
Michigan Math. J. 64 (2015), 319–333

The Symplectic Mapping Class Group of CP 2#nCP 2

with n ≤ 4

Jun Li, Tian-Jun Li, & Weiwei Wu

Abstract. In this paper, we prove that the Torelli part of the symplec-
tomorphism groups of the n-point (n ≤ 4) blow-ups of the projective
plane is trivial. Consequently, we determine the symplectic mapping
class group. It is generated by reflections on Kω-spherical class with
zero ω area.

1. Introduction

A symplectic manifold (X,ω) is an even-dimensional manifold X with a closed,
nondegenerate two-form ω. The symplectomorphism group of (X,ω), denoted by
Symp(X,ω), is the group of diffeomorphisms φ of M that preserve ω and is given
the C∞-topology. Symp(X,ω) is an infinite-dimensional Fréchet Lie group.

For a closed four-dimensional symplectic manifold (X,ω), since Gromov’s
work [Gro85], the homotopy type of Symp(X,ω) has attracted much interest over
the past 30 years. For the special case of some monotone 4-manifolds, the (ratio-
nal) homotopy of Symp(X,ω) was fully computed in [Gro85; AM99; Eva11].
However, for an arbitrary symplectic 4-manifold, the complication grows drasti-
cally: see [Abr98; AM99; Anj02] for S2 × S2 and [AP12] for other instances.

The goal of this note is modest: for some rational 4-manifolds, we compute
π0(Symp(X,ω)), which is the symplectic mapping class group (denoted as SMC
for short). In the cases we consider, the homological action of Symp(X,ω) is
already known in [LW11]. Therefore, it suffices to describe π0(Symph(X,ω)),
which is the subgroup of Symp(X,ω) acting trivially on homology, namely, its
Torelli part.

Theorem 1.1. Symph(X,ω) is connected for X = CP 2#4CP 2 with arbitrary
symplectic form ω.

The cases S2 × S2 and (CP 2#kCP 2) with k ≤ 3 are known before. Our approach
actually works in a uniform way for all k ≤ 4 (see discussions in Remark 3.5). We
also note that Theorem 1.1 is not true in general for k ≥ 5; see Seidel’s famous
example in [Sei08].

Our strategy is based on Evans’ beautiful approach in [Eva11] by systemati-
cally exploring the geometry of certain stable configuration of symplectic spheres
(a related approach first appeared in Abreu’s paper [Abr98]). It is summarized by
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the following diagram:

Sympc(U) −−→ Stab1(C) −−→ Stab0(C) −−→ Stab(C) −−→ Symph(X)⏐⏐�
⏐⏐�

⏐⏐�
G(C) Symp(C) C0

(1)

Here C0 is the space of a full stable standard configuration of fixed homological
type. Every other term in diagram (1) is a group associated to C ∈ C0, and U =
X \C. Now we give the definition of stable standard spherical configurations, and
the groups will be discussed later in Section 2.1.

Definition 1.2. Given a symplectic 4-manifold (X,ω), we call an ordered finite
collection of symplectic spheres {Ci, i = 1, . . . , n} a spherical symplectic config-
uration, or simply a configuration, if

1. for any pair i, j with i �= j , [Ci] �= [Cj ] and [Ci] · [Cj ] = 0 or 1;
2. they are simultaneously J -holomorphic for some J ∈ Jω;
3. C = ⋃

Ci is connected.

We will often use C to denote the configuration. The homological type of C

refers to the set of homology classes {[Ci]}.
Further, a configuration is called

• standard if the components intersect ω-orthogonally at every intersection point
of the configuration; denote by C0 the space of standard configurations having
the same homology type as C;

• stable if [Ci] · [Ci] ≥ −1 for each i;
• full if H 2(X,C;R) = 0.

It is shown in [LW11] that for a rational manifold, the homological action of
Symp(X,ω) is generated by Lagrangian Dehn twists. Therefore, Theorem 1.1
implies the following:

Corollary 1.3. For a rational manifold with Euler number up to 7, the SMC
is a finite group generated by Lagrangian Dehn twists. Moreover, a generating
set corresponds to a finite set of Kω-null spherical classes with zero ω-area. In
particular, SMC is trivial for generic choice of ω.

It is shown in [BLW12] that the following proposition holds.

Proposition 1.4. Suppose that (X4,ω) is a symplectic rational manifold. Then
Symph(X,ω) acts transitively on the space of

• homologous Lagrangian spheres,
• homologous symplectic −2-spheres,
• Z2-homologous Lagrangian RP 2 and homologous symplectic −4-spheres if

b−
2 (X) ≤ 8.

Hence, we also have the following corollary.
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Corollary 1.5. For a rational manifold with Euler number up to 7, the space of

• homologous Lagrangian spheres,
• Z2-homologous Lagrangian RP 2,
• homologous −2 symplectic spheres,
• homologous −4 symplectic spheres

is connected.

2. Analyzing the Diagram

We analyze the diagram (1) and derive a criterion for the connectedness of
Symph(X,ω) in Corollary 2.10.

2.1. Groups Associated to a Configuration

Let C be a configuration in X. We first introduce the groups appearing in (1):

Subgroups of Symph(X,ω). Recall that Symph(X,ω) is the group of symplecto-
morphisms of (X,ω) that acts trivially on H∗(X,Z).

• Stab(C) ⊂ Symph(X,ω) is the subgroup of symplectomorphisms fixing C set-
wise, but not necessarily pointwise.

• Stab0(C) ⊂ Stab(C) is the subgroup fixing C pointwise.
• Stab1(C) ⊂ Stab0(C) is the subgroup fixing C pointwise and acting trivially

on the normal bundles of its components.

Sympc(U) for the Complement U . Sympc(U) is the group of compactly sup-
ported symplectomorphisms of (U,ω|U), where U = X \ C, and the form ω|U is
the inherited form on U from X. It is topologized in this way: let (U,ω) be a non-
compact symplectic manifold, and let K be the set of compact subsets of U . For
each K ∈ K, let SympK(W) denote the group of symplectomorphisms of U sup-
ported in K , with the topology of C∞-convergence. The group Sympc(U,ω) of
compactly supported symplectomorphisms of (U,ω) is topologized as the direct
limit of SympK(W) under inclusions.

Symp(C) and G(C) for the Configuration C. Given a configuration of embedded
symplectic spheres C = C1 ∪ · · · ∪ Cn ⊂ X in a 4-manifold, let I denote the
set of intersection points among the components. Suppose that there is no triple
intersection among components and that all intersections are transverse. Let ki

denote the cardinality of I ∩ Ci , which is the number of intersection of points
on Ci .

The group Symp(C) of symplectomorphisms of C fixing the components of C

is the product
∏n

i=1 Symp(Ci, I ∩ Ci). Here Symp(Ci, I ∩ Ci) denotes the group
of symplectomorphisms of Ci fixing the intersection points I ∩Ci . Since each Ci

is a 2-sphere and Symp(S2) acts transitivity on N -tuples of distinct points in S2,
we can write Symp(Ci, I ∩ Ci) as Symp(S2, ki). Thus,

Symp(C) ∼=
n∏

i=1

Symp(S2, ki). (2)
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As shown in [Eva11] we have:

Symp(S2,1) 
 S1, Symp(S2,2) 
 S1, Symp(S2,3) 
 �, (3)

where 
 means homotopy equivalence. And when k = 1,2, the S1 on the right
can be taken to be the loop of a Hamiltonian circle action fixing the k points.

The symplectic gauge group G(C) is the product
∏n

i=1 Gki
(Ci). Here Gki

(Ci)

denotes the group of symplectic gauge transformations of the symplectic normal
bundle to Ci ⊂ X, which are equal to the identity at the ki intersection points. As
also shown in [Eva11],

G0(S
2) 
 S1, G1(S

2) 
 �, Gk(S
2) 
 Zk−1, k > 1. (4)

Since we assume that the configuration is connected, each ki ≥ 1. Thus, by (4) we
have

π0(G(C)) =
n⊕

i=1

π0(Gki
(S2)) =

n⊕
i=1

Zki−1. (5)

It is useful to describe a canonical set of ki generators for Gki
(Ci). For each in-

tersection point y ∈ I ∩ Ci , the evaluation map is the projection of the following
homotopy fibration:

Gki
(Ci) → Gki−1(Ci)

evy→ SL(2,R),

where the fiber Gki−1(Ci) is the gauge group fixing the other k − 1 points ex-
cept y. Inductively using this, we get the generators of Gki

(Ci) marked by all ki

intersection points. Hence, it induces a map Z = π1(SL(2,R)) → π0(Gki
(Ci)).

Let gCi
(y) ∈ π0(Gki

(Ci)) denote the image of 1 ∈ Z.

2.2. Reduction to the Connectedness of Stab(C)

The aim of this subsection is to show the following:

Proposition 2.1. Symph(X,ω) is connected if there is a full, stable, standard
configuration C with connected Stab(C).

This is derived from the right end of diagram (1) for a full, stable, standard con-
figuration C. More explicitly, we consider the fibration

Stab(C) → Symph(X,ω) → C0. (6)

Recall that C0 is the space of standard configurations having the homology type
of C. We will show that (1) is a homotopy fibration and C0 is connected.

We first review certain general facts regarding these configurations, which are
well known to experts. By [LW11] we have the following fact.

Lemma 2.2. Let (M,ω) be a symplectic 4-manifold, and C a stable configuration⋃
i Ci . Let d(Ci) be the nonnegative integer given by [Ci] · [Ci]+ c1(X,ω) · [Ci].

Then there is a path-connected Baire subset TD of Jω × ∏
i M

d(Ci) such that a
pair (J , � = ∏

i �i ), where �i ∈ Md(Ci), lies in TD if and only if there is a unique
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embedded J -holomorphic configuration having the same homological type as C

with the ith component containing �i .

Lemma 2.3. Assume that C is a stable, standard configuration. The space C0 of
standard configurations having the homology type of C is path connected.

Proof. Consider C, the space of configurations as in Definition 1.2. By Lemma 2.2
we see that the space C is connected. Using a Gompf isotopy argument, it is
shown in [Eva11] that the inclusion ι : C0 → C is a weak homotopy equivalence.
Therefore, C0 is also connected. �

With C being full, the following lemma holds.

Lemma 2.4. If the stable, standard configuration C is also full, then Symph(X,ω)

acts transitively on C0. In particular, (6) is a homotopy fibration.

Proof. By Lemma 2.3 any C1,C2 ∈ C0 are isotopic through standard configura-
tions. The property that the configurations are symplectically orthogonal where
they intersect, together with the vanishing of H 2(X,C;R), allows us to extend
such an isotopy to a global homologically trivial symplectomorphism of X (by
Banyaga’s symplectic isotopy extension theorem; see [MS05], Theorem 3.19).
So we have shown that the action of Symph(X,ω) on the connected space C0 is
transitive by establishing the one-dimensional homotopy lifting property of the
map Symph(X,ω) → C0. By a finite-dimensional version of this argument (or
Theorem A in [Pai60]) we conclude that (6) is a homotopy fibration. �

Proof of Proposition 2.1. Since (6) is a homotopy fibration by Lemma 2.4, we
have the associated homotopy long exact sequence. Because of the connected-
ness of C0 as shown in Lemma 2.3, the connectedness of Stab(C) implies the
connectedness of Symph(X,ω). Therefore, we have 2.1 as the reduction of our
problem. �

2.3. Reduction to the Surjectivity of ψ : π1(Symp(C)) → π0(Stab0(C))

To investigate the connectedness of Stab(C), considering the action of Stab(C)

on C and the following portion of diagram (1), which appeared in [Eva11] and
[AP12]:

Stab0(C) → Stab(C) → Symp(C). (7)

The following lemma already appeared in [Eva11] and was explained to the au-
thors by J. D. Evans.1 We here include more details for readers’ convenience.

Lemma 2.5. Diagram (7) is a homotopy fibration when C is a simply connected
standard configuration.

1Private communications.
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Proof. First, we show that Stab(C) → Symp(C) is surjective.
Recall that at each intersection point between two different components

{xij } = Ci ∩ Cj , the two components are symplectically orthogonal to each other
in a Darboux chart containing xij . For convenience of exposition, define the level
of components as follows: let C1 be the unique component of level 1, and the
level k components are defined as those that intersect components in level k − 1
but do not belong to any lower levels. This is well defined again because of the
simply connectedness assumption.

An element in Symp(C) is the composition of Hamiltonian diffeomorphism
φi on each component Ci because of the simply connectedness of a sphere. We
start with endowing C1 with a Hamiltonian function f1 generating φ1. Let C2

i be
curves on level 2. Because C2

i intersects C1 ω-orthogonally, we can find a sym-
plectic neighborhood U1 of C1, identified as a neighborhood of the zero section
of the normal bundle, so that U1 ∩ Ci consists of finitely many fibers. Pull-back
f1 by the projection π of the normal bundle and multiply a cut-off function ρ(r)

such that ρ(r) = 1, r ≤ ε � 1; ρ(r) = 0, r ≥ 2ε. Here r is the radius in the fiber
direction. Denote by φ̄1 the symplectomorphism generated by this cut-off. Notice
that φ̄1 creates an extra Hamiltonian diffeomorphism εj on each component Cj

of level 2, and we denote φ′
j = φj ◦ ε−1

j for Cj belonging to level 2.
We proceed by induction on the level k. Notice that we can always choose

a Hamiltonian function fi on a component Ci on level k that generates φ′
i with the

property that fi(xil) = 0. Here Cl is the component of level k − 1 intersecting Ci .
We emphasize that this can be done because the component Cl on level k − 1
that intersects Ci is unique (and that the intersection is a single point) due to the
simply connectedness assumption, and we do not restrict the value on any other
intersections of Ci and components of level k+1. Therefore, we only fix the value
of fi at a single point.

We then again use the pull-back on the symplectic neighborhood and cut-off
along the fiber direction to get a Hamiltonian function Hi that generates a dif-
feomorphism φ̄i supported on the neighborhood of Ci . We note that d(π∗f1 ·
ρ(r))|Fx = 0 whenever f1(x) = 0, where Fx is the normal fiber over the point
x ∈ C1. Hence, dHi |Cl

= 0 since fi(xil) = 0 as prescribed earlier, which means
that the action of φ̄i on Cl is trivial. Taking the composition φ of all these φ̄i , φ is
supported on a neighborhood of C and equals φi when restricted to Ci .

The transitivity of the action of Stab(C) on Symp(C) follows easily. For
any two maps φ1, φ2 ∈ Symp(C), φ2φ

−1
1 ∈ Symp(C). We can extend φ2φ

−1
1 to

Stab(C). Then this extended φ2φ
−1
1 maps φ1 to φ2.

Now the symplectic isotopy theorem (or Theorem A in [Pai60]) for the surjec-
tive map Stab(C) → Symp(C) proves that diagram (7) is a fibration. �

Now we can establish the connectedness of Stab(C) under certain assumptions.

Proposition 2.6. Let (X,ω) be a symplectic 4-manifold, and C a simply con-
nected, full, stable, standard configuration. If each component of C has no
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more than three intersection points, then the surjectivity of the connecting map
ψ : π1(Symp(C)) → π0(Stab0(C)) implies the connectedness of Stab(C).

Proof. Since we assume that each component of C has no more than three inter-
section points, it follows from (3) and (2) that π0(Symp(C)) = 1.

By Lemma 2.5 we have the homotopy long exact sequence associated to (7),

· · · → π1(Symp(C))
ψ→ π0(Stab0(C)) → π0(Stab(C)) → π0(Symp(C)).

Then the surjectivity of ψ implies that Stab(C) is connected. �

2.4. Three Types of Configurations

Next, we investigate when the map ψ : π1(Symp(C)) → π0(Stab0(C)) is sur-
jective. For this purpose, we observe that an element of Stab0(C) induces an
automorphism of the normal bundle of C. Thus, we further have the following
homotopy fibration appeared in [Eva11] and [AP12]:

Stab1(C) → Stab0(C) → G(C). (8)

In particular, there is the associated map ι : π0(Stab0(C)) → π0(G)(C). Consider
the composition map

ψ̄ = ι ◦ ψ : π1(Symp(C)) → π0(Stab0(C)) → π0(G(C)).

Notice that π0(G(C)) inherits a group structure from G(C) and ψ̄ is a group
homomorphism. As shown in [Eva11], ψ̄ can be computed explicitly.

When ki = 3, π1(Symp(S2, k)) is trivial by (3). When ki = 1,2, Symp(Ci, I ∩
Ci) is homotopic to the loop of a Hamiltonian circle action on Ci fixing the
ki points. Denote such a loop by (φi)t . Observe that (φi)t is a generator of
π1(Symp(Ci, I ∩ Ci)) = Z. Recall that for each component Cj , there is a canon-
ical set of generators {gCj

(y), y ∈ I ∩ Cj } for Gkj
(Cj ), introduced at the end of

Section 2.1. The following is Lemma 4.1 in [Eva11].

Lemma 2.7. Suppose that Ci is a component with ki = 1,2. The image of [(φi)t ] ∈
π1(Symp(Ci, I ∩ Ci)) under ψ̄ is described as follows.

• If ki = 1 and Cj is the only component intersecting Ci with {x} = Ci ∩Cj , then
(φi)2π is sent to

gCj
(x)

in the factor subgroup π0(Gkj
(Cj )) of π0(G(C)).

• If ki = 2 and x ∈ Ci ∩ Cj , y ∈ Ci ∩ Cl , then (φi)2π is sent to

(gCj
(x), gCl

(y))

in the factor subgroup π0(Gkj
(Cj )) × π0(Gkl

(Cl)) of π0(G(C)).

Using Lemma 2.7, we will show that ψ̄ is surjective for the following configura-
tions.

Definition 2.8. Introduce three types of configurations (see Figure 1 for exam-
ples).
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Figure 1

• (type I) C = ⋃n
1 Ci is called a chain, or a type I configuration, if k1 = kn = 1

and kj = 2, 2 ≤ j ≤ n − 1.
• (type II) Suppose that C = ⋃n

1 Ci is a chain. C′ = C ∪ Cp is called a type II
configuration if the sphere Cp is attached to Cp at exactly one point for some
p with 2 ≤ p ≤ n − 1.

• (type III) Suppose that C′ = C ∪Cp is a type II configuration. C′′ = C′ ∪Cq is
called a type III configuration if the sphere Cq is attached to Cq at exactly one
point for some q with 2 ≤ q ≤ n − 1 and q �= p.

Lemma 2.9. ψ̄ is surjective for a type I or II configuration and an isomorphism
for a type III configuration.

Proof. We first prove the surjectivity for a type I configuration C = ⋃n
1 Ci . In this

case, there are n − 1 intersection points x1, . . . , xn−1 in total with

I ∩ C1 = {x1}, I ∩ Cn = {xn−1}, I ∩ Ci = {xi−1, xi}, i = 2, . . . , n.

Notice that π1(Symp(Ci, ki)) = Z for each i = 1, . . . , n. Notice also that
π0(Gki

(Ci)) = Z for each i for i = 2, . . . , n−1, and π0(Gk1(C1)) and π0(Gkn(Cn))

are trivial. Thus, the homomorphism ψ̄C associated to C is of the form Zn →
Zn−2.

For each i = 1, . . . , n, denote the generator (φi)t of π1(Symp(Ci, ki)) = Z by
rot(i). For each i = 2, . . . , n − 1, denote by gi(i − 1) and gi(i) the generators
gCi

(xi−1) and gCi
(xi) of π0(G2(Ci)) = Z.

Then by Lemma 2.7 the homomorphism ψ̄C is described by

rot(1) → g2(1),

rot(2) → (0, g3(2)),

ψ̄C : rot(j) → (gj−1(j − 1), gj+1(j)), 3 ≤ j ≤ n − 2,

rot(n − 1) → (gn−2(n − 2),0),

rot(n) → gn−1(n − 1).

(9)

Choose the bases of π1(Symp(Ci)) and π0(G(C)) to be

{rot(1), . . . , rot(n)}
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and

{g2(2), g3(3), g4(4), . . . , gn−1(n − 1)},
respectively. Notice that gi(i − 1) = ±gi(i), then by (9) ψ̄C is represented by the
following (n − 2) × n matrix if we drop the possible negative sign for each entry:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
0 1 0 1
0 0 1 0 1 0

. . .
. . .

. . .

1 0 1 0 0
1 0 1 0

1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Observe that the first n − 2 minor as a (n − 2) × (n − 2) is a upper triangular
matrix whose determinant is ±1. This shows that ψ̄C is surjective.

For a type II configuration C′ = C ∪ Cp , let x̄p be the intersection of Cp and
Cp . Notice that π1(Symp(C′)) = Zn as in the case of C, with the Z summand
from Cp replaced by a Z summand from Cp . Notice also that π0(G(C′)) = Zn−1

with the extra Z summand coming from the new intersection point x̄p in Cp .
Denote by rot(p̄) the generator of π1(Symp(Cp, x̄p)). Denote by g′

p(p) the gen-
erator gCp(x̄p) of π0(G3(Cp)). By Lemma 2.7 the homomorphism ψ̄C′ is of the
form Zn → Zn−1, and it differs from ψ̄C as in (9):

rot(p) = 0,

rot(p̄) → g′
p(p).

(10)

It is not hard to see that ψ̄C′ is again surjective. We illustrate by the type II con-
figuration in Figure 1. With respect to the bases

{rot(1), rot(2̄), rot(3), rot(4), rot(5)} and {g2(2), g′
2(2), g3(3), g4(4)},

ψ̄C′ is represented by the following 4 × 5 matrix (if we drop the possible negative
sign): ⎡

⎢⎢⎣
1 0 1
0 1 0 0
0 0 1 0 0

0 1 1

⎤
⎥⎥⎦ .

For a type III configuration C′′ = C′ ∪ Cq = C ∪ Cp ∪ Cq , observe first
that π1(Symp(C′′)) = Zn and π0(G(C′)) = Zn. By Lemma 2.7 we can describe
ψ̄C′′ : Zn → Zn similarly to the case of the type II configuration C′. Precisely,
ψ̄C′′ differs from ψ̄C in (9) as follows:

rot(p) = rot(q) = 0,

rot(p̄) → g′
p(p), (11)

rot(q̄) → g′
q(q).
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It is easy to see that ψ̄C′′ is an isomorphism in this case. We illustrate by the type
III configuration in Figure 1. With respect to the bases

{rot(1), rot(2̄), rot(3), rot(4̄), rot(5)} and {g2(2), g′
2(2), g3(3), g′

4(4), g4(4)},
ψ̄C′′ is represented by the following square matrix (if we drop the possible nega-
tive sign): ⎡

⎢⎢⎢⎢⎣

1 0 1
0 1 0 0
0 0 1 0 0
0 0 0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎦

.

�

2.5. Criterion

Finally, we arrive at the following criterion for the connectedness of Symph(X,ω).

Corollary 2.10. Suppose that a stable, standard configuration C is type I, II,
or III and that it is full. If Sympc(U) is connected, then Symph(X,ω) is con-
nected.

Proof. By Lemma 5.2 in [Eva11], Sympc(U) is weakly homotopy equivalent to
Stab1(C). So by our assumption that Sympc(U) is connected, Stab1(C) is also
connected. Therefore, the map ι : π0(Stab0(C)) → π0(G)(C) associated to the
homotopy fibration (8) is a group isomorphism. Now we have ψC = ψ̄C .

Since C is type I, II, or III, by Lemma 2.9 ψC is surjective. Notice that any
type I, II, or III configuration is simply connected. By the assumption of C

being full, we can apply Proposition 2.6 and Proposition 2.1 to conclude that
Symph(X,ω) is connected. �

3. Proof in the Case of CP 2#4CP 2

3.1. The Configuration for CP 2#4CP 2

Let X = CP 2#4CP 2, and ω an arbitrary symplectic form on X. We consider a
configuration C in [Eva11], consisting of symplectic spheres in homology classes
S12 = H − E1 − E2, S34 = H − E3 − E4, E1, E2, E3, and E4. Here {H,Ei} is
the standard basis of H2(X;Z) with positive pairing with ω. In Figure 2, we label
the spheres by their homology classes.

To apply the criterion in Corollary 2.10, we need to check that we can always
find a configuration C of such a homology type, so that

• C is stable,
• C is a type I, II, or III configuration,
• C is full,
• Sympc(U) is connected.

The existence of such a configuration is a direct consequence of Gromov–
Witten theory, and the first three statements follows from the definition. Note also
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Figure 2

that the actual choice of configuration will not affect the last statement because
Symph(X) acts transitively on C0, which means that U is well defined up to sym-
plectomorphism for any choice of C ∈ C0.

It thus remains to prove the connectedness of Sympc(U). In the next subsec-
tion, we will actually show that Sympc(U) is weakly contractible.

3.2. Contractibility of Sympc(U)

Let us first recall the following result of Evans (Theorem 1.6 in [Eva11]).

Theorem 3.1. If C∗ ×C is equipped with the standard (product) symplectic form
ωstd, then Sympc(C

∗ ×C) is weakly contractible.

This is relevant since Evans observed in Section 4.2 in his thesis [Eva10] that if
(ω,J0) is Kähler with ω monotone and C holomorphic, then (U,J0) has a finite-
type Stein structure f with ω|U = −ddcf , and there is a biholomorphism � from
(U,J0) to C∗ ×C (in addition, � satisfies �∗ωstd = ω|U ). We will generalize and
prove this observation in nonmonotone cases in Proposition 3.3.

Let us also recall the next result of Evans (Proposition 2.2 in [Eva11]).

Proposition 3.2. If (W,J0) is a complex manifold with two finite-type Stein
structures φ1 and φ2, then Sympc(W,−ddcφ1) and Sympc(W,−ddcφ2) are
weakly homotopy equivalent.

Now we complete our proof of the connectedness of Symph(CP 2#4CP 2,ω) for
an arbitrary ω by proving the following:

Proposition 3.3. Sympc(U,ω|U) is weakly contractible.

Proof. We first choose a specific configuration C convenient for our purpose (as
we explained in Section 3.1, this does not affect our result). According to [Li08,
Proposition 4.8], we can always pick an integrable complex structure J0 compati-
ble with ω, so that (X,J0) is biholomorphic to a generic blow up of four points on
CP 2 (the genericity here means that no three points lie on the same line, and in-
deed this can always be done for less than nine point blow ups). For such a generic
holomorphic blow up, there is a unique smooth rational curve in each class in the
homology type of C. Thus, we canonically obtain a configuration C associated
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to J0. Observe that the complement U = X \ C is biholomorphic to C∗ × C be-
cause the configuration C is the total transformation of two lines blowing up at
four points. Removing C gives us a biholomorphism from (U,J0) to CP 2 with
two lines removed, which is C∗ ×C.

Now we construct a Stein structure φ on (U,J0) with −ddcφ = ω|U when-
ever ω is a rational symplectic form on CP 2#4CP 2. Since (U,J0) is biholomor-
phic to C∗ ×C equipped with the standard finite-type Stein structure (Jstd,ωstd =
−ddc|z|2), we can then apply Proposition 3.2 and Theorem 3.1 in this case to
conclude the weak contractibility of Sympc(U,ω|U).

So we assume that [ω] ∈ H 2(X;Q). Up to rescaling, we can write PD([lω]) =
aH − b1E1 − b2E2 − b3E3 − b4E4 with a, bi ∈ Z≥0. Further, we assume that
b1 ≥ b2, b3 ≥ b4. Since H −E1 −E3 is an exceptional class, we also have ω(H −
E1 −E3) > 0. This means that a > b1 + b3, namely, 2a ≥ 2b1 + 2b3 + 2. Rewrite

PD([2lω]) = (2b1 + 1)(H − E1 − E2) + E1 + (2b1 − 2b2 + 1)E2

+ (2a − 2b1 − 1)(H − E3 − E4) + (2a − 1 − 2b1 − 2b3)E3

+ (2a − 1 − 2b1 − b4)E4.

Notice that the coefficients are all in Z>0. In this way, we represent PD([2lω])
as a positive integral combination of all elements in the set {H − E1 − E2,H −
E3 − E4,E1,E2,E3,E4}, which is the homology type of C.

Denote the symplectic sphere with homology class Ei in C by CEi
and simi-

larly for the two remaining spheres. Notice that each sphere is a smooth divisor.
Consider the effective divisor

F = (2b1 + 1)CH−E1−E2 + CE1 + (2b1 − 2b2 + 1)CE2

+ (2a − 2b1 − 1)CH−E3−E4 + (2a − 1 − 2b1 − 2b3)CE3

+ (2a − 1 − 2b1 − b4)CE4 .

There is a holomorphic line bundle L with a holomorphic section s whose zero
divisor is exactly F . Notice that

c1(L) = [F ] = [2lω].
By [GH94, Section 1.2] we can take an Hermitian metric | · | and a compatible
connection on L such that the curvature form is just 2lω. Moreover, for the holo-
morphic section s, the function φ = − log |s|2 is plurisubharmonic on the com-
plement U with −d(dφ ◦ J0) = 2lω. Notice that F and C have the same support,
so that the complement of F is the same as U . Thus, we have endowed (U,J0)

with a finite-type Stein structure φ.
As argued before, this implies that Sympc(U,ω|U) = Sympc(U,2lω|U) is

weakly contractible when [ω] ∈ H 2(X,Q) by the biholomorphism from (U,J0)

to (C∗ × C, Jstd).
Finally, suppose that ω is not rational, but we assume that ω(H) ∈ Q without

loss of generality by rescaling. We take a base point ϕ0 ∈ Sympc(U,ω|U) and a
Sn (n ≥ 0) family of symplectomorphisms determined by a based map ι : Sn →
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Sympc(U,ω′|U). Denote the union of support of this Sn family by Vι, which is a
compact subset of U .

Note the following fact.

Claim 3.4. There exists an ω′ symplectic on X such that:

(1) [ω′] ∈ H 2(X,Q),
(2) [ω′](Ei) ≥ [ω](Ei), [ω′](H) = [ω](H),
(3) the configuration C is ω′-symplectic,
(4) (X \ C,ω′) ↪→ (X \ C,ω) in such a way that the image contains Vι.

Proof. Recall that to blow up an embedded ball B in a symplectic manifold
(M,ω), we remove the ball and collapse the boundary by a Hopf fibration that
incurs an exceptional divisor. The reverse of this procedure is a blowdown.

Now take Ei in the configuration C and blow them down to get a disjoint
union of balls Bi in the blown-down manifold, which is a symplectic CP 2 with
line area equal ω(H). We then enlarge Bi by a very small amount to B ′

i so that
the sizes of B ′

i become rational numbers. After the enlargement, blow up B ′
i . This

produces a symplectic form on X, which clearly satisfies (1) and (2). Property
(3) can be achieved as long as the enlarged ball has boundary intersecting proper
transformation of S12 and S34 on a big circle. This is always possible: perturb
S12 and S34 slightly so that they are symplectically orthogonal to Ei before blow-
down. Then in a neighborhood of the resulting balls Bi , we have a Darboux chart
where Bi is the standard ball, whereas the portion of S12 and S34 inside this chart
is the x1 − x2 plane. This is guaranteed by the symplectic neighborhood theorem
near Ei . Hence, (3) is obtained when the enlargement stays inside the Darboux
chart. For more details, we refer to [MW96].

To see (4), we note that by the previous description (X \ C,ω′) is symplecto-
morphic to the complement of

⋃
i B

′
i union two lines (the proper transforms of

S12 and S34) in the symplectic CP 2 from blowing down. The same thus applies
to (X \ C,ω) with B ′

i replaced by Bi ⊂ B ′
i . Therefore, the statement regarding

embedding holds in (4). Since Vι is compact and embeds in (X \C,ω), as long as
the amount of enlargement from Bi to B ′

i is small enough, the embedded image
contains Vι, as claimed. �
Therefore, we can find an isotopy in Sympc(U,ω′|U) ↪→ Sympc(U,ω|U) from
the Sn family of maps to the base point ϕ0 by the proved case where ω is rational.
We emphasize in the previous proof that the choice of ω′ depends on ι, but this
is irrelevant for our purpose. This concludes that for arbitrary symplectic form ω

on X, Sympc(U,ω|U) is weakly contractible, and hence Symph(CP 2#4CP 2) is
connected for any symplectic form. �

Remark 3.5. The approach we adopt in this note in fact provides a uniform way to
establish the connectedness of the Torelli part of SMC for all symplectic rational
4-manifolds with χ ≤ 7. This can be viewed as a continuation of the techniques
first introduced by Gromov [Gro85] and further developed by many others in
[Abr98; AM99; LP04; Eva11; AP12], and so on.
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Here we just list the configurations for the 1,2,3-point blow up of CP 2

equipped with an arbitrary symplectic form:

• CP 2#CP 2, {E1,H − E1(with a marked point)},
• CP 2#2CP 2, {E1,E2,H − E1 − E2},
• CP 2#3CP 2, {E1,E2,H − E1 − E2,H − E1 − E3,H − E2 − E3}.
The configurations are all of type I. Combined with our argument verbatim, we
can recover the connectedness of Symph(CP 2#nCP 2,ω), n ≤ 3. However, such
a result for these manifolds is not new; see [Abr98; AM99; LP04; Eva11].
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