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The Exactness of a General Skoda Complex

Dano Kim

Abstract. We show that a Skoda complex with a general plurisub-
harmonic weight function is exact if its ‘degree’ is sufficiently large.
This answers a question of Lazarsfeld and implies that not every in-
tegrally closed ideal is equal to a multiplier ideal even if we allow
general plurisubharmonic weights for the multiplier ideal, extending
the result of Lazarsfeld and Lee [LL].

1. Introduction

In complex algebraic geometry, a singular weight function of the form 1/|f |2 =:
e−φ , where f is a holomorphic function, plays an important role. It is natural to
consider more generally a singular weight e−φ , where φ is a plurisubharmonic
(psh) function. Given e−φ , there are two fundamental ways to define an ideal
sheaf of local holomorphic function germs, say u: collecting those with |u|2e−φ

locally bounded above, on the one hand, and collecting those with the local in-
tegral

∫
�

|u|2e−φ finite, on the other hand. The former gives an integrally closed
ideal and the latter gives a multiplier ideal.

A multiplier ideal is always an integrally closed ideal, but the converse had
been unknown in a general dimension until [LL] showed the existence of an in-
tegrally closed ideal that is not a multiplier ideal of a psh function with analytic
singularities (e.g. of the form log |f |2 for f holomorphic). In this paper, we ex-
tend this result to the full generality of multiplier ideals of arbitrary psh functions.
The proof of [LL] used the exactness of a Skoda complex – a Koszul-type complex
of sheaves which involves multiplier ideals in a natural way (see Definition 2.2).
For the special case of a psh function with analytic singularities, the exactness is a
rather elementary consequence of a local vanishing theorem [L, (9.4.4), (9.6.36)].
However, the general case of the exactness of a Skoda complex cannot be equally
shown from the vanishing theorem because of the difficult openness conjecture
(3.1) which is not known beyond dimension 2 (see [FJ]). Instead of vanishing, we
use the L2 methods of [Sk72] to a Skoda complex setting and prove the following
theorem.

Theorem 1.1. Let X be a complex manifold, and let L and M be line bundles
on X. Let e−ψ be a singular hermitian metric with psh weight for the line bun-
dle M . Let g1, . . . , gp ∈ H 0(X,L). Then there exists an integer q ≥ p such that
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the qth Skoda complex associated with g1, . . . , gp is exact. More precisely, one
can take q = � 1

4p2 + 1
2p + 5

4�.

Theorem 1.1 can be considered as a generalized version of the Skoda-type di-
vision theorem [Sk72] in that we divide not only at the right end of the Skoda
complex but also at all the other intermediate terms of the Skoda complex. In-
deed, we separate the division statement as Proposition 4.9 which follows from
the proof of (1.1) (see Remark 4.8).

The value of q in (1.1) comes from � 1
4p2 + 1

2p + 5
4� = max0≤m≤p m(p −

m + 1) + 1. We believe that the optimal value of q , which can be used in the
statement, will be q = p as is also indicated by (3.4). However, the present value
of q is sufficient to establish the following generalization of the main result of
[LL].

Corollary 1.2. There exist a complex algebraic variety X and an integrally
closed ideal sheaf b on it such that b cannot be written as a multiplier ideal sheaf
J (φ) even if we allow φ to be a general plurisubharmonic function.

Note that this is a generalization of the main result of [LL] since a priori the class
of all analytic multiplier ideal sheaves associated with a psh function might be
strictly larger than the class of all algebraic multiplier ideal sheaves. (We also
remark here that the note at the end of [LL] was made when we had not realized
yet that the proof of implication (3.4) depended on (3.1).)

This paper is organized as follows. In Section 1, we motivate and give the
definition of a Skoda complex. In Section 2, we discuss the openness conjecture of
[DK] and show that it implies the exactness of a Skoda complex in full generality.
In Section 3, we prove our main theorem (1.1), the exactness of a Skoda complex,
not assuming the openness conjecture, of course. In Section 4, we follow [LL] to
derive the existence of an integrally closed ideal that is not a multiplier ideal (1.2).

Remark 1.3. Apart from the use for local syzygy in [LL], a Skoda complex was
originally used to prove the Skoda-type division theorem in an algebraic way
(using cohomology vanishing) in [EL]. On the other hand, the original analytic
way of [Sk72] to prove the Skoda-type division theorem (not via cohomology
vanishing) does not involve the use of a Skoda complex. But it is interesting to
note that [H67] had used a Koszul complex (together with his L2 methods for ∂)
for a prototype result toward Skoda division. Later it was replaced by the more
refined L2 methods of [Sk72].

2. Definition of a Skoda Complex

Let X be a complex manifold and L be a line bundle on X. Let g1, . . . , gp ∈
H 0(X,L) be holomorphic sections. Let M be another line bundle. Let A(M)

denote either the set of all holomorphic sections of M or the set of all complex-
valued measurable sections of M . Given u ∈ A(M), we can ask whether there
exist h1, . . . , hp ∈ A(M − L) such that u = h1g1 + · · · + hpgp . Such a division



The Exactness of a General Skoda Complex 5

problem is concerned with the surjectivity of the multiplication map P : A(M −
L)⊕p → A(M) given by (v1, . . . , vp) 	→ v1g1 + · · · + vpgp from the direct sum
of p copies of A(M −L) on the left. In some approaches to the division problem,
one needs to extend the single map P to a Koszul-type complex to the left:

0 → A(M − pL)
⊕(p

p) → ·· · →A(M − 2L)⊕(p
2) → A(M − L)⊕p

→ A(M) → 0,

where we use the basis {ei1 ∧ · · · ∧ eim | 1 ≤ i1 < · · · < im ≤ p} for A(M −
mL)⊕(p

m) =: Bm, and the map P : Bm → Bm−1 in the complex is the usual Koszul
map

P(ei1 ∧ · · · ∧ eim) =
m∑

k=1

(−1)k−1gik ei1 ∧ · · · ∧ êik ∧ · · · ∧ eim. (1)

The map P is defined by (1) and the linearity in A. In effect, we have introduced
ei in order to define the map P . Now it is also natural to consider the weight
φ = log |g|2 (defining |g|2 := |g1|2 + · · · + |gp|2 throughout this paper) and (for
1 ≤ m ≤ p) the subset A(M −mL,e−(p−m)φe−ψ) ⊂ A(M −mL) of sections that
are square-integrable with respect to e−(p−m)φe−ψ dV , where dV is a volume
form and e−ψ is an (auxiliary) weight for the line bundle (M − pL).

Proposition 2.1. The restriction of the Koszul map P to A(M −mL,e−(p−m)φ ×
e−ψ)⊕(p

m) has its image contained in A(M − (m − 1)L, e−(p−m+1)φe−ψ)⊕( p
m−1).

Proof. Let u ∈ A(M − mL,e−(p−m)φe−ψ)⊕(p
m) and write it as u = ∑

J uJ eJ ,
where the index J denotes (j1, . . . , jm) with 1 ≤ j1 < · · · < jm ≤ p. We know
that for each index J ,

∫
X

|uJ |2e−(p−m)φe−ψ dV < ∞. Consider P(u) and its
I th component where the index I denotes (i1, . . . , im−1) with 1 ≤ i1 < · · · <

im−1 ≤ p. Call the I th component σ . Then

σ =
∑

t /∈I,1≤t≤p

gtuI∪t ,

where the index I ∪ t of uI∪t denotes the rearrangement in the right order, |I ∪ t |
being m. Now the conclusion follows from Cauchy–Schwarz:∣∣∣∣ ∑

t /∈I,1≤t≤p

gtuI∪t

∣∣∣∣2

e−(p−(m−1))φe−ψ ≤ |g|2
∑
J

|uJ |2e−(p−(m−1))φe−ψ.
�

Consequently, we have the following Koszul-type complex:

0 → A(M − pL,e−ψ)
⊕(p

p) → A(M − (p − 1)L, e−(ψ+φ))
⊕( p

p−1) → ·· ·
→ A(M − L,e−(ψ+(p−1)φ))⊕p → A(M,e−(ψ+pφ)) → 0.

Now if we restrict our attention to holomorphic sections and the corresponding
sheaves, we get a complex of coherent sheaves as follows.
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Definition 2.2 [EL; L, (9.6.36)]. Let X be a complex manifold, and let L and
M be line bundles on X. Let (M,e−ψ) be a singular hermitian metric. Let V be
the vector space spanned by holomorphic sections g1, . . . , gp ∈ H 0(X,L). Let
q ≥ p. The qth Skoda complex (Skodq) is the complex of Koszul maps (which
we will construct in what follows):

0 → �pV ⊗J ((q − p)φ + ψ) ⊗O((q − p)L + M) → ·· ·
→ �mV ⊗J ((q − m)φ + ψ) ⊗O((q − m)L + M) → ·· ·
→ �1V ⊗J ((q − 1)φ + ψ) ⊗O((q − 1)L + M)

→ J (qφ + ψ) ⊗O(qL + M) → 0, (2)

where we recall that φ = log |g|2 = log(|g1|2 + · · · + |gp|2).
Construction of (2). Let f : Y → X be a log-resolution of the ideal a ⊂ OX

generated by g1, . . . , gp by Hironaka’s theorem. Later in (3.4), we will use the
fact that f is given by composition of blow-ups along smooth subvarieties. Let F

be the exceptional divisor on Y such that a ·OY = OY (−F). Consider the Koszul
complex defined by pullbacks of generators of a where V is the vector space
spanned by the pullbacks:

0 → �pV ⊗OY (pF) → ·· · → �2V ⊗OY (2F) → V ⊗OY (F ) →OY → 0.

Then twist through by a coherent sheaf OY (KY/X − qF) ⊗ J (f ∗ψ), and it
stays exact since [EP, p. 7, footnote 2] says that the Koszul complex is locally
split and its syzygies are locally free, so twisting by any coherent sheaf preserves
exactness. We get our Skoda complex by taking the pushforward of this exact
sequence under f since (for 0 ≤ m ≤ p)

f∗(OY (KY/X − (q − m)F) ⊗J (Y,f ∗ψ)) = J (�, (q − m)φ + ψ).

This is from the change of variables formula [L, (9.3.43)] and the fact that
OY (−(q − m)F) ⊗ J (f ∗ψ) = J (f ∗((q − m)φ + ψ)), which in turn comes
from comparing the two sides using holomorphic function germs satisfying the
local integrability conditions of the multiplier ideal sheaves.

When φ has analytic singularities, the complex (Skodq) is exact for all q ≥ p

by Theorem 9.6.36 [L]. In the general case, we will prove that it is exact for
sufficiently large q ≥ p.

3. Openness Conjecture for Plurisubharmonic Functions

Suppose that a plurisubharmonic function e−φ is given on a complex manifold X.
Let 0 ≤ c < d be real numbers. If (e−φ)d is L1, then (e−φ)c is L1 as well since
(e−φ)c ≤ (e−φ)d . So (fixing any compact set K ⊂ X) the set T := {c ≥ 0 | e−2cφ

is L1 on a neighborhood of K} is an interval. We call supT the singularity expo-
nent of φ and write cK(φ) := supT . Is the interval T open at the right end? The
openness conjecture of [DK] says so, that is, cK(φ) /∈ T . On the other hand, the
following statement in terms of multiplier ideal sheaves is also natural to consider.
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Conjecture 3.1. Let α and β be plurisubharmonic functions on a complex man-
ifold. Let J+(α,β) be the maximal element of {J (α + tβ) | t > 0} as t → 0. Then
J+(α,β) = J (α).

The special case β = α gives the conjecture J+(α) = J (α) (where J+(α) :=
J+(α,α)), which was considered in [D, (15.2.2)] and [DEL]. This special case of
(3.1) implies the openness conjecture of [DK] though the converse is not known.
(Boucksom informed the author that it might be shown that the special case α = β

of (3.1) implies the general cases using the methods of [BFJ].)

Proposition 3.2. Conjecture (3.1) implies the openness conjecture of [DK].

Proof. Let c = cK(φ) be the singularity exponent. Take α = cφ and β = φ. Sup-
pose that c belongs to the interval T . Then e−2cφ is L1, so J (cφ) is trivial whereas
for any t > 0, we have that J (cφ + tφ) is nontrivial. This contradicts (3.1). �

Proposition 3.3. Conjecture (3.1) is true if α has analytic singularities (see [D,
Definition 1.10]).

Proof. The special case α = 0 is a result of Skoda ([Sk72], see [D, Lemma (5.6)]),
which we will use. We need to show that J (α) ⊂ J (α+δβ) for some δ > 0. Let f

be a holomorphic function germ which belongs to J (α). Then exp(log |f |2 − α)

is locally integrable. Since α has analytic singularities, we can use a log-resolution
of α and div(f ) to have ε > 0 such that exp((1 + ε)(log |f |2 − α)) is still inte-
grable. Now choose p such that 1

1+ε
+ 1

p
= 1. Then we can choose δ > 0 such that

(e−β)δp is integrable from the special case α = 0 of Skoda: [D, (5.6) a] says that
the multiplier ideal sheaf of δpβ is trivial when the Lelong number of δpβ is less
than 1. Then it gives the finiteness of the first factor on the right in the following
Hölder inequality:∫

�

|f |2e−(α+δβ) dV ≤
(∫

�

e−δpβ dV

)1/p(∫
�

|f |2(1+ε)e−(1+ε)α dV

)1/(1+ε)

< ∞. �
On the other hand, the special case of β having analytic singularities does not
seem to make (3.1) easier, as in the above way of using Hölder inequality.

Now we show that, in fact, deep Conjecture 3.1 implies the exactness of a
Skoda complex via vanishing. Note that this is completely independent of our
main result, Theorem 1.1, where the exactness of a Skoda complex is proved
without assuming (3.1). It seems that the methods in the proof of (3.4) might be
useful elsewhere as well.

Proposition 3.4. If Conjecture 3.1 is true, then the qth Skoda complex (2) is
exact for any q ≥ p.

For this, we will use Demailly’s version of the Nadel vanishing theorem [D,
(5.11)] for a weakly pseudoconvex Kähler manifold: a weakly pseudoconvex man-
ifold is a complex manifold that possesses a smooth plurisubharmonic exhaustion
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function φ. For example, a compact complex manifold is weakly pseudoconvex
when φ = 0. Also, Stein manifolds are weakly pseudoconvex.

Proof of Proposition 3.4. Going back to the construction of (2.2), first note that
the log-resolution Y is weakly pseudoconvex since it has the pullback under f of
a smooth plurisubharmonic exhaustion function on � as its own such exhaustion
function.

We need to show the vanishing of the higher direct images: Rif∗(OY (KY/� ⊗
J (Y,f ∗((q − m)φ + ψ)) for i ≥ 1. Using the projection formula and the fact
that � is Stein, it suffices to show the vanishing of Hi(Y,OY (KY/� + f ∗L) ⊗
J (f ∗((q − m)φ + ψ))) for a sufficiently positive line bundle L on �, i ≥ 1 and
0 ≤ j ≤ p. Taking L − K� positive enough, it suffices to show that

Hi(Y,OY (KY + f ∗L) ⊗J (f ∗((q − m)φ + ψ))) = 0. (3)

For this, we take F = f ∗(L). To apply the above-mentioned Nadel vanishing
theorem [D, (5.11)], we need to construct a singular metric h of f ∗(L) such that
its curvature current is strictly positive and the multiplier ideal sheaf J (Y,h) is
the same as J (f ∗((q − m)φ + ψ)). This will be shown possible by giving h as a
product of a smooth metric of a positive line bundle (which is f ∗L minus E, sum
of small multiples of exceptional divisors to be specified in what follows), the
singular metric precisely given by E for the Q-line bundle O(E), and f ∗((q −
m)φ + ψ) (a plurisubharmonic function, which can be seen as a singular metric
of OY ). We use the following lemma.

Lemma 3.5 [Vo, Proposition 3.24]. Let f1 : Y1 → Y0 be the blow-up of Y0 along a
complex submanifold Z0 of codimension k0, and let E1 be the exceptional divisor
of f1 in Y1. Let A0 be any ample line bundle on Y0. Then there is a large enough
integer a > 1 such that the Q-line bundle f ∗A0 − 1

a
E1 is positive.

Now let us suppose that the log-resolution f is composed of smooth blow-ups
fM ◦fM−1 ◦ · · · ◦f1. Set Y0 := � and A0 := L. By abuse of notation, Em denotes
all the proper transforms of the exceptional divisor Em in Ym up to YM . We choose
large enough integers a1, . . . , aM as follows.

• Integer a1 is chosen to be large enough to satisfy that f ∗
1 L − (1/a1)E1 is posi-

tive by (3.5).
• Integer a2 is chosen to be large enough so that

f ∗
2 f ∗

1 L = f ∗
2

((
f ∗

1 L − 1

a1
E1

)
︸ ︷︷ ︸

positive

+ 1

a1
E1

)

= f ∗
2

(
f ∗

1 L − 1

a1
E1

)
− 1

a2
E2︸ ︷︷ ︸

positive

+ 1

a2
E2 + f ∗

2

(
1

a1
E1

)
.
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• Integer a3 is chosen to be large enough so that

f ∗
3 f ∗

2 f ∗
1 L = f ∗

3 (· · · ) − 1

a3
E3︸ ︷︷ ︸

positive

+ 1

a3
E3 + f ∗

3

(
1

a2
E2 + f ∗

2

(
1

a1
E1

))
,

where the last three terms are rewritten as (1/a3)E3 + (1/a2)f
∗
3 E2 + (1/a1)×

f ∗
3 f ∗

2 E1.
• Similarly, for am (m ≥ 4),

f ∗
4 f ∗

3 f ∗
2 f ∗

1 L = (a positive line bundle)

+ 1

a4
E4 + 1

a3
f ∗

4 E3 + 1

a2
f ∗

4 f ∗
3 E2 + 1

a1
f ∗

4 f ∗
3 f ∗

2 E1,

...

f ∗L = f ∗
M · · ·f ∗

1 L

= (positive) + 1

aM

EM + 1

aM−1
f ∗

MEM−1 + · · ·

+ 1

a1
f ∗

Mf ∗
M−1 · · ·f ∗

2 E1.

It is now clear that we can take E to be

E := 1

aM

EM + 1

aM−1
f ∗

MEM−1 + · · · + 1

a1
f ∗

Mf ∗
M−1 · · ·f ∗

2 E1

for large enough integers a1, . . . , aM so that J (φE + f ∗((q − m)φ + ψ)) =
J (f ∗((q − m)φ + ψ)) (φE is the weight function associated with the Q-divisor
E) according to Conjecture 3.1. This proves (3.4). �

4. Proof of the Main Theorem

4.1. Algebraic Preliminaries

Let A be a commutative ring and M be the dual of free module M ′ := A⊕p of
rank p. We view an element of

∧k
M as an alternating function on (v1, . . . , vk),

where vi ∈ A⊕p . Let ε1, . . . , εp be the basis of M ′ and let e1, . . . , ep be the dual
basis of M . Let h ∈ M ′. Let i(h) be the contraction by h, that is, (for each m ≥ 1)
the map i(h) : ∧m

M → ∧m−1
M determined by

(i(h)(η))(v1, . . . , vm−1) = η(h, v1, . . . , vm−1)

for every m-form η ∈ ∧m
M . Then the following is well known.

Proposition 4.1. For every l, n ≥ 1 and φ ∈ ∧l
M , ψ ∈ ∧n

M , we have

i(h)(φ ∧ ψ) = (i(h)φ) ∧ ψ + (−1)lφ ∧ (i(h)ψ).

Now, taking h = g1ε1 + · · · + gpεp , it is easy to see that the map i(h) : ∧m
M →∧m−1

M is our Koszul map P of (1). Also, we let P ∨ denote the map e(ψ) :∧m−1
M → ∧m

M given by taking a wedge with (1/|g|2)ψ , where ψ = g1e1 +
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· · · + gpep . That is, for each u ∈ ∧m−1
M , we have

P ∨(u) = 1

|g|2 u ∧ ψ = 1

|g|2
(∑

I

uI eI

)
∧ (g1e1 + · · · + gpep)

= 1

|g|2
∑
J

m∑
k=1

(−1)m−kgjk
uj1···ĵk ···jm

. (4)

In the first summation, we take J = (j1, . . . , jm) where 1 ≤ j1 < · · · < jm ≤ p.
The last equality comes from the following argument: eI ∧ e� is not zero for �

such that {i1, . . . , im−1, �} has m elements. Rewriting the set {i1, . . . , im−1, �} in
the increasing order as {j1, . . . , jm}, where 1 ≤ j1 < · · · < jm ≤ p, we note that

ei1 ∧ · · · ∧ eim−1 ∧ e� = (−1)m−kej1 ∧ · · · ∧ ejm

when � = jk for some 1 ≤ k ≤ m.
As a consequence of (4.1), we have (taking l = m − 1).

Corollary 4.2. 1. P(P ∨u) = P ∨(Pu) + (−1)m−1u for all u ∈ ∧m−1
M ;

2. P(P ∨u) = (−1)m−1u if Pu = 0,
since the map i(h)ψ : ∧m

M → ∧m
M is the multiplication by 1.

Now we turn to define our Hilbert spaces and their double complex. For i ≥ 0
(though we actually need i = 0,1,2 only) and 0 ≤ m ≤ p, let H̃m

i be the Hilbert
space completion of the smooth ((q − m)L + M)-valued (0, i) forms that are
square-integrable with respect to e−(q−m)φe−ψ . Let Hm

i be the direct sum of
(
p
m

)
copies of H̃m

i , for which we use the basis {ei1 ∧ · · · ∧ eim | 1 ≤ i1 < · · · < im ≤ p}.
Each Hm

i is given the inner product of the direct sum Hilbert space. Let T : Hm
0 →

Hm
1 and S :Hm

1 →Hm
2 be the direct sum of ∂ operators.

· · · −−−−→ H2
0

P−−−−→ H1
0

P−−−−→ H0
0 −−−−→ 0

T

⏐⏐� T

⏐⏐� T

⏐⏐� T

⏐⏐�
· · · −−−−→ H2

1
P−−−−→ H1

1
P−−−−→ H0

1 −−−−→ 0

S

⏐⏐� S

⏐⏐� S

⏐⏐� S

⏐⏐�
· · · −−−−→ H2

2
P−−−−→ H1

2
P−−−−→ H0

2 −−−−→ 0

∂

⏐⏐� ∂

⏐⏐� ∂

⏐⏐� ∂

⏐⏐�
... −−−−→ ... −−−−→ ... −−−−→ ... −−−−→ 0

(5)

Let each P be the Koszul map of (1). First we compute P ∗u using the fact that
(P ∗u,v) = (u,Pv) for all v.

Throughout the rest of this paper, the index I denotes (i1, . . . , im−1), where
1 ≤ i1 < · · · < im−1 ≤ p, and the index J denotes (j1, . . . , jm), where 1 ≤ j1 <

· · · < jm ≤ p.
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Proposition 4.3. If Pu = 0, then ‖P ∗u‖2 = ‖u‖2.

Proof. Let u = ∑
I uI eI and v = ∑

J vJ eJ . Then

P(v) =
∑
J

vJ P (eJ ) =
∑
J

vJ

m∑
k=1

(−1)k−1gjk
ej1 ∧ · · · ∧ êjk

∧ · · · ∧ ejm.

From the condition that (P ∗u,v) = (u,Pv) for all v ∈ Hm
0 , we can determine

P ∗u. Namely, the coefficient for vJ in the summation (u,Pv) must be the coef-
ficient for eJ in P ∗u. Also, we take into account the fact that (P ∗u,v) is in Hm

0
and (u,Pv) is in Hm−1

0 with one less power of 1/|g|2 in the weight for the inner
product. Thus we have

P ∗u = 1

|g|2
∑
J

xj1···jmej1 ∧ · · · ∧ ejm, (6)

where xj1···jm = ∑m
k=1 uj1···ĵk ···jm

(−1)k−1gjk
. From (4), we have P ∗u =

(−1)m−1P ∨u. Then ‖P ∗u‖2 = (P ∗u,P ∗u) = (u,P (P ∗u)) = (u, (−1)m−1 ×
P(P ∨u)) = (u,u) by (4.2). �

4.2. Some Analytic Preliminaries

We recall the following fundamental lemmas in the methods of L2 estimates for
∂ as in [Sk72].

Lemma 4.4 ([Sk72, Proposition 1], see also [Va, (3.2)]). Let E0, F0, F1, F2 be
Hilbert spaces. Let P : F0 → E0 be a bounded operator. Let T : F0 → F1 and
S : F1 → F2 be unbounded, closely defined operators such that S ◦ T = 0. Let
G ⊂ E0 be a closed subspace such that P(KerT ) ⊂ G. We have P(KerT ) = G if
and only if there exists a constant C > 0 such that

‖P ∗u + T ∗β‖2 + ‖Sβ‖2 ≥ C‖u‖2

for all u ∈ G and all β ∈ DomT ∗ ∩ DomS ⊂ F1. Moreover, in this case, for every
u ∈ G, there exists v ∈ KerT such that Pv = u and ‖v‖ ≤ (1/

√
C)‖u‖.

All the norms in the above are taken in the respective Hilbert spaces.
Another important ingredient of the L2 estimates for ∂ is the following Boch-

ner–Kodaira inequality, also known as the basic estimate. Let � ⊂ Cn be a Stein
bounded open subset, and let L be a line bundle on �. Let e−ψ be a singular
hermitian metric of L. Let Fi be the Hilbert space of L-valued (0, i) forms that
are square integrable with respect to e−ψ . Let T : F0 → F1 and S : F1 → F2 be
the ∂ operators.

Lemma 4.5 (Bochner-Kodaira [H65]). For all β ∈ DomT ∗ ∩ DomS, we have

‖T ∗β‖2 + ‖Sβ‖2 ≥
∫

�

(√−1∂∂ψ
)
(β,β)e−ψ.
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Here we define (
√−1∂∂ψ)(β,β) to be (for β = β1 dz̄1 + · · · + βn dz̄n)

(√−1∂∂ψ
)
(β,β) :=

∑
1≤p,q≤n

∂2ψ

∂zp∂zq

βpβq

and regard
∫
�
(
√−1∂∂ψ)(β,β)e−ψ as the norm of β with respect to

√−1∂∂ψ .

Remark 4.6. In the use of Hörmander’s L2 estimates for ∂ with these lemmas, we
need the standard procedure of regularizing the plurisubharmonic weight ψ by a
sequence of smooth plurisubharmonic functions (ψν)ν≥1. For simplicity in nota-
tions, here and in the next section, we adopt the convention that each ψ means the
νth regularized ψν so that we can take

√−1∂∂ψν and so on. The resulting holo-
morphic function uν at each step comes with a uniform bound that is independent
of ν, so we can take the limit u as ν → ∞ in the usual way.

4.3. Proof of (1.1)

In the qth Skoda complex (2), let Sm denote the sheaf �mV ⊗ J ((q − m)φ +
ψ) ⊗ O((q − m)L + M) (0 ≤ m ≤ p). We want to show the exactness in the

middle of Sm+1
P→ Sm

P→ Sm−1 for every m ≥ 0 (defining S−1 := 0). Since the
exactness of a complex is a local property, it is sufficient to show (see (4.9) for a
stronger statement with estimates)

ImP |� = KerP |� inH 0(�,Sm), (7)

where � ⊂ X is a Stein open subset.
To apply the functional analysis lemma (4.4) to this, we consider the cor-

responding Hilbert spaces on � in (5) and the Koszul maps Pm−1 : Hm−1
0 →

Hm−2
0 , Pm : Hm

0 → Hm−1
0 . In the setting of (4.4), we take P := Pm, E0 := Hm−1

0 ,
Fi := Hm

i (i = 0,1,2) and take G := KerPm−1 in Hm−1
0 . It suffices to show that

Pm(KerT ) = G. Now consider

‖P ∗u + T ∗β‖2 + ‖Sβ‖2

= ‖T ∗β‖2 + ‖Sβ‖2 + ‖P ∗u‖2 + 2 Re(P ∗u,T ∗β). (8)

First, note that ‖P ∗u‖2 = ‖u‖2 from (4.3). Our plan toward having C‖u‖2 as
in (4.4) is to divide 2 Re(P ∗u,T ∗β) into a u part and a β part. Then the β part
being less than ‖T ∗β‖2 + ‖Sβ‖2 will finish the proof. More precisely, now apply
the Bochner-Kodaira inequality (4.5) to get

‖T ∗β‖2 + ‖Sβ‖2 ≥
∫

�

∑
J

(
(q − m)

√−1∂∂ log |g|2 + √−1∂∂ψ
)

× (βJ ,βJ )e−φ1 dV,

where dV is the Lebesgue volume form and φ1 := (q − m) log |g|2 + ψ is the
weight of the Hilbert spaces Hm

i . Here we have (q −m) times the norm of β with
respect to

√−1∂∂ log |g|2. This will be canceled out by another multiple of the
same norm of β coming out of 2 Re(P ∗u,T ∗β). More precisely, we will show
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that 2 Re(P ∗u,T ∗β) ≥ − 1
B

‖u‖2 − T1, where B is a constant B > 1 which we fix
throughout, and (see (10))

T1 := B

∫
�

|g|−2
∑

i1<···<im−1

|eφTi1···im−1 |2e−φ1 dλ

is the second term of the RHS of (10). Now our main inequality to show is

T1 ≤ (m(p − (m − 1)) + 1)

∫
�

∑
J

(√−1∂∂ log |g|2)(βJ ,βJ )e−φ1 dV.

Then we can take
q = max

0≤m≤p
m(p − m + 1) + 1

(which gives q in (1.1)) so that (Skodq) is exact, where we apply (4.4) with C =
1 − 1

B
.

Now we begin the main computations following the previous outline. In order
to consider 2 Re(P ∗u,T ∗β), we write arbitrary u ∈Hm−1

0 , β ∈Hm
1 as

u =
∑

i1<···<im−1

ui1···im−1ei1 ∧ · · · ∧ eim−1,

β =
∑

j1<···<jm

(β1
j1···jm

dz̄1 + · · · + βn
j1···jm

dz̄n)ej1 ∧ · · · ∧ ejm.

We use (6) to obtain (letting φ := log |g|2)

2 Re(P ∗u,T ∗β) = 2 Re(∂(P ∗u),β) = 2 Re
∫

U

∑
j1<···<jm

SJ e−φ1 dV,

where

SJ := uj2···jm

(
∂

∂z1
(gj1e

−φ)β1
j1···jm

+ · · · + ∂

∂zn

(gj1e
−φ)βn

j1···jm

)

+ uj1j3···jm

(
∂

∂z1
(gj2e

−φ)β1
j1···jm

+ · · · + ∂

∂zn

(gj2e
−φ)βn

j1···jm

)
+ · · ·
+ uj1···jm−1

(
∂

∂z1
(gjme−φ)β1

j1···jm
+ · · · + ∂

∂zn

(gjme−φ)βn
j1···jm

)
.

Then we can rewrite this sum over J as the sum over I :

2 Re(∂(P ∗u),β) =
∫

�

∑
i1<···<im−1

ui1···im−1Ti1···im−1e
−φ1 dV,

where (understanding that the index I ∪ t of βI∪t denotes the rearrangement in
the right order as far as |I ∪ t | = m) we define

Ti1···im−1 :=
∑

t /∈I,1≤t≤p

(
∂

∂z1
(gt e−φ)β1

I∪t + · · · + ∂

∂zn

(gt e−φ)βn
I∪t

)
. (9)
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Remembering that |u|2 := ∑
i1<···<im−1

|ui1···im−1 |2, we have

2 Re(∂(P ∗u),β) ≥ − 1

B

∫
�

|g|2|u|2e−2φ−φ1 dV

− B

∫
�

|g|−2
∑

i1<···<im−1

|eφTi1···im−1 |2e−φ1 dV, (10)

where we have used the fact that for any complex numbers X, Y : |X|2 +|Y |2 +2 ×
Re(XY) ≥ 0, and also 1

B
|X|2 + B|Y |2 + 2 Re(XY) ≥ 0 for any B ≥ 1. Then we

consider

|eφTi1···im−1 |2 =
∣∣∣∣eφ

∑
t /∈I,1≤t≤p

(
∂

∂z1
(gt e−φ)β1

I∪t + · · · + ∂

∂zn

(gt e−φ)βn
I∪t

)∣∣∣∣2

=
∣∣∣∣ ∑
t /∈I,1≤t≤p

(
eφ ∂

∂z1
(gt e

−φ)β1
I∪t + · · · + eφ ∂

∂zn

(gt e
−φ)βn

I∪t

)∣∣∣∣2

= |g|−4
∣∣∣∣ ∑
t /∈I,1≤t≤p

n∑
k=1

p∑
s=1

gs

(
gs

∂gt

∂zk

− gt

∂gs

∂zk

)
βk

I∪t

∣∣∣∣2

noting that (for each t)

eφ ∂

∂zk

(gt e
−φ) = |g|−2

p∑
s=1

gs

(
gs

∂gt

∂zk

− gt

∂gs

∂zk

)
. (11)

Finally, we have the following inequalities:

B|g|−2
∑

i1<···<im−1

|eφTi1···im−1 |2

= B|g|−2
∑

i1<···<im−1

|g|−4
∣∣∣∣ ∑
t /∈I,1≤t≤p

n∑
k=1

p∑
s=1

gs

(
gs

∂gt

∂zk

− gt

∂gs

∂zk

)
βk

I∪t

∣∣∣∣2

= B|g|−6
∑

i1<···<im−1

∣∣∣∣
p∑

s=1

gs

∑
t /∈I

1≤t≤p

n∑
k=1

(
gs

∂gt

∂zk

− gt

∂gs

∂zk

)
βk

I∪t

∣∣∣∣2

(12)

≤ B|g|−6
∑

i1<···<im−1

|g|2
∣∣∣∣

p∑
s=1

∑
t /∈I

1≤t≤p

[[s, t]]I∪t

∣∣∣∣2

(13)

≤ (p − (m − 1))B|g|−4
∑

i1<···<im−1

∑
t /∈I

1≤t≤p

∣∣∣∣
p∑

s=1

[[s, t]]I∪t

∣∣∣∣2

(14)

≤ m(p − (m − 1))B|g|−4
∑
J

∑
1≤q<r≤p

|[[q, r]]J |2 (15)

≤ (m(p − (m − 1)) + 1)
∑
J

(√−1∂∂ log |g|2)(βJ ,βJ ). (16)
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Here we have defined (from (13) on)

[[r, s]]J :=
n∑

k=1

(
gr

∂gs

∂zk

− gs

∂gr

∂zk

)
βk

J

for any 1 ≤ r , s ≤ p and the index J with |J | = m. The implications (12) → (13)
and (13) → (14) are given by Cauchy–Schwarz whereas (14) → (15) follows
from an elementary counting argument. Also, we have used the following:

(√−1∂∂ log |g|2)(βJ ,βJ ) =
∑

1≤p,q≤n

∂2

∂zp∂zq

(log |g|2)βp
J β

q
J

= |g|−4
∑

1≤q<r≤p

∣∣∣∣
n∑

k=1

(
gq

∂gr

∂zk

− gr

∂gq

∂zk

)
βk

J

∣∣∣∣2

.

This completes the proof of (1.1).

Remark 4.7. The value of q in Theorem 1.1 can be improved if we have a
better inequality between (12) and

∑
J (

√−1∂∂ log |g|2)(βJ ,βJ ) in (16). For
example, suppose that p = 2, then (1.1) says that q = � 1

4p2 + 1
2p + 5

4� = 3
works. However, an easy computation shows that (12) is less than two times∑

J (
√−1∂∂ log |g|2)(βJ ,βJ ) in this case. Therefore (the optimal value) q = 2

also works in this case in (1.1).

Remark 4.8. We point out that the above method of proof yields the following
proposition, which is equality (7) together with L2 estimates. This generalizes
the original Skoda division theorem in the setting of a Skoda complex. Indeed, it
is completely standard in Hörmander’s L2 estimates that the use of a functional
analysis lemma similar to (4.4) automatically produces a solution of ∂ together
with L2 estimates. The only difference between the following proposition and (7)
is that we now use the last sentence of (4.4).

We use the setting and notation around (5) of Section 4 in the following propo-
sition.

Proposition 4.9. Let X = � be a Stein manifold. Let p and q be integers as in
(1.1). For every m such that 1 ≤ m ≤ p, let u be an element of the direct sum
space Hm−1

0 such that each component of u is holomorphic. If the norm of u in

Hm−1
0 is finite, then there exists v ∈ Hm

0 such that Pv = u and each component of
v is holomorphic. Moreover, there exists a constant C > 0 such that ‖v‖ ≤ C‖u‖,
where C is independent of u.

It is also not hard to formulate a version for a projective manifold X, similar to
the Skoda division theorem for such X.
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5. Applications to the Local Syzygy

As we discussed in Introduction, [LL] used the exactness of a Skoda complex to
show that not every integrally closed ideal is a multiplier ideal. Recall the setting
from Introduction: Let � ⊂ X be a connected open subset of a complex mani-
fold X. Let e−φ be a singular weight on � where φ is a plurisubharmonic func-
tion on �. From e−φ , there are two fundamental ways to define an ideal sheaf
of local holomorphic function germs u: collecting those with |u|2e−φ bounded
above locally, on the one hand; and collecting those with the integral

∫
�

|u|2e−φ

finite, on the other hand. Let us denote the former by I(φ) and the latter by J (φ).
If φ has analytic singularities and is of the form φ = log(|f1|2 +· · ·+ |fp|2), then
I(φ) is the integral closure of the ideal generated by f1, . . . , fp . It is important to
distinguish I(φ) from J (φ) clearly, so let us call I(φ) the sublevel ideal sheaf of
φ (whereas J (φ) is well known as the multiplier ideal sheaf of φ). The following
is essentially contained in [D].

Proposition 5.1. A sublevel ideal sheaf I(φ) is integrally closed.

Proof. Suppose that a local holomorphic function f satisfies an equation

f k + a1f
k−1 + · · · + ak−1s + fk = 0,

where ai ∈ I(φ)i . We have the following elementary bound [D97, Ch. II, Lem-
ma 4.10] for the roots of a monic polynomial

|f | ≤ 2 max
1≤i≤k

|ai |1/i

locally. Therefore |f |2e−φ is locally bounded above. �

Now we apply our main theorem in the local setting as in [LL]. We only need a
slight modification of the statements from [LL] due to the fact that our q in (1.1) is
not optimal as in the algebraic case of (1.1). Let X be a smooth complex algebraic
variety of dimension n, and let (O,m) be the local ring of a point x ∈ X. Let
h1, . . . , hp ∈ m be any collection of nonzero elements generating an ideal a ⊂ O.
Our main theorem (1.1) implies the following version of Theorem B in [LL], for
which we just note that our exact Skoda complex sits in-between the two Koszul
complexes in the statement.

Theorem 5.2 (see Theorem B [LL]). Let J (ψ) be the multiplier ideal sheaf of
a plurisubharmonic function ψ which is defined in a neighborhood of x. There
exists an integer p′ ≥ p such that for every 0 ≤ r ≤ p, the natural map

Hr(K•(h1, . . . , hp) ⊗ ap′−rJ (ψ)) → Hr(K•(h1, . . . , hp) ⊗J (ψ))

vanishes.

The original Theorem B was stronger when φ is algebraic, which means that we
could actually take p′ = p in that case. Now, using the isomorphism between Hr

and Torr and taking p = n, we have the following.



The Exactness of a General Skoda Complex 17

Corollary 5.3 (see Corollary C [LL]). There exists an integer n′ ≥ n such that
the natural maps

Torr (m
n′−rJ (ψ),C) → Torr (J (ψ),C)

vanish for all 0 ≤ r ≤ n.

Corollary 5.4 (see Theorem A [LL]). Let J = J (ψ) ⊂ O be (the germ at x

of) any multiplier ideal. Then there exists an integer n′ ≥ n with the property: For
p ≥ 1, no minimal pth syzygy of J vanishes modulo mn′+1−p .

(5.3) implies (5.4). Take n′ from (5.3). Suppose that a minimal pth syzygy of J
vanishes modulo mn′+1−p . That is, given a minimal free resolution, a linear com-
bination of the columns of up , namely up(e) for some e ∈ Rp = Obp , satisfies
up(e) ∈ maRp−1 = ma ·Obp−1 , where a = n′ + 1 − p ≥ 2. Then Proposition 1.1
[LL] says that e represents a class lying in the image of Torp(ma−1I,C) →
Torp(I,C). This contradicts (5.3).

Finally, [LL, Example 2.2] says that there exists an integrally closed ideal I sup-
ported at a point with a first syzygy vanishing to arbitrary order a at the origin. It
cannot be a multiplier ideal due to (5.4). Hence Corollary 1.2 is proved since it is
sufficient to examine at the local ring of a point.

Note added. The referee kindly informed the author of recently published
papers [J1] and [J2] (formerly arXiv:1102.3950, arXiv:1105.4474) which con-
tain independently obtained results similar to ours in this paper (formerly arXiv:
1007.0551): division in the Koszul complex setting (1.1), (4.9). We note that
[J1, Corollary 5.7] gives an improved lower bound of q from (1.1) and (4.9).
Its method seems useful toward obtaining the optimal value of q . The author is
grateful to the referee for informing him of [J1] and [J2].

Acknowledgment. The author would like to thank Professor Robert Lazars-
feld for informing him of the question of the exactness of a Skoda complex with
general plurisubharmonic functions at an AIM workshop in 2006. The author also
thanks Professor Lawrence Ein for his suggestion and encouragement to use the
methods of [Sk72] in the present setting. The author is also grateful to Kyungy-
ong Lee for useful discussions and to Sebastien Boucksom for helpful answers to
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