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On the Supersingular K3 Surface in
Characteristic 5 with Artin Invariant 1

Toshiyuki Katsura, Shigeyuki Kondo, & Ichiro Shimada

Dedicated to Professor Igor V. Dolgachev on the occasion of his 70th birthday.

Abstract. We present three interesting projective models of the su-
persingular K3 surface X in characteristic 5 with Artin invariant 1.
For each projective model, we determine smooth rational curves on
X with the minimal degree and the projective automorphism group.
Moreover, by using the superspecial Abelian surface we construct six
sets of 16 disjoint smooth rational curves on X and show that they
form a beautiful configuration.

1. Introduction

Let Y be a K3 surface defined over an algebraically closed field k, and ρ(Y ) the
Picard number of Y . Then it is well known that 1 ≤ ρ(Y ) ≤ 20 or ρ(Y ) = 22. The
last case ρ(Y ) = 22 occurs only when k is of positive characteristic. A K3 surface
is called supersingular if its Picard number is 22. Let Y be a supersingular K3
surface in characteristic p ≥ 3. Let SY denote its Néron–Severi lattice, and let S∨

Y

be the dual of SY . Then Artin [1] proved that S∨
Y /SY is a p-elementary Abelian

group of rank 2σ , where σ is an integer such that 1 ≤ σ ≤ 10. This integer σ

is called the Artin invariant of Y . It is known that the isomorphism class of SY

depends only on p and σ (Rudakov and Shafarevich [26]). On the other hand,
supersingular K3 surfaces with Artin invariant σ form a (σ − 1)-dimensional
family, and a supersingular K3 surface with Artin invariant 1 in characteristic p

is unique up to isomorphisms (Ogus [24; 25], Rudakov and Shafarevich [26]).
Supersingular K3 surfaces in small characteristic p with Artin invariant 1 are

especially interesting because big finite groups act on them by automorphisms.
(See Dolgachev and Keum [11].) For example, the group PGL(3,F4) � Z/2Z
in case p = 2 or PGU(4,F9) in case p = 3 acts on the K3 surface by automor-
phisms. Moreover, these K3 surfaces contain a finite set of smooth rational curves
on which the above group acts as symmetries. For example, in case p = 2, there
exist 42 smooth rational curves that form a (215)-configuration (see Dolgachev
and Kondo [12], Katsura and Kondo [16]). In case p = 3, the Fermat quartic sur-
face is a supersingular K3 surface with Artin invariant 1, and it contains 112 lines
(e.g., Katsura and Kondo [15], Kondo and Shimada [19]).
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In this paper we consider a similar problem for the supersingular K3 surface
in characteristic 5 with Artin invariant 1. We work over an algebraically closed
field k of characteristic 5 containing the finite field F25 = F5(

√
2). Let CF be the

Fermat sextic curve in P2 defined by

x6 + y6 + z6 = 0. (1.1)

Note that the left-hand side of equation (1.1) is a Hermitian form over F25 and
the projective unitary group PGU(3,F25) acts on CF by automorphisms. Let
πF : X → P2 be the double cover of P2 branched along CF . Then X is a su-
persingular K3 surface in characteristic 5 with Artin invariant 1, on which the
finite group PGU(3,F25) � Z/2Z acts by automorphisms (e.g., Dolgachev and
Keum [11]). Let P be an F25-rational point of CF . Then the tangent line �P to
CF at P intersects CF at P with multiplicity 6. Hence, the pullback of �P on X

splits into two smooth rational curves meeting at one point with multiplicity 3.
Since the number of F25-rational points of CF is 126, we obtain 252 smooth ra-
tional curves on X.

The main result of this paper is to exhibit three projective models of X and
determine smooth rational curves of minimal degree on X with respect to the
corresponding polarizations.

Theorem 1.1. There exist three polarizations hF , h1, h2 of degree 2, 60, 80 on
X satisfying the following conditions:

(1) The projective model (X,hF ) is the double cover of P2 branched along CF .
Here hF ∈ SX is the class of the pullback of a line on P2 by the covering
morphism πF : X → P2. The projective automorphism group Aut(X,hF )

of (X,hF ) is a central extension of PGU(3,F25) by the cyclic group of or-
der 2 generated by the deck-transformation of X over P2. The double plane
(X,hF ) contains exactly 252 smooth rational curves of degree 1, on which
Aut(X,hF ) acts transitively.

(2) The projective automorphism group of (X,h1) is isomorphic to the alternat-
ing group A8. The minimal degree of curves on (X,h1) is 5, and (X,h1) con-
tains exactly 168 smooth rational curves of degree 5, on which Aut(X,h1)

acts transitively.
(3) The projective automorphism group of (X,h2) is isomorphic to

(Z/2Z)4 � (Z/3Z×S4)

of order 1,152. The minimal degree of curves on (X,h2) is 5, and (X,h2)

contains exactly 96 smooth rational curves of degree 5, which decompose
into two orbits under the action of Aut(X,h2).

The model (X,hF ) has been known as mentioned before. However, we give an-
other proof of the existence of such a polarization hF on X by using the Borcherds
method [3; 4] and a geometry of the Leech lattice.

The set of the 96 smooth rational curves in Theorem 1.1(3) possesses the fol-
lowing remarkable property. Let S and S ′ be two sets of disjoint 16 smooth ra-
tional curves on a K3 surface. We say that S and S ′ form a (16r )-configuration
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if every member in one set intersects exactly r members in the other set with
multiplicity 1 and is disjoint from the remaining 16 − r members. For example,
a (166)-configuration appears in the theory of Kummer surfaces associated to the
Jacobian of a smooth curve of genus two: sixteen 2-torsion points on the Jacobian,
the theta divisor, and its translations by 2-torsion points (Chapter 6 of Griffiths and
Harris [13], and Dolgachev [10]).

Theorem 1.2. There exist six sets

S00,S01,S02,S10,S11,S12

of disjoint 16 smooth rational curves on X with the following properties.

(a) If i 	= j , then Sνi and Sνj form a (166)-configuration for ν = 0 and 1.
(b) For i = 0,1,2, the sets S0i and S1i form a (1612)-configuration.
(c) If i 	= j , then S0i and S1j form a (164)-configuration.

In fact, the set of the 96 smooth rational curves of degree 5 on (X,h2) decomposes
into the disjoint union of six sets with the properties (a), (b), (c).

Since h2
2 = 80, however, it is difficult to present these curves explicitly. Instead,

we construct the six sets with the properties (a), (b), (c) on the Kummer surface
model of X. Let E be the elliptic curve defined by y2 = x3 − 1, and let A be
the product Abelian surface E × E. It is well known that X is isomorphic to the
Kummer surface Km(A) associated with A. In Section 8, we construct these six
sets explicitly on Km(A) by giving the pullback of rational curves by the rational
map A · · → Km(A). As a corollary of this construction, we have the following
result. Let P1 be a projective line over F25 with an affine parameter. We define
four subsets of P1(F25) as follows:

P6 = {∞,0,1,2,3,4},
P4 = {√

2,1 + 2
√

2,3 + 3
√

2,4 + 4
√

2
}
,

P̄4 = {
4
√

2,1 + 3
√

2,3 + 2
√

2,4 + √
2
}
,

P12 = P1(F25) \ (P6 ∪ P4 ∪ P̄4).

They are mutually disjoint. See Remark 8.9 for the geometric characterization of
the decomposition P1(F25) = P6 ∪ P4 ∪ P̄4 ∪ P12.

Theorem 1.3. There exist a model of Km(A) defined over F25 and a set S of the
96 rational curves defined over F25 on Km(A) that admits a decomposition into
disjoint six subsets Sνi (ν = 0,1 and i = 0,1,2) satisfying (a), (b), (c) of Theo-
rem 1.2. Moreover, any intersection point of two curves in S is an F25-rational
point, and, for each � in Sνi , the set �(F25) of F25-rational points on � are de-
composed into the union of disjoint four sets �ν , �μi , �μj , and �μk (μ 	= and
j 	= k 	= i 	= j ) with the following properties.

(i) |�ν | = 6, |�μi | = 12, |�μj | = |�μk| = 4.
(ii) For any point p in �ν and each i′ 	= i, there exists exactly one curve in Sνi′

passing through p. For any point p′ in �μi , there exists exactly one curve
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in Sμi passing through p′. For any point p′′ in �μj (resp. �μk), there exists
exactly one curve in Sμj (resp. Sμk) passing through p′′.

(iii) There exists an isomorphism φ : � →∼ P1 defined over F25 such that
φ−1(P6) = �ν , φ−1(P12) = �μi , φ−1(P4) = �μj , and φ−1(P̄4) = �μk .

We give three different proofs of the existence of the 96 smooth rational curves
mentioned in Theorem 1.2. We do not know whether such sets of 96 curves coin-
cide under the action of the group of automorphisms of X.

By using the Borcherds method [3; 4], the groups of automorphisms of some
K3 surfaces were calculated (Kondo [18], Keum and Kondo [17], Dolgachev and
Kondo [12], Kondo and Shimada [19], Ujigawa [34]). In all cases, the Néron–
Severi lattice of each K3 surface is isomorphic to the orthogonal complement of
a root lattice in L, where L is an even unimodular lattice of signature (1,25).
See Lemma 5.1 of [3], in which Borcherds gave a sufficient condition for the
restrictions of standard fundamental domains of the reflection group of L to the
positive cone of the K3 surface to be conjugate to each other under the action of
the orthogonal group of the Néron–Severi lattice. Contrary to these cases, a new
phenomenon occurs in the present case of the supersingular K3 surface in charac-
teristic 5 with Artin invariant 1: there exist at least three nonconjugate chambers
obtained by the restriction of fundamental domains (see also Section 4.6). The
projective models in Theorem 1.1 correspond to these three nonconjugate cham-
bers. This phenomenon also happens in the case of the complex Fermat quartic
surface.

The plan of this paper is as follows. In Section 2, we recall some lattice the-
ory, which will be used in this paper. Section 3 is devoted to the explanation of
the Borcherds method for finding a finite polyhedron in the positive cone of a
hyperbolic lattice primitively embedded into the even unimodular lattice L of sig-
nature (1,25). In Section 4, we apply this method to the case of the supersingular
K3 surface in characteristic 5 with Artin invariant 1. In particular, by using com-
puter, we give a proof of Theorems 1.1 and 1.2. In Section 5, by using a geometry
of Leech lattice, we give another proof of Theorems 1.1 and 1.2 without using
computer. In Section 6, we recall some facts on the supersingular elliptic curve
in characteristic 5, and in Section 7, we investigate Fp2 -rational points on the
Kummer surface associated with the product of two supersingular elliptic curves.
Section 8 is devoted to give another proof of Theorem 1.2 by using the Kum-
mer surface structure of X. Moreover, we study the intersection between the 96
smooth rational curves and prove Theorem 1.3.

In Sections 4 and 8, we use computer for the proof of main results. The com-
putational data are presented in [30].

2. Lattices

A Q-lattice is a pair (M, 〈·, ·〉M) of a free Z-module M of finite rank and a non-
degenerate symmetric bilinear form 〈·, ·〉M : M × M → Q. We omit the bilinear
form 〈·, ·〉M or the subscript M in 〈·, ·〉M if no confusions will occur. If 〈·, ·〉 takes
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values in Z, M is called a lattice. For x ∈ M ⊗ R, we call x2 = 〈x, x〉 the norm
of x. A lattice M is even if x2 ∈ 2Z for all x ∈ M .

Let M be a lattice of rank r . The signature of M is the signature of the real
quadratic space M ⊗ R. We say that M is negative definite if M ⊗ R is negative
definite, and M is hyperbolic if the signature is (1, r − 1). A Gram matrix of M

is an r × r matrix with entries 〈ei, ej 〉, where {e1, . . . , er} is a basis of M . The
determinant of a Gram matrix of M is called the discriminant of M .

Let M be an even lattice, and let M∨ = Hom(M,Z) be naturally identified
with a submodule of M ⊗Q with extended symmetric bilinear form. We call this
Q-lattice M∨ the dual lattice of M . The discriminant group of M is defined to
be the quotient M∨/M and is denoted by AM . The order of AM is equal to the
discriminant of M up to sign. A lattice M is called unimodular if AM is trivial,
whereas M is called p-elementary if AM is p-elementary.

For an even lattice M , the discriminant quadratic form of M

qM : AM →Q/2Z

is defined by qM(x mod M) = x2 mod 2Z.
A submodule N of M is called primitive if M/N is torsion free. A nonzero

vector v ∈ M is called primitive if the submodule of M generated by v is primi-
tive.

Let O(M) be the orthogonal group of a lattice M ; that is, the group of iso-
morphisms of M preserving 〈·, ·〉. We assume that O(M) acts on M from the
right, and the action of g ∈ O(M) on v ∈ M ⊗ R is denoted by v �→ vg . Simi-
larly, O(qM) denotes the group of isomorphisms of AM preserving qM . There is
a natural homomorphism O(M) → O(qM).

Let M be a hyperbolic lattice. A positive cone of M is one of the two connected
components of the set

{x ∈ M ⊗R | x2 > 0}.
Let PM be a positive cone of M . We denote by O+(M) the group of isometries of
M preserving PM . Then O(M) = O+(M) × {±1}. For a vector v ∈ M ⊗R with
v2 < 0, we define

(v)⊥ = {x ∈ PM | 〈x, v〉 = 0},
which is a real hyperplane of PM . An isometry g ∈ O+(M) is called a reflection
with respect to v or a reflection into (v)⊥ if g is of order 2 and fixes each point
of (v)⊥. For a lattice M , the set of (−2)-vectors is denoted by RM . Any element
r of RM defines a reflection

sr : x �→ x + 〈x, r〉r
with respect to r . We denote by W(−2)(M) the group generated by the set
of reflections {sr | r ∈ RM}. Since sr preserves PM , W(−2)(M) is a subgroup
of O+(M). It is obvious that W(−2)(M) is normal in O+(M).

A negative definite even lattice M is said to be a root lattice if M is generated
by RM .
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3. Borcherds Method

In this section, we review the Borcherds method [3; 4] and the algorithms in [29].
We define some notions and fix some notation. Let M be an even hyperbolic

lattice with a fixed positive cone PM . Let V be a set of vectors v ∈ M ⊗ R with
v2 < 0. Suppose that the family of hyperplanes

V∗ = {(v)⊥ | v ∈ V}
is locally finite in PM . By a V∗-chamber we mean a closure in PM of a connected
component of

PM \ ⋃
v∈V

(v)⊥.

Let D be a V∗-chamber. A hyperplane (v)⊥ is said to be a wall of D if (v)⊥ is
disjoint from the interior of D and (v)⊥ ∩ D contains a nonempty open subset
of (v)⊥.

Recall that RM is the set of vectors r ∈ M with r2 = −2. Then each R∗
M -

chamber is a fundamental domain of the action of W(−2)(M) on PM .

3.1. Conway–Borcherds Theory

Let L be an even unimodular hyperbolic lattice of rank 26. Note that L is unique
up to isomorphisms. Let PL be a positive cone of L. An R∗

L-chamber will be
called a Conway chamber. A nonzero primitive vector w ∈ L with w2 = 0 is called
a Weyl vector if w is contained in the closure PL of PL in L ⊗ R and the even
negative-definite unimodular lattice 〈w〉⊥/〈w〉 is isomorphic to the (negative-
definite) Leech lattice (i.e., 〈w〉⊥/〈w〉 contains no (−2)-vectors). For a Weyl vec-
tor w, we put

	(w) = {r ∈RL | 〈r,w〉 = 1}. (3.1)

Conway and Sloane [8] and Conway [6] proved the following:

Theorem 3.1. If w is a Weyl vector, then

D(w) = {x ∈PL | 〈r, x〉 ≥ 0 for any r ∈ 	(w)}
is a Conway chamber, and {(r)⊥ | r ∈ 	(w)} is the set of walls of D(w). For any
Conway chamber D, there exists a unique Weyl vector w such that D = D(w).

Let S be an even hyperbolic lattice of rank < 26. Suppose that S is primitively
embedded into L. Let PS be the positive cone of S that is contained in PL. Let R

denote the orthogonal complement of S in L. For x ∈ L ⊗R, we denote by

x �→ xS and x �→ xR

the projections to S ⊗R and R ⊗R, respectively. Note that, if v ∈ L, then vS ∈ S∨
and vR ∈ R∨. We assume the following:

(i) The negative-definite lattice R cannot be embedded into the Leech lattice.
(E.g., this condition is satisfied if RR 	= ∅.)

(ii) The natural homomorphism O(R) → O(qR) is surjective.
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We put
RL|S = {rS | r ∈ RL, 〈rS, rS〉 < 0}.

It is easy to see that the family of hyperplanes R∗
L|S is locally finite in PS . A Con-

way chamber D is said to be S-nondegenerate if D∩PS contains a nonempty open
subset of PS . If D is an S-nondegenerate Conway chamber, then D = D ∩PS is
an R∗

L|S -chamber of PS , which is called an induced chamber. Since PL is tessel-
lated by Conway chambers, PS is tessellated by induced chambers. Since RS is
a subset of RL|S , any R∗

S -chamber is a union of induced chambers. We have the
following. See [29].

Proposition 3.2. (1) Any induced chamber has only a finite number of walls.
(2) The automorphism group Aut(D) = {g ∈ O+(S) | Dg = D} of an induced

chamber D is a finite group.

In [29], we have presented algorithms to calculate the set of walls and the auto-
morphism group of an induced chamber. Moreover, by an algorithm in [29], if we
have that:

• a Weyl vector w ∈ L such that D(w) is S-nondegenerate and
• a wall (v)⊥ of the induced chamber D = D(w) ∩PS ,

then we can calculate a Weyl vector w′ ∈ L such that D′ = D(w′) ∩ PS is the
induced chamber adjacent to D along the wall (v)⊥.

3.2. Periods and Automorphisms of Supersingular K3 Surfaces

Let Y be a supersingular K3 surface defined over an algebraically closed field
k of odd characteristic p with Artin invariant σ , and let SY denote the Néron–
Severi lattice of Y . Since S∨

Y /SY is p-elementary, we have pS∨
Y ⊂ SY . Consider

the 2σ -dimensional Fp-vector space

S0 = pS∨
Y /pSY ⊂ SY ⊗Z Fp,

on which we have an Fp-valued quadratic form Q0 : S0 → Fp defined by

Q0 : px mod pSY �→ px2 mod p (x ∈ S∨
Y ).

Let c̄DR : SY ⊗ k → H 2
DR(Y ) be the Chern class map. Then Ker(c̄DR) is a σ -

dimensional isotropic subspace of Q0 ⊗ k. Let φ : S0 ⊗ k → S0 ⊗ k denote the
map id ⊗ Fk , where Fk is the Frobenius of k.

Definition 3.3. The period KY of Y is defined to be φ∗(Ker(c̄DR)).

Note that O(SY ) acts on (S0,Q0) naturally. We put

GY = {g ∈ O(SY ) | Kg
Y = KY }.

We denote by PSY
the positive cone of SY containing an ample class of Y . Let

NC(Y ) denote the intersection of PSY
with the nef cone of Y ,

NC(Y ) = {x ∈PSY
| 〈x,C〉 ≥ 0 for any curve C on Y }.
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We put
Aut(NC(Y )) = {g ∈ O+(SY ) | NC(Y )g = NC(Y )}.

Thanks to the Torelli theorem by Ogus [24; 25] for supersingular K3 surfaces
in odd characteristics, we see that the natural action of Aut(Y ) on SY identifies
Aut(Y ) with

Aut(NC(Y )) ∩ GY .

Now suppose that SY is embedded into L in such a way that conditions (i) and
(ii) in Section 3.1 are satisfied and that the image of NC(Y ) is contained in PL.
It is well known that NC(Y ) is an R∗

SY
-chamber in PSY

. (See, e.g., Rudakov
and Shafarevich [26].) Hence, NC(Y ) is tessellated by induced chambers. For an
induced chamber D contained in NC(Y ), we put

AutY (D) = Aut(D) ∩ GY .

Then AutY (D) is a finite subgroup of Aut(Y ) = Aut(NC(Y )) ∩ GY . More pre-
cisely, if v ∈ D ∩ SY is a vector in the interior of D, then

hD =
∑

g∈AutY (D)

vg

is an ample class, and AutY (D) is the automorphism group Aut(Y,hD) of the
polarized K3 surface (Y,hD). We have an algorithm to make the complete list of
elements of Aut(D). Hence, in order to calculate Aut(Y,hD), all we have to do is
to calculate the action of O(SY ) on the period KY .

We say that two induced chambers D and D′ are GY -congruent if there exists
g ∈ GY such that Dg = D′. The number of GY -congruence classes is finite. If we
obtain the list of all GY -congruence classes, we can determine the automorphism
group of Y . (As is explained in Introduction, in the previous works of computing
automorphism groups of K3 surfaces using this technique, there exists only one
O+(SY )-congruence class.) See [29] and Section 4.6.

4. Proof of Theorems by Computer

In this section and the next, we prove Theorems 1.1 and 1.2 by calculating some
induced chambers. In this section, we give a proof based on the algorithm pre-
sented in [29].

4.1. The Néron–Severi Lattice and the Period of X

Using the projective model (X,hF ), we calculate the Néron–Severi lattice SX and
the period KX of X explicitly.

As is explained in the Introduction, the surface X contains 252 smooth rational
curves � such that 〈�,hF 〉 = 1. We call these smooth rational curves hF -lines.
The hF -lines are labeled as follows. Let πF : X → P2 denote the double covering.
Part of the F25-rational points P1, . . . ,P126 on the Fermat curve CF of degree 6
are given explicitly in Table 1. Let li be the line on P2 tangent to CF at Pi . We
put

l+1 = {w = x3, y = 3z} ⊂ X,
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Table 1 F25-rational points on CF

P1 := [0 : 1 : 2] P2 := [0 : 1 : 3] P3 := [0 : 1 : 1 + √
2]

P4 := [0 : 1 : 4 + √
2] P5 := [0 : 1 : 1 + 4

√
2] P6 := [0 : 1 : 4 + 4

√
2]

P7 := [1 : 0 : 2] P8 := [1 : 0 : 3] P9 := [1 : 0 : 1 + √
2]

P10 := [1 : 0 : 4 + √
2] P11 := [1 : 0 : 1 + 4

√
2] P12 := [1 : 0 : 4 + 4

√
2]

P13 := [1 : 1 : √2] P14 := [1 : 1 : 1 + 2
√

2] P15 := [1 : 1 : 4 + 2
√

2]
P16 := [1 : 1 : 1 + 3

√
2] P17 := [1 : 1 : 4 + 3

√
2] P18 := [1 : 1 : 4

√
2]

P19 := [1 : 2 : 0] P20 := [1 : 3 : 0] P21 := [1 : 4 : √2]
P22 := [1 : 4 : 1 + 2

√
2] P23 := [1 : 4 : 4 + 2

√
2] P24 := [1 : 4 : 1 + 3

√
2]

P25 := [1 : 4 : 4 + 3
√

2] P26 := [1 : 4 : 4
√

2] P27 := [1 : √2 : 1]
P28 := [1 : √2 : 4] P29 := [1 : √2 : 2 + 2

√
2] P30 := [1 : √2 : 3 + 2

√
2]

P31 := [1 : √2 : 2 + 3
√

2] P32 := [1 : √2 : 3 + 3
√

2] P33 := [1 : 1 + √
2 : 0]

P34 := [1 : 2 + √
2 : 2 + √

2] P35 := [1 : 2 + √
2 : 3 + √

2] P36 := [1 : 2 + √
2 : 2

√
2]

P37 := [1 : 2 + √
2 : 3

√
2] P38 := [1 : 2 + √

2 : 2 + 4
√

2] P39 := [1 : 2 + √
2 : 3 + 4

√
2]

. . . . . . . . .

. . . . . . . . .

P124 := [1 : 3 + 4
√

2 : 2 + 4
√

2] P125 := [1 : 3 + 4
√

2 : 3 + 4
√

2] P126 := [1 : 4 + 4
√

2 : 0]

which is an irreducible component of π∗
F (l1), and let l−1 denote the other irre-

ducible component. For i > 1, let l+i be the irreducible component of π∗
F (li) such

that 〈[l+1 ], [l+i ]〉 = 1, and let l−i be the other irreducible component. Consider the
following twenty-two hF -lines:

�1 = l+1 , �2 = l−1 , �3 = l+2 , �4 = l+3 , �5 = l+4 , �6 = l+5 , �7 = l+7 ,

�8 = l+8 , �9 = l+9 , �10 = l+10, �11 = l+13, �12 = l+14, �13 = l+15,

�14 = l+16, �15 = l+17, �16 = l+19, �17 = l+21, �18 = l+22, �19 = l+24,

�20 = l+25, �21 = l+27, �22 = l+34.

Their intersection matrix is of determinant −25. Hence, the classes of these hF -
lines form a basis of SX . The Gram matrix GS of SX with respect to this basis
[�1], . . . , [�22] is given in Table 2. An element of SX ⊗ R is usually written as a
row vector [x1, . . . , x22] with respect to the basis [�1], . . . , [�22], whereas when
it is written with respect to the dual basis [�1]∨, . . . , [�22]∨, we use the notation
[ξ1, . . . , ξ22]∨. For example, we have

hF = [1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
= [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]∨,

[l−7 ] = [1,1,0,0,0,0,−1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
= [0,1,1,1,0,1,3,1,1,0,1,1,1,1,1,1,1,0,0,0,0,1]∨,

[l+14] = [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]
= [1,0,1,0,1,0,0,1,0,0,1,−2,0,0,1,1,0,1,1,0,1,1]∨.

We let O(SX) act on SX from the right, so that we have

O(SX) = {g ∈ GL22(Z) | g · GS · t g = GS}.
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Table 2 Gram matrix of SX

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −2 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0
1 0 1 −2 1 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1
1 0 1 1 −2 1 1 1 1 1 0 1 0 0 0 1 1 0 0 1 0 0
1 0 1 1 1 −2 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1
1 0 0 0 1 0 −2 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0
1 0 0 0 1 0 0 −2 1 0 0 1 1 1 1 0 0 0 0 0 1 1
1 0 0 0 1 0 0 1 −2 0 1 0 1 0 0 0 1 1 1 1 0 1
1 0 0 0 1 0 1 0 0 −2 1 0 1 1 1 0 1 1 0 0 0 1
1 0 0 1 0 0 0 0 1 1 −2 1 0 0 1 1 0 1 1 0 0 0
1 0 1 0 1 0 0 1 0 0 1 −2 0 0 1 1 0 1 1 0 1 1
1 0 1 1 0 0 0 1 1 1 0 0 −2 1 0 0 1 0 0 1 0 0
1 0 1 0 0 0 0 1 0 1 0 0 1 −2 0 1 0 1 1 0 0 0
1 0 1 0 0 1 0 1 0 1 1 1 0 0 −2 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 −2 1 0 0 1 0 0
1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 1 −2 0 1 0 1 0
1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 0 0 −2 0 1 1 0
1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 −2 0 0 0
1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 −2 1 1
1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 −2 0
1 0 0 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The substitution
√

2 �→ −√
2 induces a permutation on the set of hF -lines pre-

serving the intersection form, and hence it induces an isometry of the lattice SX ,
which is given by the right multiplication of the matrix in Table 3. The deck-
transformation of πF : X → P2 also induces an isometry of SX , which is given
by

[�1] �→ [�2], [�2] �→ [�1], and [�i] �→ hF − [�i] for i > 2. (4.1)

A smooth rational curve Q on X is said to be an hF -conic if 〈hF ,Q〉 = 2. It is
known that there exist exactly 6,300 hF -conics on X. See [27].

Our next task is to calculate the period KX of X explicitly. The discriminant
group AS = S∨

X/SX of SX is isomorphic to F2
5 and is generated by

α1 = [�3]∨ mod SX and α2 = [�4]∨ mod SX.

With respect to the basis α1, α2, the discriminant form qS : AS →Q/2Z of SX is
given by the matrix [

2/5 0
0 4/5

]
.

The automorphism group O(qS) of (AS, qS) is of order 12, and, by means of the
basis α1, α2, each element of O(qS) is expressed as a right-multiplication of a
2 × 2 matrix in GL2(F5). Consider the matrices

TA =
[

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
,

TB =
t[

2 3 1 0 4 1 1 0 4 1 2 2 4 4 0 0 1 4 1 0 0 0
3 2 0 1 4 2 4 3 4 1 2 4 2 1 3 0 4 4 4 2 0 0

]
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Table 3 Frobenius action on SX

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 3 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 −1 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 −1 0 0 0 −1 1 0 0 0 0
0 0 1 1 0 1 −2 0 0 0 0 0 1 0 1 0 1 −1 0 −1 −1 0
0 0 0 −1 0 −1 1 −1 0 0 1 1 −1 0 0 1 0 1 1 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

of size 2 × 22 and 22 × 2, respectively. Then the action ḡ ∈ O(qS) on (AS, qS)

induced by an isometry g ∈ O(SX) is given by

ḡ = TA · G−1
S · g · GS · TB mod 5. (4.2)

Consider the two-dimensional F5-vector space

S0 = 5S∨
X/5SX ⊂ SX ⊗Z F5.

The vector space S0 has a basis

α̃1 = 5[�3]∨ mod 5SX and α̃2 = 5[�4]∨ mod 5SX,

with respect to which the F5-valued quadratic form Q0 is given by the matrix
[

2 0
0 4

]
.

Recall that c̄DR : SX ⊗ k → H 2
DR(X) is the Chern class map. Then Ker(c̄DR) is a

one-dimensional isotropic subspace of Q0 ⊗k. Therefore, we see that Ker(c̄DR) is
either equal to I+ = 〈(1,

√
2)〉 or equal to I− = 〈(1,−√

2)〉. Since the Frobenius
map φ = id ⊗Fk from S0 ⊗ k to itself only interchanges I+ and I−, we conclude
that the period KX = φ∗(Ker(c̄DR)) of X is either I− or I+. On the other hand,
we have

{ḡ ∈ O(Q0) | I ḡ
+ = I+} = {ḡ ∈ O(Q0) | I ḡ

− = I−},
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and this subgroup of O(Q0) is of order 6 and consists of the following elements
of GL2(F5): [

1 0
0 1

]
,

[
2 1
3 2

]
,

[
2 4
2 2

]
,

[
3 1
3 3

]
,

[
3 4
2 3

]
,

[
4 0
0 4

]
.

Therefore, for a given g ∈ O(SX), we can determine whether Kg
X = KX or not

by calculating ḡ by means of (4.2) and see whether ḡ is one of the six matrices
above.

For example, the Frobenius isometry given in Table 3 does not preserve the
period, whereas the deck-transformation isometry (4.1) does.

4.2. Embedding SX into L

Let PSX
be the positive cone of SX containing an ample class of X. We embed

SX into the even unimodular hyperbolic lattice L of rank 26 primitively in such
a way that conditions (i) and (ii) in Section 3.1 are satisfied and calculate some
induced chambers contained in the R∗

SX
-chamber NC(X).

Proposition 4.1. (1) There exists a primitive embedding SX ↪→ L such that the
orthogonal complement R of SX in L satisfies conditions (i) and (ii) in Sec-
tion 3.1.

(2) If ι : SX ↪→ L and ι′ : SX ↪→ L are primitive embeddings, then there exists
g ∈ O(L) such that ι′ = g ◦ ι.

Proof. By Nipp’s table of reduced regular primitive positive-definite quaternary
quadratic forms [23], there exists a negative-definite lattice R of rank 4 with
discriminant 25, and R is unique up to isomorphisms. We can choose a basis
u1, . . . , u4 of R with respect to which the Gram matrix is equal to⎡

⎢⎢⎣
−2 −1 0 1
−1 −2 −1 0
0 −1 −4 −2
1 0 −2 −4

⎤
⎥⎥⎦ . (4.3)

It is obvious that RR is nonempty. By a direct computation we see that the order
of O(R) is 72 and obtain the list of all elements of O(R).

The discriminant group AR = R∨/R of R is isomorphic to F2
5 and is generated

by
β1 = u∨

4 mod R and β2 = u∨
2 mod R,

with respect to which the discriminant form qR : AR → Q/2Z of R is given by
the matrix [

8/5 0
0 6/5

]
.

Hence, the order of O(qR) is 12. We can check by direct computation that the
natural homomorphism O(R) → O(qR) is surjective.

Recall that α1 and α2 are the basis of AS = S∨
X/SX

∼= F2
5 given in the previous

subsection. The linear map δ : AS → AR defined by δ(α1) = β1 and δ(α2) = β2
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induces an isomorphism from (AS, qS) to (AR,−qR). Consequently, the pull-
back L of the graph

{(x, δ(x)) | x ∈ AS}
of δ by the natural projection S∨

X ⊕ R∨ → AS ⊕ AR is an even unimodular hy-
perbolic lattice of rank 26, into which SX and R are primitively embedded. (See
Nikulin [22].)

The uniqueness of primitive embeddings SX ↪→ L up to the action of O(L)

follows from the uniqueness of the even negative-definite lattice of rank 4 with
discriminant 25 and the surjectivity of O(R) → O(qR). (See Nikulin [22].) �

In the following, we use the primitive embedding SX ↪→ L constructed in the
proof of Proposition 4.1. Let PL be the positive cone containing PSX

. An element
of L⊗R is written in the form of a vector [x1, . . . , x26]∨ with respect to the basis
[�1]∨, . . . , [�22]∨, [u1]∨, . . . , [u4]∨ of S∨

X ⊕ R∨.
Let w be a Weyl vector of L such that the corresponding Conway chamber

D(w) is SX-nondegenerate, and let D denote the chamber D(w) ∩ PSX
of PSX

induced by D(w). We denote by W(D) the set of walls of D. For a wall W ∈
W(D), there exists a unique primitive vector vW ∈ S∨

X such that W = (vW )⊥ and
〈vW ,u〉 > 0, where u is a point in the interior of D. A wall W ∈ W(D) is said
to be of type [a,n] if 〈vW ,wS〉 = a and 〈vW ,vW 〉 = n, where wS ∈ S∨

X is the
projection of the Weyl vector w ∈ L. Suppose that D is contained in the R∗

SX
-

chamber NC(X). Then a wall W ∈W(D) of type [a,n] is a wall of NC(X) if and
only if there exists an integer c such that ac = 1, nc2 = −2, and cvW ∈ SX .

Let D be an induced chamber contained in NC(X), and let hD ∈ SX be a vector
contained in the interior of D that is invariant under the action of Aut(D). Then
hD is ample, and

AutX(D) = Aut(D) ∩ GX = {g ∈ O(SX) | Dg = D,Kg
X = KX}

is the automorphism group of the polarized K3 surface (X,hD).

4.3. The Induced Chamber D0

We put
w0 = hF + u1 ∈ SX ⊕ R ⊂ L. (4.4)

Since w0 is primitive in L, w0 belongs to PL, and 〈w0〉⊥/〈w0〉 contains no (−2)-
vectors, we see that w0 is a Weyl vector. We denote by prSX

the orthogonal pro-
jection from L ⊗R to SX ⊗R. Calculating the finite set

prSX
(	(w0)) ∩RL|S = {rSX

| r ∈ 	(w0), 〈rSX
, rSX

〉SX
< 0},

we see that hF = w0,S belongs to the interior of

D0 = D(w0) ∩PSX
.

Hence, the Conway chamber D(w0) is SX-nondegenerate, and D0 is an in-
duced chamber. The order of AutX(D0) is 756,000, and it coincides with the
automorphism group of the Fermat double sextic plane (X,hF ). The action of
AutX(D0) = Aut(X,hF ) decomposes the set W(D0) of walls of D0 into the
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union of three orbits O0,0, O0,1, O0,2 described as follows:

no. type card.

0 [1,−2] 252
1 [1,−8/5] 300
2 [2,−6/5] 15,750

The walls in the orbit O0,0 of cardinality 252 are walls of NC(X), and hence they
correspond to smooth rational curves on X. Let R252 denote the set of smooth
rational curves on X corresponding to the walls in O0,0. Then R252 coincides
with the set of hF -lines.

4.4. The Induced Chamber D1

The AutX(D0)-orbit O0,1 of the walls of D0 contains a wall (v1)
⊥, where

v1 = [0,1,1,0,0,1,0,1,0,1,1,0,1,0,0,1,1,1,1,1,1,1]∨ ∈ S∨
X.

We put

w1 = [1,2,2,1,1,2,1,2,1,2,2,1,2,1,1,2,2,2,2,2,2,2,2,1,1,0]∨ ∈ L.

Then w1 is a Weyl vector, the Conway chamber D(w1) is SX-nondegenerate, and
the induced chamber

D1 = D(w1) ∩PSX

is adjacent to D0 along the wall (v1)
⊥. The vector w1,S ∈ S∨

X is contained in the
interior of D1 and satisfies w2

1,S = 12/5. We put h1 = 5w1,S . Then

h1 = [14,16,−4,−6,−5,−11,12,−8,−5,0,

10,8,−13,3,−3,5,−8,10,7,−2,5,−10]
is a polarization of degree 60. The degree 〈hF ,h1〉 of the polarization h1 with
respect to hF is 15. The automorphism group AutX(D1) of the polarized K3
surface (X,h1) is of order 20,160. The action of AutX(D1) decomposes W(D1)

into the union of 18 orbits O1,0, . . . ,O1,17 described as follows:

no. type card.

0 [1,−2] 168
1 [3/5,−8/5] 8
2 [4/5,−8/5] 15
3 [4/5,−8/5] 15
4 [6/5,−8/5] 70
5 [6/5,−8/5] 70
6 [7/5,−8/5] 168
7 [9/5,−6/5] 280
8 [9/5,−6/5] 280

no. type card.

9 [2,−6/5] 840
10 [2,−6/5] 840
11 [11/5,−6/5] 1,680
12 [11/5,−6/5] 1,680
13 [11/5,−6/5] 840
14 [11/5,−6/5] 840
15 [8/5,−4/5] 15
16 [8/5,−4/5] 15
17 [9/5,−2/5] 8
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We confirm by computer that the action of AutX(D1) on the orbit O1,1 of car-
dinality 8 embeds AutX(D1) into the symmetric group S8. Hence, AutX(D1) is
isomorphic to the alternating group A8.

The wall (v1)
⊥ separating D0 and D1 is a member of the orbit O1,1. Hence, D1

is adjacent to eight induced chambers GX-congruent to D0. Moreover, we have

|AutX(D0) ∩ AutX(D1)| = |AutX(D0)|
300

= |AutX(D1)|
8

= 2,520.

The walls in the orbit O1,0 are walls of NC(X), and hence they correspond to
smooth rational curves on X. Let R168 denote the set of smooth rational curves on
X corresponding to the walls in O1,0. We observe the following facts by a direct
calculation.

Proposition 4.2. Any distinct two curves in R168 are either disjoint or inter-
secting at one point transversely. For any curve � in R168, there exist exactly 72
curves in R168 that intersect �.

Proposition 4.3. Among R168, exactly 126 curves are contained in the set R252

of hF -lines, whereas the other 42 curves are hF -conics. The deck-transformation
of XF → P2 maps R252 ∩R168 to the complement R252 \ (R252 ∩R168) bijectively.

4.5. The Induced Chamber D2

The AutX(D0)-orbit O0,2 of the walls of D0 contains a wall (v2)
⊥, where

v2 = [1,1,2,1,0,1,1,1,1,1,2,0,1,1,1,2,2,1,1,1,2,2]∨ ∈ S∨
X.

We put

w2 = [4,4,7,4,1,4,4,4,4,4,7,1,4,4,4,7,7,4,4,4,7,7,2,1,−1,0]∨ ∈ L.

Then w2 is a Weyl vector, the Conway chamber D(w2) is SX-nondegenerate, and
the induced chamber

D2 = D(w2) ∩PSX

is adjacent to D0 along the wall (v2)
⊥. The vector w2,S ∈ S∨

X is contained in the
interior of D2 and satisfies w2

2,S = 16/5. We put h2 = 5w2,S . Then

h2 = [14,11,3,6,21,15,−3,18,6,−6,−27,

0,9,−12,3,−15,−3,−9,−18,12,0,15]
is a polarization of degree 80. The degree 〈hF ,h2〉 of the polarization h2 with
respect to hF is 40. The automorphism group AutX(D2) of the polarized K3
surface (X,h2) is of order 1,152. The action of AutX(D2) decomposes W(D2)

into the union of 27 orbits O2,0, . . . ,O2,26 described as follows:



818 Toshiyuki Katsura, Shigeyuki Kondo, & Ichiro Shimada

no. type card.

0 [1,−2] 48
1 [1,−2] 48
2 [2/5,−8/5] 4
3 [2/5,−8/5] 4
4 [1,−8/5] 16
5 [1,−8/5] 16
6 [8/5,−8/5] 72
7 [8/5,−8/5] 72
8 [8/5,−8/5] 64

no. type card.

9 [8/5,−8/5] 64
10 [8/5,−6/5] 24
11 [9/5,−6/5] 48
12 [9/5,−6/5] 48
13 [9/5,−6/5] 16
14 [9/5,−6/5] 16
15 [11/5,−6/5] 288
16 [11/5,−6/5] 288
17 [11/5,−6/5] 96

no. type card.

18 [11/5,−6/5] 96
19 [11/5,−6/5] 48
20 [11/5,−6/5] 48
21 [12/5,−6/5] 576
22 [12/5,−6/5] 192
23 [12/5,−6/5] 192
24 [12/5,−6/5] 144
25 [8/5,−4/5] 3
26 [8/5,−4/5] 3

The wall (v2)
⊥ separating D0 and D2 is a member of the orbit O2,10. Hence,

D2 is adjacent to 24 induced chambers GX-congruent to D0. Moreover, we have

|AutX(D0) ∩ AutX(D2)| = |AutX(D0)|
15,700

= |AutX(D2)|
24

= 48.

The walls in the orbits O2,0 and O2,1 are walls of NC(X), and hence they
correspond to smooth rational curves on X. Let R48,0 and R48,1 denote the sets
of smooth rational curves on X corresponding to the walls in O2,0 and O2,1,
respectively. We observe the following facts.

Proposition 4.4. Any distinct two curves in the union R48,0 ∪ R48,1 are either
disjoint or intersecting at one point transversely. For ν = 0,1, the set R48,ν is a
union of three sets Sν0, Sν1, Sν2 of disjoint 16 smooth rational curves. Each Sνj

contains eight hF -lines, and the hF -degree of the remaining eight smooth rational
curves is 4. We can number these six sets so that they satisfy conditions (a), (b),
(c) in Theorem 1.2.

We remark the following fact.

Proposition 4.5. Let S and S ′ be sets of disjoint 16 smooth rational curves on X.
Then there exists g ∈ Aut(X) such that g(S) = S ′.



Supersingular K3 Surface in Characteristic 5 819

Proof. By Nikulin [21], if SY is a set of disjoint 16 smooth rational curves on a
K3 surface Y in characteristic 	= 2, then Y is a Kummer surface associated with
an Abelian surface A, and SY is the set of exceptional curves of the minimal
resolution Y → A/〈ιA〉. (The proof in Nikulin [21] is valid not only over C but
also in odd characteristics.)

Let ζ : X → Z and ζ ′ : X → Z′ be the contractions of the (−2)-curves in
S and S ′, respectively. Then there exist Abelian surfaces A and A′ such that
Z ∼= A/〈ιA〉 and Z′ ∼= A′/〈ιA′ 〉, where ιA and ιA′ are the inversions of A and A′,
respectively. By [31], both of A and A′ are superspecial. Since a superspecial
Abelian surface is unique up to isomorphisms in characteristic 5 by [31], there
exists an isomorphism f : A →∼ A′ of Abelian surfaces. Since f ◦ ιA = ιA′ ◦ f ,
the isomorphism f induces A/〈ιA〉 →∼ A′/〈ιA′ 〉, and therefore we obtain an iso-
morphism g′ : Z →∼ Z′. Since X, Z, and Z′ are birational and X is minimal, there
exists g ∈ Aut(X) such that ζ ′ ◦ g = g′ ◦ ζ . We obviously have g(S) = S ′. �

4.6. Further Induced Chambers

We define the level of an induced chamber D to be the minimal nonnegative
integer � such that there exists a chain

D(0) = D0, D(1), . . . ,D(�) = D

from D0 to D of induced chambers such that D(i−1) and D(i) are adjacent. The
level of a GX-congruence class of induced chambers is defined to be the minimum
of the levels of elements of the class. We have made the list of the GX-congruence
classes of induced chambers of level < 4. The number is

level number of GX-congruence classes

0 1
1 2
2 12
3 328

For level 4, we found more than six thousand GX-congruence classes, and hence
we have given up the computation. The data of the induced chambers Di of level
2 are presented in Table 4. The third column is the orbit decomposition of the
(−2)-walls of Di by the action of AutX(Di). In level 3, we have found many
induced chambers Di with |AutX(Di)| = 1.

Remark 4.6. In [28], various sextic double plane models of X are systematically
investigated by another method.

5. Proof of Theorems by Lattice Theory

In this section, we prove Theorems 1.1 and 1.2 by using lattice theory. To do this,
we give three primitive embeddings of SX into the even unimodular lattice L of
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Table 4 Induced chambers of level 2

i |AutX(Di)| orbits of (−2)-walls

3 360 [18,60]
4 36 [6,9,18,18]
5 36 [6,9,18,18]
6 48 [6,8,12,24]
7 48 [6,8,12,24]
8 72 [3,12,12,18]
9 12 [3,6,6,6,6,12]

10 8 [2,2,2,4,4,4,4,4,8,8]
11 2 [1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
12 6 [2,2,3,3,3,3,6,6,6]
13 6 [2,2,3,3,3,3,6,6,6]
14 8 [2,4,4,4,4,8,8]

signature (1,25) corresponding to the three cases in Theorem 1.1 and then apply
the Borcherds method and a theory of the Leech lattice.

First of all, we fix the notation. We denote by � the unique even negative-
definite unimodular lattice of rank 24 without (−2)-vectors; that is, � is the Leech
lattice. In the following, we recall an explicit description of � briefly. Let � =
{∞,0,1, . . . ,22} be the projective line P1(F23) over the field F23. We consider the
set P(�) of all subsets of � with the symmetric difference as a 24-dimensional
vector space over F2. Let C be the binary Golay code, which is a 12-dimensional
subspace of P(�). We call a set in C a C-set. A C-set consists of 0, 8, 12, 16, or
24 elements. An eight-element C-set is called an octad, and a set of six tetrads is
called a sextet if the union of any two tetrads is an octad. We denote by C(8) the
set of all octads. Let R24 be spanned by an orthonormal basis νi (i ∈ �). For a
subset S ⊂ �, we define νS to be

∑
i∈S νi . Then the Leech lattice � is the lattice

generated by the vectors 2νK for K ∈ C(8) and ν� − 4ν∞ with the symmetric
bilinear form

〈x, y〉 = −x · y
8

.

Proposition 5.1 (Conway [5], Section 4, Theorem 2). A vector (ξ∞, ξ0, . . . , ξ22)

with ξi ∈ Z is in � if and only if:

(i) the coordinates ξi are all congruent modulo 2 to m, say;
(ii) the set of i for which ξi takes any given value modulo 4 is a C-set;
(iii) the coordinate-sum is congruent to 4m modulo 8.

We denote by �n the set of all vectors x in � with 〈x, x〉 = −n. Note that �2 = ∅.
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Proposition 5.2 (Conway–Sloane [9], p. 133, Table 4.13). The complete lists of
�4 and �6 are as follows:

�4 = {(±28,016), (±3,±123), (±42,022)},
�6 = {(±212,012), (±33,±121), (±4,±28,015), (±5,±123)},

where the signs are taken to satisfy the conditions in Proposition 5.1.

We fix a decomposition
L = U ⊕ �, (5.1)

where U is the even unimodular hyperbolic lattice of rank 2 with the Gram matrix[
0 1
1 0

]
.

We write (m,n,λ) for a vector in L, where λ is in �, and m, n are integers. Then
its norm is given by 2mn+〈λ,λ〉. We take a vector w = (1,0,0) as a Weyl vector.
Then a (−2)-vector r in L with 〈r,w〉 = 1 is called a Leech root. Let D be the
Conway chamber with respect to w. Then the automorphism group of D,

Aut(D) = {g ∈ O(L) |Dg = D},
is isomorphic to the affine automorphism group of �:

Aut(D) ∼= �� O(�).

The set of all Leech roots bijectively corresponds to the set � as follows
(Conway–Sloane [9], Chapter 26, Theorem 3):

L � r = (−1 − 〈λ,λ〉/2,1, λ) ←→ λ ∈ �.

Remark 5.3. For Leech roots r, r ′ ∈ L and the corresponding vectors λ, λ
′

in �,
〈r, r ′〉 = 0 if λ − λ

′ ∈ �4 and 〈r, r ′〉 = 1 if λ − λ
′ ∈ �6.

5.1. Proof of Theorem 1.1(1)

We consider the following vectors in the Leech lattice �:

A = 4ν∞ + ν�, B = 0, C = 2νK0 , D = 4ν0 + ν�, (5.2)

where K0 is an octad with ∞ /∈ K0 and 0 ∈ K0. Note that

A2 = D2 = −6, C2 = −4, 〈A,C〉 = −2, 〈A,D〉 = −4, 〈C,D〉 = −3.

Consider the vectors in L = U ⊕ � defined by

a = −(2,1,A), b = (−1,1,0), c = (0,1,C), d = (1,1,D). (5.3)

Obviously, we have

a2 = b2 = −2, c2 = d2 = −4, 〈a, b〉 = 〈b, c〉 = −1,

〈a, d〉 = 1, 〈c, d〉 = −2, 〈a, c〉 = 〈b, d〉 = 0.

Let R1 be the sublattice of L generated by a, b, c, d . Note that the Gram matrix
of R1 is the same as that given in (4.3). Obviously, R1 is primitive in L. Let S1 be
the orthogonal complement of R1 in L. Then the signature of S1 is (1,21), and
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S∨
1 /S1 ∼= R∨

1 /R1 ∼= (Z/5Z)2. Thus, S1 is isomorphic to the Néron–Severi lattice
SX of the supersingular K3 surface X with Artin invariant 1 in characteristic 5.

Lemma 5.4. Let w′ be the projection of the Weyl vector w into S∨
1 . Then w′ ∈ S1

and (w′)2 = 2. Moreover, w′ is conjugate to the class of an ample divisor under
the action of W(−2)(S1).

Proof. Denote by w′′ the projection of w into R∨
1 . By definition (5.3) we have

〈w′′, a〉 = −1 and 〈w′′, b〉 = 〈w′′, c〉 = 〈w′′, d〉 = 1. This implies that w′′ = a −
b ∈ R1. Hence, w′ = w − w′′ ∈ S1 and (w′)2 = 2. Let r be any (−2)-vector in S1.
Then, under the embedding S1 ⊂ L, r is a (−2)-vector in L. Therefore, 〈r,w′〉 =
〈r,w〉 	= 0. Hence, we have the last assertion. �

Now we determine all smooth rational curves on X whose degree with respect to
w′ is minimal. Note that such curves correspond to all Leech roots perpendicular
to R1 under the above embedding S1 ⊂ L.

Lemma 5.5. There exist exactly 252 Leech roots that are orthogonal to R1.

Proof. Let r be a Leech root perpendicular to R1. The condition 〈r, b〉 = 0 implies
r = (1,1, λ) with λ ∈ �4. Similarly, we have

〈λ,A〉 = −3, 〈λ,C〉 = −1, 〈λ,D〉 = −2. (5.4)

Now we use Proposition 5.1. If λ = ±4νi ± 4νj , then the condition 〈λ,A〉 = −3
implies that λ = 4ν∞ + 4νi . Then 〈λ,D〉 = −1 or −3. This contradicts (5.4).

If λ = (±28,016), then the condition 〈λ,A〉 = −3 implies that λ = 2νK , where
K is an octad containing ∞. The condition 〈λ,D〉 = −2 implies that K does not
contain 0, and finally the condition 〈λ,C〉 = −1 implies that |K0 ∩ K| = 2.

If λ = (±3,±123), then we first show that the case λ = (−3,±123) does not
occur. Assume that λ = (−3,±123). Since 〈λ,A〉 = −3, we have λ = (−3,123) =
ν� −4νi , i 	= ∞. Then 〈λ,D〉 = −1 or −3. This contradicts condition (5.4). Now
assume that λ = (3,±123). Since 〈λ,A〉 = −3, we have λ = 4ν∞ + ν� − 2νK ,
where K is an octad containing ∞. The condition 〈λ,D〉 = −2 implies that K

does not contain 0. Finally, the condition 〈λ,C〉 = −1 implies that |K ∩ K0| = 2.
Thus, the desired Leech roots are

(1,1,2νK) and (1,1,4ν∞ + ν� − 2νK) = (1,1,A − 2νK),

where K is an octad such that ∞ ∈ K , 0 /∈ K , and |K ∩ K0| = 2.
In the following, we show that there exist exactly 126 such octads K . Let a1,

a2 be in K0 \ {0}. Then the number of octads containing three points ∞, a1, a2 is
21 (see Conway [5], Theorem 11). Take two points a3, a4 ∈ K0 \ {a1, a2}. Then
there exists exactly one octad containing five points ∞, a1, a2, a3, a4. Thus, the
number of octads K containing ∞, a1, a2 and satisfying K ∩ K0 = {a1, a2} is
21 − (6

2

) = 6. Therefore, the number of octads K containing ∞ and satisfying

|K ∩ K0| = 2 is
(7

2

) × 6 = 126. �
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Theorem 5.6. For a suitable identification of S1 with SX , (X,w′) is isomorphic
to (X,hF ).

Proof. Recall that we have given a primitive embedding of S1 into L with a Weyl
vector w whose orthogonal complement is R1 (see (5.3)). On the other hand, we
have given a primitive embedding of SX into L with a Weyl vector w0 whose
orthogonal complement is R (see (4.4)). We identify these two embeddings as
follows. First, we use the decomposition L = U ⊕ � given in (5.1), and we may
assume that R is generated by

u1 = a − b, u2 = −b, u3 = −c + d, u4 = d,

where {u1, u2, u3, u4} is a basis of R with the Gram matrix (4.3). Obviously,
R = R1. Then SX = R⊥. The Weyl vector w0 = hF + u1 and u2 generate a hy-
perbolic plane U ′(∼= U) in L, and hence we have a decomposition

L = U ′ ⊕ �′,
where �′ = U ′⊥ ∼= �. Write w0 = (1,0,0) and u2 = (1,−1,0) with respect to
the decomposition L = U ′ ⊕ �′. Since 〈w0, a〉 = −1 and 〈u2, a〉 = 1, we have

a = (−2,−1,−A′),
where A′ ∈ �′ satisfies A′2 = −6. Similarly, we have

b = (−1,1,0),

c = (0,1,C′), where C′ ∈ �′,C′2 = −4,

d = (1,1,D′), where D′ ∈ �′,D′2 = −6,

〈A′,C′〉 = −2, 〈A′,D′〉 = −4, 〈C′,D′〉 = −3.

Note that A′, B ′(= 0), C′, T ′ define a root lattice A4 in �′ in the sense of the
paper [3]; that is, the following Leech roots with respect to w0

(2,1,A′), (−1,1,0), (1,1,C′), (2,1,D′)
generate a root lattice in U ′ ⊕ �′. It follows from Lemma 6.1 in [3] that Aut(D)

acts transitively on the set of root lattices of type A4, where D is the Conway
chamber with respect to the Weyl vector w0 = (1,0,0) ∈ U ′ ⊕ �′. Since Aut(D)

fixes w0, we may assume that A′, B ′, C′, D′ coincide with A, B , C, D given
in (5.2). Thus, we have shown that the embedding of SX into L is the same one
given in (5.3) and hence hF = w′. �

Remark 5.7. Let r = (1,1,2νK) and r ′ = (1,1,A − 2νK) be Leech roots as in
the proof of Lemma 5.5. In the proof of Lemma 5.4, we showed that w′′ = a − b.
Hence, we have

w′ = w − w′′ = (1,0,0) + (2,1,A) + (−1,1,0) = (2,2,A) = r + r ′.
Thus, we have w′ = r + r ′ and 〈r, r ′〉 = 3. This corresponds to the fact that the
pullback of the tangent line of the Fermat sextic curve CF at an F25-rational point
under the degree two map πF : X → P2 splits into two smooth rational curves
meeting at one point with multiplicity 3.
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We know that the projective automorphism group Aut(X,w′) is a central ex-
tension of PGU(3,F25) by the cyclic group of order 2 generated by the deck-
transformation of X over P2. Here we show that the subgroup PSU(3,F25) of
index 6 acts on X by using the Torelli theorem for supersingular K3 surfaces.

Proposition 5.8. The group PSU(3,F25) acts on X by automorphisms.

Proof. First, we see that the pointwise stabilizer of {A,B,C,D} of O(�) is
PSU(3,F25). The pointwise stabilizer of the three points {A = 4ν∞ + ν�,

B = 0,D = 4ν0 + ν�} is the Higman–Sims group HS (see Conway [5], Sub-
section 3.5). It is known that there exist 352 vectors C′ in � satisfying

A − C′ ∈ �6 and B − C′,D − C′ ∈ �4.

Note that C = 2νK0 is one of them. Moreover, they form 176 pairs {C′,D −
C′} (Conway [5], Subsection 3.5). It follows from the table of maximal sub-
groups in Atlas (p. 80 of [7]) that the stabilizer of such a pair {C′,D − C′}
in HS is PSU(3,F25) � Z/2Z with index 176. Therefore, the pointwise stabi-
lizer of {A,B,C,D} is PSU(3,F25). We consider PSU(3,F25) as a subgroup of
O(U ⊕ �) acting trivially on U . The group PSU(3,F25) preserves the projection
w′ of the Weyl vector w that is conjugate to an ample class of X (Lemma 5.4).
On the other hand, PSU(3,F25) acts on R1 identically and hence acts trivially
on R∨

1 /R1 ∼= S∨
X/SX . This implies that PSU(3,F25) preserves the period of X.

It now follows from the Torelli theorem by Ogus [24; 25] for supersingular K3
surfaces that PSU(3,F25) can act on X by automorphisms. �

Remark 5.9. By the direct calculation using the data of Section 4.3 and (4.2)
we can confirm that the image of Aut(X,D0) by the natural homomorphism
O(SX) → O(qSX

) is equal to (4.1) and hence is of order 6. Combining this
fact with the proof of Proposition 5.8, we see that the kernel of Aut(X,D0) ↪→
O(SX) → O(qSX

) is isomorphic to the simple group PSU(3,F25).

5.2. Proof of Theorem 1.1(2)

Next, we consider the following vectors in the Leech lattice �:

A = 4ν∞ + ν�, B = 0, C = 2νK0, D = ν� − 4ν∞, (5.5)

where K0 is an octad that does not contain ∞. Consider the vectors in L = U ⊕�

defined by

a = −(2,1,A), b = (−1,1,0), c = (0,1,C), d = (0,0,D). (5.6)

Obviously, we have

a2 = b2 = −2, c2 = d2 = −4, 〈a, b〉 = 〈b, c〉 = −1,

〈a, c〉 = 〈b, d〉 = 0, 〈a, d〉 = 1, 〈c, d〉 = −2.

Let R2 be the sublattice of L generated by a, b, c, d . Note that the Gram matrix
of R2 is the same as that given in (4.3). Moreover, the alternating group A8 of
degree 8 acts on the set � = {∞,0,1, . . . ,22} such that it preserves the octad K0
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and fixes the point ∞ (see Conway [5]). This action can be extended to that on
� and hence on L = U ⊕ � acting trivially on U . By definition, A8 fixes R2.
Let S2 be the orthogonal complement of R2 in L on which A8 acts. Then S2 is
isomorphic to the Néron–Severi lattice SX of the supersingular K3 surface X with
Artin invariant 1 in characteristic 5.

Lemma 5.10. Let w′ be the projection of the Weyl vector w into S∨
2 . Then 5w′ ∈ S2

and (5w′)2 = 60. Moreover, 5w′ is conjugate to the class of an ample divisor on
X under the action of W(−2)(S2).

Proof. Write w = w′ + w′′ where w′′ is the projection of w into R∨
2 . We see that

w′′ = (6a − 5b − c + 2d)/5 and (w′′)2 = −12/5. Since 5w′′ ∈ R2 and w2 = 0,
we have 5w′ ∈ S2 and (w′)2 = 12/5. The proof of the last assertion is the same as
that of Lemma 5.4. �

Lemma 5.11. There exist exactly 168 Leech roots that are orthogonal to R2, and
A8 acts transitively on these Leech roots.

Proof. By an argument similar to the proof of Lemma 5.5, we see that the desired
Leech roots correspond to (−4)-vectors

4ν∞ + ν� − 2νK

in �, where K are octads that satisfy K � ∞ and |K ∩ K0| = 2. We count the
number of such octads K . Let a1, a2 be in K0. Then the number of octads con-
taining three points ∞, a1, a2 is 21 (see Conway [5], Theorem 11). Take two
points a3, a4 ∈ K0 \ {a1, a2}. Then there exists exactly one octad containing five
points ∞, a1, a2, a3, a4. Thus, the number of octads K containing ∞, a1, a2 and
satisfying K ∩ K0 = {a1, a2} is 21 − (6

2

) = 6. Therefore, the number of octads K

containing ∞ and satisfying |K ∩ K0| = 2 is
(8

2

) × 6 = 168.
Now take such an octad K . Then the stabilizer subgroup of K in A8 is the

symmetry group S5 of degree 5 because it has five orbits of size 1, 2, 5, 6, 10;
that is,

{∞}, {K ∩ K0}, {K0 \ ((K ∩ K0) ∪ {∞})}, {K \ (K ∩ K0)}, {� \ (K ∪ K0)}.
Since the index of S5 in A8 is 168, we have the second assertion. �

Lemma 5.12. The group A8 acts on X by automorphisms.

Proof. The proof is similar to that of Lemma 5.8. �

Finally, the 168 Leech roots are the classes of the 168 smooth rational curves
on X because Leech roots have the minimal degree 1 with respect to the Weyl
vector w. Thus, we have finished the proof of Theorem 1.1(2).

Remark 5.13. Let r = (1,1,4ν∞ + ν� − 2νK) and r ′ = (1,1,4ν∞ + ν� − 2νK ′)
be two distinct Leech roots in Lemma 5.11. Then 〈r, r ′〉 = 0 or 1 if and only if
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|K ∩K ′| = 4 or 2, respectively. Moreover, we see that there exist exactly 72 Leech
roots r ′ in Lemma 5.11 with 〈r, r ′〉 = 1 (see Proposition 4.2).

Remark 5.14. In both cases (1) and (2) in Theorem 1.1, the octads K satisfying
∞ ∈ K and |K ∩ K0| = 2 appear. In case (1), K satisfies one more condition
that K does not contain 0. Here we discuss the remaining octads K ; that is, K

contains ∞, 0 and satisfies |K ∩ K0| = 2. We put

r = (2,2, λ), λ = 2νK + ν� − 4ν0,

where K is an octad with K � ∞, K � 0 and |K ∩K0| = 2. Then r2 = −2 and r ∈
R⊥

1 = S1. Obviously, we have 〈r,w′〉 = 〈r,w〉 = 2. There exist exactly 42 octads
K satisfying K � ∞, K � 0, and |K ∩ K0| = 2. Recall that w′ = (2,2,A) =
(2,2,4ν∞ + ν�) (Remark 5.7). For each root r from the above 42 roots, put

r ′ = 2w′ − r = (2,2,8ν∞ + 4ν0 + ν� − 2νK).

Then (r ′)2 = −2 and r ′ ∈ R⊥
1 = S1. Thus, the class r + r ′ corresponds to the pull-

back of a conic on P2 tangent to the Fermat sextic CF at six points (see Proposi-
tion 4.3).

5.3. Proof of Theorem 1.1(3)

Finally, we consider the following vectors in the Leech lattice �:

A = 4ν∞ + ν�, B = 0, C = 8ν∞,
(5.7)

D = 2(ν∞ + ν0 + ν1 + ν2) − 2(ν3 + ν5 + ν14 + ν17).

Here K0 = {∞,0,1,2,3,5,14,17} is an octad (see Todd [32]). Consider the vec-
tors in L = U ⊕ � defined by

a = −(2,1,A), b = (−1,1,0), c = (1,2,C), d = (0,0,D). (5.8)

Obviously, we have

a2 = b2 = −2, c2 = d2 = −4, 〈a, b〉 = 〈b, c〉 = −1,

〈a, c〉 = 〈b, d〉 = 0, 〈a, d〉 = 1, 〈c, d〉 = −2.

Let R3 be the sublattice of L generated by a, b, c, d . Then the Gram matrix
of R3 is the same as that given in (4.3). Note that a subgroup group (Z/2Z)4 �

(Z/3Z×S4) of M23 acts on the set � = {∞,0,1, . . . ,22} such that it preserves
the sextet of tetrads determined by {∞,0,1,2}, preserves the set {0,1,2} and the
octad K0, and fixes the point ∞ (see Conway [5]). This action can be extended to
that on � and hence on L = U ⊕� acting trivially on U . Let S3 be the orthogonal
complement of R3 in L. Then S3 is isomorphic to the Néron–Severi lattice SX of
the supersingular K3 surface X with Artin invariant 1 in characteristic 5.

Lemma 5.15. Let w′ be the projection of the Weyl vector w into S∨
3 . Then 5w′ ∈ S3

and (5w′)2 = 80. Moreover, w′ is conjugate to the class of an ample divisor on X

under the action of W(−2)(S3).
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Proof. Write w = w′ + w′′ where w′′ ∈ R∨
3 . Then w′′ = (6a − 4b − 3c + 3d)/5

and (w′′)2 = −16/5. Since 5w′′ ∈ R3 and w2 = 0, we have 5w′ ∈ S and
(w′)2 = 16/5. The proof of the last assertion is the same as that of Lemma 5.4.

�

Lemma 5.16. There exist exactly 96 Leech roots that are orthogonal to R3.

Proof. By an argument similar to the proof of Lemma 5.5 we see that the desired
Leech roots are

(1,1,A − 2νK),

where K is an octad satisfying one of the following conditions:

(1) |K ∩ K0| = 4, K � ∞, and K contains exactly two points of {0,1,2},
(2) |K ∩ K0| = 2, K � ∞, and K contains exactly one point of {0,1,2}.
We count the number of octads satisfying (1) or (2). In case (1), there are 21
octads containing fixed three points {∞,0,1}, and among these 21 octads, five
octads contain four points {∞,0,1,2}. Thus, for each two points from {0,1,2},
there exist exactly 16 octads, and the total is 16 × 3 = 48. In case (2), there are
exactly 16 octads K satisfying K ∩ K0 = {∞,0} (see Conway [5], Table 10.1).
Thus, we have 48 octads satisfying condition (2). �

Lemma 5.17. The group (Z/2Z)4 � (Z/3Z×S4) acts on X by automorphisms.

Proof. The proof is similar to that of Lemma 5.8. �

The 96 Leech roots are the classes of the 96 smooth rational curves on X because
Leech roots have the minimal degree 1 with respect to the Weyl vector w. Thus,
we have finished the proof of Theorem 1.1(3).

We denote by T the set of 96 Leech roots in Lemma 5.16. Let Tij be the set
of Leech roots that correspond to the octads K containing the two points i, j

(i, j = 0,1,2) in the proof of Lemma 5.16, case (1), and let Ti be the set of all
Leech roots corresponding to the octads K containing the point i (i = 0,1,2) in
the proof of Lemma 5.16, case (2).

Theorem 5.18. Each Ti , Tij consists of 16 mutually orthogonal Leech roots.
Each Leech root in Ti (resp. Tij ) meets exactly six Leech roots in Tj with j 	= i

(resp. Tkl with (k, l) 	= (i, j)) with multiplicity 1. In particular, {Ti ,Tj } and
{Tij ,Tkl} form a (166)-configuration. Moreover, {Ti ,Tjk} with {i, j, k} = {0,1,2}
is a (1612)-configuration, and {Ti ,Tij } is a (164)-configuration.

Proof. We put r = (1,1,A−2νK) and r ′ = (1,1,A−2νK ′) ∈ T . Then 〈r, r ′〉 = 0
or 1 if and only if |K ∩ K ′| = 4 or 2, respectively. Since any two octads meet at
0, 2, or 4 points, Tij consists of 16 mutually orthogonal Leech roots.

On the other hand, if r, r ′ ∈ Ti and K ∩ K ′ = {∞, i}, then the symmetric dif-
ference K + K ′ and � + K + K ′ are dodecads. Note that � + K + K ′ contains
the octad K0. This contradicts the fact that no dodecads contain an octad. Thus,
we have |K ∩ K ′| = 4, and hence Ti consists of 16 mutually disjoint Leech roots.
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Finally, we see that an element from Ti or Tij has the incidence relation with
Tj and Tkl as desired. Since the group (Z/2Z)4 � (Z/3Z ×S4) acts transitively
on each set Ti , Tij , the assertion follows. �

By defining {Sij } by

S01 = T0, S02 = T1, S03 = T2, S11 = T12, S12 = T02, S13 = T01,

we have finished the proof of Theorem 1.2.

6. Supersingular Elliptic Curve in Characteristic 5

We summarize some facts on the supersingular elliptic curve in characteristic 5,
which we will use later. We have, up to isomorphisms, only one supersingular
elliptic curve defined over an algebraically closed field k of characteristic 5, which
is given by the equation

y2 = x3 − 1.

We denote by E a nonsingular complete model of the supersingular elliptic curve.
In the affine model, let (x1, y1) and (x2, y2) be two points on E. Then, the addition

m : E × E → E

of E is given by

m∗x = −x1 − x2 + (y2 − y1)
2

(x2 − x1)2
,

(6.1)

m∗y = y1 + y2 − (y2 − y1)
3

(x2 − x1)3
+ 3(x2y1 − x1y2)

(x1 − x2)
.

We denote by [n]E the multiplication by an integer n and by En the group of
n-torsion points of E. The multiplication [2]E is concretely given by

[2]∗Ex = x1 + 1/y2
1 , [2]∗Ey = 2y1 − 1/y1 + 1/y3

1 .

We denote by Fr the relative Frobenius morphism. Then, it satisfies

Fr2 = [−5]E.

We set ω = 2 + 3
√

2. Then, ω is a primitive cube root of unity. We set

P∞ = (0,∞), P0 = (1,0), P1 = (ω,0), P2 = (ω2,0).

The point P∞ is the zero point of E, and the group E2 of 2-torsion points of E is

E2 = {P∞,P0,P1,P2}.
The translation TP0 by the point P0 is given by

T ∗
P0

(x) = x + 2

x − 1
, T ∗

P0
(y) = 2y

(x − 1)2
.

We set
u = 2(x + T ∗

P0
(x) − 1), v = 2

√
2(y + T ∗

P0
(y)).
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Then, u and v are invariant under the action of T ∗
P0

, and we have

u = 2x2 + 3x + 1

(x − 1)
, v = 2

√
2y(x2 + 3x + 3)

(x − 1)2
.

We know that the degree of the field extension k(x, y)/k(u, v) is equal to 2 and
that u and v satisfy the equation v2 = u3 − 1. Therefore, we have the quotient
morphism by the action of TP0 :

φE,2 : E → E,

(x, y) �→ (u, v).

By a direct calculation we see that

φ2
E,2 = [−2]E.

The elliptic curve E has the following automorphism γ of order 6 defined by

γ ∗x = ωx, γ ∗y = −y.

We consider the endomorphism ring O = End(E). We set B = End(E) ⊗Z Q.
Then, as is well known, B is the quaternion division algebra with discriminant 5,
and O is a maximal order of B . We consider the following elements of O:

ω1 = 1, ω2 = γ, ω3 = φE,2, ω4 = γφE,2.

The multiplication is given as follows:

γ φE,2 γφE,2

γ γ − 1 γφE,2 −φE,2 + γφE,2
φE,2 −1 + φE,2 − γφE,2 −2 −2 + 2γ − φE,2
γφE,2 −γ + φE,2 −2γ −2 − γφE,2

For example, we have φE,2γ = −1 + φE,2 − γφE,2.
The canonical involution a �→ ā of the quaternion algebra B is given as fol-

lows:
γ̄ = −γ 2, φE,2 = −φE,2, γ φE,2 = −1 − γφE,2.

Denoting by Tr the trace map in B , we have a 4 × 4 matrix (Trωiωj ):⎡
⎢⎢⎣

2 1 0 1
1 −1 −1 −1
0 −1 −4 −2

−1 −1 −2 −3

⎤
⎥⎥⎦ .

Since the determinant of this matrix is equal to −25, we know that ωi (i =
1,2,3,4) is a basis of the maximal order O:

O = Z+Zγ +ZφE,2 +ZγφE,2.

Remark 6.1. Considering Ker(Fr − 1) = E(F5) ∼= Z/6Z , we have

Fr = 1 + φE,2γ (1 + γ ) = −1 + φE,2 − 2γφE,2.
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7. Number of Fp2 -Rational Points on Km(A)

Let E be a supersingular elliptic curve defined over Fp . We set A = E × E and
denote by ιA the inversion of A. We denote by Km(A) the Kummer surface asso-
ciated with A. In this section, we compute the number N of Fp2 -rational points
on Km(A).

In Katsura and Kondo [15], we proved the following lemma. For the readers’
convenience, we give here the proof again.

Lemma 7.1. E(Fp2) = Ker[p + 1]E . In particular, we have |E(Fp2)| = (p + 1)2

and |A(Fp2)| = (p + 1)4.

Proof. A point P ∈ E is contained in E(Fp2) if and only if Fr2(P ) = P . Since
Fr2 = [−p]E , we have Fr2(P ) = P if and only if [p + 1]E(P ) = 0. �

Theorem 7.2. The number N of Fp2 -rational points on Km(A) is equal to 1 +
22p2 + p4.

Proof. We consider the quotient morphism

� : A → A/〈ιA〉.
By Ker[2]A ⊂ Ker[p + 1]A, all 2-torsion points are defined over Fp2 . Excluding
the 2-torsion points, we get {(p + 1)4 − 16}/2 points of Km(A)(Fp2) derived
from (p + 1)-torsion points on A. If a point P on A satisfies Fr2(P ) = ιA(P ),
then we have Fr2(�(P )) = �(P ) on A/〈ιA〉. Therefore, �(P ) is an Fp2 -rational
point on A/〈ιA〉. Hence, it gives an Fp2 -rational point on Km(A). Since Fr2(P ) =
ιA(P ) if and only if P is contained in Ker[p − 1]A, the number of such points
on A is equal to (p − 1)4. Excluding the 2-torsion points, we get {(p − 1)4 −
16}/2 points of Km(A)(Fp2) derived from (p − 1)-torsion points on A. Since
|P1(Fp2)| = p2 + 1, we have 16(p2 + 1) points of Km(A)(Fp2) that come from
the 16 exceptional curves. Therefore, in total, we have an inequality

N ≥ {(p + 1)4 − 16}/2 + {(p − 1)4 − 16}/2 + 16(p2 + 1) = 1 + 22p2 + p4.

On the other hand, we consider the congruent zeta function Z(Km(A)/Fp2 , t) of
Km(A). Since Km(A) is a K3 surface, we have

Z(Km(A)/Fp2 , t) =
(

(1 − t)(1 − p4t)

22∏
i=1

(1 − αit)

)−1

with algebraic integers αi satisfying |αi | = p2. Since logZ(Km(A)/Fp2 , t) =
Nt + · · · , we have

N = 1 +
22∑
i=1

αi + p4 ≤ 1 +
22∑
i=1

|αi | + p4 = 1 + 22p2 + p4.

Hence, we have N = 1 + 22p2 + p4. �
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Corollary 7.3. If p = 5, then we have |Km(A)(F25)| = 1,176.

Remark 7.4. Let E be the nonsingular complete model of the supersingular el-
liptic curve defined by y2 = x3 − 1 in characteristic 5. Then, by the consideration
above, a point P = (a, b) ∈ E is contained in E4 \E2 if and only if Fr2(P ) = −P

and b 	= 0. Therefore, we have the following:

(i) P ∈ E2 if and only if b = 0 (and hence, a ∈ F25);
(ii) P ∈ E4 \ E2 if and only if a ∈ F25 and b /∈ F25;
(ii) P ∈ E6 \ E2 if and only if a ∈ F25 and b ∈ F25 \ {0}.

8. Six Sets of Disjoint 16 Smooth Rational Curves on Km(A)

In this section, we resume working in characteristic 5. Let E be the elliptic curve
defined by y2 = x3 − 1, and let A be the Abelian surface E × E. For brevity, we
denote by Y the Kummer surface Km(A). As is well known (see Ogus [24]), Y

is isomorphic to our supersingular K3 surface X with Artin invariant 1. In this
section, we explicitly construct six sets

S00,S01,S02,S10,S11,S12

of disjoint 16 smooth rational curves on Y with properties (a), (b), (c) in The-
orem 1.2 and prove Theorem 1.3. We denote by SA and SY the Néron–Severi
lattices of A and Y , respectively. It is well known that SA is of discriminant −25.

We denote by A2 the group of 2-torsion points of A:

A2 = E2 × E2.

We consider the following commutative diagram:

Ã
π−→ Y

b ↓ ↓ ρ

A −→
�

A/〈ιA〉,
where b is the blow-up at the points of A2, � is the quotient morphism by 〈ιA〉,
ρ is the minimal resolution, and π is the double covering induced by � . For
P ∈ A2, we denote by EP the exceptional curve of b over P . The homomorphism
b∗ : SA → S

Ã
identifies SA with a sublattice of the Néron–Severi lattice S

Ã
of Ã,

and we obtain an orthogonal decomposition

S
Ã

= SA ⊕
⊕
P∈A2

Z[EP ]. (8.1)

Let T denote the group of translations of A by the points in A2. Then T acts
on Ã and hence on S

Ã
. The action preserves the orthogonal decomposition (8.1),

and its restriction to the factor SA is trivial, whereas its restriction to the fac-
tor

⊕
Z[EP ] is induced by the permutation representation of T on A2. The

inversion ιA of A lifts to an involution ι̃A of Ã, and π is the quotient map by
〈ι̃A〉. The homomorphism π∗ induces an embedding of the lattice SY (2) into S

Ã
,

where SY (2) is the Z-module SY with the symmetric bilinear form defined by
〈x, y〉SY (2) = 2〈x, y〉SY

.
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For an irreducible curve � on A that is invariant under ιA, we denote by �
Ã

the strict transform of � by b : Ã → A and by �Y the image of �
Ã

by π : Ã → Y

with the reduced structure. Since � is invariant under ιA, the map π induces a
double covering �

Ã
→ �Y . Suppose that � is smooth. Then we have

[�
Ã
] = [b∗�] −

∑
P∈�∩A2

[EP ].

For an endomorphism g : E → E of E, we denote by �g the graph of g,
that is,

�g = {(P,g(P )) | P ∈ E}.
We can calculate the intersection number of a curve of certain type on A with �g

by the following method. Suppose that H is a (hyper)elliptic curve defined by

v2 = fH (u)

with the involution ιH : (u, v) �→ (u,−v). We consider two finite morphisms

ηi : H → E (i = 1,2)

satisfying ηi ◦ ιH = ιE ◦ ηi , and we set

η = (η1, η2) : H → E × E = A.

We denote by �[η] the image of η on A with the reduced structure. Suppose that
η induces a birational map from H to �[η]. Using the addition m : E × E → E,
we have a divisor

	 = Kerm = {(P,−P) | P ∈ E}
on A = E ×E. From the given endomorphism g ∈ End(E) we obtain a morphism

(−g) × id : E × E → E × E.

Then we have �g = ((−g) × id)∗	. We consider the morphism

θ : H
η−→E × E

(−g)×id−→ E × E
m−→E.

Then we have

〈�[η],�g〉SA
= degη∗�g = deg(η∗ ◦ ((−g) × id)∗	)

= deg(η∗ ◦ ((−g) × id)∗ ◦ m−1(P∞))

= deg((m ◦ ((−g) × id) ◦ η)∗(P∞))

= deg θ. (8.2)

By the assumption ηi ◦ ιH = ιE ◦ ηi , the map ηi is written as

η∗
i x = Mi(u), η∗

i y = v · Ni(u),

by some rational functions Mi and Ni of one variable u. Since g : E → E satisfies
g ◦ ιE = ιE ◦ g, there exist rational functions � and � of one variable x such that

g∗x = �(x), g∗y = y · �(x).

The morphism θ induces a finite morphism

θ̃ : H/〈ιH 〉 = P1 → E/〈ιE〉 = P1
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from the u-line to the x-line. Using (6.1), we see that θ̃ is given by the rational
function

θ̃∗x = −�(M1(u)) − M2(u) + fH (u) · (N2(u) + N1(u) · �(M1(u)))2

(M2(u) − �(M1(u)))2
.

Since deg θ̃ = deg θ , we can calculate 〈�[η],�g〉SA
= deg θ simply by calculating

the degree of the rational function θ̃∗x of one variable.

Proposition 8.1. Let γ : E → E and φE,2 : E → E be the endomorphisms de-
fined in Section 6. Then classes of the curves

B1 = E × {P∞}, B2 = {P∞} × E, B3 = �id,

B4 = �γ , B5 = �φE,2, B6 = �γφE,2

on A form a basis of SA, where P∞ is the zero point of E.

Proof. The intersection numbers 〈Bi,Bj 〉SA
are given by the following matrix:⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 2 2
1 0 1 1 1 1
1 1 0 1 3 4
1 1 1 0 2 3
2 1 3 2 0 2
2 1 4 3 2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (8.3)

Since its determinant is −25, the classes [B1], . . . , [B6] form a basis of SA. �

Remark 8.2. Let O = End(E) be as in Section 6. Set X = E × {P∞} +
{P∞} × E. Then X is a principal polarization on A. For a divisor L on A, we
have a homomorphism

φL : A → Pic0(A),

x �→ T ∗
x L − L,

where Tx is the translation by x ∈ A (see Mumford [20]). We see that φ−1
X ◦ φL is

an element of End(A) = M2(O). We set

H =
{[

a b

c d

] ∣∣ a, d ∈ Z, b, c ∈ O with c = b̄

}
.

Then,

j : SA → H,

L �→ φ−1
X ◦ φL

is a bijective homomorphism, and for L1,L2 ∈ SA such that

j (L1) =
[
a1 b1
c1 d1

]
, j (L2) =

[
a2 b2
c2 d2

]
,

the intersection number 〈L1,L2〉SA
is given by

〈L1,L2〉SA
= a2d1 + a1d2 − c1b2 − c2b1
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(see Katsura [14] and Katsura and Kondo [15]). For two endomorphisms α1, α2 ∈
O, by Katsura [14] (also see Katsura and Kondo [15]) we have

j ((α1 × α2)
∗	) =

[
ᾱ1α1 ᾱ1α2
ᾱ2α1 ᾱ2α2

]
.

Now consider our basis [B1], . . . , [B6] of SA. Since we have

B3 = (−id × id)∗	, B4 = (−γ × id)∗	, B5 = (−φE,2 × id)∗	,

B6 = (−γφE,2 × id)∗	,

we see that

j (B1) =
[

0 0
0 1

]
, j (B2) =

[
1 0
0 0

]
, j (B3) =

[
1 −1

−1 1

]
,

j (B4) =
[

1 −γ 5

−γ 1

]
, j (B5) =

[
2 φE,2

−φE,2 1

]
,

j (B6) =
[

2 −φE,2γ
2

−γφE,2 1

]
.

Here, as an element in O, we use 1 for id and −1 for ιE . Using these expressions,
we can also calculate our Gram matrix (8.3) easily.

From now on, we express elements of SA as row vectors with respect to the basis
[B1], . . . , [B6]. The matrix (8.3) is then the Gram matrix of SA with respect to this
basis.

Remark 8.3. Let η : H → A be as before. Note that we have

〈�[η],B1〉SA
= degη2, 〈�[η],B2〉SA

= degη1. (8.4)

By the same method we can calculate the vector representation of the class of
�[η] in SA with respect to the basis [B1], . . . , [B6]. By the Gram matrix (8.3) we
obtain the self-intersection number of �[η] on A. Then �[η] is smooth (i.e., η

induces an isomorphism from H to �[η]) if and only if

〈�[η],�[η]〉SA
= 2(the genus of H − 1). (8.5)

In this case, we also have

η−1(A2) = the set of fixed points of ιH ,

and hence we can easily obtain the set �[η]∩A2. Thus, we can calculate the class
of the strict transform �[η]

Ã
of �[η] in S

Ã
.

Example 8.4. Note that Aut(E) is a cyclic group of order 6 generated by γ . For
integers a and b, the pull-back (γ a × γ b)∗�g of the graph �g of g ∈ End(E) by
the action

(γ a × γ b) : (P,Q) �→ (γ a(P ), γ b(Q))

is equal to �γ −bgγ a . Calculating the intersection numbers 〈(γ a × γ b)∗Bi,Bj 〉SA
,

we see that the action (γ a × γ b)∗ on SA is given by

[x1, . . . , x6] �→ [x1, . . . , x6] · Ga
1 · Gb

2,
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where

G1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
1 1 −1 1 0 0
2 3 −1 0 1 −1
1 1 0 −1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, G2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
1 1 1 −1 0 0
0 0 1 0 0 0
1 2 0 0 1 −1
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Example 8.5. In the same way, we see that the action of the involution (P,Q) �→
(Q,P ) of A on SA is given by

[x1, . . . , x6] �→ [x1, . . . , x6]

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
1 1 1 −1 0 0
3 3 0 0 −1 0
4 4 −1 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Remark 8.6. Let η : H → A be as before and suppose that η is an embedding
(i.e., equality (8.5) holds). Then the induced morphism

η̄ : H/〈ιH 〉 = P1 → Y

is an isomorphism from the u-line H/〈ιH 〉 to the (−2)-curve �[η]Y on Y . The
morphism η̄ is calculated as follows. Let (x1, y1) and (x2, y2) be the affine coor-
dinates of the first and second factors of A = E × E. Then the singular surface
A/〈ιA〉 is defined by

w2 = (x3
1 − 1)(x3

2 − 1),

where the quotient morphism � : A → A/〈ιA〉 is given by

((x1, y1), (x2, y2)) �→ (x1, x2,w) = (x1, x2, y1y2).

Then ρ ◦ η̄ : P1 → A/〈ιA〉 is given by the rational functions

(ρ ◦ η̄)∗x1 = M1(u), (ρ ◦ η̄)∗x2 = M2(u), (ρ ◦ η̄)∗w = fH (u)N1(u)N2(u).

Let P be a point of A2. Suppose that the image of ρ ◦ η̄ passes through the node
�(P ) of A/〈ιA〉. Let Q ∈ H be the point that is mapped to P by η, and let
Q′ ∈ H/〈ιH 〉 be the image of Q by the quotient map H → H/〈ιH 〉. The lift
η̄ : P1 → Y of ρ ◦ η̄ at Q′ is calculated as follows. Let TP,A denote the tangent
space to A at P . Then the (−2)-curve π(EP ) = ρ−1(�(P )) on Y is canonically
identified with the projective line P∗(TP,A) of one-dimensional linear subspaces
of TP,A, and η̄(Q′) ∈ π(EP ) corresponds to the image of

dQη : TQ,H → TP,A,

where TQ,H is the tangent space to H at Q. Thus, η̄(Q′) is obtained by differ-
entiating η at Q. In particular, if η : H → A is defined over F25, then we can
calculate the list of F25-rational points on the (−2)-curve �[η]Y on Y .
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We consider the hyperelliptic curves defined by

F : v2 = u6 − 1 and G : v2 = √
2(u12 + 2u8 + 2u4 + 1)

and by the morphisms

φE,2 : E → E, (u, v) �→
(

2u2 + 3u + 1

u − 1
,

2
√

2v(u2 + 3u + 3)

(u − 1)2

)
,

φF,2 : F → E, (u, v) �→ (u2, v),

φF,3 : F → E, (u, v) �→
(

2u

u3 − 1
,
v(2u3 + 1)

(u3 − 1)2

)
,

φG,3 : G → E, (u, v) �→
(

4
√

2(u + 3
√

2 + 4)2(u + 2
√

2 + 4)

f
,

(4 + 4
√

2)v

f 2

)
,

wheref = (
u + √

2
)(

u + 4
√

2 + 1
)(

u + 3
√

2 + 2
)
,

φG,4 : G → E, (u, v) �→
(

u4 + (1 + 4
√

2)u2 + 2

g
,
vu

g2

)
,

whereg = u4 + (
1 + 2

√
2
)
u2 + (

4 + √
2
)
.

Remark 8.7. Each of these five morphisms φ : H → E satisfies ιE ◦ φ = φ ◦ ιH .

Remark 8.8. A basis of the vector space H0(G,�1
G) of regular 1-forms on the

curve G is given by

dx

y
− x4 dx

y
,
x dx

y
,
x3 dx

y
,
x2 dx

y
,
dx

y
+ x4 dx

y
.

With respect to this basis, the Cartier operator C is given by the matrix[
3I3 O3,2

O2,3 O2,2

]
,

where I3 is the 3×3 identity matrix, and Oa,b is the a ×b zero matrix. Therefore,
we have dim KerC = 2 and rankC = 3. Hence, the Jacobian variety J (G) of G

is isogenous to the product of a three-dimensional ordinary Abelian variety and a
superspecial Abelian surface A. In the same way, we see that the Cartier operator
is zero for the curve F and that the Jacobian variety J (F ) of F is isomorphic to A.

Remark 8.9. The Weierstrass points of F are (u, v) = ((3 + 2
√

2)ν,0) for ν =
0, . . . ,5. The Weierstrass points of G are (u, v) = (uν,0) for ν = 0, . . . ,11, where
uν are

±√
2,±2

√
2,1 ± √

2,2 ± 2
√

2,3 ± 3
√

2,4 ± 4
√

2.

In particular, let E′ → P1 (resp. Ē′ → P1, F ′ → P1, G′ → P1) be the double
covering branched at the points in P4 (resp. P̄4, P6, P12) defined in Theorem 1.3.
Then E′ and Ē′ are isomorphic to E over F25, F ′ is isomorphic to F over F25,
and G′ is isomorphic to G over F25.
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We also consider the automorphisms

γ : E → E, (u, v) �→ (ωu,−v),

hF : F → F, (u, v) �→
(

2
√

2u + 4

u + 2
√

2
,

v

(u + 2
√

2)3

)
,

h′
F : F → F, (u, v) �→

(
2
√

2u + 1

u + 3
√

2
,

v

(u + 3
√

2)3

)
,

hG : G → G, (u, v) �→
(

2u + 3

u + 1
,

4v

(u + 1)6

)
.

Note that the morphisms φE,2 and γ have already appeared in Section 6.
Let τ denote the automorphism (P,Q) �→ (Q, ιE(P )) of A. Note that τ lifts

to an automorphism of Ã and its action on S
Ã

is obtained from Examples 8.4
and 8.5. For a curve � on A, we denote by T (�) the set of translations of � by
points in A2. Then we define sets of curves on A by

L01 = T (�[(φF,2, φF,2hF )]),
L02 = T (�[(φF,3, φF,3h

′
F )]),

L10,(4,3) = T (�[(φG,4, φG,3)]),
L10,(4,4) = T (�[(γ 2φG,4, γ φG,4hG)]),

L10 = L10,(4,3) ∪ τ(L10,(4,3)) ∪L10,(4,4) ∪ τ(L10,(4,4)),

L11,(1,2) = T (�[(γ 2, γ 2φE,2)]),
L11,(2,2) = T (�[(φE,2γ, γ φE,2)]),

L11 = L11,(1,2) ∪ τ(L11,(1,2)) ∪L11,(2,2) ∪ τ(L11,(2,2)),

L12 = T (B1) ∪ T (B2) ∪ T (B4) ∪ T (�[(id, γ 2)]).
Using the same method, we have the following list of intersection numbers.

B1 B2 B3 B4 B5 B6

�[(φF,2, φF,2hF )] 2 2 4 2 8 7
�[(φF,3, φF,3h

′
F )] 3 3 6 3 5 12

�[(φG,4, φG,3)] 3 4 7 4 14 15
�[(γ 2φG,4, γ φG,4hG)] 4 4 7 3 14 16
�[(γ 2, γ 2φE,2)] 2 1 3 2 3 7
�[(φE,2γ, γ φE,2)] 2 2 5 2 6 8
�[(id, γ 2)] 1 1 3 1 2 2

Using this table and the Gram matrix (8.3), we obtain the following vector repre-
sentations of classes of these curves:

[�[(φF,2, φF,2hF )]] = [2,3,−1,2,−1,0],
[�[(φF,3, φF,3h

′
F )]] = [4,6,−2,3,−1,−1],

[�[(φG,4, φG,3)]] = [5,6,−2,3,−1,−1],
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[�[(γ 2φG,4, γ φG,4hG)]] = [4,6,−2,4,−1,−1],
[�[(γ 2, γ 2φE,2)]] = [2,4,−1,1,0,−1],

[�[(φE,2γ, γ φE,2)]] = [3,4,−2,2,0,−1],
[�[(id, γ 2)]] = [1,1,−1,1,0,0].

Remark 8.10. In particular, we see that these curves are smooth by confirm-
ing (8.5).

Remark 8.11. Incidentally, by the vector representations of classes of our curves
we have

j (�[(φF,2, φF,2hF )]) =
[

2 1 + 2γ 2 − φE,2
1 − 2γ + φE,2 2

]
,

j (�[(φF,3, φF,3h
′
F )])

=
[

3 2 + 3γ 2 − φE,2 + φE,2γ
2

1 − 3γ + φE,2 + γφE,2 3

]
,

j (�[(φG,4, φG,3)]) =
[

3 1 + 3γ 2 − φE,2 + φE,2γ
2

1 − 3γ + φE,2 + γφE,2 4

]
,

j (�[(γ 2φG,4, γ φG,4hG)])
=

[
4 2 + 4γ 2 − φE,2 + φE,2γ

2

2 − 4γ + φE,2 + γφE,2 4

]
,

j (�[(γ 2, γ 2φE,2)]) =
[

2 1 + γ 2 + φE,2γ
2

1 − γ + γφE,2 1

]
,

j (�[(φE,2γ, γ φE,2)]) =
[

2 2 + 2γ 2 − φE,2γ
2

2 − 2γ + γφE,2 2

]
,

j (�[(id, γ 2)]) =
[

1 γ

−γ 2 1

]
.

We can also use these expressions to calculate the intersection numbers.

Now we state our main result of this section.

Theorem 8.12. For νi = 01,02,10,11,12, the set

Sνi = {�Y | � ∈ Lνi}
is a set of disjoint 16 smooth rational curves on Y . Moreover, together with the
set S00 of the images of the (−1)-curves EP for P ∈ A2 by π : Ã → Y , the six
sets S00, S01, S02, S10, S11, S12 satisfy conditions (a), (b), and (c) in Theorem 1.2
and possess the properties in Theorem 1.3.

Proof. Let S be the union of the six sets S00, S01, S02, S10, S11, S12. We have
already seen that the 96 curves in S are (−2)-curves on Y (see Remarks 8.7
and 8.10). Since the 96 rational curves in S are presented explicitly, we can prove
Theorem 8.12 by direct computation.
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By the method in Remark 8.3, we can calculate the classes [�Y ] ∈ SY of the
96 rational curves �Y ∈ S : more precisely, we calculate the vector representa-
tions of the classes [π∗(�Y )] of the curves π∗(�Y ) on Ã with respect to the basis
[B1], . . . , [B6] and [EP ] (P ∈ A2). Using the Gram matrix (8.3) and the formula

〈[�Y ], [�′
Y ]〉SY

= 1

2
〈[π∗(�Y )], [π∗(�′

Y )]〉S
Ã
,

we can calculate the intersection numbers among the curves in S . It follows that
the six sets Sνi satisfy conditions (a), (b), and (c) in Theorem 1.2.

Next, we calculate the list �Y (F25) of F25-rational points by the method in
Remark 8.6. It turns out that

〈[�Y ], [�′
Y ]〉SY

= |�Y (F25) ∩ �′
Y (F25)|

for any pair �Y , �′
Y of distinct curves in S . Therefore, any intersection point of

curves in S is an F25-rational point. Moreover, the properties in Theorem 1.3 can
be checked directly.

For example, we consider a curve �[η] ∈ L10,(4,4), where the morphism
η : G → A is given by

η∗x1 = (2 + 2
√

2)(u2 + (4 + 3
√

2)u + 4
√

2)(u2 + (1 + 2
√

2)u + 4
√

2)

(u + 4
√

2)(u + 3
√

2 + 3)(u + 2
√

2 + 2)(u + √
2)

,

η∗y1 = uv

(u + 4
√

2)2(u + 3
√

2 + 3)2(u + 2
√

2 + 2)2(u + √
2)2

,

η∗x2 = (
4 + 3

√
2
)(

u2 + (
3 + 4

√
2
)
u + 3

√
2 + 4

)
× (

u2 + (
1 + 4

√
2
)
u + 4

√
2 + 3

)
/
((

u + 4 + √
2
)(

u + √
2 + 1

)(
u + 2

√
2 + 2

)(
u + 3

√
2 + 2

))
,

η∗y2 = (1 + √
2)v(u + 4)(u + 1)

(u + 4 + √
2)2(u + √

2 + 1)2(u + 2
√

2 + 2)2(u + 3
√

2 + 2)2
.

The vector representation of [�[η]
Ã
] ∈ S

Ã
is

[�[η]
Ã
] = [4,6,−2,4,−1,−1] −

∑
P∈T [η]

[EP ],

where [4,6,−2,4,−1,−1] ∈ SA is written with respect to [B1], . . . , [B6], and

T [η] = {P∞∞,P∞0,P∞1,P∞2,P0∞,P00,P01,P02,P1∞,P12,P2∞,P22}.
Here Pαβ denotes (Pα,Pβ) ∈ A2 for α,β ∈ {∞,0,1,2} (see Section 6). The in-
duced isomorphism η̄ from the u-line P1 = G/〈ιG〉 to the (−2)-curve �[η]Y ∈ S10
induces the bijection between the sets of F25-rational points given in Table 5.
In this table, the point η̄(u) is written by the following method: If η̄(u) is not on
the exceptional divisor of ρ, then the coordinates [x1, x2,w] of η̄(u) on A/〈ιA〉
defined by w2 = (x3

1 − 1)(x3
2 − 1) are given. (See Remark 8.6.) If η̄(u) is on the

(−2)-curve π(EP ) = ρ−1(�(P )) corresponding to P ∈ A2, then the point η̄(u)

is written by the coordinates [[x1, x2], [ξ0, ξ1]], where [ξ0, ξ1] is the homogeneous
coordinates on π(EP ) = ρ−1(�(P )) ∼= P∗(TP,A) with respect to the basis θ̃P , θ̃P
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Table 5 The map η̄ on F25-rational points

η̄(∞) = [2 + 2
√

2,4 + 3
√

2,0],
η̄(0) = [2 + 3

√
2,4 + 3

√
2,0],

η̄(1) = [1 + 3
√

2,1,0],
η̄(2) = [1 + 3

√
2,4 + 3

√
2,4 + 3

√
2],

η̄(3) = [1 + 3
√

2,4 + 3
√

2,1 + 2
√

2],
η̄(4) = [1 + 3

√
2,2 + 3

√
2,0],

η̄(
√

2) = [[∞,1], [1,2
√

2]],
η̄(1 + √

2) = [[2 + 3
√

2,2 + 2
√

2], [1,2]],
η̄(2 + √

2) = [2√
2,2 + √

2,3],
η̄(3 + √

2) = [4 + 4
√

2,4 + √
2,3],

η̄(4 + √
2) = [[2 + 2

√
2,2 + 2

√
2], [1,4 + √

2]],
η̄(2

√
2) = [[1,2 + 3

√
2], [1,4 + 2

√
2]],

η̄(1 + 2
√

2) = [3√
2,2 + √

2,1 + √
2],

η̄(2 + 2
√

2) = [[∞,2 + 2
√

2], [1,2
√

2]],
η̄(3 + 2

√
2) = [[1,∞], [1,2 + √

2]],
η̄(4 + 2

√
2) = [3 + 4

√
2,4 + √

2,4 + 4
√

2],
η̄(3

√
2) = [[1,1], [1,

√
2]],

η̄(1 + 3
√

2) = [3 + 4
√

2,2 + 4
√

2,1 + 4
√

2],
η̄(2 + 3

√
2) = [[1,2 + 2

√
2], [1,

√
2]],

η̄(3 + 3
√

2) = [[∞,∞], [1,4 + 2
√

2]],
η̄(4 + 3

√
2) = [3√

2,3 + 4
√

2,3],
η̄(4

√
2) = [[∞,2 + 3

√
2], [1,3 + 4

√
2]],

η̄(1 + 4
√

2) = [[2 + 2
√

2,∞], [1,1]],
η̄(2 + 4

√
2) = [4 + 4

√
2,2 + 4

√
2,4 + 4

√
2],

η̄(3 + 4
√

2) = [2√
2,3 + 4

√
2,1 + 4

√
2],

η̄(4 + 4
√

2) = [[2 + 3
√

2,∞], [1,2 + 2
√

2]].

of TP,A, where θ̃ is a nonzero invariant vector field on E, which is unique up to
scalar multiplications.

We put � = �[η]Y and present the four subsets �1, �00, �01, �02 of �(F25)

in Theorem 1.3. The set �00 of 12 points on the exceptional divisor of ρ is easily
obtained from Table 5. The other sets are given as follows:

η̄−1(�1) = {∞,0,1,2,3,4},
η̄−1(�01) = {

3 + √
2,4 + 2

√
2,1 + 3

√
2,2 + 4

√
2
}
,

η̄−1(�02) = {
2 + √

2,1 + 2
√

2,4 + 3
√

2,3 + 4
√

2
}
.
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For example, the unique (−2)-curve in S11 passing through η̄(∞) ∈ �1 is �[η′]Y ,
where η′ : E → A is given by[[

u2 + (1 + 3
√

2)u + 2
√

2 + 1

(u + 3
√

2 + 4)2
,
(4 + 2

√
2)v(u + 2

√
2 + 4)

(u + 3
√

2 + 4)3

]
,

[(
2 + 2

√
2
)
u,4v

]]
,

and we have η̄′(1+3
√

3) = η̄(∞), whereas the unique (−2)-curve in S12 passing
through η̄(∞) ∈ �1 is �[η′′]Y , where η′′ : E → A is given by[[

2 + 2
√

2,0
]
, [u,v]],

and we have η̄′′(4+3
√

2) = η̄(∞). The unique (−2)-curve in S01 passing through
η̄(3 + √

2) ∈ �01 is �[ξ ]Y , where ξ : F → A is given by[
[u2, v],

[
3(u + √

2)2

(u + 2
√

2)2
,

v

(u + 2
√

2)3

]]
,

and we have ξ̄ (4 + 3
√

2) = η̄(3 + √
2).

The details of these data for all 96 curves in S are presented in [30]. �

We give a remark about (16r )-configurations on a K3 surface in general.

Proposition 8.13. Assume that the characteristic p of the base field is 	= 2. No
Abelian surfaces contain any nonsingular hyperelliptic curve of genus greater
than or equal to 6.

Proof. Suppose that an Abelian surface A contains a nonsingular hyperelliptic
curve C of genus g. We may assume that C is symmetric under the inversion ι

of A. Then, C ∩ A2 must contain 2g + 2 points. Since the number of points in A2
is 16, we have g ≤ 7. Assume that g = 7. Then, we have C ∩A2 = A2. If there ex-
ists a two-torsion point x such that T ∗

x C 	= C, then we have C2 = (C,T ∗
x C) ≥ 16.

Therefore, the genus of C is greater than or equal to 16/2 + 1 = 9, which con-
tradicts g = 7. Suppose that T ∗

x C = C for any x ∈ A2. Then, the group scheme
K(C) = KerφC contains A2, where φC is defined in Remark 8.2. On the other
hand, by the Riemann–Roch theorem we have

|K(C)| = degφC = (C2/2)2 = (g − 1)2 = 36.

Since A2 ⊂ K(C), 36 must be divisible by 16, a contradiction. Hence, A does not
contain any nonsingular hyperelliptic curve of genus 7.

Now, assume that g = 6. Then, since C is hyperelliptic, we have |C ∩ A2| =
2×6+2 = 14. Let x be a point in A2 that is not contained in C ∩A2. Take a point
y ∈ C ∩ A2. Then, we have that C 	= T ∗

x−yC and C ∩ T ∗
x−yC ∩ A2 contains more

than or equal to 12 points. Therefore, we have C2 = (C,T ∗
x−yC) ≥ 12. Hence,

the genus of C must be greater than or equal to 12/2 + 1 = 7, which contradicts
g = 6. Consequently, A does not contain any nonsingular hyperelliptic curve of
genus 6. �
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Remark 8.14. Let C be a nonsingular complete curve of genus 2, and let J (C) be
a Jacobian variety. Then, it is well known that on the Kummer surface Km(J (C)),
there exists a (166)-configuration. We also have a (1610)-configuration on some
Kummer surfaces, using a certain hyperelliptic curve of genus 4 (see Tray-
nard [33], Barth and Nieto [2], and Katsura and Kondo [15]). In this paper, we
constructed a (1612)-configuration on the supersingular K3 surface with Artin
invariant 1 in characteristic 5. This seems to be the first example of (1612)-
configurations on a K3 surface. To construct the configuration, we use a hy-
perelliptic curve of genus 5. By Proposition 8.13, we cannot construct (162�)-
configurations with � ≥ 7 on a Kummer surface in a similar way to our method.

Remark 8.15. The supersingular K3 surface with Artin invariant 1 in characteris-
tic 5 has an interesting example of a pencil of curves of genus 2. Let P be a point
of P2(F25) \CF (F25), and let R1 and R2 be the points on X that are mapped to P

by πF : X → P2. We take the blowing-up X̃ at the two points R1, R2 of X. Then,
the pencil of lines passing through P induces on X̃ a structure of fiber space over
P1 whose general fiber is isomorphic to a smooth complete curve C of genus 2
defined by y2 = x6 − 1. The fiber space has exactly six degenerate fibers corre-
sponding to the tangent lines of CF passing through P . Each degenerate fiber is a
union of two smooth rational curves intersecting at one point with multiplicity 3.

Let C1 be the nonsingular complete model of the curve defined by the equation
1 + x6

1 + x6
2 = 0. G = Z/6Z = 〈θ〉 with a generator θ . We denote by ξ a primitive

6th root of unity and consider the action

θ : x1 �→ x1, x2 �→ ξx2,

x �→ ξx, y �→ y

on the surface C1 × C. The group G also acts on the curve C1. We set

w = √−1(x2/x)3y, z = x2/x.

Then, x1, w, and z are G-invariant, and the quotient surface (C1 × C)/G is bira-
tionally isomorphic to the surface defined by w2 = z6 + 1 + x6

1 . The fiber space
structure is given by (C1 × C)/G → C1/G.
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