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The Complex Structure of the Teichmüller Space

Gonzalo Riera

Abstract. The Teichmüller space of a topological surface X is a
space that parameterizes complex structures on X up to the action
of homeomorphisms that are isotopic to the identity. This space itself
has a complex structure defined in terms of Beltrami differentials and
quasi-conformal mappings. For X a surface of genus g and m punc-
tures, n geodesics A1, . . . ,An (n = 6g−6+2m) can be chosen so that
their hyperbolic translation lengths (L(A1), . . . ,L(An)) give a local
parameterization of the Teichmüller space.

In this paper we describe the almost complex structure as a
real matrix acting on the tangent space with basis (∂/∂L(A1), . . . ,

∂/∂L(An)). In the cotangent space the natural Hermitian scalar prod-
uct of the associated quadratic differentials (�A1 , . . . ,�An

) deter-
mines a skew-symmetric real matrix C and a symmetric matrix S.
We prove that the matrix of the complex structure is SC−1.

Introduction

The Teichmüller space of a topological surface X is a space that parameterizes
complex structures on X up to the action of homeomorphisms that are isotopic
to the identity. This space itself has a complex structure, which is defined in
terms of Beltrami differentials and quasi-conformal mappings. We describe the
relationship of this complex structure in terms of the variation of the lengths of
geodesics on a variable surface Xτ . We will view such surfaces as a quotient space
of the upper half-plane factored by variable fixed-point-free Fuchsian groups �τ .
The upper half-plane has a hyperbolic metric whose corresponding geodesics are
semicircles and half-lines orthogonal to R.

A hyperbolic element A in � has a unique geodesic axis and a well-defined
translation length L(A) where

cosh

(
L(A)

2

)
= 1

2
| trace(A)|.

For X a surface of genus g and m punctures, the group elements of � are
expressed as real analytic functions of finitely many group elements A1, . . . ,An

(n = 6g − 6 + 2m); and the n-tuple (L(A1), . . . ,L(An)) gives a local coordinate
chart of the Teichmüller space. (For these classical facts, see, e.g., Gardiner [2,
pp. 153–157], Ahlfors [1].)
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The important problem of how to describe the complex structure as a real ma-
trix acting on the tangent space with basis (∂/∂L(A1), . . . , ∂/∂L(An)) was stated
by Wolpert [6; 8]. The purpose of this paper is to give just such a description, the
explicit nature of which, moreover, might well lead to applications of Teichmüller
theory to dynamical systems and three-dimensional topology (see, e.g., [4]); we
show here an insight into Abelian varieties.

1. The Tangent Space to the Teichmüller Space

Let X be a compact Riemann surface whose universal cover is the upper-half-
plane H with covering group a fixed-point-free Fuchsian group �.

The tangent space at X of the Teichmüller space is identified with equivalence
classes of � invariant Beltrami differentials as follows. Denote by M(�) the space
of complex valued, measurable, essentially bounded functions μ(z) on H satisfy-
ing the invariance property

μ(A(z))A′(z)/A′(z) = μ(z)

for all A in �. Let Q(�) be the space of holomorphic functions h(z) on H satis-
fying the transformation law

h(A(z))A′(z)2 = h(z).

If � is a fundamental domain, then the pairing∫
�

μh

is well defined, and for the null space N(�) of Beltrami differentials orthogonal
to all Q(�), the finite-dimensional complex vector spaces M(�)/N(�) and Q(�)

are the tangent and cotangent spaces to the Teichmüller space.
We consider now the fundamental construction for each μ in M1(�), the open

unit ball in M(�). The Beltrami equation{
ωz̄ = μ(z)ωz, z in H,

ωz̄ = μ(z̄)ωz, z in L,

has a unique solution ωμ fixing 0, 1, ∞. In this case, �μ = ωμ(�)ω−1
μ is again a

Fuchsian group, and H/�μ is the deformed surface.
Moreover, for real ε,

ωεμ(z) = z + εG(z) + o(ε2),

where G(z) = F(z) + F(z̄) and

F(z) = −z(z − 1)

π

∫ ∫
H

μ(ζ )
1

ζ(ζ − 1)(ζ − z)

(
dζ dζ

−2i

)
. (1.1)

These formulas are the basis of the infinitesimal approach to Teichmüller the-
ory.
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Denote by �2 the space of complex polynomials of degree at most two. The
group � acts on the right on �2 via

(pA)(z) = p(A(z))/A′(z).
A cocycle χ : � → �2 is a function such that

χ(A1 · A2) = χA1 · A2 + χA2 ,

and a coboundary is a function given by

p · A − p.

The vector space of cocyles modulo coboundaries is the space H 1(�,�2).
With each Beltrami differential μ in M(�), we associate a tangent vector t (μ)

(or ∂/∂t (μ)) in H 1(�,�2) by the following procedure.
The function F(z) defined in (1.1) is the unique solution of

∂F

∂z̄
=

{
μ on H,

0 on L,

vanishing at 0, 1 and 0(|z|2) at ∞.
For A in �, F(A(z))/A′(z) satisfies the same equation, and it follows that

F(z) − F(A(z))/A′(z) = pA(z) (1.2)

is a polynomial of degree at most two.
The tangent vector in H 1(�,�2) is

t (μ)(A) = pA(z) + pA(z̄). (1.3)

The complex structure in terms of Beltrami differentials is simple: μ → iμ.
Then

t (iμ)(A) = i(pA(z) − pA(z̄)) (1.4)

as seen in (1.1) if we replace μ by iμ.
These are quadratic polynomials with real coefficients.
The tangent space to the Teichmüller space is thus identified with a subspace

V in H 1(�,�2); we will find V explicitly and describe the complex structure in
terms of these cocyles. For formulas (1.1) and (1.3), see, for example, Gardiner
[2]. For H 1(�,�2), see Kra [3].

2. The Fenchel–Nielsen Deformation

Let A in � be the transformation A(z) = λz, λ > 0. Choose ϕ(θ), θ = arg z, a
continuous function with compact support in (0,π) such that∫ π

0
ϕ(θ) dθ = 1

2
.

The formula

ω = z exp

(
2ε

∫ θ

0
ϕ

)
, ε real,
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defines a quasi-conformal automorphism of H with Beltrami differential

με(z) = iεϕ(θ)e2iθ

1 − iεϕ(θ)
= εμ0(z) + o(ε), (2.1)

where μ0(z) = iϕ(θ)e2iθ . To obtain an element in M(�), we average over the
group via

μA(z) =
∑

〈A〉\�
με(B(z))B ′(z)/B ′(z). (2.2)

We extend these constructions to a general element A in � with fixed points
p < q via

h(z) = z − p

−z + q
, μ̂ε = (με ◦ h)h̄′/h′ (2.3)

and
μA =

∑
〈A〉\�

(μ̂ε ◦ B)B̄ ′/B ′.

On the other hand, in the cotangent space, we define dual concepts.
For A = (

a b
c d

)
, define ωA = (tr2A − 4)(cz2 + (d − a)z − b)−2, a quadratic

differential for the cyclic group 〈A〉.
The Petersson series is defined by

θA =
∑

〈A〉\�
(ωA ◦ B)B ′2.

We now have the following fact:

t (μA) is equivalent modulo N(�) to
i

π
(Im z)2θ̄A. (2.4)

From this it is apparent that t (μA) is independent of the particular function ϕ(θ)

chosen, and, in fact, in the foregoing integral formulas, we will assume that
ϕ = (1/2)δ(π/2) (the Dirac delta distribution at π/2).

If LB is the translation length of B , then

t (μA)(LB) =
∑

p∈α·β
cos θp. (2.5)

For simple closed curves α and β , this formula represents the infinitesimal
change of the length LB given an unit infinitesimal twist along the curve α.

Here α and β are the projections of the axis of A and B on the surface M , α ·β
is the geometric intersection of α and β , and θp is the angle at each intersection
point, measured from α to β as the x-axis crosses the y-axis.

The skew-symmetric form(
2

π2

)
Im

∫
�

θAθ̄B(Im z)2

is equal to

c(A,B) =
∑

p∈α·β
cos θp. (2.6)

For all details, see Wolpert [6; 7].
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The symmetric form

Re
∫

�

θAθ̄B(Im z)2

equals

s(A,B) = 2

π

(
δA,BLA +

∑
〈A〉\�/〈B〉

c

(
log

∣∣∣∣c + 1

c − 1

∣∣∣∣ − 2

))
. (2.7)

Here c = cos θp at each intersection point of α · β or c = coshδ, where δ is the
hyperbolic distance from the axis of A to each disjoint axis congruent to the axis
of B . (δA,B is the Kronecker symbol equal to 1 if A = B and 0 if A 	= B .)

We shall recover formulas (2.6) and (2.7) with calculations involving only Bel-
trami differentials, without any reference to quadratic differentials; this is neces-
sary since the complex structure (μ → iμ) is defined in the tangent, rather than in
the cotangent space. In these computations we shall assume α and β to be simple
closed curves.

For all preliminaries and formulas in this section, see Wolpert [6; 7; 8; 9; 10]
and Riera [5].

3. The Complex Structure in the Tangent Space

In this section we let (A1, . . . ,An) (n = 6g − 6 + 2m) be hyperbolic elements in
� such that

(i) A1(z) = λ1z, λ1 > 1.
(ii) Aj fixes pj , qj ,pj < qj , pj repelling, qj attracting, and Lj = logλj , λj > 1,

the translation length (1 < j ≤ n).

Even though the results are simpler to state if we assume that no Aj fixes ∞,
condition (i) is more natural.

The next two lemmas, in which the key fact in the theory is that 0, 1, ∞ are
distinguished points, are the only technical results that will be needed in what
follows.

Lemma 3.1. Let A be a hyperbolic transformation with fixed points p, q (p < q),
both different from 0, ∞. Set

μ(z) :=
∑
n∈Z

μ̂0(λ
nz) (λ > 1),

where μ̂0 is the first-order term of μ̂ε , the A-invariant Fenchel–Nielsen differen-
tial (2.3), and let

F(z) = −z(z − 1)

π

∫ ∫
H

μ(ζ )
1

ζ(ζ − 1)(ζ − z)

(
dζ dζ̄

−2i

)
.

Then

(i) If the axis of A intersects the imaginary axis at an angle θ , then

F(z) − F(λz)

λ
= + z

2

(
cos θ + i

π

(
cos θ log

1 + cos θ

1 − cos θ
− 2

))
;
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(ii) If the axis of A is a non-Euclidean distance δ from the imaginary axis

F(z) − F(λz)

λ
= − z

2πi

(
coshδ log

(
coshδ + 1

coshδ − 1

)
− 2

)
.

(If λ < 1, then the signs in the right-hand sides are to be reversed.)

Proof. With a natural change of variables, we may write F(z) as

− 1

π

∫ ∫
H

μ̂0(η)
∑
η

λnz(z − 1)

η(λnη − 1)(λnη − z)

(
dη dη̄

−2i

)
,

and, similarly, F(λz)/λ equals

− 1

π

∫ ∫
H

μ̂0(η)
∑
n

λnz(λz − 1)

η(λn+1η − 1)(λnη − z)

(
dη dη̄

−2i

)
.

The difference of the sums involved is the telescopic series

z

η

∑
n

λn(1 − λ)

(λnη − 1)(λn+1η − 1)
=

{
z/η2, λ > 1,

−z/η2, 0 < λ < 1.

To evaluate the integral

− z

π

∫ ∫
H

μ̂0(η)

η2

(
dη dη̄

−2i

)
,

we make the change of variables η = (pζ − q)(ζ − 1), ζ = ρeiθ and assume that
ϕ(θ) = (1/2)δ(π/2) to obtain

− iz

2π
(p − q)2

∫ +∞

0

ρ dρ

(pρi − q)2(ρi − 1)2
.

A straightforward residue calculation then shows that this last integral has the
value

iz

2π

(p − q)2

p2

∑
Res

(
w logw

(w + iq/p)2(w + i)2

)

= iz

2π

(
q + p

q − p

(
log

(
−i

q

p

)
− 3π

2
i

)
− 2

)
.

(i) If p < 0 < q , then (q + p)/(q − p) = cos θ and log(−iq/p) = log |q/p| +
iπ/2, thus proving formula (i).

(ii) If p, q have the same sign, then (q +p)/(q −p) = coshδ and log(−iq/p) =
log |q/p| + i3π/2, proving formula (ii). �

Lemma 3.2. Let A have fixed points 0, ∞ and multiplier λ > 1, and let μ0(ζ ) be
as in (2.1). Set

F(z) = −z(z − 1)

π

∫ ∫
H

μ0(ζ )
1

ζ(ζ − 1)(ζ − z)

(
dζ dζ̄

−2i

)
.

Then

F(z) − F(λz)/λ = −z log
λ

2πi
.
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Proof. The computation is similar to that used in the proof of Lemma 3.1, except
that there are no sums.

The integral obtained is

z(λ − 1)

π

∫ ∫
H

μ0(ζ )
1

ζ(ζ − 1)(λζ − 1)

(
dζdζ̄

−2i

)

= z

2π

(λ − 1)

λ

∑
Res

(
logw

(w + i)(w + i/λ)

)
,

and the result follows. �

Proposition 3.1. Let p(Aj ) be the cocycle in H 1(�,�2) defined in (1.2). Then

(i) for j > 1,

p(Aj )(A1) = z

2
(c(Aj ,A1) + is(Aj ,A1));

(ii) for k 	= 1, j ,

p(Aj )(Ak) = 1

2
(z − pk)(z − qk)(c(Aj ,Ak) + is(Aj ,Ak)).

Proof.

(i) The cocycle p(Aj ) is defined via integration by the Beltrami differential

μAj
(z) =

∑
〈Aj 〉\�

μ̂g−1(Aj )(z)

=
∑

〈Aj 〉\�/〈A1〉

∑
n

μ̂g−1(Aj )(λ
n
1z),

and the result follows from Lemma 3.1 and the definition of c(Aj ,A1) and
s(Aj ,A1) in (2.6) and (2.7). The second sum is over all g in the double cosets
modulo 〈Aj 〉 on the left and 〈A1〉 on the right.

(ii) Let h be a Moebius transformation that takes the imaginary axis to the axis
of Ak , namely

h(w) = −pkw + qk

−w + 1
= z.

Also if μ̂ε,Aj
is the Aj invariant differential as in (2.3), then denote by F(z)

the solution of
∂F

∂z̄
=

∑
n

μ̂ε,Aj
(An

k)Ā
n′
k /An′

k

vanishing at 0, 1 and o(|z|2) at ∞. Then

∂(F ◦ h/h′)
∂w̄

=
∑
n

μ̂ε,h−1Aj
(λn

kw).

To obtain the solution of this last equation vanishing at 0, 1 and o(|w|2)
at ∞, we consider

F̂ (w) = F(h(w))/h′(w) − (a + bw + cw2)
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with

a = F(h(0))

h′(0)
= F(qk)

qk − pk

,

c = F(h(∞))

h′(∞)
= F(pk)

qk − pk

,

and b an appropriate constant.
From Lemma 3.1 we have

F̂ (w) − F̂ (λkw)

λk

= w�

with � the geometric constant in terms of the imaginary axis and h−1Aj ; this
equals the constant in terms of axis of Ak , Aj .

Hence,

w� = F(z)(h−1)′(z) − F(Ak(z))/A
′
k(z)(h

−1)′(z)

− (a + bw + cw2) + a + bλkw + cw2
kλ

2
k

λk

,

and therefore

(z − pk)(z − qk)� = F(z) − F(Ak(z))/A
′
k(z)

− λk − 1

(qk − pk)2

(
1

λk

F (qk)(z − pk)
2 − F(pk)(z − qk)

2
)

.

We may replace z by pk in this last identity to obtain

F(pk)

(
1 − 1

A′
k(pn)

)
= 0.

But since Ak is hyperbolic, A′
k(pk) 	= 1, and it follows that F(pk) = 0. Like-

wise, F(qk) = 0, and the formula is proven. �

Proposition 3.2. Let p(Aj ) be the cocycle in H 1(�,�2) as defined before. Then

(iii) p(A1)(A1) = i(z/2)s(A1,A1);
(iv) For j > 1, p(Aj )(Aj ) = (i/2)(z − pj )(z − qj )s(Aj ,Aj ).

Proof. Similar to that of Proposition 3.1. �

Corollary 3.3. Set cjk
= c(Aj ,Ak), sjk

= s(Aj ,Ak), and C = (cjk
), S = (sjk

).
Then

(i) t (Aj )(A1) = cj1z, t (iAj )(A1) = −sj1z;
(ii) For p > 1, t (Aj )(Ak) = cjk

(z − pk)(z − qk), t (iAj )(Ak) = −sjk
(z − pk)×

(z − qk).

Proof.

(i) Follows from t (Aj )(A1) = p(Aj )(A1) + p(Aj )(A1) and similarly for the
other identities.
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�

Proposition 3.4. Let (Aj ), 1 ≤ j ≤ 6g − 6 + 2m, be hyperbolic elements in �

such that the skew-symmetric matrix C is invertible.
Then (∂/∂Lj ) is a basis of the tangent space of T (�), and there exists a neigh-

borhood where (Lj ) is a coordinate chart.

Proof. All indices run from 1 to 6g − 6 + 2m.
We first prove that (∂/∂tj ) is a basis. Indeed, if∑

aj ∂/∂tj = 0,

then we may apply this to Lk so that (see (2.5))∑
aj cjk

= 0,

and therefore aj = 0 for all j .
Since C is the matrix that changes (∂/∂tj ) to (∂/∂Lj ), we obtain the first con-

clusion. We now refer to constructions of a coordinate chart following Gardiner
[2, Chapter 8.3], or Wolpert [7, Theorem 3.4]. The lengths L∗

j of A∗
j are given

in such a way that it is clear that every element of � is expressible in terms of
them, so that (L∗

j ) is indeed a (local) coordinate chart. In particular, the map-
ping ϕ : (L∗

j ) → (Lj ) is C∞ (even real analytic). Since in the tangent space to
the Teichmüller space bases correspond to bases under dϕ, it follows that ϕ is a
diffeomorphism in a whole neighborhood. �

Theorem 3.5. Let (Aj ), 1 ≤ j ≤ 6g − 6 + 2m, be hyperbolic elements in � such
that the matrix C is invertible. Then the complex structure in the tangent space is
given in terms of the basis (∂/∂tj ) by the matrix

R = C−1S

and in terms of the basis (∂/∂Lj ) by

R̂ = SC−1.

Proof. As before, let t (Aj ) = t (μ(Aj )) be the Fenchel–Nielsen tangent defor-
mation in H 1(�,�2). The complex structure is defined by multiplication of the
Beltrami differentials by i, so that

t (iμ(Aj )) = r(t (Aj )) =
∑

l

rlj t (Al).

Then, for k > 1,

t (iμ(Aj ))(Ak) = −sjk
(z − pk)(z − qk)

=
∑

l

rlj t (Al)(Ak)

=
∑

l

rlj clk(z − pk)(z − qk)
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= −
(∑

l

cklrlj

)
(z − pk)(z − qk).

For k = 1, the computation is similar. Thus, S = CR or R = C−1S.
Since the change for basis from (∂/∂tj ) to (∂/∂lj ) is given by C, we have

R̂ = CRC−1, R̂ = SC−1.

Finally, in order to see this result in different perspective, we recall Hermann
Weyl’s interpretation of the Riemann matrix of a compact Riemann surface. Let
(α1, . . . , α2g) be a basis of H1(M,Z) with intersection product cij = −αi · αj .

A basis over R of the space of analytic differentials (dw1, . . . , dw2g) in
H 1,0(M,C) is said to be dual to the basis of curves if

Re
∫

αj

dwi = cij .

In this setting the Riemann relations imply that the matrix∫
αj

dwi = sij

is positive definite and symmetric. Multiplication by i in the vector space of differ-
entials is represented in terms of basis dwi by a square matrix R with R2 = −Id.

We then have the fundamental relation R = C−1S together with C′ = −C

and S′ = S. Knowledge of R is equivalent, under an appropriate linear change of
coordinates, to the Riemann matrix of the surface. �

In view of Theorem 3.5, we might therefore wonder to what extent does the tan-
gent space at a point in the Teichmüller space play a similar role as the Jacobi
variety; does this matrix R determine the analytic type of the surface X?

Note. As suggested by the referee, the answer to this question is “yes”. For
the Teichmüller space, knowing the matrix R is equivalent to knowing the almost
complex structure. And since by the Bers embedding the almost complex structure
is integrable, the matrix R determines the complex analytic structure.
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