [3]. This
will be done elsewhere.
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We can now state our main result.

Main Result. Every Veronesean cap is projectively equivalent to V2(K,A) for
some commutative field K and some quadratic alternative division algebra A

over K. In particular, the subdimension is either infinite or a power of 2, and
if the characteristic of the underlying field is not 2, then the subdimensions can
only take the values 1, 2, 4, 8.

As an application, we determine the irreducibility of the corresponding projective
group representations.

Corollary. Let K, A, and σ be as before. If either σ is nontrivial or the charac-
teristic of K is unequal to 2, then the action of PSL3(A) on P(V ) induced by the
action on V2(K,A) is irreducible. If the characteristic of K is equal to 2 and σ

is trivial, then the action of PSL3(A) on P(V ) induced by the action on V2(K,A)

has a unique nontrivial invariant subspace U .

In Section 7 we describe the irreducible representations induced in U and in the
quotient space P(V )/U .

Some special cases of the main result are already known in the literature. We
give a historic overview.

In 1984, Mazzocca and Melone [10] were the first to define Veronesean caps;
they defined Veronesean caps X of subdimension 1 over finite fields, where they
assumed the X-ovoids to be conics (and not just ovals), and they classified them
in the case of odd characteristic. Later, in 1991, Hirschfeld and Thas [6] classified
in characteristic 2, and in 2004, Thas and Van Maldeghem [19] weakened the as-
sumptions on the X-ovoids to ovals and classified. In the meantime, also in 2004,
Cooperstein, Thas, and Van Maldeghem [3] introduced and classified Veronesean
caps of subdimension 2 over finite fields. Then, in 2012 and 2013, the last two
present authors (JS + HVM) classified Veronesean caps of subdimension 1 and 2
over arbitrary fields in [12; 13] by showing that these are automatically the quadric
Veronesean varieties V2(K,K) and the Hermitian Veronesean varieties V2(K,L)

(with L a quadratic Galois extension of K), respectively. However, the paper [12]
contains an incompleteness, which we rectify in Section 4.4 (basically, the insep-
arable Veroneseans with subdimension 2 were overlooked; the two last authors
thank the first author for noting this error). Finally, in 2014, the first author, in
his thesis [9], classified Veronesean caps under some additional conditions; these
conditions exclude characteristic 2, but they allow the quaternion cases for which
the center admits only two quadratic classes, and the octonion case assuming, in
the terminology of the present paper, the cap has subdimension 8 (see below for
precise definitions).

The main difficulty in handling the case of subdimension at least 3 is to de-
duce that the algebra A is quadratic over the underlying field K of the ambient
projective space. On the contrary, it is not so hard to construct the algebra (this
follows from the fact that the Veronesean cap X endowed with the X-ovoids, is
a projective plane; see Proposition 4.5 below), and it also follows rather directly
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that K is contained in the center of A. The crux of the argument to prove the main
difficulty is to construct a Veronesean subcap X′ of subdimension 2 in general
position but containing a given Veronesean subcap X′′ of subdimension 1. Notice
that it is relatively standard to construct all Veronesean subcaps of subdimension
1, but it is much harder to construct a Veronesean subcap of subdimension 2. The
reason is the following. Using X, we can construct an André–Bose–Bruck repre-
sentation of an affine plane A arising from P(X,�); this consists of a projective
space P(W) with a hyperplane H in which a spread S of pairwise complemen-
tary subspaces is given (a spread is a partition of the point set in subspaces).
The points of A are the points of P(W) \ H , and its lines are the subspaces of
P(W) containing an element of S as a hyperplane and not contained in H . Now,
a Veronesean subcap corresponds with a subspace U of P(W) intersecting H in a
hyperplane HU of U and such that the intersection of the elements of S with HU

induces a spread of pairwise complementary subspaces of HU . If U is a plane,
then it is easy to choose it in such a way that UH is a line not contained in any
member of S , and we are done. This is how to construct Veronesean subcaps of
subdimension 1. However, for subdimension 2, HU is three-dimensional, and the
chances that a random 3-space of H not contained in any member of S intersects
the elements of S in a spread of lines are zero. Moreover, in order to fully include
the inseparable case, we must deal with the possibility of the X-ovoids having
infinite dimension.

The proof of the main result is organized as follows. In Section 4, we show that
every Veronesean cap has a subdimension and that P(X,�) is a Moufang projec-
tive plane. We also review Veronesean caps of subdimensions 1 and 2 (correcting
an oversight in [12]). In Section 5, we construct the subcaps that we need, deduce
that K is a field, construct the algebra A, and show that it is quadratic over K, that
it is alternative, and that K is in the center of A. We then show in Section 6 that
the cap is projectively equivalent with V2(K,A).

We start with proving in the next section that the examples V2(K,A) are
Veronesean caps with subdimension dimA.

3. Veronesean Embeddings are Veronesean Caps

In the sequel, K is a field, and A is a quadratic alternative division algebra over K.
As already mentioned, V2(K,A) is an embedding of the projective plane

P2(A) into the projective space P(V ), where V = K⊕K⊕K⊕A⊕A⊕A, and
where the lines of P2(A) correspond to the elliptic spaces. We can view P2(A) as
the projective completion of the affine plane A2(A) over A.

The affine plane A2(A) has A×A as its point set and the following subsets of
A×A are called lines:

[s, t] = {(x, sx + t) | x ∈A} for s, t ∈ A,

[c] = c ×K for c ∈ A.
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The special cases [0,0] and [0] are called the horizontal axis and vertical axis,
respectively. Also, s is called the slope of the line [s, t] for s, t ∈ A. The vertical
axis and all lines parallel with it have by definition the slope ∞.

For the projective completion, the point at infinity on the lines of slope s ∈
A∪ {∞} will be denoted by (s), and the line at infinity is

[∞] := {(s) | s ∈A∪ {∞}}.
Let (X,�) be the standard Veronesean embedding of P2(A). Then Theorem

16.3 of [17] carries over to the general case. In particular, the elliptic spaces
are obtained by intersecting X with a hyperplane of P(V ). If σ is not trivial
or charK �= 2, then we denote by [k, �,m;a, b, c], k, �,m ∈ K, a, b, c ∈ A. the
hyperplane

{K(x0, x1, x2;y0, y1, y2) ∈K
3 ×A

3 : kx0 + �x1 + mx2 + ayσ
0

+ y0a
σ + byσ

1 + y1b
σ + cyσ

2 + y2c
σ = 0}.

If σ is trivial and charK= 2, then we denote by [k, �,m], k, �,m ∈ K, the hyper-
plane with point set {K(x0, x1, x2;y0, y1, y2) ∈K

3 ×A
3 : kx0 + �x1 + mx2 = 0}.

Theorem 3.1. Let us identify the points of the projective completion P2(A) of
A2(A) with the points of X in the following way:

(x, y) �→ K(xxσ , yyσ ,1;y, xσ , xyσ ), x, y ∈ A,

(s) �→ K(1, ssσ ,0;0,0, sσ ), s ∈ A,

(∞) �→ K(0,1,0;0,0,0).

Then the elliptic spaces correspond to the lines of P2(A) and are determined by
intersecting X with a hyperplane given as follows:

[s, t] �→ K[ssσ ,1, t tσ ;−t, tσ s,−sσ ],
[c] �→ K[1,0, ssσ ;0,−sσ ,0],

[∞] �→ K[0,0,1;0,0,0]
if σ is nontrivial or if charK �= 2, and as

[s, t] �→ K[s2,1, t2],
[c] �→ K[1,0, s2],

[∞] �→ K[0,0,1]
if σ is trivial and if charK= 2.

This mapping from P2(K) to P(V ) will be referred to as the Veronesean map.
The given hyperplanes intersecting X in the points of X in an elliptic space will
be called the tangent hyperplanes.

Geometric Structure of a Line (see §16.2 of [17] for the case A = O and
K= R). Consider the line [∞] of P2(A). The set of points incident with it is

{K(1, ssσ ,0;0,0, s) | s ∈A} ∪ {K(1,0,0;0,0,0)}.
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This is the quadric of Witt index 1 defined by the equations X0X1 =
Y2Y

σ
2 and X2 = Y0 = Y1 = 0, where a generic point of P(V ) has coordinates

(X0,X1,X2;Y0, Y1, Y2). This description is easily checked to remain true in the
inseparable case.

The Collineation Group of P2(A) (see §16.6 of [17] for the case A = O and
K= R). The following permutation leaves the point set of V2(K,A) invariant:

τ̄ : V → V : (X0,X1,X2;Y0, Y1, Y2) �→ (X2,X0,X1;Y2, Y0, Y1).

It therefore induces a bijection τ on P2(A), which is easily seen to be a
collineation, called the triality collineation.

Furthermore, for a, b ∈A, we define the map τ̃a,b :K3 ×A3 →K3 ×A3, which
sends (X0,X1,X2;Y0, Y1, Y2) to

(X0 + Yσ
1 aσ + aY1 + aaσ X2,X1 + bYσ

0 + Y0b
σ + bbσ X2,X2;

Y0 + bX2, Y1 + aσ X2, Y2 + Yσ
1 bσ + aYσ

0 + abσ X2)

and which induces the translation τa,b in A2(A) given by

τa,b : (x, y) �→ (x + a, y + b).

The corresponding collineation of P2(A) will also be called a translation. The
following theorem can be proved exactly as Proposition 17.2 in [17].

Theorem 3.2. The collineation group PSL3(A) of P2(A) generated by the trans-

lations τa,b , a, b ∈ A, and their conjugates τ τ
a,b and τ

(τ 2)
a,b acts transitively on the

set of nondegenerate triangles of P2(A).

Note that PSL3(A) has a projective representation in P(V ) via the action on
V2(K,A) as defined by the τa,b and their conjugates.

Theorem 3.3. The standard Veronesean embedding (X,�) of P2(A) is a Verone-
sean cap with subdimension k = dimKA.

Proof. The lines are (dimKA)-dimensional ovoids as just described. Condition
(V1) is fulfilled by Theorem 3.1. For (V2), we may use the horizontal axis and
the vertical axis due to Theorem 3.2. Their point sets are given by the equations{

X0X2 = Y1Y
σ
1 ,

X1 = Y0 = Y2 = 0,
and

{
X1X2 = Y0Y

σ
0 ,

X0 = Y1 = Y2 = 0,

respectively. Hence, their space of intersection solely consists of the point
(0,0,1;0,0,0) (which corresponds to the point (0,0) of P2(A)). We use this
point to verify (V3). First, note that the tangent space at (0,0,1;0,0,0) to the
horizontal axis has equations X0 = X1 = Y0 = Y2 = 0 and the tangent space to
the vertical axis at (0,0) has the equations X0 = X1 = Y1 = Y2 = 0; hence, their
span T has the equations X0 = X1 = Y2 = 0. It is easy to see that T ∩ X =
(0,0,1;0,0,0). So, it suffices to show that, for all s ∈ A, all points of the ellip-
tic space ξs ∈ � corresponding to the line [s,0] are contained in the subspace
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spanned by T and (1, ssσ ,0;0,0, sσ ) (the latter corresponds to the point at infin-
ity (s) of the line [s,0] of P(A)). But clearly the point (0,0,1; sx, xσ ,0) belongs
to T , and since

(xxσ , ssσ xxσ ,1; sx, xσ , xxσ sσ ) = (0,0,1; sx, xσ ,0) + xxσ (1, ssσ ,0;0,0, sσ ),

the assertion follows. �

4. Veronesean Caps are Moufang Projective Planes

In this section, we let (X,�) be an arbitrary Veronesean cap in a projective
space P(V ) over the skew field K. We always assume that X spans the projec-
tive space P(V ). As already mentioned, the definition of Veronesean cap in [12;
13] is slightly different, and one of the goals of this section is to show that the
present definition is equivalent to the one in [12; 13] and the fact that P(X,�) is
a projective plane. We first prove that every Veronesean cap has a subdimension.

4.1. The Subdimension of a Veronesean Cap

If W1 ⊆ W2 are two subspaces of P(V ), then the codimension of W1 in W2, de-
noted by codimW2W1, is the dimension of the factor space W2/W1, where W1 and
W2 are viewed as subspaces of V . If dimW2 − dimW1 is well defined, then it is
equal to codimW2W1.

Lemma 4.1. Every Veronesean cap (X,�) admits a subdimension.

Proof. Suppose for a contradiction that ξ1 and ξ2 are two elliptic spaces with dif-
ferent dimensions n1, n2, respectively (n1 and/or n2 may be an infinite cardinal).
Since by Axiom (V1) the graph with vertex set �, where two vertices are adjacent
if the corresponding elliptic spaces share a point, is connected, we may assume
that ξ1 and ξ2 share a point x ∈ X (by (V2)). Consider an arbitrary elliptic space
ξ3 through x, distinct from ξ1 and distinct from ξ2, and put dim ξ3 = n3. Without
loss of generality we may assume n1 ≤ n2 ≤ n3 and n1 < n3. Axiom (V3) implies
that

〈Tx(ξ1), Tx(ξ2)〉 = 〈Tx(ξ2), Tx(ξ3)〉 = 〈Tx(ξ3), Tx(ξ1)〉 =: U.

Since ξi ∩ ξj = {x}, 1 ≤ i < j ≤ 3, we have codimUTx(ξ2) = n1 − 1 (when
considering U = 〈Tx(ξ1), Tx(ξ2)〉) and at the same time codimUTx(ξ2) = n3 − 1
(when considering U = 〈Tx(ξ3), Tx(ξ2)〉). Hence, n1 = n3, a contradiction. �

So from now on, we may freely speak about the subdimension of any Veronesean
cap. Also, if x ∈ X, then we denote by Tx the space generated by any pair of
tangent spaces Tx(ξ) and Tx(ξ

′) with x ∈ ξ ∩ ξ ′, ξ, ξ ′ ∈ � and ξ �= ξ ′. Next, we
show the equivalence of our definition of Veronesean cap with that in [12; 13] and
the fact that (X,�) with natural incidence is a projective plane.
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4.2. The Projective Plane Associated with a Veronesean Cap

Recall that P(X,�) is the geometry having the point set X and the line set �,
endowed with the natural incidence. We will write P = P(X,�) for short. Our
goal is to show that this is a projective plane that satisfies the Moufang condition.
We prove some lemmas to that aim.

We fix an arbitrary elliptic space ξ ∈ � and a point x ∈ X \ ξ . We denote
O = X(ξ).

Lemma 4.2. The spaces Tx and ξ are disjoint.

Proof. First, we note that if K is finite, then this is easy. Indeed, if the subdimen-
sion is equal to d (and then d ∈ {1,2} by Result 48 in [5]), then O has qd + 1
points. Joining these points to x produces qd + 1 tangent spaces at x of dimen-
sion d inside the subspace Tx , which has dimension 2d , and these meet pairwise
in just x. Hence, they take into account (qd + 1)(qd + qd−1 + · · · + q) + 1 points
of Tx . There are no other points. The lemma now follows from (V2).

Now let K be infinite and suppose for a contradiction that some point z belongs
to both Tx and ξ . Pick two distinct points p,q ∈ O (and we can assume that p,
q , z are not collinear); then Tx = 〈Tx([p,x]), Tx([q, x])〉. Hence, there is a line
L through z intersecting Tx([p,x]) in a point u and intersecting Tx([q, x]) in
a point v. The line 〈u,x〉 intersects Tp([p,x]) in a point a, and the line 〈v, x〉
intersects Tq([q, x]) in a point b. Since |K| > 2, we find two points a′ ∈ 〈u,x〉 and
b′ ∈ 〈v, x〉 such that z ∈ 〈a′, b′〉 and a′ �= a, b′ �= b. Since a′ /∈ Tp([p,x]), there
are a point a′′ ∈ X \ {p} on 〈p,a′〉 and a point b′′ ∈ X \ {q} on 〈q, b′〉. The line
〈a′′, b′′〉 belongs to the 3-space 〈p,q, z, a′〉; hence, it intersects the plane 〈p,q, z〉
in some point z′, which consequently belongs to ξ . But 〈a′′, b′′〉 ⊆ [a′′, b′′], and
so by (V2), z′ belongs to X and hence to X([a′′, b′′]). The latter now contains the
three collinear points a′′, b′′, z′, a contradiction. �

Lemma 4.3. Let p ∈ O be arbitrary. Then the subspace 〈O,Tp〉 does not contain
any point of X \ O .

Proof. Put W = 〈O,Tp〉. Suppose for a contradiction that u ∈ (W ∩X)\O . First,
note that Lemma 4.2 immediately yields that O is not contained in Tp; hence, ξ

and Tp([p,u]) intersect in just p and generate W . It follows that ξ and [p,u] also
generate W and hence intersect in a line. This contradicts (V2) and the fact that
X does not contain lines. �

We now choose a subspace 	 containing Tx and complementary to ξ (this is
possible by Lemma 4.2). Let ρ be the projection map from ξ onto 	.

Lemma 4.4. The projection ρ is injective on X \ O .

Proof. Let, for a contradiction, y, z be two distinct points of X \O with yρ = zρ .
Then ξ is a hyperplane of the subspace 〈ξ, y, z〉. Hence, the elliptic space [y, z]
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intersects ξ in a point of the line 〈y, z〉, which belongs to X by (V2), contradicting
(V1) since then [y, z] would contain three collinear points of X. �

We can now prove our first goal.

Proposition 4.5. The geometry P is a projective plane. Also, 	 = Tx , and so ξ

and Tx are complementary subspaces of P(V ).

Proof. Let p be any point of O . By (V3) we have Tp(ξ ′)ρ = Tp(ξ ′′)ρ for any
ξ ′, ξ ′′ ∈ � with p ∈ ξ ′ ∩ ξ ′′ and ξ ′ �= ξ �= ξ ′′. We denote by 	p this common
projection. It follows from Lemma 4.3 that 	p is a hyperplane in ξ ′ρ =: 	ξ ′ for
any ξ ′ ∈ � and p ∈ ξ ′ �= ξ , the complement of which is the affine space αξ ′ :=
(X(ξ ′) \ {p})ρ . We now consider ξ ′ = [x,p]. Note that, by our choice of 	,
the subspace 	ξ ′ coincides with Tx(ξ

′). Choose q ∈ O with q �= p and denote
ξ ′′ = [x, q]. We define αξ ′′ , 	q and 	ξ ′′ = Tx(ξ

′′) = ξ ′′ρ similarly as for ξ ′ and p.
Then, by Lemma 4.4, αξ ′ ∩ αξ ′′ = {(ξ ′ ∩ ξ ′′)ρ} = {x}, and hence 	p ∩ 	q = ∅.
We denote � = 〈	p,	q〉. It is a hyperplane in the subspace Tx . Also, 	p and
	ξ ′′ are complementary subspaces in Tx .

Let z be an arbitrary point of Tx \ (	ξ ′ ∪	ξ ′′ ∪�). Then the subspace 〈z,	p〉
intersects 	ξ ′′ in a point z′′. Let u′′ ∈ X be the inverse image under ρ of z′′. Then
the projection of [u′′,p] clearly coincides with 〈z′′,	p〉, and so z can be written
as uρ with u ∈ X([u′′,p]). We claim that [x,u] intersects ξ nontrivially.

Indeed, suppose for a contradiction that [x,u] ∩ ξ = ∅. Since Tx([x,u]) ⊆ Tx ,
since uρ = z ∈ Tx , and since [x,u] = 〈Tx([x,u]), u〉, we have [x,u]ρ ⊆ Tx . Then
Tx([x,u]) is a hyperplane in [x,u]ρ (since the projection ρ induces an isomor-
phism from [x,u] into [x,u]ρ as [x,u] and ξ are disjoint). This implies that
[x,u]ρ and 	ξ ′ intersect in a line L containing x. This line is not contained in
Tx([x,u]) since Tx([x,u]) and 	ξ ′ = Tx(ξ

′) are disjoint. Hence, L contains a
second point y of X([x,u]), y �= x. By Lemma 4.4, y belongs to 	p . But this
contradicts Lemma 4.3. Hence, our claim is proved.

It then follows that z is contained in Tx([x,u]), and so every point of
Tx(ξ

′) ∪ Tx(ξ
′′) ∪ � is contained in a tangent subspace at x to some X-ovoid

containing x and intersecting O in a point. Axiom (V3) implies that there is no
room for additional tangent spaces; hence, every elliptic space through x meets ξ

nontrivially. Since ξ and x were essentially arbitrary, this shows that every pair
of elliptic spaces intersects nontrivially and hence (X,�) is a projective plane. It
also means that every point of X \ O is projected into Tx , and so Tx coincides
with 	. �

We now go on and prove that P is a Moufang plane.

Proposition 4.6. The projective plane P satisfies the Moufang condition.

Proof. We continue with the notation of the previous proof. We know that ev-
ery point of Tx \ � is the projection of a point u of X \ O . Let u �= x. Put
{r} = [u,x] ∩ ξ . It easily follows that the projection of Tr([u,x]) coincides with
[u, r]ρ ∩ �, and so {T ρ

a : a ∈ O} is a spread S of �. This now implies that the
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projection of X \ ξ onto 	 is the André–Bruck–Bose representation [1; 2] of the
affine plane corresponding to P \O . Hence, O is a translation line of P . Since O

was arbitrary, the assertion follows. �

A consequence of the André–Bruck–Bose representation in the proof of Proposi-
tion 4.6 is the following.

Corollary 4.7. Every point of P(V ) not contained in an elliptic space is con-
tained in the span of two elliptic spaces, one of which can be chosen arbitrarily.

Proof. Let r be an arbitrary point of P(V ) not contained in any elliptic space.
With the previous notation, either rρ is contained in � or coincides with the pro-
jection of some point z ∈ X \ O .

• In the former case, rρ is contained in the projection of Tp , p ∈ O , for a unique
point p ∈ O; hence, r is contained in the span of ξ and ξ ′, where ξ ′ is an
arbitrary elliptic space through p distinct from ξ .

• In the latter case, r is contained in the span of ξ and any elliptic space through z.

The lemma is proved. �

Another consequence is the following.

Corollary 4.8. Let ξ1, ξ2, ξ3 be three elliptic spaces not containing a common
point. Then 〈ξ1, ξ2〉∩ξ3 coincides with the line 〈ξ1 ∩ξ3, ξ2 ∩ξ3〉, and 〈ξ1, ξ2, ξ3〉 =
P(V ).

Proof. This follows immediately from the fact that, identifying X(ξ3) with O , the
projections ξ

ρ
1 and ξ

ρ
2 have only one point in common and together span Tx . �

We now review two special cases.

4.3. Veronesean Caps with Subdimensions 1

If the subdimension of the Veronesean cap (X,�) is equal to 1, then the X-ovoids
are plane ovals. By [13] X is projectively equivalent to a quadric Veronesean va-
riety, that is, a Veronesean cap V2(K,K) in P

5(K), where K is a commutative
field. The geometry P(X,�) is a projective plane isomorphic to P2(K). The au-
tomorphism groups of the cap (X,�) (as a subgroup of the automorphism group
of P(V )) and of the projective plane P2(K) are isomorphic in a natural way. We
record this and provide a proof.

Proposition 4.9. Every collineation of P2(K) induces a unique collineation
of P5(K) stabilizing (X,�). Conversely, every collineation of P5(K) stabilizing
(X,�) is induced by a unique collineation of P2(K). If moreover |K| > 2, then
every collineation of P5(K) stabilizing X automatically stabilizes �.

Proof. In the case of subdimension 1, the Veronesean map maps the point
(x0, x1, x2) to (x2

0 , x2
1 , x2

2 , x1x2, x2x0, x0x1). Clearly, these coordinates can be
written as the upper triangular part of the symmetric matrix (x0 x1 x2)

T (x0 x1 x2),
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and we denote the (i, j)-entry by xij . Let M = (mij )0≤i,j≤2 be a nonsingular ma-
trix over K, and let θ be an automorphism of K. Then the collineation sending
(x0 x1 x2) to (xθ

0 xθ
1 xθ

2 )M induces the mapping

(x0 x1 x2)
T (x0 x1 x2) �→ MT (xθ

0 xθ
1 xθ

2 )T (xθ
0 xθ

1 xθ
2 )M,

which can be written as

xij �→
2∑

k=0

2∑
�=0

mkix
θ
k�m�j .

Since this expression is symmetric in i and j , it can be viewed as a semilinear
permutation of the vector space of all symmetric 3 × 3 matrices over K, which is
in a natural way isomorphic to K

6, and by construction it preserves V2(K,K) ∼=
(X,�). Also, we claim that the corresponding collineation of P5(K) is unique.
Indeed, if not, then there would a nontrivial collineation α of P

5(K) fixing X

pointwise. But X clearly contains a skeleton (a set of seven points with no six
in the same hyperplane); hence, the associated matrix of α is trivial. Since X

contains plane conics, also the corresponding field automorphism is trivial, and
hence α is trivial after all.

The converse follows from the fundamental theorem of projective geometry
applied to P2(K) ∼= (X,�). Also, if |K| > 2, then the members of � are geo-
metrically characterized as the only planes containing at least four points p1, p2,
q1, q2 of X; indeed, if these points would be contained in a plane not belonging
to �, then the intersection x = 〈p1,p2〉 ∩ 〈q1, q2〉 would belong to two distinct
members of �, but not to X, contradicting (V2). �

The last argument of the previous proof can be used to show the following general
result.

Corollary 4.10. If |K| > 2, then every Veronesean cap of subdimension 1 is
determined by its point set.

Proof. It suffices to show that every quadruple of points p1,p2, q1, q2 ∈ X in a
plane is contained in an elliptic space. This follows as above: if these points would
be contained in a plane not belonging to a member of �, then the intersection
x = 〈p1,p2〉 ∩ 〈q1, q2〉 would belong to two distinct members of �, but not to X,
contradicting (V2). �

4.4. Veronesean Caps with Subdimension 2

If the subdimension of the Veronesean cap (X,�) is equal to 2, then the X-ovoids
are ovoids in projective 3-spaces. In the classification carried out in [12], in partic-
ular in Section 3.2, the authors determine the equation of a generic X-ovoid, as an
elliptic quadric in P3(K), K commutative, containing two conics C1, C2 sharing
two distinct points x1, x2. The tangent lines at x1 and x2 to Ci intersect in the point
zi , i = 1,2. In [12], we coordinatize P3(K) in such a way that x1 has coordinates
(1,0,0,0), x2 is (0,0,1,0), z1 is (0,1,0,0), and z2 is (0,0,0,1). Furthermore,
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we assume that C1 contains the point (1,1,1,0), which can be done, but we also
assumed in [12] that C2 contains the point (1,0,1,1), which is not necessarily
true since the choice of the point (1,1,1,0) uniquely determines the first three
coordinates of any point (up to a nonzero scalar, though), and hence we should
rather consider the coordinates (1,0, t,1). It follows that C1 has the equations{

X2
1 = X0X2,

X3 = 0,

whereas C2 has the equations {
tX2

3 = X0X2,

X1 = 0.

Hence, the equation of a generic quadric through C1 and C2, distinct from the
union of the two planes π1 and π2, is X2

1 + kX1X3 + tX2
3 = X0X2 with k ∈ K.

The rest of the argument in [12] shows that k ∈ K is such that the quadric with
equation X2

1 +kX1X3 + tX2
3 = X0X2 is elliptic and isomorphic to every X-ovoid.

It follows that X2
1 +kX1X3 + tX2

3 is anisotropic, which means that either this qua-
dratic form defines a unique Galois extension L of K giving rise to the Hermitian
Veronesean cap V2(K,L) of subdimension 2, or the characteristic of K is equal
to 2, k = 0, and t is a nonsquare in K. The latter gives rise to a purely inseparable
quadratic extension K

′ = K(
√

t) of K, and we obtain the inseparable Veronesean
cap V2(K,K′) of subdimension 2. Note that our arguments in Section 6 also apply
to finish the argument after the previous equations are established, but in [12], the
authors refer to [3] (which also works).

5. The Quadratic Alternative Division Algebra A

We now embark on the proof of the main result. In this section we show that,
with previous notation, the projective plane P is coordinatized by a quadratic
alternative division algebra over K with K in the center. Since the cases d = 1,2
are dealt with in [12; 13], we may assume that d ≥ 3. Consequently, by [5] (result
48 on page 48), we may assume that K is infinite.

5.1. General Preliminary Facts

We take up again the notation of the previous chapter. So ξ ∈ �, O = X(ξ), and
ρ is the projection map from ξ onto a complementary space 	, which we may
identify with Tx for any point x ∈ X \ O (and we fix such a point). Recall that ρ

is injective on X \ O . We have chosen two distinct points p,q ∈ O . We also use
the notation S introduced in the proof of Lemma 4.3. Also, recall that we have
shown the following (see Proposition 4.6):

Fact 1. The plane P is a Moufang plane.
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The inverse image of � under ρ is a hyperplane of P(V ), which we will denote
by T (ξ) or T (O) and refer to as the tangent space to X at ξ or at O . Clearly, it
intersects X in O .

Since Tp ⊂ T (O), Tp ∩ X = {p}. Also, since 	p and 	q are disjoint, we
see that the spaces Tp and ξ ′ for ξ ′ � q and ξ ′ �= ξ generate P(V ) and so are
complementary (this also follows by interchanging the roles of x and p and of ξ

and ξ ′).
Now let a ∈ X \{x}. The space [a, x] meets Tx in Tx([a, x]), and so the projec-

tion of a from Tx onto ξ coincides with the unique intersection point O ∩ [a, x].
This implies that the image of the projection of X \ {x} from T (x) onto ξ coin-
cides with O . Denote the projection operator by ρ̃ for further reference. So the
image under ρ̃ of any member of � not containing x coincides with O . In fact, ρ̃

induces a perspectivity between any pair of lines of P not incident with the point
corresponding to x. By varying x we deduce the following:

Fact 2. All members of � are projectively equivalent. For every ξ ∈ �, the ovoid
X(ξ) is 3-transitive.

Note that ρ and ρ̃ are in a certain sense “opposite”. Indeed, since we have chosen
	 = Tx , the kernel of one projection is the image of the other.

In the last paragraph of the proof of Proposition 4.5, we established that every
point of Tx \ � is contained in the tangent space at x of some X-ovoid through x.
So we have the following fact.

Fact 3. The tangent spaces at x cover the whole tangent space Tx .

5.2. Constructing Veronesean Subcaps with Subdimension 1

Now we construct a subset of X that will turn out to be a quadric Veronesean va-
riety. The construction is completely similar to the one used to classify Hermitian
Veronesean caps (see [12]), but we go through the construction again since we
need it for the sequel.

Consider a plane π in Tx through x intersecting � in a line K∞ (which we
call the “line at infinity”) not belonging to a spread element (of S). Let L be a
line in π through x. Then L intersects � in a point uL, which belongs to some
subspace 	yL

∈ S , with yL ∈ O uniquely determined. The inverse image under ρ

of L \ {uL} is the intersection of [x, yL] with 〈O,L〉 ⊆ 〈O, [x, yL]〉. A dimension
argument implies that the inverse image C′

L under ρ of L\ {uL} is the intersection
of X[x, yL] \ {yL} with the plane 〈x,uL, yL〉. Then CL = C′

L ∪ {yL} is an oval to
which the line uLyL is tangent at yL. Let M be any line in π not containing x and
not contained in �. Choose a point z′ on M \� and let z ∈ X be such that zρ = z′.
Then we can apply the same procedure to M in order to find the inverse image of
M \ {v}, where v = M ∩�, and we also obtain an oval CM . If we do this for three
lines not through x and not having a common intersection point, then we find that
the three corresponding ovals span a 5-space 
 containing all the ovals CL. Let
C∞ be the set of points yL for L ranging through the set of lines of π through x.
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Let V be the union of all CL. Fix an arbitrary oval CL with x ∈ L. We project
V inside 
 from the line xyL onto a complementary 3-space W . Then the ovals
through x are projected onto a set R1 of disjoint lines of W , and the same happens
for the ovals through yL; they are projected onto a set R2 of disjoint lines. Now
one sees that R1 is a regulus of a ruled quadric for which R2 is the other regulus
except for one line N . The line N has to be the projection of C∞ \ {y∞}, showing
that C∞ is contained in a plane inside 〈O〉, and is hence also an oval (on O).
Consequently, we obtain a system of ovals in 
 with the structure of a projective
plane. By Theorem 2.2 of [13], V is a quadric Veronesean over the commutative
field K and is hence a subplane of P . Also note that the injectivity of ρ readily
implies that 〈V〉 ∩ X = V . We record all this for further reference.

Fact 4. The inverse image on X of every affine plane in Tx \ � whose line
at infinity K∞ is not contained in a member of S spans a 5-space 
 and is,
completed with the oval C∞ = 
 ∩ O , isomorphic to a quadric Veronesean. The
oval C∞ coincides precisely with the set of points z ∈ O with the property Tz ∩
K∞ �= ∅. Also, 〈V〉 ∩ X = V .

Note also that V is determined by any two of its conics (since these correspond
to lines in an appropriate projection defining a unique plane in that projection).
We will call every Veronesean subcap V of subdimension 1 constructed like this
a generic subcap of the first kind.

5.3. Constructing Veronesean Subcaps with Subdimension 2 Containing V
We continue with the same notation, except that we will not use p and q on O

anymore. Also, we will frequently refer to objects in � as “at infinity”. Since P
is a Moufang plane, it is coordinatized by an alternative division ring A, and since
we have a subplane isomorphic to P2(K), the division ring A may be assumed to
contain K. Next, we want to show that every element of A is quadratic over K.
Therefore, we first describe the coordinatization.

We choose O as the line at infinity and x as the point with coordinates (0,0).
The points (0), (∞) are then chosen on C∞ and (1,1) inside V , essentially ar-
bitrarily. So K can be identified with the first coordinates of the points (r,0) in-
side V . An arbitrary element of A corresponds to the first coordinate of a point
p = (a,0), and we may assume that a /∈ K. The conic of V corresponding to the
line joining (0,0) and (0) is denoted by C0; the one corresponding to the line join-
ing (0,0) and (∞) is denoted by C1. The corresponding lines in π are denoted by
M0 and M1, respectively. We also set y = pρ .

Our next goal is to include V together with p in a Hermitian Veronesean
(where, for ease of formulation, we view separable Veroneseans with subdimen-
sion 2 as Hermitian ones). Such a Veronesean is contained in an 8-space. We first
construct a 7-space in it, which we will call �1. Then we will extend �1 to the
8-space �2 we want.

Let π1 = 〈M1, y〉. Then K∞
1 := π1 ∩� is not contained in a member of S since

the line 〈x, y〉 intersects � in a point of the projection of T(0), and M1 intersects
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� in a point of the projection of T(∞). Hence, Fact 4 implies that there is some
quadric Veronesean V1 in X with a conic C∞

1 on O such that (V1 \ C∞
1 )ρ =

π1 \ K∞
1 . Let D be the conic on V1 corresponding to the line 〈x, y〉.

By construction and Fact 4, � = 〈V1〉 ∩ 〈V〉 contains the 3-space spanned by
C1 and the point (0). If � were four-dimensional, then it would intersect the plane
spanned by any conic C′ of V through x distinct from C1 and from C0, in a line,
which is Tx(C

′) by the last assertion of Fact 4. Since also Tx(C1) belongs to
�, axiom (V3) applied to V1 implies Tx(C0) ⊂ �. Consequently, C0 ⊂ �. This
contradicts V �= V1 and the last assertion of Fact 4. So the space �1 generated by
V and V1 is seven-dimensional.

We claim that κ := dim(�1 ∩ 〈O〉) = 3. Indeed, if κ = 2, then V and V1 would
have two conics in common (C1 and C∞). If κ ≥ 4, then �1 ∩〈O〉 and the 6-space
〈V,D〉 have at least one 3-space 	 in common. Then 	 intersects the 3-space 	′
spanned by the tangent lines at x to the conics C0, C1, and D, which is indeed also
contained in 〈V,D〉, in at least one point q , which thus belongs to ξ and to Tx .
This contradicts Lemma 4.2, whence the claim.

Next, we consider an arbitrary line M2 in π through x but distinct from M0
and M1. We denote the corresponding conic by C2 and the corresponding X-ovoid
by O2. Let V2 be the quadric Veronesean corresponding to the plane 〈M2, y〉
and note D ⊂ V2. Then, just as before, 〈V2〉 intersects 〈V1〉 and 〈V〉 in three-
dimensional spaces �′

1 and �′, respectively, containing x and (0). If �′
1 ∩ �′

were a plane (which is contained in �), then it would intersect the plane 〈C1〉
(which is also contained in �) in a line, which must necessarily be Tx(C1) by
the last assertion of Fact 4. Hence, Tx(C1) ⊆ 〈V2〉. Since also Tx(C2) ⊂ 〈V2〉,
it would follow that Tx(C0) ⊂ 〈V2〉. But since (0) ∈ V2, this yields C0 ⊂ V2, a
contradiction. Hence, �′

1 ∩ �′ = 〈x, (0)〉. Consequently, 〈V2〉 = 〈�′
1,�

′〉 (by a
dimension argument), and so V2 ⊂ �1. Hence, we have the following:

Fact 5. The inverse image on X with respect to ρ of the affine 3-space 〈π,y〉 \�

is entirely contained in �1.

Now we extend �1 to the 8-space �2. We use the terminology of a 3-ovoid to
mean an ovoid in a 3-space of some elliptic space such that all points of the ovoid
are contained in X.

Put X1 = X(�1). Let Q0 = X ∩ 〈C0,D〉 and Q = X ∩ 〈C∞,C∞
1 〉. Then Q0

and Q are 3-ovoids contained in �1. Let O1 be the X-ovoid containing C1.
We now first prove a general fact, which we state for the original projection ρ,

but we will apply it for different projections.

Fact 6. Let α be a plane through x intersecting a member W of S in a line L.
Then the inverse image of α \ � under ρ, completed with the point p∞ of O

corresponding to W , is a 3-ovoid Q, with Q = 〈Q〉 ∩ X.

Proof. Consider a point p′ρ ∈ α \ L with p′ ∈ X. Then α \ L is contained in the
projection of X([p,p′]) from 〈O〉, which can be considered as the projection of
the ovoid X([p,p′]) from the point p. The assertion now follows easily. �
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By Fact 6 every affine plane β in 〈π,y〉 with K∞
0 := 〈M0, y〉 ∩ � as a line at

infinity is the projection of a 3-ovoid Qβ containing (0) and contained in �1 by
Fact 5. Moreover, the union of all such 3-ovoids is precisely X ∩ �1, and each of
them intersects C1 (since each plane β intersects M1).

Consider two affine planes β1, β2 in 〈π,y〉 with K∞
0 as a line at infinity. Note

that Corollary 4.8 implies that 〈Qβ1 ,Qβ2 ,C1〉 is seven-dimensional and hence
coincides with �1. This in turn implies that �1 ∩〈O1〉 = 〈C1〉 is two-dimensional.

We now project �1 \ 〈O1〉 from the elliptic space 〈O1〉 onto T(0), and obtain a
4-space U2 (since T(0) ∩ 〈O1〉 = ∅), and we denote the projection map by ρ1. Let
�1 := T (O1) ∩ T(0) and put U∞

2 = U2 ∩ �1. Then the projections of all 3-ovoids
Qβ are planes in U2 pairwise meeting in (0)ρ1 = (0), and they intersect �1 in a
set of lines R, which, we claim, forms a regulus.

Indeed, consider the quadric Veroneseans Vr corresponding to the planes
〈r,M1〉 of Tx with r ∈ K∞

0 arbitrary. Since 〈r,M1〉 intersects each plane of 〈π,y〉
through K∞

0 in a line not contained in �, we see that Vr contains a conic in every
3-ovoid Qβ (see above). Since C1 belongs to Vr , the projection of Vr by ρ1 is
a plane αr , and by the observation just made, αr contains a line of each plane
Q

ρ1
β . Hence, the line αr ∩ �1 intersects every member of R (and we call such a

line an R-transversal). Since r was arbitrary, and since Vr contains (0), all these
R-transversals are distinct, and the claim follows.

Now, each point of U2 \ �1 belongs to the image of ρ1. Consequently, by the
previous claim, there is a point sρ1 in U2 with s ∈ X \ X1. Consider the space
�2 := 〈s,�1〉. We aim to show that X2 = X ∩ �2 is a Veronesean cap with sub-
dimension 2. Note that �

ρ1
2 ⊆ U2. We now show the opposite inclusion.

Fact 7. Every point t ∈ X such that tρ1 ∈ U2 belongs to X2. Hence, �
ρ1
2 = U2.

Proof. Define the points s∞ = 〈(0), sρ1〉∩�1 and t∞ = 〈(0), tρ1〉∩�1. We claim
that there exists a point u∞ not on any member of R such that both 〈s∞, u∞〉 and
〈t∞, u∞〉 contain two points of the regulus R. (We view R here as the union of
the points of its members; hence, as a hyperbolic quadric.) Indeed, this is trivial
if 〈s∞, t∞〉 intersects R in two points. If 〈s∞, t∞〉 is tangent to R, then there is a
plane in U∞

2 through the line 〈s∞, t∞〉 intersecting R in a pair of lines—then any
point in that plane off 〈s∞, t∞〉 will do. Finally, if 〈s∞, t∞〉 does not intersect R,
then every plane in U∞

2 through 〈s∞, t∞〉 intersects R in a conic K that, due to
our assumption, has neither s∞ nor t∞ as a nucleus. Then the intersection of a
secant Ss through s∞ with a secant St through t∞ such that |(Ss ∪ St ) ∩ K| = 4
does the job (and such secants exist because |K| is infinite). The claim is proved.

But now the plane αs = 〈(0), s∞, u∞〉 of U2 intersects, by construction, two
members of R. Hence, the corresponding quadric Veronesean Vαs contains two
conics in �1 ⊆ �2 and the additional point s of �2. So Vαs ⊂ �2; in particular,
u ∈ �2. Similarly, the latter implies t ∈ �2. �
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Fact 8. Let u be an arbitrary point in X2 \ C1, and v an arbitrary point in C1.
Then there is a unique 3-ovoid Qu,v ⊆ X2 containing both u and v. If u = (0),
then Qu,v ⊆ X1.

Proof. Note that uρ1 ∈ U2. Also, the projection under ρ1 of Tv contains a unique
line Lv of R. Then the plane through Lv and uρ1 determines the 3-ovoid we were
looking for. The other assertion is obvious. �
In particular, there is a 3-ovoid Q2 in X2 containing C2 (taking u ∈ C2 \ C1 and
v = x = C1 ∩C2). Let τ be an arbitrary 3-space in U2 through Q

ρ1
2 not containing

(0)ρ1 . Since τ ∩�1 is a plane β1, which cannot be contained in R, we find a point
of (X2 \ X1)

ρ1 by intersecting τ with the line 〈(0), c1〉 with c1 /∈ β1, and not
on a member of R. We may assume that this point is sρ1 . Since β1 contains a
member, call it K , of R, it contains a unique R-transversal T1. Note that K ⊆ Tx .
Let q = C2

ρ1 ∩ K and select a point w on T1 different from T1 ∩ K . Select a
point z ∈ K different from q and different from K ∩ T1 such that the plane π ′ :=
〈(0),w, z, sρ1〉 ∩ �1 does not contain a member of R. (This is possible because
there are only two planes in U∞

2 through the line 〈w, sρ1 , (0)〉∩U∞
2 for which this

does not hold.) Now, the plane πw,z := 〈w,z, sρ1〉 is contained in τ and intersects
Q

ρ1
2 in a line A that contains z and intersects (C2 \ C1)

ρ1 in a point cρ1 different
from q (with c ∈ X2).

The plane πw,z determines a quadric Veronesean Vw,z, which contains exactly
two points of C2, namely c and x. The line 〈z, cρ1〉, which is contained in πw,z, is
the projection of a conic belonging to Vw,z and lies on Q2. Let e be an arbitrary
point on C1 (corresponding to the member E of R). Then πw,z ∩ Q

ρ1
(0),e = πw,z ∩

〈(0),E〉 is a point e∗ (even if w ∈ E or E = K , in which cases e∗ = w and
e∗ = z, respectively; all this follows from the restriction we put on π ′). Let E∗ be
the set of all such points. If we project E∗ from (0) onto �1, then the projection
is obviously contained in R, and every member (line) of R contains exactly one
point of the projection; on the other hand, it is also contained in π ′, which contains
w and z. Hence, the projection from (0) of E∗ onto U∞

2 is a conic, and since E∗ is
contained in πw,z, it is itself a conic containing w and z. Denote the corresponding
set of points of X2 by E∗

2 ⊆ �1. Note that E∗
2 is an infinite set of points on Vw,z

intersecting each conic of Vw,z in at most two points (in fact, it is the intersection
of a 4-space in 〈Vw,z〉 with Vw,z, but we will not need this precise fact).

Now we consider the map ρ2 projecting X \ O2 from 〈O2〉 onto T(0) and let
W2 := �

ρ2
1 . The Veronesean Vw,z projects onto a plane π ′

w,z since it has a conic on
Q2. But (E∗

2 )ρ2 is an infinite set of points in π ′
w,z intersecting each line of π ′

w,z in
at most two points; hence, it certainly contains a triangle and therefore generates
π ′

w,z. But since E∗
2 ⊆ �1, this implies that π ′

w,z is contained in W2. Consequently,
sρ2 ∈ W2. This now implies the following:

Fact 9. The set X2 is independent of the choice of the conic C1 of V through
x and distinct from C0. Hence, we may interchange the roles of C1 and C2. In
particular, if z is an arbitrary point in X2 \C2 and w an arbitrary point in C2, then
there is a unique 3-ovoid Q′

w,z ⊆ X2 containing both w and z.
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Now in the 4-space U2, the plane Q
ρ1
2 intersects every plane containing a mem-

ber of R \ {K}. Interchanging the roles of C1 and C2 again, we conclude that
every 3-ovoid Q′

w,z as in Fact 9 intersects Q1, with Q1 the unique 3-ovoid in X2

containing C1.
Now let c∞ be an arbitrary point of U∞

2 not on a member of R. Let M be
a line in U2 through c∞ containing a point of C

ρ1
2 . Since M contains lots of

points off C
ρ1
2 , Fact 9 and the argument in the first paragraph after Fact 9 imply

that M is contained in the projection πM of a 3-ovoid contained in X2 (and πM

is a plane). The intersection πM ∩ U∞
2 is a line L∞ containing c∞ and itself

contained in a member of S . Hence, Fact 6 and the arbitrariness of c∞ imply
that every pair of points of X2 is contained in a unique 3-ovoid contained in X2,
and R together with all lines L∞ define a line spread of U∞

2 that determines the
André–Bruck–Bose representation of a subplane Ha of P . Hence, X2, furnished
with all 3-ovoids contained in it, is a projective plane. By [12] and Section 4.4,
X2 is a Hermitian or inseparable Veronesean cap. We call such a subcap a generic
subcap of the second kind.

Now Ha contains V and the point (a,0) and is coordinatized by a field L that
contains K. Since Ha is a subplane of P , we may view L as a subalgebra of A.
Since the multiplication in A can be defined geometrically (see Chapter V of [7]),
the element a commutes with every element of K. Since a was arbitrary, we see
that K is contained in the center of A. Also, we know by [12] and Section 4.4 that
either L is a quadratic Galois extension of K, or L has characteristic 2 and L is a
purely inseparable extension of K with L2 ⊆ K. In both cases, there is a quadratic
equation over K satisfied by a. This implies that A is quadratic over K. Hence,
by Theorem 20.3 of [21] and since we may assume that d ≥ 3, we deduce that
either K is the center of A and A is a quaternion or a Cayley–Dickson division
algebra, or K has characteristic 2 and A is a purely inseparable extension of K
(with A

2 ⊆ K). We refer to these two different possibilities as the algebraic and
the inseparable case, respectively.

6. Projective Equivalence to V2(K,A)

Since A is a quadratic alternative division algebra over K, there is a standard
Veronesean cap (X′,�′) in some projective space P(V ′) associated to it, pro-
jectively equivalent to V2(K,A). Also, P(X′,�′) is isomorphic to P . Hence,
there is a natural bijection ε : X → X′ inducing an isomorphism ε : P(X,�) →
P(X′,�′). We must extend ε to a collineation ε : P(V ) → P(V ′).

Our first task is to show that both ε and ε−1 map generic subcaps of the first
kind to generic subcaps of the first kind. We denote P ′ = P(X′,�′).

Lemma 6.1. The bijection ε and its inverse map generic subcaps of the first kind
to generic subcaps of the first kind.
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Proof. With the notation of the previous section, the subcap V is a generic subcap
of the first kind for (X,�). By the definition of V2(K,A), however, the image un-
der ε of V is the quadric Veronesean subcap V2(K,K), which is a generic subcap
of the first kind for (X′,�′).

Now we define a relation ∼ on the set of subplanes of P as follows. Two
subplanes � and �′ are called elementary adjacent, denoted � ∼e �′, if they
share at least one line and all of its points (this is a point row). The transitive
closure of this relation is called the adjacency relation, and two adjacent subplanes
� and �′ are denoted � ∼ �′.

Now let � be a generic subcap of the first kind of P , and suppose that �′ ∼e �.
Then � and �′ share a point row C, which corresponds to a plane conic (which we
also denote by C) in X. Choose two points x, y in �′ not in C. Then the generic
subcap of the first kind determined by C and the unique plane conic through the
points x, y and the intersection of the line xy with C in �′ defines a subplane
sharing C, x, y; hence, they coincide, and so �′ is a generic subcap. It follows
that every subplane of P adjacent to V is a generic subcap of the first kind. Now
suppose that � is a generic subcap of the first kind of P . We want to show that
� ∼ V . By considering a generic subcap �′ sharing some conic with � and hav-
ing two points in V , we obtain �′ ∼e �, and hence we may assume that � and
V share at least two points x, y. Then, considering a generic subcap �′′ sharing
the conic on � through x and y with �, and sharing a conic of V through x not
containing y, yields � ∼e �′′ ∼e V . So we have shown that the class of subplanes
of P adjacent to V coincides with the class of generic subcaps of the first kind.
Similarly, the class of subplanes of P ′ adjacent to Vε coincides with the class of
generic subcaps of the first kind. Since adjacency is defined in a purely geometric
way, it is preserved under ε and ε−1. �

The previous lemma says that, if we restrict ε to an X-ovoid, then it maps plane
conics to plane conics, and similarly for ε−1. We will now use this to show that the
X-ovoids are projectively equivalent to the X′-ovoids. This is the content of the
next two lemmas. We phrase the second one more generally using plane ovals.
The first one is a slight generalization of the fact that collineations of an affine
space uniquely extend to the corresponding projective space. Note that for small
finite fields (order up to 4), the second lemma is easily verified since there are
unique ovoids in the corresponding 3-space.

Lemma 6.2. Let x, y (x′, y′) be two distinct points in a projective space 	 (	′)
with dim	 ≥ 3 (dim	′ ≥ 3), possibly of infinite dimension, and suppose each
line of 	 (	′) contains at least six points. Let Hx and Hy (Hx′ and Hy′ ) be
two hyperplanes in 	 (	′) containing x and y (x′ and y′), respectively, but not
containing y and x (y′ and x′), respectively. Put L = 〈x, y〉 (L′ = 〈x′, y′〉). Set
S = 	\ (Hx ∪Hy ∪L)∪{x, y} (S′ = 	′ \ (Hx′ ∪Hy′ ∪L′)∪{x′, y′}). Let φ : S →
S′ be a bijection that preserves collinearity in both directions such that xφ = x′
and yφ = y′. Then φ uniquely extends to a collineation 	 → 	′.
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Proof. Let L be the set of lines of 	 containing at least three points of S. We
call two members of L parallel if they intersect in a point off S. Let p ∈ 	 \ S.
Then we denote by Lp the subset of L of those lines incident with p (in 	). Such
a set is a maximal clique of size at least 4 in the graph G with vertex set L and
adjacency given by being parallel. Conversely, any maximal clique of size at least
4 of G coincides with Lp for some p ∈ 	 \ S. Indeed, if four lines are mutually
parallel, then they must have a common intersection point (off S) since otherwise
one of the lines contains three distinct points of 	 \ S, and, consequently, one of
the other lines joins two points of either Hx , Hy , or L, a contradiction.

We define L′ and L′
p′ in 	′, with p′ ∈ 	′, in a similar way. Now note that

φ induces a bijection L → L′ since φ preserves collinearity in both directions.
Also, φ preserves being parallel (in both directions) since two lines M,N ∈ L

are parallel precisely when they are disjoint and there exist two other lines P , Q

such that each of the pairs {P,Q}, {P,M}, {P,N}, {Q,M}, {Q,N} intersects in
a point of S (the existence of P and Q in case M and N are parallel is guaranteed
by the fact that each line has at least five points). Consequently, φ maps maximal
cliques of G to maximal cliques of G′. Hence, we can define the image of a point
p ∈ 	 \ S under φ as the point p′ such that φ maps Lp to L′

p′ . Note that this is
the only possibility in view of the fact that φ must preserve the set of triples of
collinear points {p,q, r}, where p,q ∈ S and r ∈ 	 \ S. Hence the uniqueness.

Note also that φ maps a member of L containing n points off S (with n ∈
{1,2,3}) onto a member of L′ containing n points off S′ since n is precisely
equal to the number of maximal cliques of size at least 4 the corresponding line is
contained in.

It remains to show that φ and its inverse preserve the set of triples of collinear
points. So let a, b, c be three collinear points of 	, and let M be the line con-
taining them. If M contains at least three points of S, then the definition of the
extension of φ implies that aφ , bφ , and cφ are contained in Mφ (the latter defined
via its intersection with S). Now let M = L and suppose a /∈ {x, y}. Then La has
the property that it does not contain any line incident with x or y, and every mem-
ber of it contains at least one point distinct from a not contained in S. Since L′

aφ

is a maximal clique in G′ with similar properties, it follows that aφ ∈ 〈x′, y′〉.
Next, suppose M contains x and no other point of S, that is, x ∈ M ⊆ Hx .

Suppose x /∈ {a, b}. Consider a line N �= L through x with N ∈ L and such that
N is contained in the plane 〈y,M〉. Taking the image under φ of N , 〈y, a〉, 〈y, b〉,
we see that aφ and bφ are contained in the plane 〈y′,Mφ〉, which contains x′, and
hence x′, aφ, bφ are on the line 〈y′,Mφ〉 ∩ Hx′ .

Finally, suppose M ∩ S = ∅. Then we already know that, if a, b, c ∈ Hx , then
aφ, bφ, cφ ∈ Hx′ and if a, b, c ∈ Hy , then aφ, bφ, cφ ∈ Hy′ . Now we consider a
plane π through a, b, c not contained in Hx ∪ Hy . Let d be a point in π ∩ S, and
N a line intersecting 〈a, d〉, 〈b, d〉, and 〈c, d〉 in three distinct points a∗, b∗, c∗, re-
spectively, of S. Then clearly 〈aφ, dφ〉, 〈bφ, dφ〉, and 〈cφ, dφ〉 are coplanar since
their union contains the collinear points a∗φ , b∗φ , c∗φ . Hence, aφ, bφ, cφ are con-
tained in a line.
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Similarly, φ−1 preserves collinearity, and so φ is a collineation. �

Lemma 6.3. Let 	 and 	′ be two projective spaces, of possibly infinite dimension
k ≥ 3, which are spanned by ovoids O and O ′, respectively. Suppose each line of
	 has at least six points. Select two points x, y ∈ O . Suppose β : O → O ′ is a
bijective map that maps intersections of O with planes of 	 containing x or y

to intersections of O ′ with planes of 	′ containing xβ or yβ , respectively. Then
there exists a unique collineation φ : 	 → 	′ extending β .

Proof. Define S = 	\(Tx(O)∪Ty(O)∪〈x, y〉), put x′ = xβ , y′ = yβ , and define
S′ = 	′ \ (Tx′(O ′)∪Ty′(O ′)∪〈x′, y′〉). For a point a ∈ S, we define 〈x, a〉∩O =
{x, ax} and 〈y, a〉 ∩ O = {y, ay} with ax �= x and ay �= y.

We first show the uniqueness. Let a ∈ S. Then, since k ≥ 3, we can select a
point z ∈ O not in 〈x, y, a〉. Then aφ is contained in the intersection of the planes
〈x′, z, aβ

x 〉, 〈x′, y′, aβ
x , a

β
y 〉, and 〈y′, z, aβ

y 〉, which are pairwise different by the
choice of z, the bijectivity of β and the assumption that β maps plane intersections
to plane intersections. Lemma 6.2 implies the uniqueness of φ.

Now we show the existence. First, let a be contained in S. Then, since x, y,
ax , ay are coplanar, also the images xβ , yβ , a

β
x , a

β
y are coplanar, and so we can

define aφ = 〈xβ, a
β
x 〉 ∩ 〈yβ, a

β
y 〉. Clearly, this defines a bijection between S and

S′. We now show that φ and its inverse preserve collinearity. The argument for
the inverse is exactly the same, so we only consider φ.

Let a, b, c ∈ S. There are two possibilities.
Case 1. Suppose that dim〈x, y, a, b, c〉 = 3. Then the points x, ax , bx , cx are

coplanar, and so aφ , bφ , cφ are all contained in the plane πx′ = 〈x′, aβ
x , b

β
x , c

β
x 〉.

Likewise, those points are also contained in the plane πy′ = 〈y′, aβ
y , b

β
y , c

β
y 〉. If

πx′ were equal to πy′ , then the oval O ′ ∩ πx′ would be the image under β of two
distinct ovals on O , contradicting the hypothesis on the bijectivity of β . Hence,
aφ , bφ , cφ are contained in πx′ ∩ πy′ and hence are collinear.

Case 2. Suppose now π = 〈x, y, a, b, c〉 is a plane. Consider a second though
arbitrary plane π0 �= π through a, b, c and select z ∈ (S ∩ π0) \ π . Note that
z is not in the plane π = 〈x, ax, bx, cx, y〉, and hence zφ is not in the plane
〈x′, aβ

x , b
β
x , c

β
x , y′〉 = 〈x′, aφ, bφ, cφ, y′〉. Since lines have at least six points, we

can find three collinear points a0, b0, c0 on 〈a, z〉, 〈b, z〉, 〈c, z〉, respectively, such
that 〈x, y, a0, b0, c0〉 is not a plane. By Case 1, aφ , a

φ
0 , zφ are on a line, and so

are bφ , b
φ
0 , zφ and cφ , c

φ
0 , zφ . Now by the same token, a

φ
0 , b

φ
0 , c

φ
0 are on a line,

and so aφ , bφ , cφ are contained in the plane 〈zφ, a
φ
0 , b

φ
0 , c

φ
0 〉, which differs from

the plane 〈x′, aφ, bφ, cφ, y′〉, as noticed before. Hence, aφ, bφ, cφ are contained
in two distinct planes, and consequently they are collinear.

The assertion now follows from Lemma 6.2. �

Due to this lemma, we can extend ε to all points of all elliptic spaces of (X,�).
However, we do not yet know that the resulting map is the restriction of a common
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collineation defined globally on P(V ). Before we can tackle this problem, we
prove a lemma.

Lemma 6.4. Let O1,O2,O3 be three pairwise different X-ovoids with pairwise
different intersection points xij = Oi ∩ Oj , 1 ≤ i ≤ j ≤ 3, and denote xij = xji .
Let z be any point of X \ (O1 ∪ O2 ∪ O3). Put xi = [xjk, z] ∩ Oi for {i, j, k} =
{1,2,3} and j ≤ k. Then

〈Tx12, x3〉 ∩ 〈Tx23 , x1〉 ∩ 〈Tx13 , x2〉 = {z}.
Proof. Let {i, j, k} = {1,2,3} and j ≤ k. Since

z ∈ [xjk, z] = [xjk, xi] = 〈Txjk
([xjk, xi]), xi〉 ⊆ 〈Txjk

, xi〉,
it suffices to show that 〈Tx12 , x3〉∩ 〈Tx23 , x1〉∩ 〈Tx13, x2〉 has dimension at most 0.

Let U = 〈Tx12 , x3〉 ∩ 〈Tx23 , x1〉 ∩ 〈Tx13 , x2〉. We claim that 〈Tx12 , x2, x3〉 ∩
〈Tx23, x1, x2〉 = 〈z,O2〉. Indeed, both 〈Tx12 , x2, x3〉 and 〈Tx23, x1, x2〉 contain O2,
and hence it suffices to show that, if we denote by ρ2 the projection operator from
〈O2〉 onto Tz, then the projection under ρ2 of 〈Tx12 , x3〉 intersects the projection
of 〈Tx23 , x1〉 in just z. But this is true by Lemma 4.4 and since 〈Tx12, x3〉ρ2 =
〈Tx12([x12, x3]), x3〉ρ2 = [x12, x3]ρ2 and likewise 〈Tx23 , x1〉ρ2 = [x23, x1]ρ2 . Since
[x12, x3] = [x12, z] and [x23, x1] = [x23, z], the claim is proved. Consequently,
U ⊆ 〈z,O2〉, and similarly, U ⊆ 〈z,O1〉 ∩ 〈z,O2〉 ∩ 〈z,O3〉. Assume for a con-
traction that U contains a line L. Then L contains a point � of 〈O1〉, which must
also be contained in 〈Tx23 , x1〉, implying � = x1 in view of Tx23 ∩ 〈O1〉 = ∅ (see
Lemma 4.2). Likewise, x2, x3 ∈ L. But then the three points x1, x2, x3 of X are
collinear, a contradiction. Hence, U = {z}, and the lemma is proved. �

Now we extend ε to the whole of P(V ). The technique will consist in considering
three X-ovoids, extending ε restricted to these X-ovoids to the elliptic spaces of
these X-ovoids, then extending that map to a collineation defined on the whole of
P(V ), and proving that it coincides with ε over X.

Theorem 6.5. The bijection ε : X → X′ can be uniquely extended to a
collineation P(V ) → P(V ′) mapping X onto X′ and � to �′.

Proof. It follows from Proposition 4.9 that we may assume that k > 2. First, we
show the uniqueness. Let α and γ be two collineations that extend ε. Then by
Lemma 6.3, α and γ coincide on every elliptic space. Since every two elliptic
spaces intersect in a point, it follows that they also coincide on the span 〈ξ1, ξ2〉
with ξ1, ξ2 ∈ �. Corollary 4.7 concludes the proof.

Next, we show the existence. Let O1,O2,O3 be the X-ovoids with coordinates
[0,0], [0], and [∞], respectively. Denote 〈Oi〉 =: ξi ∈ �, i = 1,2,3, and denote
x12 := O1 ∩ O2, x13 := O1 ∩ O3, and x23 := O2 ∩ O3 (slightly different from the
notation in Section 5.3, but more systematic and suitable for our purposes here).
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For every i ∈ {1,2,3}, there is a collineation εi : ξi → 〈Oε
i 〉 that maps x ∈ Oi

to xε . These collineations are induced by semilinear maps. Denote the corre-
sponding K-automorphisms by θi . We claim that θi = θj for i, j ∈ {1,2,3}. In-
deed, the image of V under ε is again a generic subcap of the first kind, and εi

extends the action of ε to one of the planes πi of V , i = 1,2,3. But εi restricted to
πi is a collineation, and it is the unique one extending the action of ε on the conic
X ∩ πi , i = 1,2,3. Proposition 4.9 implies that all εi , i = 1,2,3, are the restric-
tion of one global collineation 〈V〉 → 〈Vε〉, requiring θ1 = θ2 = θ3. The claim is
proved.

By recoordinatizing V ′ according to θ1, or applying θ−1
1 to V ′ (which is glob-

ally preserved), we may assume that θ1 is trivial.
Hence, since θ1 = θ3 = id, we can extend ε1 and ε3 to a common map ε13

defined on 〈O1,O3〉. By Corollary 4.8 the domains of definition of ε13 and ε2

intersect in the line L = 〈x12, x23〉. We claim that they coincide on L.
Indeed, let Ci = V ∩ Oi , i = 1,2,3. Then ε13/(C1 ∪ C3) = ε/(C1 ∪ C3) and

ε2/C2 = ε/C2. Denote the unique extension of ε/V to 〈V〉 by ε′. Since extensions
of maps on conics to their planes are unique (as collineations), ε13/L = ε′/L
and ε2/L = ε′/L. Hence, ε13/L = ε2/L, proving our claim. Consequently, there
exists a collineation ε123 : P(V ) = 〈ξ1, ξ2, ξ3〉 → P(V ′) coinciding with ε on O1 ∪
O2 ∪ O3.

Next, let z ∈ X \ (O1 ∪ O2 ∪ O3). We show that zε = zε123 . By xi we denote
for all {i, j, k} = {1,2,3} the intersection point [xjk, z] ∩ Li . By Lemma 6.4, z is
the unique intersection point of 〈Tx12, x3〉, 〈Tx23, x1〉, and 〈Tx13 , x2〉, and zε is the
unique intersection point of 〈Txε

12
, xε

3〉, 〈Txε
23

, xε
1〉, and 〈Txε

13
, xε

2〉. Since ε123 is a
collineation, we get zε = zε123 .

Hence, ε123 maps X to X′, and Corollary 4.10 implies that ε123 maps � to �′.
�

This completes the proof of the main result.

7. Projective Representations of PSL3(A)

The traditional Veronesean representation of a projective plane leads to a repre-
sentation of the automorphism group having three orbits on the projective space
P(V ). In the case of the quadric Veronesean in characteristic 2, there are four
orbits amongst which an invariant subspace. Hence, in the latter case, the corre-
sponding projective representation of the collineation group is reducible. In this
section we determine all invariant subspaces of the projective representations of
the collineation groups of P2(A) generated by the elations and acting on the
corresponding Veronesean cap (where A is as before). We also identify all ir-
reducible projective representations arising from both the invariant subspaces and
their quotients. As a corollary, we will deduce that the original representations
are indecomposable, though possibly reducible. Our results are very similar to
those of [4]. This is explained by the fact that the Veronesean caps discussed here
appear as “residues” in the dual polar spaces discussed in [4].
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We start with the irreducible case.

Proposition 7.1. Let A be a quadratic alternative division ring over the field
K with standard involution σ . If either σ is nontrivial or the characteristic of K
is unequal to 2, then the action of PSL3(A) on P(V ) induced by the action on
V2(K,A) is irreducible.

Proof. First, let b ∈ A
×. Then we define γ̃b = τ̃b−1,0 · τ̃ τ

0,b · τ̃b−1,0, and a straight-

forward calculation shows that the product δ̃ = γ̃bγ̃−1 acts as follows:

δ̃b : (X0,X1,X2;Y0, Y1, Y2)

�→ ((bbσ )−1X0,X1, (bbσ )X2;Y0b
σ , bY1b

−σ , b−1Y2).

We denote the corresponding projective maps without the tilde. Note that γ̃ τ̃
1 · γ̃1 ·

δ̃−1 produces τ̃ ; hence, the triality collineation belongs to PSL3(A).
The proposition will be proved if we show that the orbit of every point of

P(V ) under the action of PSL3(A) generates P(V ). Consider an arbitrary point
p = K(x0, x1, x2;y0, y1, y2) of P(V ). Using an appropriate τa,b for suitable
a, b ∈ A, we see that we may assume that (x0, x1, x2) �= (0,0,0). Up to triality,
we may assume that x2 �= 0. Then using τa,b with a = −x−σ

2 yσ
1 and b = −y0x

−1
2 ,

we obtain a point p′ = K(x′
0, x

′
1, x

′
2;0,0, y′

2) in the orbit of p. Suppose first that
y′′

2 �= 0. Our assumptions imply that there exist b, b′ ∈ A with bbσ = b′b′σ and

b �= b′. Then the line p′δbp′δb′ contains a point with coordinates (0,0,0;0,0, y′′
2 ),

which is contained in the subspace generated by the orbit. Using δb for b ∈ A
×

and triality, we deduce that all points K(0,0,0;a0, a1, a2), a0, a1, a2 ∈A, belong
to the subspace generated by the orbit of p. Applying τ1,0 to K(0,0,0;0, a1,0)

with a1 +aσ
1 �= 0, we see that K(1,0,0;0,0,0) belongs to that subspace, and then

triality completes the proof in this case.
Now suppose that y′′

2 = 0. Using δb and its conjugates under the triality
collineation for suitable b, it is easy to see that all points K(r0, r1, r2;0,0,0) be-
long to the space U generated by the orbit of p. Applying τ1,1 to K(0,0,1;0,0,0),
we see that K(1,1,1;1,1,1) belongs to U . Since that point belongs to V2(K,A),
and the latter generates P(V ), we are done. �

If the characteristic of K is equal to 2 and σ = 1, then Proposition 7.1 is false. We
introduce two other projective representations of PSL3(A) in this case. First, we
call the representation of PSL3(A) on P(A × A × A), where A is viewed in the
natural way as a vector space over K, the (K,A)-representation of PSL3(A). Sec-
ond, we call the representation of PSL3(A) in P(K × K × K) naturally obtained
from the inclusion A

2 ⊆ K (where A
2 denotes the field of all squares of A) the

A
2-representation of PSL3(A).
We then have the following proposition.

Proposition 7.2. Let A either be a purely inseparable quadratic extension of the
field K of characteristic 2 such that all squares of A are contained in K, or A = K

of characteristic 2. Then the action of PSL3(A) on P(V ) induced by the action
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on V2(K,A) has a unique nontrivial invariant subspace U , which is the intersec-
tion of all tangent hyperplanes. The induced representation in U is the (K,A)-
representation of PSL3(A), whereas the induced representation in P(V )/U is the
A

2-representation of PSL3(A).

Proof. It follows from Theorem 3.1 that the intersection of all tangent hy-
perplanes is exactly the space W consisting of the points K(0,0,0;y0, y1, y2)

with y0, y1, y2 ∈ A. We now show that W has no proper nontrivial invariant
subspace. So let W ′ ⊆ W be an invariant subspace of PSL3(A), and suppose
K(0,0,0;y0, y1, y2) ∈ W ′ for some y0, y1, y2 ∈ A. If y0 = y1 = 0, then using the
map δb for b ∈ A

× and triality, we deduce as in the previous proof that W ′ = W .
If y0 = 0 and y1 �= 0, then using δb and an appropriate conjugate under triality,
we deduce that K(0,0,0;0, b2y1, by2) and K(0,0,0;0, by1, by2) belong to W ′
and hence also K(0,0,0;0, (b2 +b)y1,0). Choosing b �= 1, we are reduced to the
previous situation. Similarly, we reduce the situation where all yi , i = 0,1,2, are
nonzero to a situation where at least one of them is zero. Hence, W ′ = W in all
cases.

Now we show that there are no other invariant subspaces. For |K| = 2, this
is a direct computation. So suppose |K| > 2. Let U ′ be an invariant subspace
with U ′ �= W . Then U ′ certainly contains a point K(x0, x1, x2;y0, y1, y2) with
(x0, x1, x2) �= (0,0,0). It can then be directly verified that, using translations and
their conjugates, we can map such a point onto a point q = K(0,0,1;y′

0, y
′
1, y

′
2).

Note that, if (y′
0, y

′
1, y

′
2) = (0,0,0), then q belongs to V2(K,A), and hence the

result follows. So, without loss, we may assume that (y′
0, y

′
2) �= (0,0). Using δb

with b ∈ K \ {0,1}, we see that also K(0,0,1;y′
0b

−1, y′
1, y

′
2b

−1) belongs to U ′
and hence also K(0,0,0;y′

0(1 + b−1),0, y′
2(1 + b−1)), which belongs to W .

So we may assume that W ⊆ U ′. But then K(0,0,1;0,0,0) ∈ V2(K,A) be-
longs to U ′, and the result again follows. Hence, U = W is the only nontrivial
invariant subspace.

The action of τa,b on P(V )/U is given by K(x0, x1, x2; ∗,∗,∗) �→ K(x0 +
a2X2, x1 + b2X2,X2; ∗,∗,∗), and clearly this and its triality conjugates generate
the A

2-representation of PSL3(A). Also, the action of τa,b on U = W is given by
K(0,0,0;y0, y1, y2) �→ K(0,0,0;y0, y1, y2 + ay0 + by1). Also here, it is clear
that this and its triality conjugates generate the (K,A)-representation of PSL3(A).

The proof of the proposition is complete. �

The geometric formulation and interpretation of the previous proposition runs as
follows. We leave the details of the proof for the reader since it merely concerns
some calculations. For a given elliptic space of a Veronesean cap (X,�), we call
the nucleus of it the subspace obtained by intersecting all hyperplanes tangent to
the corresponding X-ovoid.

Proposition 7.3. Let A either be a purely inseparable quadratic extension of the
field K of characteristic 2 such that all squares of A are contained in K, or A = K

of characteristic 2. Let W be the intersection of all tangent hyperplanes. Then the
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projection of V2(K,A) from W onto a complementary plane π is an isomorphism
of P(V2(K,A)) onto a subplane of π over A2. Also, the set of nuclei of all elliptic
spaces of V2(K,A) defines a partition of W , and three elliptic spaces correspond
to confluent lines of P2(A) if and only if the span of the corresponding nuclei of
any two of them contains the third if and only if the span of the corresponding
nuclei of any two of them intersects the third nontrivially.
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