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Hilbert Transform Characterization and
Fefferman–Stein Decomposition

of Triebel–Lizorkin Spaces

Chin-Cheng Lin, Ying-Chieh Lin,
& Qixiang Yang

1. Introduction

There are several equivalent definitions for H1(Rn). One of these is the Riesz
transforms characterization (cf. [10, p. 221]); that is, H1(Rn) consists of the class
of L1(Rn) functions such that their Riesz transforms belong to L1(Rn) as well.
Furthermore,

‖f ‖H1 ≈ ‖f ‖L1 +
n∑
j=1

‖Rj(f )‖L1 ,

where the Rj are the Riesz transforms. By the duality between H1 and BMO,
every ϕ ∈ BMO(Rn) can be represented as

ϕ = ϕ0 +
n∑
j=1

Rj(ϕj ) (modulo constants),

where ϕ0,ϕj ∈ L∞(Rn) (see [4, Thm. 3]). This decomposition is widely known
as the Fefferman–Stein decomposition.

Many authors (see e.g. [1; 2; 3; 7; 8; 11]) have generalized the Riesz trans-
forms characterization and Fefferman–Stein decomposition to different variants
of Hardy spaces and BMO spaces. Since both H1 and BMO are special cases of
Triebel–Lizorkin spaces, we seek to extend these two properties to (respectively)
the Triebel–Lizorkin spaces Ḟ 0,q

1 (R) (2 ≤ q < ∞) and their duals Ḟ 0,q ′
∞ (R).

LetS(R) andS ′(R)denote the Schwartz space and its dual, respectively. Choose
a fixed function ϕ ∈ S(R) satisfying supp(ϕ) ⊂ {ξ ∈ R : 1/2 ≤ |ξ| ≤ 2}, |ϕ̂(ξ)| ≥
C > 0 for 3/5 ≤ |ξ| ≤ 5/3, and

∑
j∈Z|ϕ̂(2jξ)|2 = 1 if ξ �= 0. Write ϕj(x) =

2jϕ(2jx), j ∈ Z. For 1 < q < ∞, the homogeneous Triebel–Lizorkin space
Ḟ

0,q

1 (R) is the collection of all f ∈ S ′(R)/P, the tempered distributions modulo
polynomials, satisfying

‖f ‖Ḟ 0,q
1

:=
∥∥∥∥
{∑
j∈Z

(|ϕj ∗ f |)q
}1/q∥∥∥∥

L1

< ∞.
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Its dual space Ḟ 0,q ′
∞ (R), 1/q + 1/q ′ = 1, is the collection of all f ∈ S ′(R)/P with

‖f ‖
Ḟ

0,q ′
∞

:= sup
I dyadic

{
1

|I |
∫
I

∞∑
j=−log2|I |

(|ϕj ∗ f(x)|)q ′
dx

}1/q ′

< ∞;

here the supremum is taken over all dyadic intervals I ⊂ R and |I | denotes the
length of I.

Denote by H(f ) the Hilbert transform of f with Fourier transform

Ĥ(f )(ξ) = −i sgn(ξ)f̂ (ξ).

As mentioned previously for the special case n = 1, the Hardy space H1(R) can
be characterized by its Hilbert transform; that is, f ∈ H1(R) if and only if f ∈
L1(R) and H(f )∈L1(R). By the Fefferman–Stein decomposition, a function f ∈
BMO(R) can be represented as the sum f0 +Hf1 for f0 and f1 in L∞(R). Both
properties play an important role in harmonic analysis. SinceH1 = Ḟ

0,2
1 , BMO =

Ḟ 0,2∞ , and (H1)′ = BMO, it is natural to ask whether the Triebel–Lizorkin spaces

Ḟ
0,q

1 and their dual spaces Ḟ 0,q ′
∞ have similar properties. In this paper, we give

affirmative answers for both by using Meyer wavelets. The difficulties for both
questions come from defining the suitable relative L1 and L∞ spaces and then
proving the relative conclusions.

Wavelets greatly facilitate the study of function spaces. We recall the defini-
tion of Meyer’s wavelets [9] as follows. Let �(ξ) ∈ C∞

0 ([−4π/3, 4π/3]) be an
even function satisfying �(ξ) ∈ [0,1] and �(ξ) = 1 for |ξ| ≤ 2π/3. Set �(ξ) =
{�(ξ/2)2 −�(ξ)2}1/2. Then�(ξ)∈C∞

0 ([−8π/3, 8π/3]) is an even function and
satisfies the following conditions:

(a) �(ξ)∈ [0,1];
(b) �(ξ) = 0 for |ξ| ≤ 2π/3;
(c) �2(ξ)+�2(2ξ) = 1 for ξ ∈ [2π/3, 4π/3];
(d) �2(ξ)+�2(4π − ξ) = 1 for ξ ∈ [4π/3, 8π/3].

Define the functionφ(x) (father wavelet) andψ(x) (mother wavelet) by the Fourier
transform φ̂(ξ) = �(ξ) and ψ̂(ξ) = �(ξ)e−iξ/2, respectively. For j, k ∈ Z , we
write ψj,k(x) = 2j/2ψ(2jx − k). Then {ψj,k(x)}j,k∈Z forms an orthonormal basis
for L2(R).

For an arbitrary distribution f ∈ S ′(R)/P, define its wavelet coefficients by

aj,k = 〈f ,ψj,k〉 for j, k ∈ Z.

Then the following wavelet expansion is true in the sense of distribution:

f(x) =
∑
j∈Z

{∑
k∈Z

aj,kψj,k(x)

}
:=

∑
j∈Z

Qj(f )(x).

Furthermore, Frazier and Jawerth [5, p. 47] proved that there is a one-to-one corre-
spondence between a distribution f in Ḟ 0,q

1 and a sequence of numbers {aj,k}j,k∈Z.
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Proposition 1.1. Suppose 1< q < ∞. Then, for f ∈ S ′(R)/P,

‖f ‖Ḟ 0,q
1

=
∥∥∥∥
{ ∑
j,k∈Z

(2j/2|aj,k|χ(2jx − k))q
}1/q∥∥∥∥

L1

;

here χ(x) denotes the characteristic function of the interval [0, 1).

We now proceed with the definition of the relative L1 spaces. For any two integers
N and N ′ with N ≤ N ′, set

fN,N ′(x) :=
∑

N≤j≤N ′
Qj(f )(x).

We divide fN,N ′ into two parts, f N1,1
N,N ′ and f N1,2

N,N ′ , which are given by

f
N1,1
N,N ′(x) :=



fN,N ′(x) if N1 ≤ N,∑

N1≤j≤N ′ Qj(f )(x) if N + 1 ≤ N1 ≤ N ′,
0 if N1 ≥ N ′ + 1

and f N1,2
N,N ′(x) := fN,N ′(x)− f N1,1

N,N ′(x). For 2 ≤ q < ∞, the space L1,q(R) is de-
fined as the collection of all f ∈ S ′(R)/P such that

‖f ‖L1,q := sup
N≤N ′

min
N≤N1≤N ′+1

(∥∥f N1,1
N,N ′

∥∥
Ḟ 0,q

1
+ ∥∥f N1,2

N,N ′
∥∥
L1

)
< ∞.

It follows directly from the definition that ‖f ‖L1,q ≤ ‖f ‖Ḟ 0,q
1

and hence Ḟ 0,q

1 (R) ⊂
L1,q(R). The orthogonality of the wavelet basis {ψj,k}j,k∈Z clearly allows us to
make the following statement.

Remark 1.2. For fN,N ′ ∈L1,q(R),

‖fN,N ′ ‖L1,q = max
N≤Ñ≤Ñ ′≤N ′

min
Ñ≤Ñ1≤Ñ ′+1

(∥∥f Ñ1,1
Ñ,Ñ ′

∥∥
Ḟ 0,q

1
+ ∥∥f Ñ1,2

Ñ,Ñ ′
∥∥
L1

)
.

The Hilbert transform characterization of Ḟ 0,q

1 (R), 2 ≤ q < ∞, can be stated as
follows.

Theorem 1.3. For 2 ≤ q < ∞, a distribution f ∈ Ḟ 0,q

1 (R) if and only if f ∈
L1,q(R) and H(f )∈L1,q(R). Moreover, ‖f ‖Ḟ 0,q

1
≈ ‖f ‖L1,q + ‖H(f )‖L1,q .

Remark 1.4. The definition of L1,q(R) can be extended to L1,q(Rn) for arbitrary
dimension n ∈ N in a similar way, yet proving the result in dimension 1 requires
only that we simultaneously control the norm of two functions. For n ≥ 2 we
must control the norm of several functions, which cannot be done at the same
time. Hence we need to develop new skills for transferring the control over the
norm of several functions to the case where we control the norm of two functions
each time. Such a transformation may result in changes of norm each time. There-
fore, the approach used here cannot be applied for Rn when n ≥ 2.
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Remark 1.5. The proof of Theorem 1.3 depends on the following implication:

f ,Hf ∈L1 �⇒ f ∈H1 ⊂ F
0,q

1 for q ≥ 2.

This is why we require q ≥ 2.

To obtain the Fefferman–Stein decomposition of Ḟ 0,q
∞ (R), 1 < q ≤ 2, we must

deal with the dual space of L1,q(R). For 1 < q ≤ 2, define the space L∞,q(R) as
the collection of all f ∈ S ′(R)/P satisfying

‖f ‖L∞,q := sup
N≤N ′

max
N≤N1≤N ′+1

(∥∥f N1,1
N,N ′

∥∥
Ḟ

0,q
∞

+ ∥∥f N1,2
N,N ′

∥∥
L∞

)
< ∞.

By definition, ‖f ‖
Ḟ

0,q
∞

≤ ‖f ‖L∞,q and hence L∞,q(R) ⊂ Ḟ
0,q

∞ (R). Let

S0(R) := {f ∈ S(R) : f̂ = 0 in a neighborhood of the origin}.
It is easy to see that S0(R) is dense inL1,q(R). Using the dualities (Ḟ 0,q

1 )′ = Ḟ
0,q ′

∞
and (L1)′ = L∞, we get the duality (L1,q)′ = L∞,q ′

.

Theorem 1.6. Suppose 2 ≤ q < ∞. The dual space of L1,q(R) is L∞,q ′
(R) in

the following sense. If g ∈L∞,q ′
(R) then the map Lg given by Lg(f ) = 〈f , g〉 is

a bounded linear functional on L1,q(R); conversely, if L ∈ (L1,q(R))′ then there
exists a g ∈L∞,q ′

(R) such that L = Lg.
Applying the above results, we obtain the following Fefferman–Stein decomposi-
tion of Ḟ 0,q

∞ (R).

Theorem 1.7. Suppose 1 < q ≤ 2. Then f ∈ Ḟ 0,q
∞ (R) if and only if there exist

f0, f1 ∈L∞,q(R) such that f = f0 + H(f1).

We have seen that Ḟ 0,q

1 (R) ⊂ L1,q(R) and L∞,q(R) ⊂ Ḟ
0,q

∞ (R). As the final re-
mark, we show at the end of this paper that both inclusions are proper.

Remark 1.8. (i) For 2 ≤ q < ∞, Ḟ 0,q

1 (R) � L1,q(R).

(ii) For 1< q ≤ 2, L∞,q(R) � Ḟ
0,q

∞ (R).

The rest of the paper is organized as follows. In Section 2 we introduce a lemma and
prove the Hilbert transform characterization of Triebel–Lizorkin spaces Ḟ 0,q

1 (R),
2 ≤ q < ∞. In Section 3, the duality of L1,q(R) and L∞,q ′

(R) is established.
We show the Fefferman–Stein decomposition of Ḟ 0,q

∞ (R) in Section 4. Finally, in
Section 5 we prove the proper inclusions Ḟ 0,q

1 ⊂ L1,q and L∞,q ⊂ Ḟ
0,q

∞ .

2. Proof of the Hilbert Transform Characterization

The boundedness of the Hilbert transform acting on Ḟ 0,q

1 was demonstrated in [6].

Theorem 2.1. Suppose 1< q < ∞. Then the Hilbert transform is bounded from

the Triebel–Lizorkin spaces Ḟ 0,q

1 (R) into itself.
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In order to prove Theorem 1.3, we need the following lemma.

Lemma 2.2. For 2 ≤ q < ∞, if f(x) ∈ L1,q(R) then Qj(f ) ∈ H1(R) for all
j ∈ Z. Moreover, there exists a constant C, independent of j and f , such that
‖Qj(f )‖H1 ≤ C‖f ‖L1,q .

Proof. For all j ∈ Z we have Qjf = fj,j . From the definition of L1,q(R) it fol-
lows that ‖fj,j‖L1,q ≤ ‖f ‖L1,q . So to prove Lemma 2.2, it suffices to prove that
‖Qj(f )‖H1 ≤ C‖Qj(f )‖Ḟ 0,q

1
and ‖Qj(f )‖H1 ≤ C‖Qj(f )‖L1 for all j ∈ Z. The

first inequality is a direct consequence of Proposition 1.1:

‖Qj(f )‖Ḟ 0,2
1

=
∥∥∥∥
{∑
k∈Z

(2j/2|aj,k|χ(2jx − k))2
}1/2∥∥∥∥

L1

=
∥∥∥∥
{∑
k∈Z

(2j/2|aj,k|χ(2jx − k))q
}1/q∥∥∥∥

L1

= ‖Qj(f )‖Ḟ 0,q
1

for j ∈ Z.

For the second inequality, we note that Qj(f ) = Qj(Qj(f )). Then, by Proposi-
tion 1.1,

‖Qj(f )‖Ḟ 0,2
1

=
∥∥∥∥
{∑
k∈Z

(2j/2|〈Qj(f ),ψj,k〉|χ(2jx − k))2
}1/2∥∥∥∥

L1

=
∥∥∥∥∑
k∈Z

2j/2|〈Qj(f ),ψj,k〉|χ(2jx − k)
∥∥∥∥
L1

≤
∫

R
|Qj(f )(y)|

∑
k∈Z

|ψ(2jy − k)|
{∫

R
2jχ(2jx − k) dx

}
dy

=
∫

R
|Qj(f )(y)|

∑
k∈Z

|ψ(2jy − k)| dy for j ∈ Z.

Because ψ(x) decreases rapidly, we have∑
k∈Z

|ψ(x − k)| ≤ C for x ∈ R.

As a result, ‖Qj(f )‖H1 ≈ ‖Qj(f )‖Ḟ 0,2
1

≤ C‖Qj(f )‖L1 , from which Lemma 2.2

follows.

Remark 2.3. The proof of Lemma 2.2 implies the following expression:

‖Qj(f )‖H1 ≈ ‖Qj(f )‖L1 ≈ ‖H(Qj(f ))‖H1 .

We now are ready to show the Hilbert transform characterization of Ḟ 0,q

1 .

Proof of Theorem 1.3. Suppose f ∈ Ḟ 0,q

1 (R) for 2 ≤ q < ∞. Then, by Theo-
rem 2.1 and the inequality ‖f ‖L1,q ≤ ‖f ‖Ḟ 0,q

1
, we immediately obtain ‖f ‖L1,q +

‖H(f )‖L1,q � ‖f ‖Ḟ 0,q
1
.
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To show the converse it is sufficient to prove that, for any two integers N and
N ′ with N ≤ N ′,

‖fN,N ′ ‖Ḟ 0,q
1

� ‖fN,N ′ ‖L1,q + ‖H(fN,N ′)‖L1,q ,

where C > 0 is a constant independent of N and N ′. By Remark 1.2,

‖fN,N ′ ‖L1,q = max
N≤Ñ≤Ñ ′≤N ′

min
Ñ≤Ñ1≤Ñ ′+1

(∥∥f Ñ1,1
Ñ,Ñ ′

∥∥
Ḟ 0,q

1
+ ∥∥f Ñ1,2

Ñ,Ñ ′
∥∥
L1

)
.

According to the support property of the Fourier transform of a Meyer wavelet,
for any k, k ′ ∈ Z we have

〈H(ψj ′,k ′),ψj,k〉 = 0 if |j − j ′| ≥ 2.

Therefore,

H(fN,N ′)(x) =
∑

N−1≤j≤N ′+1
k∈Z

〈 ∑
N≤j ′≤N ′
k ′∈Z

fj ′,k ′H(ψj ′,k ′),ψj,k

〉
ψj,k(x)

and

‖H(fN,N ′)‖L1,q

= max
N−1≤Ñ≤Ñ ′≤N ′+1

min
Ñ≤Ñ1≤Ñ ′+1

(∥∥H(fN,N ′)Ñ1,1
Ñ,Ñ ′

∥∥
Ḟ 0,q

1
+ ∥∥H(fN,N ′)Ñ1,2

Ñ,Ñ ′
∥∥
L1

)
.

For any fixed integers N ≤ N ′, we choose an integer n0 with N ≤ n0 ≤ N ′ + 1
such that∥∥f n0,1

N,N ′
∥∥
Ḟ 0,q

1
+ ∥∥f n0,2

N,N ′
∥∥
L1 = min

N≤N1≤N ′+1

(∥∥f N1,1
N,N ′

∥∥
Ḟ 0,q

1
+ ∥∥f N1,2

N,N ′
∥∥
L1

) ≤ ‖fN,N ′ ‖L1,q

and then choose another integer n1 with N ≤ n1 ≤ N ′ + 1 such that∥∥H(fN,N ′)n1,1
N,N ′

∥∥
Ḟ 0,q

1
+ ∥∥H(fN,N ′)n1,2

N,N ′
∥∥
L1

= min
N≤N1≤N ′+1

(∥∥H(fN,N ′)N1,1
N,N ′

∥∥
Ḟ 0,q

1
+ ∥∥H(fN,N ′)N1,2

N,N ′
∥∥
L1

) ≤ ‖H(fN,N ′)‖L1,q .

Consider three cases: (1) n0 = n1; (2) n0 < n1; (3) n0 > n1. For n0 = n1,
since

∥∥f n0,2
N,N ′

∥∥
L1 ≤ ‖fN,N ′ ‖L1,q and both ‖Qn0−1(fN,N ′)‖H1 and ‖QN(fN,N ′)‖H1

are dominated by ‖fN,N ′ ‖L1,q by Lemma 2.2, it follows that∥∥f n0,2
N,N ′ − {Qn0−1(fN,N ′)+QN(fN,N ′)}∥∥

L1 � ‖fN,N ′ ‖L1,q . (2.1)

On the other hand,

H(fN,N ′)n1,2
N,N ′ = H(

f
n0,2
N,N ′ − {Qn0−1(fN,N ′)+QN(fN,N ′)}

+ {Qn0−1(fN,N ′)+QN(fN,N ′)})n1,2
N,N ′

= H(
f
n0,2
N,N ′ − {Qn0−1(fN,N ′)+QN(fN,N ′)})

+ H(Qn0−1(fN,N ′)+QN(fN,N ′))n1,2
N,N ′ .

In view of Proposition 1.1, Lemma 2.2, and the H1-boundedness of the Hilbert
transform, we have
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∥∥H(Qn0−1(fN,N ′)+QN(fN,N ′))n1,2
N,N ′

∥∥
H1 � ‖fN,N ′ ‖L1,q ;

this expression, when combined with the inequality∥∥H(fN,N ′)n1,2
N,N ′

∥∥
L1 ≤ ‖H(fN,N ′)‖L1,q ,

implies that∥∥H(
f
n0,2
N,N ′ − {Qn0−1(fN,N ′)+QN(fN,N ′)})∥∥

L1

� ‖fN,N ′ ‖L1,q + ‖H(fN,N ′)‖L1,q . (2.2)

Both (2.1) and (2.2) yield∥∥f n0,2
N,N ′ − {Qn0−1(fN,N ′)+QN(fN,N ′)}∥∥

H1

�
∥∥f n0,2

N,N ′ − {Qn0−1(fN,N ′)+QN(fN,N ′)}∥∥
L1

+ ∥∥H(
f
n0,2
N,N ′ − {Qn0−1(fN,N ′)+QN(fN,N ′)})∥∥

L1

� ‖fN,N ′ ‖L1,q + ‖H(fN,N ′)‖L1,q

and so
∥∥f n0,2

N,N ′
∥∥
Ḟ 0,q

1
�

∥∥f n0,2
N,N ′

∥∥
H1 � ‖fN,N ′ ‖L1,q + ‖H(fN,N ′)‖L1,q . The definition

of n0 implies that
∥∥f n0,1

N,N ′
∥∥
Ḟ 0,q

1
≤ ‖fN,N ′ ‖L1,q . Therefore,

‖fN,N ′ ‖Ḟ 0,q
1

≤ ∥∥f n0,1
N,N ′

∥∥
Ḟ 0,q

1
+ ∥∥f n0,2

N,N ′
∥∥
Ḟ 0,q

1
� ‖fN,N ′ ‖L1,q + ‖H(fN,N ′)‖L1,q .

Now suppose n0 < n1. Then, for g(x) = ∑
N≤j<n0−1

∑
k∈Z〈g,ψj,k〉ψj,k(x)

with ‖g‖L∞ ≤ 1, 〈H(fN,N ′)n1,2
N,N ′ , g

〉 = 〈H(
f
n0,2
N,N ′

)n1,2
N,N ′ , g

〉
. (2.3)

Similar to the case of n0 = n1, we have∥∥f n0,2
N,N ′ − {Qn0−1(fN,N ′)+Qn0−2(fN,N ′)+QN(fN,N ′)}∥∥

L1 � ‖fN,N ′ ‖L1,q .

That∥∥H(Qn0−1(fN,N ′)+Qn0−2(fN,N ′)+QN(fN,N ′))n1,2
N,N ′

∥∥
H1 � ‖fN,N ′ ‖L1,q

and
∥∥H(fN,N ′)n1,2

N,N ′
∥∥
L1 ≤ ‖H(fN,N ′)‖L1,q , together with (2.3), yield∥∥H(

f
n0,2
N,N ′ − {Qn0−1(fN,N ′)+Qn0−2(fN,N ′)+QN(fN,N ′)})∥∥

L1

� ‖fN,N ′ ‖L1,q + ‖H(fN,N ′)‖L1,q .

As a result,∥∥f n0,2
N,N ′ − {Qn0−1(fN,N ′)+Qn0−2(fN,N ′)+QN(fN,N ′)}∥∥

H1

� ‖fN,N ′ ‖L1,q + ‖H(fN,N ′)‖L1,q .

Then
∥∥f n0,2

N,N ′ ‖Ḟ 0,q
1

� ‖f n0,2
N,N ′ ‖H1 � ‖fN,N ′ ‖L1,q + ‖H(fN,N ′)‖L1,q and so

‖fN,N ′ ‖Ḟ 0,q
1

≤ ∥∥f n0,1
N,N ′

∥∥
Ḟ 0,q

1
+ ∥∥f n0,2

N,N ′
∥∥
Ḟ 0,q

1
� ‖fN,N ′ ‖L1,q + ‖H(fN,N ′)‖L1,q .

Finally, for the case n0 > n1 we split fN,N ′(x) into three parts: fN,N ′(x) =
f
(1)
N,N ′(x)+ f (2)N,N ′(x)+ f (3)N,N ′(x), where
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f
(1)
N,N ′(x) =

∑
n0≤j≤N ′

Qj(fN,N ′)(x) = f
n0,1
N,N ′(x),

f
(2)
N,N ′(x) =

∑
n1≤j<n0

Qj(fN,N ′)(x),

f
(3)
N,N ′(x) =

∑
N≤j<n1

Qj(fN,N ′)(x).

The definition of n0 implies that
∥∥f (2)N,N ′ + f

(3)
N,N ′

∥∥
L1 = ∥∥f n0,2

N,N ′
∥∥
L1 ≤ ‖fN,N ′ ‖L1,q .

For
h(x) =

∑
N≤j<n1

∑
k∈Z

〈h,ψj,k〉ψj,k(x) satisfying ‖h‖L∞ ≤ 1

we have
〈
f
n0,2
N,N ′ ,h

〉 = 〈
f
(3)
N,N ′ ,h

〉
, which implies

∥∥f (3)N,N ′
∥∥
L1 � ‖fN,N ′ ‖L1,q . It fol-

lows from Lemma 2.2 that∥∥f (3)N,N ′ − {Qn1−1(fN,N ′)+QN(fN,N ′)}∥∥
L1 � ‖fN,N ′ ‖L1,q . (2.4)

We observe that

H(fN,N ′)n1,2
N,N ′ = H(

f
(3)
N,N ′ +Qn1(fN,N ′)

)n1,2
N,N ′

= H(
f
(3)
N,N ′ − {Qn1−1(fN,N ′)+QN(fN,N ′)})

+ H(Qn1−1(fN,N ′)+Qn1(fN,N ′)+QN(fN,N ′))n1,2
N,N ′ . (2.5)

Applying Proposition 1.1, Lemma 2.2, and the H1-boundedness of the Hilbert
transform now yields∥∥H(Qn1−1(fN,N ′)+Qn1(fN,N ′)+QN(fN,N ′))n1,2

N,N ′
∥∥
H1 � ‖fN,N ′ ‖L1,q . (2.6)

Since
∥∥H(fN,N ′)n1,2

N,N ′
∥∥
L1 ≤ ‖H(fN,N ′)‖L1,q , it follows from (2.5) and (2.6) that∥∥H(

f
(3)
N,N ′ − {Qn1−1(fN,N ′)+QN(fN,N ′)})∥∥

L1

� ‖fN,N ′ ‖L1,q + ‖H(fN,N ′)‖L1,q . (2.7)

Combining (2.4) and (2.7), we obtain∥∥f (3)N,N ′ − {Qn1−1(fN,N ′)+QN(fN,N ′)}∥∥
H1 � ‖fN,N ′ ‖L1,q + ‖H(fN,N ′)‖L1,q ;

hence ∥∥f (3)N,N ′
∥∥
Ḟ 0,q

1
�

∥∥f (3)N,N ′
∥∥
H1 � ‖fN,N ′ ‖L1,q + ‖H(fN,N ′)‖L1,q . (2.8)

The definitions of n0 and n1 yield∥∥H(
f
(1)
N,N ′ + f (2)N,N ′ +Qn1−1(fN,N ′)

)n1,1
N,N ′

∥∥
Ḟ 0,q

1

= ∥∥H(fN,N ′)n1,1
N,N ′

∥∥
Ḟ 0,q

1
≤ ‖H(fN,N ′)‖L1,q

and ∥∥f (1)N,N ′
∥∥
Ḟ 0,q

1
= ∥∥f n0,1

N,N ′
∥∥
Ḟ 0,q

1
≤ ‖fN,N ′ ‖L1,q . (2.9)

By Proposition 1.1 and Theorem 2.1, we have
∥∥H(

f
(1)
N,N ′

)n1,1
N,N ′

∥∥
Ḟ 0,q

1
� ‖fN,N ′ ‖L1,q .

Therefore,
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∥∥H(
f
(2)
N,N ′ +Qn1−1(fN,N ′)

)n1,1
N,N ′

∥∥
Ḟ 0,q

1
� ‖fN,N ′ ‖L1,q + ‖H(fN,N ′)‖L1,q .

We note that

H(
f
(2)
N,N ′ +Qn1−1(fN,N ′)

)n1,1
N,N ′

= H(
f
(2)
N,N ′ −Qn1(fN,N ′)−QN ′(f (2)N,N ′)

)
+ H(

Qn1−1(fN,N ′)+Qn1(fN,N ′)+QN ′(f (2)N,N ′)
)n1,1
N,N ′ .

Again using Proposition 1.1, Lemma 2.2, and the H1-boundedness of the Hilbert
transform, we obtain∥∥H(

Qn1−1(fN,N ′)+Qn1(fN,N ′)+QN ′
(
f
(2)
N,N ′

))n1,1
N,N ′

∥∥
Ḟ 0,q

1

�
∥∥H(

Qn1−1(fN,N ′)+Qn1(fN,N ′)+QN ′
(
f
(2)
N,N ′

))n1,1
N,N ′

∥∥
H1

� ‖fN,N ′ ‖L1,q ,

which implies∥∥H(
f
(2)
N,N ′ −Qn1(fN,N ′)−QN ′

(
f
(2)
N,N ′

))∥∥
Ḟ 0,q

1
� ‖fN,N ′ ‖L1,q + ‖H(fN,N ′)‖L1,q .

Now, by Theorem 2.1,∥∥f (2)N,N ′ −Qn1(fN,N ′)−QN ′
(
f
(2)
N,N ′

)∥∥
Ḟ 0,q

1
� ‖fN,N ′ ‖L1,q + ‖H(fN,N ′)‖L1,q .

It then follows from Lemma 2.2 that∥∥f (2)N,N ′
∥∥
Ḟ 0,q

1
� ‖fN,N ′ ‖L1,q + ‖H(fN,N ′)‖L1,q . (2.10)

So from (2.8)–(2.10) we have

‖fN,N ′ ‖Ḟ 0,q
1

� ‖fN,N ′ ‖L1,q + ‖H(fN,N ′)‖L1,q ,

and Theorem 1.3 follows.

3. The Duality of L1,q(RRR) and L∞,q ′
(RRR)

For fN,N ′ ∈L1,q(R), by Remark 1.2 we may write

‖fN,N ′ ‖L1,q = max
N≤Ñ≤Ñ ′≤N ′

min
Ñ≤Ñ1≤Ñ ′+1

(∥∥f Ñ1,1
Ñ,Ñ ′

∥∥
Ḟ 0,q

1
+ ∥∥f Ñ1,2

Ñ,Ñ ′
∥∥
L1

)
.

The maximum is actually attained when Ñ = N and Ñ ′ = N ′.

Lemma 3.1. For fN,N ′ ∈L1,q(R),

‖fN,N ′ ‖L1,q = min
N≤N1≤N ′+1

(∥∥f N1,1
N,N ′

∥∥
Ḟ 0,q

1
+ ∥∥f N1,2

N,N ′
∥∥
L1

)
.

Proof. We choose N ≤ n0 ≤ N ′ + 1 such that∥∥f n0,1
N,N ′

∥∥
Ḟ 0,q

1
+ ∥∥f n0,2

N,N ′
∥∥
L1 = min

N≤N1≤N ′+1

(∥∥f N1,1
N,N ′

∥∥
Ḟ 0,q

1
+ ∥∥f N1,2

N,N ′
∥∥
L1

)
.
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For N ≤ Ñ ≤ Ñ ′ ≤ N ′, Proposition 1.1 implies
∥∥f n0,1

Ñ,Ñ ′
∥∥
Ḟ 0,q

1
≤ ∥∥f n0,1

N,N ′
∥∥
Ḟ 0,q

1
. For

g(x) = ∑
Ñ≤j≤Ñ ′

∑
k∈Z〈g,ψj,k〉ψj,k(x) with ‖g‖L∞ ≤ 1, we have

〈
f
n0,2
N,N ′ , g

〉 =〈
f
n0,2
Ñ,Ñ ′ , g

〉
. The converse of Hölder’s inequality gives

∥∥f n0,2
Ñ,Ñ ′

∥∥
L1 ≤ ∥∥f n0,2

N,N ′
∥∥
L1 and

so the proof is completed.

We can now apply Lemma 3.1 to prove the duality of L1,q(R) and L∞,q ′
(R).

Proof of Theorem 1.6. For any fixed N ≤ N ′, choose N ≤ n0 ≤ N ′ + 1 such that∥∥f n0,1
N,N ′

∥∥
Ḟ 0,q

1
+ ∥∥f n0,2

N,N ′
∥∥
L1 = min

N≤N1≤N ′+1

(∥∥f N1,1
N,N ′

∥∥
Ḟ 0,q

1
+ ∥∥f N1,2

N,N ′
∥∥
L1

)
.

Since {ψj,k}j,k∈Z is an orthonormal basis, it follows that

〈fN,N ′ , g〉 = 〈fN,N ′ , gN,N ′ 〉 = 〈
f
n0,1
N,N ′ , gN,N ′

〉 + 〈
f
n0,2
N,N ′ , gN,N ′

〉
= 〈
f
n0,1
N,N ′ , g

n0,1
N,N ′

〉 + 〈
f
n0,2
N,N ′ , g

n0,2
N,N ′

〉
.

Hence the dualities (Ḟ 0,q

1 (R))′ = Ḟ
0,q ′

∞ (R) and (L1(R))′ = L∞(R) yield

|〈fN,N ′ , g〉| ≤ C
(∥∥f n0,1

N,N ′
∥∥
Ḟ 0,q

1

∥∥gn0,1
N,N ′

∥∥
Ḟ

0,q ′
∞

+ ∥∥f n0,2
N,N ′

∥∥
L1

∥∥gn0,2
N,N ′

∥∥
L∞

)
≤ C‖fN,N ′ ‖L1,q

(∥∥gn0,1
N,N ′

∥∥
Ḟ

0,q ′
∞

+ ∥∥gn0,2
N,N ′

∥∥
L∞

)
.

By the definition of L∞,q ′
(R), we have ‖gN,N ′ ‖L∞,q ′ ≤ ‖g‖L∞,q ′ for any N ≤ N ′.

Then
|〈fN,N ′ , g〉| ≤ C‖fN,N ′ ‖L1,q‖g‖L∞,q ′ , (3.1)

where C > 0 is a constant independent of N and N ′.
If f ∈ L1,q(R) then, for any 0 < ε < 1, there exist Nε,N ′

ε such that, for all
N ≤ Nε and N ′ ≥ N ′

ε , we have ‖f − fN,N ′ ‖L1,q ≤ ε‖f ‖L1,q . Because (3.1) holds
for all N ≤ N ′, we show that ‖Lg‖ ≤ C‖g‖L∞,q ′ .

Conversely, suppose L ∈ (L1,q(R))′. We define g formally by

g(x) =
∑
j,k∈R

L(ψj,k)ψj,k(x).

It suffices to show that g ∈ L∞,q ′
(R). For given N ≤ N ′, we choose N ≤ n1 ≤

N ′ + 1 such that∥∥gn1,1
N,N ′

∥∥
Ḟ

0,q ′
∞

+ ∥∥gn1,2
N,N ′

∥∥
L∞ = max

N≤N1≤N ′+1

(∥∥gN1,1
N,N ′

∥∥
Ḟ

0,q ′
∞

+ ∥∥gN1,2
N,N ′

∥∥
L∞

)
.

Let VN,N ′ be the closed subspace of L1,q(R) spanned by {ψj,k : N ≤ j ≤ N ′,
k ∈ Z}. We denote by L̄ := L|VN,N ′ , the restriction of L to the subspace VN,N ′ .
Then ‖L̄‖ ≤ ‖L‖ and

L̄(f ) =
∑

N≤j≤N ′
k∈Z

aj,kL(ψj,k) = 〈
f
n1,1
N,N ′ , g

n1,1
N,N ′

〉 + 〈
f
n1,2
N,N ′ , g

n1,2
N,N ′

〉
(3.2)

for all f ∈ S0(R) ∩ VN,N ′ . Let V (1)N,N ′ and V (2)N,N ′ be the closed subspaces of VN,N ′

spanned by {ψj,k : n1 ≤ j ≤ N ′, k ∈ Z} and {ψj,k : N ≤ j < n1, k ∈ Z},
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respectively. It is easy to verify that S0(R) ∩ V (1)N,N ′ is dense in
(
V
(1)
N,N ′ , ‖·‖Ḟ 0,q

1

)
and that S0(R) ∩ V (2)N,N ′ is dense in

(
V
(2)
N,N ′ , ‖·‖L1

)
. Thus there exist {h(1)m }m∈N ⊂

S0(R)∩V (1)N,N ′ and {h(2)m }m∈N ⊂ S0(R)∩V (2)N,N ′ with ‖h(1)m ‖Ḟ 0,q
1

≤ 1 and ‖h(2)m ‖L1 ≤
1 such that〈
h(1)m , gn1,1

N,N ′
〉 → ∥∥gn1,1

N,N ′
∥∥
Ḟ

0,q ′
∞

and
〈
h(2)m , gn1,2

N,N ′
〉 → ∥∥gn1,2

N,N ′
∥∥
L∞ as m → ∞.

Let hm = h(1)m + h(2)m ∈ S0(R) ∩ VN,N ′ for all m ∈ N. Then h(1)m = (hm)
n1,1
N,N ′ and

h(2)m = (hm)
n1,2
N,N ′ . By Lemma 3.1, ‖hm‖L1,q ≤ ‖h(1)m ‖Ḟ 0,q

1
+ ‖h(2)m ‖L1 ≤ 2. It follows

from (3.2) that, for all m∈ N,∣∣〈h(1)m , gn1,1
N,N ′

〉 + 〈
h(2)m , gn1,2

N,N ′
〉∣∣ = |L̄(hm)| ≤ ‖L̄‖‖hm‖L1,q ≤ 2‖L‖.

Taking m → ∞, we get
∥∥gn1,1
N,N ′

∥∥
Ḟ

0,q ′
∞

+ ∥∥gn1,2
N,N ′

∥∥
L∞ ≤ 2‖L‖. Therefore,

max
N≤N1≤N ′

(∥∥gN1,1
N,N ′

∥∥
Ḟ

0,q ′
∞

+ ∥∥gN1,2
N,N ′

∥∥
L∞

) ≤ 2‖L‖ for all N ≤ N ′.

Taking the supremum over allN ≤ N ′ on both sides now yields ‖g‖L∞,q ′ ≤ 2‖L‖.

4. Proof of the Fefferman–Stein Decomposition

In this section we prove the Fefferman–Stein decomposition of Ḟ 0,q
∞ (R),1< q ≤ 2.

Proof of Theorem 1.7. To prove “if” part, it suffices to show that H(g)∈ Ḟ 0,q
∞ (R)

for g ∈L∞,q(R). We observe that 〈H(g),h〉 = −〈g, H(h)〉 for all h∈ S0(R). By
Theorems 1.6 and 2.1,

|〈g, H(h)〉| ≤ ‖g‖L∞,q‖H(h)‖L1,q ′

≤ ‖g‖L∞,q‖H(h)‖
Ḟ

0,q ′
1

≤ C‖g‖L∞,q‖h‖
Ḟ

0,q ′
1
. (4.1)

Since (4.1) holds for all h∈ S0(R), which is dense in Ḟ 0,q ′
1 (R), we get

‖H(g)‖
Ḟ

0,q
∞

≤ C‖g‖L∞,q .

Next we consider the “only if” part. By Theorem 1.3, Ḟ 0,q ′
1 (R) can be identi-

fied with a closed subspace of L1,q ′
(R)⊕L1,q ′

(R) if we identify g with (g, H(g)).
The Hahn–Banach theorem states that any bounded linear functional on Ḟ 0,q ′

1 (R)
extends to a bounded linear functional on L1,q ′

(R) ⊕ L1,q ′
(R). For f ∈ Ḟ 0,q

∞ (R),
let L ∈ (

Ḟ
0,q ′

1 (R)
)′

be defined by

L(g) =
∫

R
f(x)g(x) dx.

Since the dual space of L1,q ′
(R)⊕ L1,q ′

(R) is equivalent to L∞,q(R)⊕ L∞,q(R),
there exist f0, f1 ∈L∞,q(R) such that

L(g) =
∫

R
g(x)f0(x) dx +

∫
R

H(g)(x)f1(x) dx

=
∫

R
g(x)(f0(x)− H(f1)(x)) dx,

which implies that f can be written as f = f0 − H(f1) with f0, f1 ∈L∞,q(R).
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5. Proof of Remark 1.8

We first recall some properties of Meyer’s wavelets (see [9]). Let φ(x) denote the
father wavelet given in Section 1. Since φ(x)∈ S(R), we have∑

k∈Z

|φ(x − k)| ≤ C for x ∈ R. (5.1)

For j, k ∈ Z , we write φj,k(x) = 2j/2φ(2jx − k). For j ∈ Z , define

Pj(f )(x) =
∑
k∈Z

〈f ,φj,k〉φj,k(x).

Then fN,N ′ = PN ′(f )− PN(f ) for any N ≤ N ′ and, by (5.1),

‖Pj(f )‖L1 ≤
∫

R

∫
R
|f(y)|

∑
k∈Z

|φ(2jy − k)||2jφ(2jx − k)| dx dy

≤ C

∫
R
|f(y)|

∑
k∈Z

|φ(2jy − k)| dy

≤ C‖f ‖L1 . (5.2)

It suffices to prove assertion (i) of the remark because the dualities (Ḟ 0,q

1 (R))′ =
Ḟ

0,q ′
∞ (R) and (L1,q(R))′ = L∞,q ′

(R) for 2 ≤ q < ∞ (by Theorem 1.7) imply
assertion (ii).

Note that φ ∈L1(R). Then (5.2) gives

min
N≤N1≤N ′+1

(∥∥φN1,1
N,N ′

∥∥
Ḟ 0,q

1
+∥∥φN1,2

N,N ′
∥∥
L1

) ≤ ‖φN,N ′ ‖L1 ≤ C‖φ‖L1 for any N ≤ N ′.

Taking the supremum over allN ≤ N ′ on both sides, we have ‖φ‖L1,q ≤ C‖φ‖L1 .

To show that φ /∈ Ḟ 0,q

1 (R), let aj,k = 〈φ,ψj,k〉 for j, k ∈ Z. Then

|aj,0| =
∣∣∣∣
∫

R
�(ξ)2−j/2{�(2−(j+1)ξ)2 −�(2−jξ)2}1/2e−i2−(j+1)ξ dξ

∣∣∣∣
= 2j/2

∣∣∣∣
∫

[−2j+3π/3, 2j+3π/3]
{�(η/2)2 −�(η)2}1/2e−iη/2 dη

∣∣∣∣
≥ C2j/2 if j < −M

for someM > 0 large enough. Therefore,∫
R

{ ∑
j,k∈Z

(2j/2|aj,k|χ(2jx − k))q
}1/q

dx ≥
∫

R

{ ∑
j<−M

2jq/2|aj,0|qχ(2jx)
}1/q

dx

≥ C

∫
R

{ ∑
j<−M

2jqχ(2jx)

}1/q

dx

≥ C

∞∑
m=M

∫ 2m+1

2m

{ −m∑
j=−∞

2jq
}1/q

dx = ∞.

It now follows from Proposition 1.1 that φ /∈ Ḟ 0,q

1 (R).
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