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Brauer Groups of Quot Schemes

Indranil Biswas, Ajneet Dhillon, & Jacques Hurtubise

Abstract. Let X be an irreducible smooth complex projective curve.
Let Q(r, d) be the Quot scheme parameterizing all coherent sub-
sheaves of O⊕r

X
of rank r and degree −d. There are natural mor-

phisms Q(r, d) −→ Symd(X) and Symd (X) −→ Picd(X). We prove
that both these morphisms induce isomorphism of Brauer groups if
d ≥ 2. Consequently, the Brauer group of Q(r, d) is identified with
the Brauer group of Picd (X) if d ≥ 2.

1. Introduction

Let X be an irreducible smooth projective curve defined over C. For any integer
r ≥ 1, consider the trivial holomorphic vector bundle O⊕r

X on X. For any d ≥ 0,
let Q(r, d) denote the Quot scheme that parameterizes all torsion quotients of
degree d of the OX-module O⊕r

X . This Q(r, d) is an irreducible smooth complex
projective variety of dimension rd .

For every Q ∈ Q(r, d), we have a corresponding short exact sequence

0 −→ F(Q)
ρ−→ O⊕r

X −→ Q −→ 0.

The pairs (O⊕r
X )∗ = O⊕r

X

ρ∗
−→ F(Q)∗ are vortices of a particular numerical type.

The Quot scheme Q(r, d) is a moduli space of vortices of a particular numerical
type (see [BDW; Ba; BR], and references therein).

Sending such Q to the scheme theoretic support of the quotient for the homo-
morphism

r∧
F(Q) −→

r∧
O⊕r

X

induced by the inclusion F(Q) −→ O⊕r
X , we get a morphism

ϕ :Q(r, d) −→ Symd(X).

Sending any Q ∈ Q(r, d) to the holomorphic line bundle
∧r F(Q)∗, we get a

morphism
ϕ′ :Q(r, d) −→ Q(1, d) = Picd(X).

On the other hand, we have the morphism

ξd : Symd(X) −→ Picd(X)

that sends any (x1, . . . , xd) to the holomorphic line bundle OX(
∑d

i=1 xi). Note
that ϕ′ = ξd ◦ ϕ.
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The cohomological Brauer group of a smooth complex projective variety M

will be denoted by Br′(M). A theorem of Gabber says that Br′(M) coincides with
the Brauer group of M (see [dJ]).

Our aim here is to prove the following:

Theorem 1.1. For the morphisms ϕ and ξd , the pullback homomorphisms of
Brauer groups

ϕ∗ : Br′(Symd(X)) −→ Br′(Q(r, d)) and

ξ∗
d : Br′(Picd(X)) −→ Br′(Symd(X))

are isomorphisms if d ≥ 2.

Theorem 1.1 is proved in Lemma 4.2 and Lemma 6.1.
If genus(X) = 1, then Symd(X) is a projective bundle over X, and hence

Br′(Symd(X)) = 0. If genus(X) = 0, then Br′(Symd(X)) = 0 because
Symd(X) = CPd . Therefore, Theorem 1.1 has the following corollary:

Corollary 1.2. If genus(X) ≤ 1, then Br′(Q(r, d)) = 0.

Since Q(r,1) is a projective bundle over X, it follows that Br′(Q(r, d)) = 0. Note
that Br′(Picd(X)) is nonzero if genus(X) > 1, whereas Br′(Sym1(X)) = 0.

Fixing a point x0 ∈ X, construct an embedding

δ :Q(r, d) −→Q(r, d + r)

by sending any subsheaf F ⊂ O⊕r
X to F ⊗OX(−x0).

The following is proved in Corollary 6.2:

Proposition 1.3. The pullback homomorphism for δ

δ∗ : Br′(Q(r, d + r)) −→ Br′(Q(r, d))

is an isomorphism if d ≥ 2.

Now assume that r , genus(X) ≥ 2; if r = 2, then also assume that genus(X) ≥ 3.
Iterating the morphism δ, we get an ind-scheme. This ind-scheme has the coho-
mology isomorphic to the moduli stack; see [Dh, Theorem 4.5] or [Ne, Chapter 4].
Using Proposition 1.3 and Theorem 1.1, we can now describe the cohomological
Brauer group of the moduli stack of rank r and degree d bundles. Further, we de-
duce that the cohomological Brauer group of the moduli stack of vector bundles
on X of rank r and fixed determinant vanishes. This result was proved earlier in
[BH, Theorem 5.2]. Using this vanishing result, we can deduce that the cohomo-
logical Brauer group of the moduli space of stable vector bundles on X of rank
r and fixed determinant of degree d is a cyclic group of order g.c.d.(r, d). This
result was proved earlier in [BBGN].
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2. Cohomological Brauer Group

Let M be an irreducible smooth projective variety defined over C. Let O∗
M denote

the multiplicative sheaf on M of holomorphic functions with values in C\{0}. The
cohomological Brauer group Br′(M) is the torsion subgroup of the cohomology
group H 2(M,O∗

M).
Let OM denote the sheaf of holomorphic functions on M . Consider the short

exact sequence of sheaves on M

0 −→ Z −→OM
exp−→O∗

M −→ 0,

where the homomorphism Z −→ OM sends any integer n to the constant function
2π

√−1 · n. Let

Pic(M) = H 1(M,O∗
M)

c−→ H 2(M,Z) −→ H 2(M,OM) (2.1)

be the corresponding long exact sequence of cohomology groups. The homomor-
phism c in (2.1) sends a holomorphic line bundle to its first Chern class. The
image c(Pic(M)) coincides with the Néron–Severi group

NS(M) := H 1,1(M) ∩ H 2(M,Z).

Define the subgroup

A := H 2(M,Z)/c(Pic(M)) = H 2(M,Z)/NS(M) ⊂ H 2(M,OM) (2.2)

(see (2.1)). Let
H 3(M,Z)tor ⊂ H 3(M,Z)

be the torsion part.

Proposition 2.1 [Sco]. There is a natural short exact sequence

0 −→ A ⊗Z (Q/Z) −→ Br′(M) −→ H 3(M,Z)tor −→ 0,

where A is defined in (2.2).

See [Sco, p. 878, Proposition 1.1] for a proof of Proposition 2.1.

3. The Cohomology of Symmetric Products

Let X be an irreducible smooth complex projective curve. The genus of X will be
denoted by g. For any positive integer d , let Pd be the group of all permutations of
{1, . . . , d}. By Symd(X) we will denote the quotient of Xd for the natural action
of Pd on it. So Symd(X) parameterizes all formal sums of the form

∑
x∈X nx · x,

where nx are nonnegative integers with
∑

x∈X nx = d . In other words, Symd(X)

parameterizes all effective divisors on X of degree d . This Symd(X) is an irre-
ducible smooth complex projective variety of complex dimension d . Let

qd : Xd −→ Symd(X) = Xd/Pd (3.1)

be the quotient map.
Let α1, α2, . . . , α2g be a symplectic basis for H 1(X,Z) chosen so that αi ·

αi+g = 1 for i ≤ g and αi · αj = 0 if |i − j | �= g. The oriented generator of
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H 2(X,Z) will be denoted by ω. For i ∈ [1,2g] and j ∈ [1, d], we have the coho-
mology classes

λ
j
i := 1 ⊗ · · · ⊗ αi ⊗ · · · ⊗ 1 ∈ H 1(Xn,Z) (3.2)

and
ηj := 1 ⊗ · · · ⊗ ω ⊗ · · · ⊗ 1 ∈ H 2(Xn,Z), (3.3)

where both αi and ω are at the j th position.

Theorem 3.1 [Ma]. For the morphism qd in (3.1), the pullback homomorphism

q∗
d : H ∗(Symd(X),Z) −→ H ∗(Xd,Z)

is injective. Further, the image of q∗
d is generated, as a Z-algebra, by

λi =
d∑

j=1

λ
j
i , 1 ≤ i ≤ 2g, and η =

d∑
j=1

ηj .

See [Ma, p. 325, (6.3)] and [Ma, p. 326, (7.1)] for Theorem 3.1.
There is a universal divisor Duniv on Symd(X) × X, which consists of all

(z, x) ∈ Symd(X) × X such that x is in the support of z. We wish to describe
the class of this divisor in H 2(Symd(X) × X,Z). In view of the first part of
Theorem 3.1, the algebra H ∗(Symd(X) × X,Z) is considered as a subalgebra
of H ∗(Xd+1,Z).

For i ∈ [1, d + 1], let πi : Xd+1 −→ X be the projection to the ith factor. For
any integer k ∈ [1, d], consider the closed immersion

ιk : Xd ↪→ Xd+1m

which is uniquely determined by

πi ◦ ιk =
{

π ′
i if i �= d + 1,

π ′
k if i = d + 1,

where π ′
j is the projection of Xd to the j th factor. In other words, ik(x1, . . . , xk,

. . . , xd) = ik(x1, . . . , xk, . . . , xd, xk). The divisor on Xd+1 given by the image of
ιk will be denoted by Dk .

The divisor Dk is closely related to the universal divisor Duniv defined before.
To see this, consider the projection

qd × IdX : Xd+1 = Xd × Xd −→ Symd(X) × X,

where qd is constructed in (3.1). The image (qd × IdX)(Dk) is independent of the
choice of k and coincides with Duniv. This implies that Duniv is irreducible.

The classes

λ
j
i ∪ λ

j ′
i′ , i �= i′,1 ≤ j < j ′ ≤ d + 1,

and
ηj , 1 ≤ j ≤ d + 1,
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constructed as in (3.2) and (3.3) for d + 1, together give a basis for H 2(Xd+1,Z).
We have the dual basis for H 2d(Xd+1,Z) given by

ηj∨ = ω ⊗ · · · ⊗ ω ⊗ 1 ⊗ ω ⊗ · · · ⊗ ω

and

(λ
j
i ∪ λ

j ′
i′ )

∨ = ω ⊗ · · · ⊗ ω ⊗ α̃i ⊗ ω ⊗ · · ·ω ⊗ α̃i′ ⊗ ω ⊗ · · · ⊗ ω,

where α̃i (respectively, α̃i′ ) is the class with α̃i ∪ αi = ω (respectively, α̃i′ ∪ αi′ =
ω). Now ∫

Dk

ηj∨ =
∫

Xd

ι∗kηj∨ =

⎧⎪⎨⎪⎩
1, j = k,

1, j = d + 1,

0 otherwise,

whereas ∫
Dk

(λ
j
i ∪ λ

j ′
i′ )

∨ =
∫

X

α̃i ∪ α̃i′

if j ′ = d + 1 and j = k, and ∫
Dk

(λ
j
i ∪ λ

j ′
i′ )

∨ = 0

otherwise. So the class of Dk is

ηk + ηd+1 +
g∑

i=1

λk
i ∪ λd+1

i+g −
2g∑

i=g+1

λk
i ∪ λd+1

i−g .

By the Künneth formula we have

H 2(Symd(X) × X,Z)

∼= (H 2(Symd(X),Z) ⊗ H 0(X,Z))

⊕ (H 0(Symd(X),Z) ⊗ H 2(X,Z)) ⊕ (H 1(Symd(X),Z) ⊗ H 1(X,Z)).

Using Theorem 3.1 (3.1), we have a basis for H 2(Symd(X)×X,Z) consisting of

η ⊗ 1X, {(λi ∪ λj ) ⊗ 1X}2g

i,j=1, 1Symd (X) ⊗ ω, {λi ⊗ αj }2g

i,j=1.

From the previous computations it follows that the class of Duniv is

[Duniv] = η ⊗ 1 + d(1Symd (X) ⊗ ω) +
g∑

i=1

λi ⊗ αi+g −
2g∑

i=g+1

λi ⊗ αi−g. (3.4)

Proposition 3.2.

(1) For a fixed point x0 ∈ X, consider the inclusion

ιx0 : Symd(X) ↪→ Symd(X) × X

defined by z �−→ (z, x0). The cohomology class ι∗x0
[Duniv] is η.

(2) The slant product of [Duniv] with α∨
i produces the class λi in

H 1(Symd(X),Z).
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Proof. These follow from (3.4). �

4. Cohomological Brauer Group of the Symmetric Product

Recall that X denotes a smooth projective curve. Fix a point x0 ∈ X. For any
d ≥ 1, let

fd : Symd(X) −→ Symd+1(X) (4.1)

be the morphism defined by
∑

x∈X nx · x �−→ x0 + ∑
x∈X nx · x. Let

f ∗
d : Br′(Symd+1(X)) −→ Br′(Symd(X)) (4.2)

be the pullback homomorphism for fd in (4.1).

Lemma 4.1. For every d ≥ 2, the homomorphism f ∗
d in (4.2) is an isomorphism.

Proof. For every positive integer d , the cohomology group H ∗(Symd(X),Z) is
torsionfree by Theorem 3.1. Therefore, from Proposition 2.1 we conclude that

Br′(Symd(X)) ∼= (H 2(Symd(X),Z)/NS(Symd(X))) ⊗Z (Q/Z). (4.3)

From Theorem 3.1,

H 2(Symd(X),Z) =
( 2∧

H 1(X,Z)

)
⊕ H 2(X,Z). (4.4)

Let

f ′
d : H 2(Symd+1(X),Z) −→ H 2(Symd(X),Z)

be the homomorphism that sends a cohomology class to its pullback by the map
fd in (4.1). It is evident that in terms of the isomorphism in (4.4), this homomor-
phism f ′

d coincides with the identity map of (
∧2

H 1(X,Z)) ⊕ H 2(X,Z).
The isomorphism in (4.4) is clearly compatible with the Hodge decomposi-

tions. Since f ′
d coincides with the identity map of (

∧2
H 1(X,Z))⊕H 2(X,Z), we

now conclude that f ′
d takes NS(Symd+1(X)) isomorphically to NS(Symd(X)).

Therefore, the lemma follows from (4.3). �

For any positive integer d , let

ξd : Symd(X) −→ Picd(X) (4.5)

be the morphism defined by
∑

x∈X nx · x �−→OX(
∑

x∈X nx · x). Let

ξ∗
d : Br′(Picd(X)) −→ Br′(Symd(X)) (4.6)

be the pullback homomorphism corresponding to ξd .

Lemma 4.2. For any d ≥ 2, the homomorphism ξ∗
d in (4.6) is an isomorphism.

Proof. Let

ηd : Picd(X) −→ Picd+1(X)
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be the isomorphism defined by L �−→ L ⊗ OX(x0). We have the commutative
diagram

Symd(X)
fd−→ Symd+1(X)

↓ ξd ↓ ξd+1

Picd(X)
ηd−→ Picd+1(X)

where fd and ξd are constructed in (4.1) and (4.5), respectively, and ηd is defined
above. Let

Br′(Picd+1(X))
η∗
d−→ Br′(Picd(X))

↓ ξ∗
d+1 ↓ ξ∗

d

Br′(Symd+1(X))
f ∗

d−→ Br′(Symd(X))

(4.7)

be the corresponding commutative diagram of homomorphisms of cohomological
Brauer groups. From Lemma 4.1 we know that f ∗

d is an isomorphism for d ≥ 2.
The homomorphism η∗

d is an isomorphism because the map ηd is an isomorphism.
Therefore, from the commutativity of (4.7) we conclude that the homomorphism
ξ∗
d is an isomorphism if ξ∗

d+1 is an isomorphism. Consequently, it suffices to prove
the lemma for all d sufficiently large.

As before, the genus of X is denoted by g. Take any d > 2g. Note that for any
line bundle L on X of degree d , using Serre duality, we have

H 1(X,L) = H 0(X,KX ⊗ L∨)∨ = 0 (4.8)

because degree(KX ⊗ L∨) = 2g − 2 − d < 0.
Take a Poincaré line bundle L −→ X × Picd(X). From (4.8) it follows that the

direct image
pr∗ L −→ Picd(X)

is locally free of rank d −g +1, where pr is the natural projection of X ×Picd(X)

to Picd(X). The projective bundle P(pr∗ L), that parameterizes the lines in the
fibers of the holomorphic vector bundle pr∗ L, is independent of the choice of the
Poincaré line bundle L. Indeed, this follows from the fact that any two choices of
the Poincaré line bundle over X × Picd(X) differ by tensoring with a line bundle
pulled back from Picd(X) [ACGH, p. 166]. The total space of P(pr∗ L) is identi-
fied with Symd(X) by sending a section to the divisor on X given by the section;
see [Scb]. This identification between Symd(X) and P(pr∗ L) takes the map ξd in
(4.5) to the natural projection of P(pr∗ L) to Picd(X).

Since P(pr∗ L) is the projectivization of a vector bundle, the natural projection

P(pr∗ L) −→ Picd(X)

induces an isomorphism of cohomological Bauer groups [Ga, p. 193]. Conse-
quently, the homomorphism

ξ∗
d : Br′(Picd(X)) −→ Br′(Symd(X))

defined in (4.6) is an isomorphism if d > 2g. We noted earlier that it is enough to
prove the lemma for all d sufficiently large. Therefore, the proof of the lemma is
now complete. �
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5. The Cohomology of the Quot Scheme

For integers r ≥ 1 and d , denote by Q(r, d) the Quot scheme parameterizing all
coherent subsheaves

F ↪→O⊕r
X ,

where F is of rank r and degree −d . Note that there is no such subsheaf if d < 0.
If d = 0, then F = O⊕r

X . If d = 1, then Q(r, d) = X × CPr−1. We assume that
d ≥ 1.

We will now recall from [Bi] a few facts about the Białynicki-Birula decom-
position of Q(r, d). Using the natural action of Gm = C \ {0} on OX , we get an
action of Gr

m on O⊕r
X . This action produces an action of Gr

m on Q(r, d). The fixed
points of this torus action correspond to subsheaves of O⊕r

X that decompose into
compatible direct sums

r⊕
i=1

Li ↪→O⊕r
X ,

where Li ↪→ OX is a subsheaf of rank one. Let Di be the effective divisor given
by the inclusion of Li in OX . In particular, we have Li = OX(−Di).

We use the convention that Sym0(X) is a single point. Using this notation, we
have

(D1, . . . ,Dr) ∈ Symm1(X) × · · · × Symmr (X),

where mi = degree(Di). Conversely, if (D′
1, . . . ,D

′
r ) ∈ Symm1(X) × · · · ×

Symmr (X), then the point of Q(r, d) representing the subsheaf
r⊕

i=1

OX(−D′
i ) ⊂ O⊕r

X

is fixed by the action of Gr
m on Q(r, d).

For k ≥ 1, denote by Partkr the set of partitions of k of length r . So

m = (m1, . . . ,mr) ∈ Partkr
if and only if mj are nonnegative integers with

r∑
j=1

mj = k.

For m ∈ Partdr , define

dm :=
r∑

i=1

(i − 1)mi. (5.1)

The connected components of the fixed point locus for the action of Gr
m on

Q(r, d) are in bijection with the elements of Partdr . The component corresponding
to the partition m = (m1, . . . ,mr) is the product

Symm(X) := Symm1(X) × · · · × Symmr (X).

It is possible (see [Bi, p. 3]) to choose a one-parameter subgroup Gm −→ Gr
m

given by z �→ (zλ1 , zλ2 , . . . , zλr ) so that the following two hold:
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(1) The fixed point locus under the induced action of Gm is the same as the fixed
point locus under the action of Gr

m.
(2) The integers λ1 < λ2 < · · · < λr are increasing.

For this action of Gm on Q(r, d), define

Symm(X)+ :=
{
x ∈Q(r, d)

∣∣ lim
t→0

t.x ∈ Symm(X)
}
,

where m ∈ Partkr . This stratification of Q(r, d) gives us a decomposition of the
Poincaré polynomial of Q(r, d). Further, the morphism

Symm(X)+ −→ Symm(X) (5.2)

that sends a point to its limit is a fiber bundle with fiber Adm (see [Bb] and [Bi]),
where dm is defined in (5.1).

This gives

dim Symm(X)+ = dim Symm(X) + dm = d + dm (5.3)

(see [Bi]).

Theorem 5.1. For i ≥ 1,

Hi(Q(r, d),Z) ∼=
⊕

m∈Partdr
j+2dm=i

H j (Symm1(X) × · · · × Symmr (X),Z).

Proof. See [Bi] and [BGL, p. 649, Remark]. �

We will construct some cohomology classes in H 2(Q(r, d),Z). There is a univer-
sal vector bundle Funiv on Q(r, d) × X. Fix a point x0 ∈ X. Let

ix : Q(r, d) −→Q(r, d) × X

be the embedding defined by z �−→ (z, x).
Let

c := i∗x c1(Funiv) ∈ H 2(Q(r, d),Z) (5.4)

be the pullback. This cohomology class c is clearly independent of x.
We can produce cohomology classes

α1, α2, . . . , α2g ∈ H 1(Q(r, d),Z)

by taking the slant product of c1(Funiv) with the elements of a basis {α1, . . . , α2g}
for H 1(X,Z). Finally, there is a cohomology class γ2 ∈ H 2(Q(r, d),Z) obtained
by taking the slant product of c2(Funiv) with the fundamental class of X.

Remark 5.2. We will see in the next proposition that the cohomology of Q(r, d)

has no torsion. The class c2(Funiv) is a (p,p)-class and so is the fundamental
class of X. It follows that the class γ2 is in the Néron–Severi subgroup of Q(r, d)

since the slant product of two (p,p) classes is in fact (p,p).
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Proposition 5.3. Suppose that d ≥ 2. Then the classes

c, γ2, αi ∪ αj , 1 ≤ i < j ≤ 2g,

generate H 2(Q(r, d),Z). In fact, H 2(Q(r, d),Z) is torsionfree, and these classes
form a basis of the Z-module H 2(Q(r, d),Z).

Proof. Using Theorem 5.1 and Theorem 3.1, it follows that H 2(Q(r, d),Z) is
torsionfree of rank (

2g

2

)
+ 2.

Hence, it suffices to show the stated classes generate the second cohomology
group.

The torus action on Q(r, d) induces a Białynicki-Birula stratification on this
variety, as described before. Using (5.3), the cell of largest dimension in the
Białynicki-Birula decomposition is the cell corresponding to the partition

m1 = (0,0,0, . . . , d),

and the second largest cell corresponds to the partition

m2 = (0,0, . . . ,0,1, d − 1).

It follows that Symm1(X)+ is an open dense subscheme of Q(r, d). Let D :=
Q(r, d) \ Symm1(X)+ be the complement. Using (5.2), we have

H 2(Symm1(X)+,Z) = H 2(Symm1(X),Z).

Further, by a dimension calculation (5.3) and a Gysin sequence,

H 0(D,Z) ∼= H 0(Symm2(X),Z).

Let
ι : Symm1(X) ↪→Q(r, d)

be the inclusion map.
The Gysin sequence for the decomposition Q(r, d) = Symm1(X)+

∐
D now

reads:

· · · −→ H 0(Symm2(X),Z)
f∗−→ H 2(Q(r, d),Z)

ι∗−→ H 2(Symm1(X),Z) −→ · · · ,

where
f : Symd−1(X) × X −→ Q(r, d) (5.5)

is the embedding. From [CS], this sequence splits, or in other words, the
Białynicki-Birula stratification is integrally perfect.

To complete the proof, it suffices to verify the following two statements:

(S1) The classes ι∗(αi ∪ αj ), 1 ≤ i < j ≤ 2g, and ι∗(c) generate
H 2(Symm1(X),Z).

(S2) The class γ2 generates the image of f∗.
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For (S1), observe that

ι∗(Funiv) = j∗
z OSymd (X)×X(−Duniv) ⊕Or−1

Symd (X)
,

where jz : Symd(X) −→ Symd(X)×X is the embedding defined by z �−→ (z, x),
and Duniv is the universal divisor on Symd(X) × X. From Proposition 3.2 and
Theorem 3.1 it follows that the classes

ι∗(c), ι∗(αi ∪ αj ), 1 ≤ i < j ≤ 2g,

give a basis for H 2(Symm1(X),Z). Further, γ2 ∈ kernel(ι∗).
For (S2), we assume that r = 2 for simplicity. The proof in the case of higher

rank is obtained by adding some trivial summands to the argument below.
As noted before, we have a split exact sequence:

0 −→ H 0(Symd−1(X) × X,Z)
f∗−→ H 2(Q(r, d),Z)

i∗−→ H 2(Symd(X),Z) −→ 0.

Fix some quotient
q :OX −→ Q −→ 0

of degree d − 1 and also fix some quotient

q ′ : OX −→ Op −→ 0

of degree 1, where p ∈ X is a point not in the support of Q.
This gives us a point z ∈ Symd−1(X) × X. We can expand this to a morphism

F : A1 −→ (Symd−1(X) × X)+

by considering the family of quotients

F(t) :=
(

qf 0
tq ′ q ′

)
: O⊕2

X −→ Q ⊕Op −→ 0.

Taking the closure of F(A1) in Q(2, d), we obtain an inclusion

F : P1 ↪→Q(2, d).

Since dimQ(2, d) = 2d , this gives a cohomology class

[P1] ∈ H 4d−2(Q(2, d),Z).

Let
W −→ P1 × X

be the restriction of the universal vector bundle Funiv −→ Q(2, d) × X. It fits in
the short exact sequence

0 −→W −→ O⊕2
P1×X

−→ Q̃ := (OP1 �Q) ⊕ (OP1(1)�Op) −→ 0. (5.6)

Note that the Chern character

Ch(Q̃) = dωX + ωX ∪ ωP1, (5.7)
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where ωX and ωP1 are the fundamental classes of X and P1, respectively. In
particular, c1(Q̃) = ωX . Therefore, the slant product of c1(Q̃) with elements of
H 1(X,Z) vanish. We have

c2(Q̃) = ωX ∪ ωP1 .

Its slant product with X is then just ωP1 . Therefore,

(F ∗γ2) ∪ [P1] =
∫
P1

γ2 = 1.

So the cohomology classes described in the statement of the proposition give a
basis for the vector space H 2(Q(r, d),Q).

We will prove the following statements:

(F ∗c) ∪ [P1] = 0, (5.8)

αi ∪ [P1] = 0, (5.9)

f∗([Symd−1(X) × X]) ∪ [P1] = 1, (5.10)

(F ∗γ2) ∪ [P1] = ∫
P1 γ2 = 1. (5.11)

The map f is defined in (5.5).
We first show that these statements complete the proof. For that, it is sufficient

to observe that they imply that both

f∗([Symd−1(X) × X]) and γ2

are dual to [P1] and hence must be equal.
To prove (5.8), consider (5.6). Choose a point x ∈ X away from the support

of Q ⊕ Op and restrict W to P1 × {x}. From (5.7) it follows that the first Chern
class of this restriction vanishes. The first Chern class of this restriction clearly
coincides with (F ∗c) ∪ [P1].

The left-hand side of (5.9) is clearly the slant product of c1(W) with αi . We
noted before that this slant product vanishes.

Now, (5.10) is clear from the construction of the morphism F from P1. Finally,
(5.11) has already been proved. �

6. The Cohomological Brauer Group

For integers r ≥ 1 and d ≥ 0, take any subsheaf F ⊂ O⊕r
X lying in Q(r, d). Taking

the r th exterior power, we get a subsheaf
∧r F ⊂ ∧r O⊕r

X = OX . Let

ϕ :Q(r, d) −→ Symd(X) (6.1)

be the morphism that sends any subsheaf F ⊂ O⊕r
X to the scheme theoretic sup-

port of the quotient OX/
∧r F . Let

ϕ∗ : Br′(Symd(X)) −→ Br′(Q(r, d)) (6.2)

be the pullback homomorphism using ϕ.

Lemma 6.1. The homomorphism ϕ∗ in (6.2) is an isomorphism.
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Proof. Note that Br′(Q(r, d)) = Br′(Symd(X)) = 0 if d ≤ 1. Therefore, we as-
sume that d ≥ 2.

The cohomology group H 3(Q(r, d),Z) is torsionfree. Indeed, this follows
from Theorem 5.1 and the fact that H ∗(Symn(X),Z) is torsionfree [Ma, p. 329,
(12.3)]. Therefore, Proposition 2.1 says that

Br′(Q(r, d)) = (H 2(Q(r, d),Z)/NS(Q(r, d))) ⊗Z (Q/Z). (6.3)

Let

ϕ′ : H 2(Symd(X),Z) −→ H 2(Q(r, d),Z)

be the pullback homomorphism using ϕ in (6.1). Recall from Theorem 3.1 the
description of H 2(Symd(X),Z). From Proposition 5.3 we conclude that ϕ′ is
injective, and

H 2(Q(r, d),Z) = image(ϕ′) ⊕Z · γ2, (6.4)

where γ2 is the cohomology class in Proposition 5.3. Take any point

y := (y1, . . . , yd) ∈ Symd(X)

such that all yi are distinct. Then ϕ−1(y) is a product of copies of CPr−1, and
hence

H 1(ϕ−1(y),Z) = 0.

From this it follows that the image of the cup product

H 1(Q(r, d),Z) ⊗ H 1(Q(r, d),Z) −→ H 2(Q(r, d),Z)

is in the image ϕ′. If the point x ∈ X in (5.4) is different from all yi , then the
restriction of the universal vector bundle Funiv (see (5.4)) to ϕ−1(y) is the trivial
vector bundle of rank r . From this it follows that c is in the image of ϕ′.

From (6.4) it follows immediately that

NS(Q(r, d)) = ϕ′(NS(Symd(X))) ⊕Z · γ2.

In view of (6.3), from this we conclude that ϕ∗ in (6.2) is an isomorphism if
d ≥ 2. �

As before, fix a point x0 ∈ X. Let

δ :Q(r, d) −→Q(r, d + r) (6.5)

be the morphism that sends any F ⊂ O⊕r
X represented by a point of Q(r, d) to the

point representing the subsheaf F ⊗OX(−x0) ⊂ O⊕r
X . Let

δ∗ : Br′(Q(r, d + r)) −→ Br′(Q(r, d)) (6.6)

be the pullback homomorphism by δ.

Corollary 6.2. For any d ≥ 2, the homomorphism δ∗ in (6.6) is an isomorphism.
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Proof. As in (6.1), define

ψ : Q(r, d + r) −→ Symd+r (X)

to be the morphism that sends any subsheaf F ⊂ O⊕r
X to the scheme theoretic

support of the corresponding quotient (
∧r O⊕r

X )/(
∧r F). Let

h : Symd(X) −→ Symd+r (X)

be the morphism defined by
∑

x∈X nx · x �−→ r · x0 + ∑
x∈X nx · x. The diagram

of morphisms

Q(r, d)
δ−→ Q(r, d + r)

↓ ϕ ↓ ψ

Symd(X)
h−→ Symd+r (X)

is commutative, where ϕ and δ are defined in (6.1) and (6.5), respectively. Con-
sider the corresponding commutative diagram

Br′(Symd+r (X))
h∗−→ Br′(Symd(X))

↓ ψ∗ ↓ ϕ∗

Br′(Q(r, d + r))
δ∗−→ Br′(Q(r, d))

of homomorphisms. If d ≥ 2, from Lemma 6.1 we know that ψ∗ and ϕ∗ are
isomorphisms, whereas Lemma 4.1 implies that h∗ is an isomorphism. Therefore,
the homomorphism δ∗ is an isomorphism. �

Remark 6.3. We are grateful to an unknown referee for this comment. We give
here an alternative proof of the fact that the pullback map ϕ∗ induces an isomor-
phism on cohomology. Consider the big cell of the Białynicki-Birula decomposi-
tion described before. It corresponds to the partition

m1 = (0,0,0, . . . , d).

We have a Zariski locally trivial fibration

ρ : Symm1(X)+ −→ Symm1(X)

with fiber An, see [BB, p. 492]. We claim that we have an induced isomorphism

Br′(Symm1(X)+) ∼= Br′(Symm1(X)).

To see this, we will use the exact sequence in Proposition 2.1, which is valid for
noncompact spaces; see [Sco, p. 878]. The morphism ρ induces an isomorphism
in cohomology groups since it has contractible fibers. Although the morphism ρ

may not be a vector bundle, the Néron–Severi groups of the two varieties agree
under the identification of cohomology groups as before; see [Fu, p. 22, Proposi-
tion 1.9]. It follows now from Proposition 2.1 and Lemma 5 that ρ∗ induces an
isomorphism on cohomological Brauer groups.

The morphism ϕ : Symm1(X) −→ Symd(X) is an isomorphism. So we have a
diagram
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Br′(Symm1(X)+) Br′(Q(r, d))

Br′(Symd(X)),

ι∗

ϕ∗ ϕ∗

ι is the composition Symm1(X)+ ↪→ Symm1(X) −→ Q(r, d); we note that the
homomorphism ϕ∗ in the left is an isomorphism. The map i∗ is injective by [Mi,
IV, Corollary 2.6]. We can now deduce that ϕ∗ is an isomorphism.

Acknowledgments. We thank the two referees for detailed and helpful com-
ments. Remark 6.3 is due to a referee. The first-named author is supported by a
J. C. Bose Fellowship.
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