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Zeta Functions of Curves with No Rational Points

Daniel Litt

Abstract. We show that the motivic zeta functions of smooth, geo-
metrically connected curves with no rational points are rational func-
tions. This was previously known only for curves whose smooth pro-
jective models have a rational point on each connected component. In
the course of the proof we study the class of a Severi–Brauer scheme
over a general base in the Grothendieck ring of varieties.

1. Introduction

Let k be a field, and K0(Vark) the Grothendieck ring of varieties over k. This
is the free Abelian group on isomorphism classes [X] of finite-type k-schemes,
subject to the following relation:

[X] = [Y ] + [X \ Y ] for Y ↪→ X a closed embedding.

Multiplication is given by

[X] · [Y ] = [X × Y ]
on classes of finite-type k-schemes and extended bilinearly. This ring was intro-
duced by Grothendieck [12, Letter of 16 August 1964] in a letter to Serre. The
Grothendieck ring of varieties is the universal ring through which all “motivic"
invariants factor (e.g., Euler characteristic with compact support, Hodge–Deligne
polynomial, virtual Chow motive, etc.).

Let L := [A1] ∈ K0(Vark) be the class of the affine line.

Example 1. Using the fact that Pn = pt ∪ A
1 ∪A

2 ∪ · · · ∪A
n, we have

[Pn] = 1 +L+ · · · +L
n.

In [6, 1.3], Kapranov introduces for each quasi-projective X/k a motivic zeta
function ZX(t).

Definition 2 (Kapranov motivic zeta function). Let X be a quasi-projective k-
scheme. Then the motivic zeta function ZX(t) ∈ K0(Vark)[[t]] is

ZX(t) :=
∞∑

n=0

[Symn(X)]tn,

where Symn(X) is the quotient of Xn by the symmetric group �n, and �n acts
on Xn by permuting the factors. The quotient exists since X is quasi-projective.
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If k = Fq is a finite field, then ZX(t) is an analogue of the Weil zeta function

ζX(t) := exp

( ∞∑
k=1

#|X(Fqk )|
k

tk
)

=
∞∑

n=0

#|Symn(X)(Fq)|tn.

Indeed, in this case there is a natural homomorphism

# : K0(Vark) → Z,

[X] �→ #X(Fq),

and #(ZX(t)) = ζX(t).

Remark 3. The motivic zeta function is a homomorphism

K0(Vark) → 1 + tK0(Vark)[[t]],
that is, if [X] = [Y ] + [W ], then ZX(t) = ZY (t) · ZW(t). Thus, we may define
the zeta function of any class in K0(Vark) by extending linearly from classes of
quasi-projective k-schemes, which generate K0(Vark) additively.

Example 4 ([8, Corollary 3.6]).

ZPn(t) = 1

(1 − t)(1 −Lt) · · · (1 −Lnt)
.

Kapranov shows the following:

Proposition 5 ([6, 1.1.9], [10, Theorem 7.33]). Let k be a field, and C/k a
smooth, geometrically connected, projective curve of genus g with C(k) �= ∅. Then

ZC(t)(1 − t)(1 −Lt) ∈ K0(Vark)[[t]]
is a polynomial of degree 2g.

This result is analogous to (and implies by applying #(−)) the rationality of the
Weil zeta function of C if k is a finite field.

Remark 6. Kapranov speculates that ZX(t) may be a rational function for arbi-
trary k-varieties X [6, Remark 1.3.5(b)]. If k is finite, such a result would give a
geometric explanation for the rationality of the Weil zeta function ζX . However,
Larsen and Lunts show that for k = C, when X is a surface with Kodaira dimen-
sion different from −∞, ZX(t) is not rational [8, Theorem 1.1]. The problem of
finding a natural quotient of K0(Vark) (through which “motivic" invariants still
factor) over which ZX(t) becomes rational is of some importance.

Kapranov remarks that ZC(t) is still a rational function if C(k) = ∅; however,
a correct proof of this fact has not yet appeared in the literature. The reason for
writing the present paper was to rectify this lack since the proof is not trivial.

The main technical theorem of this paper is a description of the class in
K0(Vark) of a Sever–Brauer variety over a general finite-type k-scheme.
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Theorem 7. Let S be a finite-type k-scheme, and α ∈ Br(S) a Brauer class. Then
there are an element P = P(α,S) ∈ K0(Vark) and an integer r = r(α,S) deter-
mined only by α and S, such that for any Severi–Brauer S-scheme V with Brauer
class α,

[V ] = P(1 +L
r +L

2r + · · · +L
nr )

for some n.

See Proposition 28 for a refined version of this result.
After giving this description of the class of a Severi–Brauer scheme, we will

prove the main result of the paper.

Theorem 8. Let C be a smooth, projective, geometrically connected curve over
a field k. Then there exists a polynomial

p(t) ∈ 1 + tK0(Vark)[t]
such that p(t)ZC(t) ∈ K0(Vark)[[t]] is a polynomial with constant term 1.

Remark 9. Informally, we say that C has “rational motivic zeta function.”
The fact that p(t) and p(t)ZC(t) have constant term 1 is important: it implies
that the numerator and denominator of this rational function are invertible in
K0(Vark)[[t]].
Remark 10. Much previous work [13; 7] studies the Chow motive of a Severi–
Brauer variety. The methods of this paper may be used to recover many of the
results of these works; we believe that our methods bear some similarity to those
of [7].

2. Discussion of the Proof of Proposition 5

Let us briefly review the proof of Proposition 5 and then discuss how it fails if
C(k) = ∅. Here Picn(C) denotes the moduli space of degree n line bundles on C,
defined as in [3, 9.2].

Proof of Proposition 5. Observe that if C(k) �= ∅, then the Abel–Jacobi map
Symn(C) → Picn(C) is a (Zariski) P

n−g-bundle for n > 2g − 2 [11, Theorem
4]; thus, for n > 2g − 2,

[Symn(C)] = [Pn−g][Picn(C)] = 1 −L
n−g+1

1 −L
[Picn(C)].

Furthermore, Picn(C) 	 Pic0(C) for all n (again using the existence of a rational
point on C). In particular,

ZC(t) =
2g−2∑
n=0

[Symn(C)]tn + [Pic0(C)]
∞∑

n=2g−1

1 −L
n−g+1

1 −L
tn,
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and thus

(1 − t)(1 −Lt)ZC(t)

is a polynomial of degree 2g. �

Example 11. Unfortunately, the first step of this proof breaks if C(k) = ∅. For
example, consider the curve X in P

2
R

defined in homogeneous coordinates by

x2 + y2 + z2 = 0.

It is easy to see that Picn(X) = Spec(R) for all n (see, e.g., [3, 9.2.4]), but
Symn(X) has no rational points if n is odd. Thus the Abel–Jacobi morphism
Symn(X) → Picn(X) is not a Zariski Pn-bundle for odd n.

Remark 12. Theorem 8 of this paper implies that in the example,

(1 −L
2t2)(1 − t2)ZX(t)

is a polynomial. Let us compare this with Remark 1.3.5(a) of [6]. The remark
states that (1 −L

ntn)(1 − tn)ZX(t) is a polynomial, where n > 0 is minimal such
that Picn(X)(k) �= ∅; in the example, Pic1(X) = Spec(R), so the remark suggests
that (1 −Lt)(1 − t)ZX(t) is rational. We do not know a proof of this fact and do
not believe it to be true (though we have no proof that it is false).

There is some ambiguity in Remark 1.3.5(a) of [6], which may allow preserv-
ing its correctness. In the case where X has no rational points, the scheme Pic(X)

represents the fppf sheafification of the functor sending T to the set of isomor-
phism classes of line bundles on X × T modulo line bundles pulled back from T .
If we take the comment to refer to the Zariski sheafification of this functor in-
stead, the remark has some chance of being true—though again, we do not know
a proof.

The issue identified in Example 11 is that Symn(C) → Picn(C) may not be a
Zariski fiber bundle. Of course (if C is geometrically connected), after a finite
extension of the base field, we recover the usual situation of a projective space
bundle over the Picn(C), so in general Symn(C) → Picn(C) is a Severi–Brauer
scheme over Picn(C). Thus, we will proceed by studying the class [V ] of a
Severi–Brauer S-scheme V/S in K0(Vark). The main result of this study is a
description of the class [V ] ∈ K0(Vark) (Proposition 28). Before proceeding with
this description, we require some preliminaries on the Brauer group and twisted
sheaves.

3. Twisted Sheaves

Traditionally, the Brauer group of a scheme is studied by means of Azumaya
algebras [4; 5] or Severi–Brauer varieties [1]; instead, we will find it convenient
to use the notion of twisted sheaves.

We begin with a brief, largely self-contained, review of the facts about twisted
sheaves that we will need; useful references establishing many of the basics of the
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theory are Căldăraru [2] or Lieblich [9]. For an elaboration of the following defi-
nition and a discussion of many of its basic properties, see [2, Definition 1.2.1].

Definition 13 (The category of α-twisted sheaves, QCoh(X,α)). Let X be a
scheme, and α ∈ H 2(Xét,Gm) a cohomology class represented by a Čech 2-
cocycle λ ∈ �(U ×X U ×X U,Gm) for some étale cover U → X. The objects
of the category QCoh(X,α) of α-twisted sheaves are “descent data for quasi-
coherent sheaves” twisted by α. Namely, let π1,π2 : U ×X U → U be the two pro-
jections, and similarly with πij : U ×X U ×X U → U ×X U . An α-twisted sheaf

is the data of a quasi-coherent sheaf E on U and an isomorphism φ : π∗
1 E

∼→ π∗
2 E ,

so that π∗
23φ ◦ π∗

12φ = λ · π∗
13φ. Observe that if E is a vector bundle, then we may

(after refining U to trivialize E) view this descent data as the data of a section
g′ ∈ �(U ×X U,GLn); we call (E, φ) an α-twisted vector bundle if E is a vector
bundle.

A morphism (E, φ) → (E ′, φ′) is defined as a morphism f : E → E ′ such that
the diagram

π∗
1 E

φ

π∗
1 f

π∗
2 E

π∗
2 f

π∗
1 E ′ φ′

π∗
2 E ′

commutes.

Remark 14. A priori, the definition of QCoh(X,α) depends on the choice of
cocycle λ representing α ∈ H 2(X,Gm). However, if λ and λ′ are two cocycles
representing α, then the categories of twisted sheaves they define are (noncanon-
ically) equivalent [2, Lemma 1.2.8]. Namely, refine the covers on which λ and λ′
are defined and choose a 1-cocycle β with dβ = λ−1λ′. Then the functor

(E, φ) �→ (E, βφ)

is an equivalence of categories

QCoh(X, [λ]) → QCoh(X, [λ′]).
This equivalence does depend on the choice of β; these equivalences (up to natural
isomorphism) are a torsor under H 1(X,Gm) (which corresponds to the fact that
there are autoequivalences of QCoh(X,α) coming from the functors

(E, φ) �→ (E ⊗L, φ ⊗ id),

where L is a line bundle on X).

Proposition 15. Let X be a scheme, and α,α′ ∈ H 2(Xét,Gm) be cohomology
classes.

(1) α is a Brauer class if and only if there exists an α-twisted vector bundle.
(2) QCoh(X,α) is an Abelian category with enough injectives.
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(3) There are natural functors

− ⊗ − : QCoh(X,α) × QCoh(X,α′) → QCoh(X,α + α′)
and

Hom(−,−) : QCoh(X,α)op × QCoh(X,α′) → QCoh(X,α′ − α)

given by ⊗ and Hom on twisted descent data.
(4) Similarly,

∧n and Symn extend to functors QCoh(X,α) → QCoh(X,nα).
(5) If f : X → Y is a morphism, then there is a natural functor

f ∗ : QCoh(Y,α) → QCoh(X,f ∗α)

given by applying f ∗ to twisted descent data.
(6) QCoh(X,0) is the usual category of quasi-coherent sheaves on X.

Proof. All the statements aside from (1) and (2) are immediate from the defini-
tions. For a sketch proof of (2), see [9, Lemma 2.2.3.2] or [2, Lemma 2.1.1]. For
(1), see [2, Theorem 1.3.5 and the subsequent remarks]. �

Proposition 16. Let X be a scheme. There is an α-twisted line bundle on X if
and only if α = 0.

Proof. If α = 0, then OX is an α-twisted line bundle.
On the other hand, let (L, φ) be an α-twisted line bundle given by twisted

descent data on some étale cover U → X. We may choose a cover r : U ′ → U so
that r∗L is trivial; after choosing a trivialization, we may view r∗φ as an element
of �(U ′ ×X U ′,Gm), that is, a 1-cochain for Gm. But then [d(r∗φ)] = α, so α is
a coboundary. Thus, α = 0. �

Corollary 17. Suppose that E is an α-twisted vector bundle of rank n. Then α

is n-torsion in Br(X).

Proof. By Proposition 15(4),
∧n E is an nα-twisted line bundle, and thus nα = 0

in Br(X) by Proposition 16. �
Twisted vector bundles have many of the same properties of vector bundles.

Proposition 18. Suppose that X is an affine scheme and α a Brauer class on X.
Then all short exact sequences of α-twisted vector bundles on X split.

Proof. Suppose that
0 → E1 → E2 → E3 → 0

is a short exact sequence of α-twisted vector bundles. We wish to show that
Ext1QCoh(X,α)(E3,E1) = 0. But we have

Ext1QCoh(X,α)(E3,E1) = H 1(Xét,E∨
3 ⊗ E1) = 0,

where we use Serre vanishing and that étale cohomology of quasi-coherent
sheaves is the same as Zariski cohomology (by étale descent for quasi-coherent
sheaves). �
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Corollary 19. Let E be an α-twisted vector bundle over the spectrum of a field.
Then E is simple if and only if End(E) is a division algebra.

Proof. Suppose that E is simple. Then any nonzero endomorphism of E must
have no kernel since the kernel would be an α-twisted subbundle of E . But we
are working over a field, so (working étale-locally) we see that an endomorphism
with no kernel is an isomorphism.

On the other hand, if E is not simple, then Proposition 18 gives that E = F ⊕G
for some nonzero F and G; then projection to either factor is a noninvertible
endomorphism. �

Corollary 20. Let X be the spectrum of a field. Then there is a unique isomor-
phism class of nonzero simple α-twisted vector bundles over X.

Proof. Suppose that D and D′ are nonzero simple α-twisted vector bundles. Then

HomQCoh(X,α)(D,D′) 	 H 0
QCoh(X)(D

∨ ⊗ D′) �= 0.

But since D and D′ are simple, any nonzero morphism between them is an iso-
morphism. �

Corollary 21 (Artin–Wedderburn). Let X be the spectrum of a field, and D the
unique nonzero simple α-twisted vector bundle over X. Then any α-twisted vector
bundle E is isomorphic to D⊕n for some n.

Proof. Let E be a nonzero α-twisted vector bundle. If E is simple, then it is iso-
morphic to D by Corollary 20. Otherwise, let E′ be a nonzero proper subbundle;
by induction on the rank, E′ 	 D⊕k and E/E′ 	 D⊕k′

. So there is a short exact
sequence

0 → D⊕k → E → D⊕k′ → 0,

and we may conclude the corollary by Proposition 18. �

Corollary 22. Let X be an integral Noetherian scheme, and E1, E2 be two
α-twisted vector bundles on X with ranks r1 ≤ r2. Then there exist a nonempty
open set U ⊂ X and a monomorphism ι : E1|U ↪→ E2|U such that coker(ι) is an
α-twisted vector bundle.

Proof. We apply Corollary 21 at the generic point η of X to obtain a monomor-
phism E1|η ↪→ E2|η . Spreading out gives the claim. �

If E is a vector bundle, we may consider P(E), the scheme of hyperplanes in E
(Grothendieck’s convention). Similarly, given an α-twisted sheaf E over a scheme
X, we may obtain a Severi–Brauer variety with Brauer class α by considering
P(E), which is étale descent data for a scheme over X. Since P(E) is anticanoni-
cally polarized over X, these descent data are effective, and we obtain a Severi–
Brauer variety over X. To obtain an Azumaya algebra with Brauer class α, simply
consider End(E). It is not hard to see that every Severi–Brauer variety or Azumaya
algebra is obtained in this fashion; indeed, take the PGLn-cocycle defining the
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Severi–Brauer variety or Azumaya algebra and lift it to an arbitrary cocycle for
GLn. (To do so, we may have to refine the cover on which the cocycle is defined.)

We will require the following well-known fact about Severi–Brauer schemes;
we sketch a proof using twisted sheaves.

Corollary 23 ([1, Lemma 3.3]). Let π : P → S be a Severi–Brauer scheme
over S. If π admits a section, then P = P(E) for a vector bundle E over S.

Proof. Let E be an α-twisted vector bundle such that P = P(E); we wish to show
that α = 0 ∈ H 2(S,Gm). But the section to π corresponds to an α-twisted line
bundle that is a quotient of E ; hence, by Proposition 16, α is trivial. �

4. The Class of a Severi–Brauer Variety

Suppose that S is a finite-type k-scheme and

0 → E1 → E2 → E3 → 0

is a short exact sequence of α-twisted vector bundles on S. We wish to relate the
classes of the Severi–Brauer schemes

P(E1),P(E2),P(E3)

in K0(Vark). The main result of this section is such a relationship.

Theorem 24. Suppose that E1, E3 have ranks r1, r3, respectively, so that E2 has
rank r2 := r1 + r3. Then

[P(E2)] = [P(E1)] +L
r1[P(E3)] = [P(E3)] +L

r3[P(E1)] ∈ K0(Vark).

Before giving the proof, we need a lemma.

Lemma 25. Let S be a scheme, and

E = E1 ⊕ E2

a split α-twisted vector bundle on S. Then

P(E) \ P(E2) 	 Tot(NP(E1)/P(E))

over P(E1), where Tot(NP(E1)/P(E)) is the total space of the normal bundle of
P(E1) in P(E).

Proof. The idea of this statement is that projection away from P(E2) induces the
desired isomorphism. This is well known in the case that α ∈ H 2(S,Gm) is trivial;
that is, in the case where the Ei are ordinary (untwisted) vector bundles. We reduce
to that case.

Observe that the projection maps P(E1) × P(E1) → P(E1) admit a section (the
diagonal map); thus, by Corollary 23, if π1 : P(E1) → S is the structure map, then

π∗
1 α = 0 ∈ H 2(P(E1),Gm).
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Thus, in particular, P(E) ×P(E1) and P(Ei ) ×P(E1) are trivial Severi–Brauer va-
rieties over P(E1), so by the split case we have that there is a natural isomorphism

Tot(NP(E1)×P(E1)/P(E)×P(E1)) 	 P(E) × P(E1) \ P(E2) × P(E1)

over P(E1) × P(E1). Pulling back along the diagonal map  : P(E1) → P(E1) ×
P(E1) gives the desired claim. �

Proof of Theorem 24. Without loss of generality, S is integral and affine, and the
short exact sequence

0 → E1 → E2 → E3 → 0

splits (by Proposition 18), so it suffices to prove the first equality, and we may
view P(E1) and P(E3) as (linear) Severi–Brauer subvarieties of P(E2).

The morphism E1 → E2 induces a closed embedding P(E1) ↪→ P(E2), so

[P(E2)] = [P(E1)] + [U ],
where U := P(E2) \ P(E1). We wish to identify U with the total space of a vec-
tor bundle over P(E3). But projection away from P(E1) identifies U with the to-
tal space Tot(NP(E3)/P(E2)) of NP(E3)/P(E2) by Lemma 25. Tot(NP(E3)/P(E2)) is a
Zariski-locally trivial Ar1 fiber bundle over P(E3), so

[U ] = [Tot(NP(E3)/P(E2))] = L
r1[P(E3)] ∈ K0(Vark),

as desired. �

Corollary 26. Suppose that E is an α-twisted vector bundle with E = F⊕n for
some α-twisted vector bundle F of rank r . Then

[P(E)] = [P(F)](1 +L
r + · · · +L

r(n−1)).

Proof. This is immediate from Theorem 24 and induction on n. �

Proposition 27. Let S be a finite-type k-scheme, and P1, P2 two Severi–Brauer
varieties over S of the same dimension and with the same Brauer class α. Then

[P1] = [P2] ∈ K0(Vark).

Proof. We may immediately replace S with Sred. Suppose that E1, E2 are α-
twisted sheaves with Pi = P(Ei ). Then by Corollary 22 (replacing S with an in-
tegral affine open subscheme) there is an open set U ⊂ S such that E1|U 	 E2|U .
Thus, P1|U 	 P2|U , and so [P1|U ] = [P2|U ]. Proceed by Noetherian induc-
tion. �

Proposition 28 (Theorem 7 refined). Let S be a finite-type k-scheme, and α ∈
Br(S) a Brauer class. Let r = gcd(rk(E)), where E runs over all α-twisted vector
bundles. Then there exists a class P ∈ K0(Vark) such that for any Severi–Brauer
S-scheme P(E) with Brauer class α and rk(E) = d ,

[P(E)] = P(1 +L
r +L

2r + · · · +L
d−r ).
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Proof. We first show that given E , there exists a desired P ; then we show that the
class of P does not depend on E .

By Corollary 26 it suffices to find a stratification {Si} of S such that on each
stratum (Si)red, E |Si

= F⊕k
i for some α-twisted vector bundle Fi of rank r on

(Si)red since then we may write P = ∑
i[P(Fi )], and the result follows for E .

Now let S1 be any integral open affine; then at the generic point ι : η ↪→ (S1)red,
E |η = D⊕k for the unique simple ι∗α-twisted vector bundle D. But rk(D) divides
r since the generic fiber of any α-twisted vector bundle admits a similar decom-
position, so after shrinking S1, we may take F1 = D⊕k′

for some k′ and some D
extending D. We now proceed by Noetherian induction.

To see that our choice of P is independent of E , let E ′ be another α-twisted
vector bundle, with associated stratification {S′

j } and twisted vector bundles F ′
j

on (S′
j )red, and P ′ = ∑

j [P(F ′
j )]. Then on each irreducible component of

Uij = (Si ∩ S′
j )red,

P(Fi |Uij
) and P(F ′

j |Uij
) satisfy the hypothesis of Proposition 27. Thus, P = P ′,

as desired. �

Remark 29. This result is an analogue of the main result of [7] with the features
that (1) equality holds in the Grothendieck ring of varieties and (2) the result is
proven in the relative setting. The methods here may be used to obtain relative
versions of the many of the results of [13; 7]; for example, the main theorem [7,
Theorem 1.3.1], which gives a decomposition of the motive of a Severi–Brauer
variety over a field, may be extended to Severi–Brauer schemes over arbitrary
k-varieties.

5. The Abel–Jacobi Morphism

Let C be a smooth, projective, geometrically connected curve over a field k with
genus g. We now consider the Abel–Jacobi morphism

AJn : Symn(C) → Picn(C),

where n > 2g − 2, sending a divisor to the associated line bundle. If C has a
rational point, then this is a Zariski Pn−g-bundle; so, in general, AJn exhibits
Symn(C) as a Severi–Brauer variety over Picn(C).

Let K/k be a finite separable extension over which C obtains a rational
point, so that there is a universal line bundle Ln over CK × Picn(C)K , and let
p : C × Picn(C) → Picn(C) and q : C × Picn(C) → C be the natural projections;
we let pK , qK be the maps obtained by extending scalars to K . Then, by [11,
Theorem 4],

Symn(C)K 	 PPicn(C)K (pK∗Ln)

for n > 2g − 2. Viewing Symn(C) as a descent of PPicn(C)K (pK∗Ln) induces de-
scent data on PPicn(C)K (pK∗Ln), which we may view as a 1-cocycle valued in
PGL(pK∗Ln). Choosing an arbitrary lift of this 1-cocycle to a 1-cocycle val-
ued in GL(pK∗Ln) (to do so, we may have to refine the cover Picn(C)K →
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Picn(C)), we may view pK∗Ln as an α-twisted sheaf Fn on Picn(C) for some
α ∈ H 2(Picn(C),Gm), and Symn(C) = PPicn(C)(Fn).

Proof of Theorem 8. Let g be the genus of C.
Let D be a k-rational effective 0-cycle on C of degree n, that is, a rational

point of Symn(C) for some n. Let f ∈ �(C,OC(D)) be such that

0 → OC(−D)
·f−→ OC →OD → 0

is exact. Let
am
D : Picm(C)

∼−→ Picm+n(C)

be the map induced by multiplication by AJn(D). Note that after changing base
to K , there is an isomorphism am

D
∗Lm+n 	 Lm ⊗ q∗

KOC(D); since f is defined
over k, multiplication by f induces a morphism bm

D : Fm → am
D

∗Fm+n. We may
check that bm

D is a monomorphism by changing base to K . For m > 2g − 2, the
induced map

P(bm
D) : Symm(C) 	 P(Fm) → P(am

D
∗Fm+n) 	 Symm+n(C)

agrees with the morphism Symm(C) → Symn+m(C) sending a effective degree
m 0-cycle R to R + D. Furthermore, the existence of the morphism bm

D im-
plies that Fm, am

D
∗Fn+m are vector bundles twisted by the same class [α] ∈

H 2(Picm(C),Gm).
Let Rm = coker(bm

D); by extending scalars to K , we see that Rm is an α-twisted
vector bundle of rank n. Thus,

[Symn+m(C)] = [P(am
D

∗Fn+m)] = [P(Fm)] +L
m−g+1[P(Rm)]

= L
n[Symm(C)] + [P(Rm)]

by Theorem 24. Observe that Rm and am
D

∗Rm+n are α-twisted vector bundles of
the same rank; thus, by Proposition 27,

[P(Rm)] = [P(am
D

∗
Rm+n)] = [P(Rm+n)].

Let [Pm] ∈ K0(Vark) be this class. Then by induction we have that

[Symm′+n(C)] = [Pm] +L
n[Symm′

(C)]
for all

m′ ≡ m mod n, m′ > 2g − 2.

Thus, there exists a polynomial p(t) ∈ K0(Vark)[t] such that

ZC(t) = p(t) +L
ntnZC(t) +

2g+n−2∑
m=2g−1

[Pm]tm
1 − tn

.

In particular,
(1 −L

ntn)(1 − tn)ZC(t)

is a polynomial. Since ZC(t) has constant term 1, so does (1 − L
ntn)(1 −

tn)ZC(t). �
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Corollary 30. Let C be a curve over k such that each irreducible component
of C̃red (the normalization of the underlying reduced curve Cred) is geometrically
irreducible. Then there exists a polynomial p(t) ∈ 1 + tK0(Vark)[t] such that
p(t)ZC(t) is a polynomial with constant term 1.

Proof. We reduce to the case where C is smooth and projective. Indeed, we may
assume that C is reduced as [C] = [Cred]; let C̃ be the smooth projective model
of C. Then [C] = [C̃]+[X]−[Y ], where X and Y are zero-dimensional schemes.
In particular,

ZC(t)ZY (t) = Z
C̃
(t)ZX(t)

by Remark 3. We leave to the reader to show that there exist polynomials
pX(t),pY (t) ∈ 1 + tK0(Vark)[t] such that

pX(t)ZX(t),pY (t)ZY (t)

are polynomials with constant term one; thus, to prove the theorem for C, it suf-
fices to prove it for C̃. But C̃ is a disjoint union of components Ci satisfying the
conditions of Theorem 8, and

ZC(t) =
∏
i

ZCi
(t),

so we are done. �

Remark 31. It is natural to guess that the motivic zeta function of any curve is
rational, that is, we may drop the condition of geometric connectedness in Theo-
rem 8 and the rather artificial hypothesis of Corollary 30.
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[2] A. Căldăraru, Derived categories of twisted sheaves on Calabi–Yau manifolds, Ph.D.
thesis, Cornell University, 2000.

[3] B. Fantechi, L. Göttsche, L. Illusie, S. L. Kleiman, N. Nitsure, and A. Vistoli, Funda-
mental algebraic geometry: Grothendieck’s FGA explained, Math. Surveys Monogr.,
123, Amer. Math. Soc., Providence, 2005.

[4] A. Grothendieck, Le groupe de Brauer: I. Algèbres d’Azumaya et interprétations
diverses, Séminaire Bourbaki, Vol. 9, Exp. No. 290, 1964–1966.

[5] , Le groupe de Brauer: II. Théories cohomologiques, Séminaire Bourbaki,
Vol. 9, Exp. No. 297, 1964–1966.

[6] M. Kapranov, The elliptic curve in the S-duality theory and Eisenstein series for
Kac–Moody groups, MSRI Preprint 2000-006, arXiv:math/0001005v2.

[7] N. A. Karpenko, Grothendieck Chow motives of Severi–Brauer varieties, St. Peters-
burg Math. J. 7 (1996), no. 4, 649–661.

http://arxiv.org/abs/arXiv:math/0001005v2


Zeta Functions of Curves with No Rational Points 395

[8] M. Larsen and V. A. Lunts, Rationality criteria for motivic zeta functions, Compos.
Math. 140 (2004), no. 06, 1537–1560.

[9] M. Lieblich, Moduli of twisted sheaves, Duke Math. J. 138 (2007), no. 1, 1–178.
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