64 (2015), 143-153

On Undulation Invariants of Plane Curves
A. PoroLiTOV & SH. SHAKIROV

ABSTRACT. A classical problem introduced by A. Cayley and
G. Salmon in 1852 is to determine if a given plane curve of degree
r > 3 has undulation points, the points where the tangent line meets
the curve with multiplicity four. They proved that there exists an in-
variant of degree 6(r — 3)(3r — 2) that vanishes if and only if the
curve has undulation points. In this paper we give explicit formulas
for this invariant in the case of quartics (r = 4) and quintics (r = 5),
expressing it as the determinant of a matrix with polynomial entries,
of sizes 21 x 21 and 36 x 36, respectively.

1. Introduction

This paper is devoted to a problem in classical invariant theory of plane curves,
due to A. Cayley and G. Salmon (see [!], p. 362). Consider, on the projective
plane CP? with homogeneous coordinates x1 : x7 : x3, a plane curve

P(x1,x2,x3) = Z C,,kx1x2x3—0
i+j+k=r

where P is a homogeneous irreducible degree r polynomial. By the Bezout theo-
rem, any line in CPP? crosses this curve in exactly  points, if counted with multi-
plicities. The types of possible intersections thus can be put into correspondence
with partitions » = m| + my + ---, where the parts m; of the partition are the
multiplicities of intersection points. An illustration of this for the case of quartics
is given on Figure

If a line is generic, then it intersects the curve in r distinct points with all
multiplicities 1, that is, it corresponds to the partition (1, 1, ..., 1). The simplest
nongeneric intersection occurs for the tangent line to a curve: then one of the
intersection points has multiplicity 2 (the point of tangency), whereas all the other
intersection points have multiplicity 1. This type of intersection corresponds to the
partition (2, 1, 1, ...). The next-to-simplest types of intersection are, respectively,
3,1,...,)and (2,2, 1,..., 1); the former situation is called a line of inflection,
whereas the latter is called a bifangent since in this case the line is simultaneously
tangent to a curve in two distinct points. One can continue further by considering
lines of type (4, 1,...,1), (3,2, 1, ..., 1), and so on. These generally do not have
given names, with one notable exception: a line of type (4, 1, ..., 1) is called a line
of undulation, and the corresponding point of intersection is called an undulation
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[1,1,1,1] generic
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Figure 1 Types of intersection of a plane quartic and a line

point. Note that conventionally intersection with at least one part of multiplicity
higher than 4 is also called so, motivating the following Definition

DEeFINITION 1.1. A point is called an undulation point of a plane curve P (x1, x2,
x3) = 0 if a tangent line at that point meets the curve with multiplicity four or
higher.

It is classically known (and it is easy to estimate from degree counting) that a
generic plane curve has no undulation points. For a plane curve to possess un-
dulation points, it should be nongeneric, that is, P should satisfy some algebraic
equation(s). In the classical book [1] Salmon, building on the work of Cayley,
studied this question and proved the following existence theorem.

THEOREM 1.2 ([1], Chapter IX, p. 362). There exists a unique up to rescaling
function I, which is a homogeneous polynomial in (r + 1)(r + 2)/2 coefficients
C of degree 6(r — 3)(3r — 2), such that

I1(C)=0

is a necessary and sufficient condition for the curve P(x1,x2,x3) =0 to have
undulation points.

Unfortunately, this theorem only justifies the existence of such an invariant. In
practice, it is useful to have not only that but also an explicit formula. In this
paper we address the problem of finding an explicit polynomial formula for the
undulation invariant /. Such a formula was not given in the literature devoted to
undulation [1; 2; 3; 4; 5], and the aim of this paper is to fill this gap. We will show
that 7(C) is given by a determinant with polynomial entries, of size 21 x 21 for
r =4 and of size 36 x 36 for r =5.

We believe that one of the reasons that the explicit formula that we present
here was not found before is the complexity of the invariants: even in the simplest
nontrivial case of quartic curves, for » = 4, the invariant / is a homogeneous poly-
nomial of degree 60 in the 15 coefficients of the quartic and hence has a really
impressive length (number of monomials). This is a typical phenomenon in invari-
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ant theory (see, e.g., Appendix to the book version of [6] for another example).
It is, however, not terrifying at all: these enormous invariant polynomials often
possess a lot of nice properties and can be expressed by simple elegant formulae.
In the previous example, as we find in this paper, the invariant of degree 60 turns
out to be a determinant of a relatively simple 21 x 21 matrix. To find and explore
such formulae, it is often beneficial to use modern computers and software (e.g.,
MAPLE; see Section 6 for more details on the technical tools we used).

2. The Undulation Ideal

The undulation problem is so far defined in the geometric terms of tangent lines
and multiplicities. To proceed to solution of this problem, we will reformulate
it in terms of properties of a certain polynomial ideal called the undulation ideal.
Analyzing this ideal with a combination of relatively simple tools—linear algebra,
representation theory of SL(3), and computer algebra methods—we will be able
to obtain the desired result, the determinantal formula for /.

DEFINITION 2.1. The undulation ideal T is the set of all polynomials in the vari-
ables C, vy, va, v3 that vanish whenever v x| + vax + v3x3 = 0 is the undulation
line of the curve P(xy, x2, x3) =0:

I ={feC[C,v1,v2,v3]]| f(C,v1,v2,v3) =0 if v1x] + v2x2 + V363 =0

is an undulation line for the curve P (xy, x2, x3) = 0}.

The motivation to consider such an ideal essentially comes from the Cayley—
Salmon theorem, Theorem . In other words, this theorem can be stated as a
fact that the simpler ideal

' ={f eC[C]]| f(C)=0if P(x1,x2,x3) =0 has at least one undulation line}
is generated by a single element, the undulation invariant:
' ={1(C)).

Following the general wisdom “to understand something, deform/generalize it”,
we propose to extend Z' to a bigger ideal Z, in a hope that this could reveal an
additional structure and thus shed some light on the nature of the element I (C).
As we will see, this will happen to be the case.

The ideal Z admits three useful gradings. The first two are the obvious grad-
ings w.r.t. the total degree in all the coefficients C, and the total degree in all the
coefficients v:

degc(v;) =0, degc (Cijk) = 1;
deg,(vi) =1, deg, (Cijx) =0.
The last, third, grading is more refined and is determined by
deg(v1) = (1,0,0), deg(v2) = (0, 1,0,
deg(v3) = (0,0,1),  deg(Ciji) = (i, j. k).
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With respect to these gradings, the ideal Z is decomposed into a direct sum of
graded components.

DEFINITION 2.2. Let Z, ,,, be the graded components of 7 w.r.t. the first two grad-
ings, and Z,, u, m,,m; be the graded components w.r.t. all the three gradings:

Inm ={f €ZL|degc(f)=n,deg,(f)=m},
Lnmymymy = €T | dege(f) =n, deg(f) = (m1, ma, m3)}.
Note that
Lnm = @ L.y ma.ms -
my+my+my=rn+m

Note also, that the Cayley—Salmon ideal is nothing but Z’ = €p, Z, o.

3. The Structure of the Ideal

To understand the structure of the graded components Z,, ,,,, various methods can
be used. It is interesting that for the purpose of this paper, it is enough to use the
most basic and straightforward approach possible, direct calculation of the spaces
Z,.m using only linear algebra.

For this, we will need the following simple lemma.

LeEmMa 3.1. A line
v(x1, X2, X3) = v1x] + v2x2 +v3x3 =0 (D

is an undulation line of a plane curve P(x1, x2,x3) =0 iff P can be decomposed
in the form

P(x1,x2,x3) = u(x1, x2, x3)*h(x1, x2, x3) + v(x1, X2, ¥3)w(x, x2, x3),  (2)

where u(xi,x2,Xx3) = u1xy + uzxxy + uzxz is some linear polynomial, and
h(x1,x2,x3) and w(xy, x2,x3) are some homogeneous polynomials of degrees
r —4 andr — 1, respectively.

Proof. (<) This is true by the definition of multiplicity.

(=) Suppose that v = 0 is tangent to the curve at a point X with intersection
multiplicity at least 4. Assuming without loss of generality that (X : X» : X3) =
(0:0:1) and v(xy, x2,x3) = X1, the intersection multiplicity equals multiplic-
ity of the zero root of P(0, z, 1). This implies P(0,z,1) = Z*w(z) for some
polynomial w(z). In turn, this implies P (0, x2, x3) = x§ w(x2, x3) for some ho-
mogeneous polynomial w(x2, x3) and, ultimately, P (x1, x3, x3) = xg w(xy, x3) +
x1h(x1, x2, x3) for some homogeneous polynomial #(x1, x2, x3). O

Lemma 3.1 has an important corollary.

COROLLARY 3.2. Each T, », can be computed as a solution to a finite linear system
of equations.
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Proof. Denote

sijk(u, h, v, w) = coefficient in front of x’ixéxé‘ in (u4h + vw)

with u, h, v, w as in Lemma . Then, a homogeneous polynomial f €
CIC, v1, v2, v3] of degrees deg.(f) = n, deg,(f) = m belongs to Z, ,, iff the
following system of equations is satisfied:

fG@,h,v,w),vi,v,v3) =0 VYu,v,h,w. 3)

This is a system of finitely many linear equations, where the coefficients of the
polynomial f are treated as indeterminates. For given pair of natural numbers 7,
m, there are only finitely many these coefficients. Therefore, for any given n, m,
one can (at least in principle) write and explicitly solve the corresponding linear
system, obtaining 7, ,, as its solution space. U

Despite the size and complexity of the above linear systems grows quite fast with
n, m, we will see below that this straightforward approach suffices to investigate
the simplest properties of the ideal Z. In particular, in the next section we will use
this approach to find several lowest Z,, ,, for r =4 and show that the elements
of these linear spaces can be naturally put together to form a 21 x 21 matrix, the
determinant of which is the Cayley—Salmon invariant. This is the main new result
of this paper, which calls for further research in the nearby directions.Then, in the
next section, we will do the same for r = 5 and obtain similar results, thus giving
evidence that the » = 4 result is not an accident but rather the first step toward
generalizations.

4. Determinantal Formula for r =4

Using the approach explained in the previous section, we obtain the following.

THEOREM 4.1. For plane quartics (r =4), the dimensions dimZ, ,, of a few low-
est graded components of the undulation ideal are given by the following numbers:

n\m 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 o
1 0 0 0 0 0 0 0 o
2 0 0 0 0 1 3 21 45
3 0 0 0 0 15 63 325

Proof. Direct calculation via Corollary 3.2. (]
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The spaces 7, 5 and 73 5 are spanned, as linear spaces, by 3 and 63 polynomials,
respectively:

3

5= {Zciai

i=1

63

C],...,C3€(C}, I3,5={ZC:',31'

i=1

Cl,...,663€(C}.

Since Z is an ideal, the product of any element of 7, 5 and any element of C
belongs to Z3 5. Computation shows that there are no relations between such
products, that is, the subspace spanned by them has dimension 45. 73 5 can be
then decomposed' as a sum of this 45-dimensional subspace and a complemen-
tary 18-dimensional subspace. Let By, ..., 813 be the basis elements of that 18-
dimensional subspace. Together with the three basis elements of 75 5, they form
a set of 21 linearly independent polynomials of degree 5 in vy, vy, v3. At the
same time, the dimension of the space of homogeneous polynomials of degree
5 in three variables vy, vy, vz is exactly 21! This allows us to arrange these
3 + 18 polynomials into a 21 x 21 matrix with the following remarkable prop-
erty.

THEOREM 4.2. Let M be the 21 x 21 matrix the rows of which are obtained
by expanding the 21 polynomials o1, ..., a3; B1, ..., P18 in the 21 homogeneous
monomials of degree 5 in vi, v2, v3. Then the determinant of this matrix is the
Cayley—Salmon undulation invariant of plane quartics:

H(C)r=4 = det M. “

Proof. By construction, if the curve P(x, x2,x3) = 0 possesses an undulation
line Vix; + Vaxy + Vaxz = 0, then all the polynomials «q, ..., «3; B1,..., P13
vanish at v = V. This implies that the 21-dimensional vector the components
of which are the 21 monomials of degree 5 in Vi, V2, V3 belongs to the kernel
of M. Hence, M is degenerate whenever the curve P(xy, x2, x3) = 0 possesses
an undulation line. Hence, its determinant is an element of the Cayley—Salmon
undulation ideal:

det M eT = (I(C)).
21x21

By the Cayley—Salmon theorem this ideal is generated by a unique element, the
Cayley—Salmon undulation invariant 7 (C), and therefore det M has to be propor-
tional to 1 (C):
det M=i(C)-1(C).
21x21

Here i (C) is some polynomial in C. It is easy to calculate its degree:

degci(C)zdegczflfglM—degCI(C)=3-2+18~3—60=0.

IThis decomposition is, of course, not unique, but the results of this section are valid for any choice
of it. This choice affects only the shape and simplicity of the resulting determinantal formula.
A natural choice of the decomposition, which also leads to the simplest shape of the determinantal
formula, comes from SL(3) representation theory, discussed in the next section.
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1
22
343
3663
24642
123321

Figure 2 Structure of 73 5

So i(C) does not depend on C, that is, is just a constant. The determinant of M
thus has the same degree as the Cayley—Salmon undulation invariant and coin-
cides with it up to an overall constant. Computing this determinant for any curve
without undulation lines, say, for xi‘ + xg + xé‘ + (x1 + x2 + x3)* = 0, shows that
this constant is not zero. Consequently, it can be always put to 1 (since 1 (C) is
itself defined up to rescaling). U

5. Explicit Formulas

As usual, the symmetry group of the problem (in our case, SL(3)) acts on the
space of solutions, decomposing it into irreducible representations. To find this
decomposition, the easiest way is to consider, instead of the graded components
Z1,m, the more refined components Zy, ,u,,m,,m; - In complete analogy, their dimen-
sions and spanning polynomials can be computed via Corollary 3.2. For n = 3 and
m =5, this gives the following triangle of integers, as shown in Fig. 2. Decompos-
ing this triangle into the usual multiplicity diagrams of irreducible representations
of SL(3), we find

1

22 1
343 11 111

3663 = 111@111 + 1221 + 11
24642 1111 121 1
123321 11111 11

63 15-3 18

This indicates that the 63 basis polynomials of Z3 5 consist of the uninteresting
15 - 3 =45 polynomials obtained from 73 4, the 15 polynomials transforming in
the irreducible representation (3,2), and the three polynomials transforming in
the irreducible representation (1, 1) = (1). This completes the description of the
decomposition of 73 5 into irreducibles. Finally, it is an easy exercise to check that
1> 5 is itself an irreducible representation of SL(3), namely, just the fundamental
representation (1). Together, these 21 = 15 + 3 + 3 polynomials, transforming in
representations (3,2) & (1, 1) & (1), form the matrix M. To describe this matrix,
it suffices to give explicit formulas for the highest weight vectors in the respective
representations:

(D ar=As, &)
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(1, 1): B1 =2B32312 — 3812332 + B31232 + B3zt — B2133, (6)
(3,2):  Ba=12Br3233 — B23332 — B32233, 7

where, explicitly in components,

arazaz  b1bybz _cicrc3  didad,
Ai = 1RB MR N2BMD 3Palblcld] Pazbzczdzva3vb3vC3vd3vis (8)

..... araxaz (b1babs cc1c2¢3 i jajs kikaks

Paybiiiz Payerig ji Poycaisky Vaz Vb3 Ve3 U j3 Vs - ©
Here P;ji; = 0y, 0x ; x, Ox; P is the symmetric tensor of derivatives, €% stands for
the completely antisymmetric tensor, and the summation over repeated indices
is assumed. The polynomials oy, ..., a3, B1,..., B3 and Ba, ..., B1g are obtained
from these highest weight vectors by the action of SL(3). One can straightfor-
wardly check that they indeed vanish, provided that P = u*h + vw.

6. Determinantal Formula for » =5

Having solved the undulation problem for » = 4, it is natural to go further and
consider the case of quintics, » = 5. For plane quintics, the undulation invariant
has degree 6(r — 3)(3r — 2) = 156. Despite this is an impressively large degree,
our calculations suggest that the same structure that we observed in the case of
plane quartics exists for plane quintics as well.

PROPOSITION 6.1. For plane quintics (r =5), the dimensions dimZ, ,, of a few
lowest graded components of the undulation ideal are given by the following num-
bers:

n\m <5 6 7
0 0 0 0
1 0 0 0
2 0 6 15
3 0 126 315
6 0 63,7756 159,411
Proof. Direct calculation via Corollary 3.2. For dimZ; 7, this calculation is just as

direct as for Theorem 5.1 and gives precisely 15. However, for dimZg 7, it is sig-
nificantly harder because sizes of linear systems (3), which define the generators
of the ideal, become so large that solving them with MAPLE (and even finding
their rank) is no longer possible.

We tackle this technical problem by utilizing the linear algebra package “lin-
box”. However, we are not using it directly, writing program to compute the ranks
in pure C. We rather use SAGE, which is a great tool for mathematicians, written
in Python and has bindings for “linbox”. To glue our MAPLE and SAGE codes
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together (that is, to convert linear systems from polynomial form of notation, gen-
erated by the former to sparse-matrix form, understood by the latter), we use a
simple Perl script. We believe, that such an approach of using several distinct
computational and modeling tools, each of which is well suited for a particular
task—rather than using all-in-one swiss-knives—and then gluing them together
with the help of scripting languages (such as Perl, Python, and Lisp) will turn out
to be very useful in attacking future problems of mathematics and physics that
require computation. With this approach, we obtain the following dimensions of
solution spaces for Zg ;;,m,,m; (horizontal axis is m, and vertical axis is my,
whereas m3 =7 — my — my):

0 0 1 2 3 ) N 1 14 17 20 b 23 23 2 20 17 14 11 8§ 5 3 21
0 1 4 s 14 24 37 31 66 81 93 101 104 101 93 81 66 51 37 24 14 § 4 1
1 4 1225 46 77 116 160 207 249 281 299 200 281 249 207 160 116 77 46 25 12 4 1
2 § 25 55 104 173 261 360 460 344 602 622 602 544 460 360 261 173 104 55 25 0§ 2 O
3 14 46 104 196 326 490 668 838 971 1044 1044 971 838 668 490 326 196 104 46 14 3 0 O
3 24 77 173 326 539 798 1068 1311 1476 1536 1476 15311 1068 798 339 326 173 724 3 0 00
8§ 37 116 261 490 798 1139 1518 1810 1972 1972 1810 1518 1159 798 490 261 116 37 § O O O O
11 31 160 360 668 1068 1318 1932 2220 2334 2220 1932 1518 1068 668 360 160 51 11 O O O O ¢
14 66 207 460 838 1311 1810 2229 2471 2471 2229 1810 1311 838 460 207 66 14 0 0 0 0 00
17 81 249 544 0971 1476 1972 2334 2471 2334 1972 1476 971 544 249 81 17 0 0 0 0 0 0 0
20 93 281 602 1044 1536 1972 2229 2220 1972 1536 1044 602 281 93 20 0 0 0 0 0 0 00
22 101 299 622 1044 1476 1810 1932 1810 1476 1044 622 209 101 22 0 0 0 0 0 0 0 00
23 104 299 602 971 1311 1518 1518 1311 971 602 299 104 23 0 0 0 0 0o 0 0 0 00
281 3544 838 1068 1139 1068 838 344 281 101 23 0 0 0 0 0 0 0 0 0 0 0

22 93 249 460 668 798 798 668 460 240 93 pr) 0 0 0 0 0 0 0 0 0 0 0 0
20 81 207 360 480 539 490 360 207 81 20 0 0 0 0 0 0 0 0 0 0 0 0 0
17 66 160 261 326 326 261 160 66 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 31 116 173 196 173 116 31 14 0 0 0 0 0 0 0 0 0 0 0 0 00
1137 77 104 104 77 37 11 0 0 0 0 0 0 0 0 0 0 0 0 0 00
§ 24 46 3B 46 24 S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5014 025 023 143 0 0o 0 00 0 0 o 0 0 0 0 0 0 0 0 00
3 § 1 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
204 4 20 0 0 o 0 0o o o o0 6 0 0 0 0 0 0 0 0 0O
1 1 1 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 o0 O 0 0 0O
The sum of entries in this table is, indeed, equal to 159,411. O

By Proposition 6.1, the spaces 7, 7 and Zg 7 are spanned, as linear spaces, by 15
and 159,411 polynomials, respectively. As before, let us denote the basis poly-
nomials in these spaces by o, ..., a5 and B, ..., B159.411. Since 7 is an ideal,
the product of any element of Z, 7 and any polynomial of degree 4 of C belongs
to Ze7. Computation shows that there are no relations between such products,
that is, the subspace spanned by them has dimension 15dim(S*span(C)). The
dimension of the complementary subspace in decomposition of Z 7 is therefore

2144 —1)!
4121 — 1)!
= 159,411 — 159,390 = 21.

159,411 — 15 - dim(S* span(C)) = 159,411 — 15 -
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Let B1, ..., B21 be the basis elements of that 21-dimensional subspace. Together
with the 15 basis elements of 7, ¢, they form a set of 36 linearly independent
polynomials of degree 7 in vy, va, v3. At the same time, the dimension of the
space of homogeneous polynomials of degree 7 in three variables vy, va, v3 is
exactly 36! This allows us to arrange these 15 4+ 21 polynomials into a 36 x 36
matrix with the following remarkable property.

THEOREM 6.2. Let M be the 36 x 36 matrix, the rows of which are obtained
by expanding the 36 polynomials a1, ..., o15; B1, ..., P21 in the 36 homogeneous
monomials of degree T in vy, v2, v3. Then det M is the Cayley—Salmon undulation
invariant of plane quintics:

1(C)r=s =3éixe§6/\/l. (10)

Proof. Analogously to Theorem 4.2, the statement simply follows from the fact
that det M vanishes when the curve has undulation points, has the correct degree
15-2421-6 =156, and is nonvanishing for one curve that has no undulation
lines, say, for x15 —i—xg + x§ + (x1 +x2 +x3)° =0. O

7. Conclusion

In this paper we have found an explicit polynomial formula for the Cayley—
Salmon invariant of plane quartics and plane quintics. The formula is expressed as
a determinant of a finite-size matrix with polynomial entries; it is therefore very
convenient for practical calculations and allows one to determine in reasonable
time and space whether the curve has undulation points or not.

The existence of such a formula rises several interesting questions:

e It would be interesting to find a generalization of these formulae to higher r > 5
or to make sure that such a generalization does not exist.

e It would be interesting to apply the method used in this paper to other types of
invariants associated with various other types of decomposition of curves. The
undulation condition is associated with the decomposition

P =ajajaia; + bics,

where the letters denote different polynomials, and the indices show their de-
grees. Similarly, we can consider other different types of decompositions, in
particular,

P =ajaia1a1 + byey,

P = ayb1by + c2dqdy,

P =aibicidi + aibicier + aibidie; +aicidier +bicidiey,

P =ajaiaia1 + b1b1b1by + cicicicr +didididy + erereqen,

P =ajajaiay + bybr + crc).

It is easy to show that existence of each of these decompositions is equivalent to
vanishing of a certain invariant polynomial in coefficients of P. Some of these
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decompositions were discussed already for a long time: for example, the fourth
decomposition corresponds to the Clebsch invariant, which has a well-known de-
terminantal representation of degree six (see [7], p. 283). A more complicated
case is the third decomposition, which defines the so-called Luroth quartics [8],
and the corresponding invariant is called the Lueroth invariant. In analogue with
the Cayley—Salmon undulation invariant, it has a high degree (54). An explicit
formula for this invariant in terms of the elementary system of invariants has been
recently obtained in [9]; it would be interesting to see whether the method of this
paper can produce a determinantal formula for it.
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