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Buser–Sarnak Invariants of Prym Varieties

Jun-Muk Hwang

1. Introduction

Let A = V/� be an abelian variety with a principal polarization H, viewed as a
positive definite Hermitian form on the universal cover V. Recall that the Buser–
Sarnak invariant (cf. [L2, Def. 5.3.1]) of (A,H ) is defined as

m(A,H ) := min
v∈�\{0}H(v, v).

In their seminal paper [BuSa] (see also [L2, Thm. 5.3.5]), Buser and Sarnak
showed that if A = J is the Jacobian of a curve with the natural polarization HJ

then its Buser–Sarnak invariant is remarkably small:

m(J,HJ) ≤ 3

π
log(4 dim J + 3). (1.1)

Their proof uses hyperbolic geometry of compact Riemann surfaces. A different
approach to boundingm(A,H )was discovered by Lazarsfeld ([L1]; see also [L2,
Thm. 5.3.6]). He gave an upper bound onm(A,H ) in terms of the Seshadri num-
ber of (A,H ), which is an algebro-geometric invariant. His result can be used to
derive an upper bound on m(A,H ) depending on the algebro-geometric proper-
ties of m(A,H ). For Jacobians, this approach yields

m(J,HJ) ≤ 4

π

√
dim J , (1.2)

which is much weaker than (1.1) but is still a nontrivial restriction for Jacobians.
Bauer ([Ba]; see also [L2, Rem. 5.3.14]) used this approach to show that, for a
Prym variety P with the natural principal polarization HP ,

m(P,HP) ≤ 4

π

√
2 dimP . (1.3)

Since (1.3) is an analogue of (1.2), it is natural to ask whether there is a better
bound for m(P,HP) of logarithmic order in dimP—that is, an analogue of (1.1).
This question was raised explicitly by Bauer [Ba, p. 610].

In this paper, we use the work of [BPS] to answer this question as follows.

Theorem 1.1. For a Prym variety (P,HP),

m(P,HP) ≤ 220 log(2 dimP).
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We remark that the improvement from (1.3) to Theorem 1.1 is not merely of theo-
retical interest: the bound in Theorem 1.1 can be used to show that some explicit
examples of period matrices do not correspond to Prym varieties, whereas such
examples are not known for the weaker bound (1.3). Recall from [BuSa, (1.12)]
thatm(A,H ) can be as big asO(dimA) for some principally polarized abelian va-
riety (A,H ). However, it is difficult to write down a period matrix with such large
m(A,H ). Buser and Sarnak [BuSa, (A.1.7)] exhibited explicit period matrices
with dimA = 2n and

m(A,H ) ≥
√

1

2
dimA.

The inequality (1.1) shows that these abelian varieties are not Jacobians if n ≥ 7;
Theorem 1.1 implies that neither are they Prym varieties if n ≥ 53. To our knowl-
edge, no explicit examples of period matrices are known that can be excluded from
Prym varieties by applying the weaker bound (1.3).

The proof of Theorem 1.1 uses the result of [BPS] on short homologically non-
trivial loops on compact Riemann surfaces. Their result will be recalled, with a
suitable modification, in Section 2. Our new ingredient is considering the C-linear
independence of suitable lattice vectors of Jacobians, as presented in Section 3.
That independence follows from the interplay between the principal polarization
of the Jacobian and the homological intersection of loops on the Riemann surface.
The proof of Theorem 1.1 can be obtained as an immediate consequence, which
we explain in Section 4.

2. A Variation on Theorem 3.1 of [BPS]

We recall, with a slight change of notation, this result (cf. [BPS, Thm. 2.1]).

Theorem 2.1. Let S be a compact Riemann surface of genus h equipped with a
hyperbolic metric of curvature −1. Assume that the length of any homologically
nontrivial loop on S is at least 1. Then there exist 2h loops γ1, . . . ,γ2h on S induc-
ing a basis ofH1(S, Z) such that, for each k ≤ 2h and each j ≤ k, the hyperbolic
length of γj satisfies

length(γj ) ≤ 216 h

2h− k + 1
log(2h− k + 2).

Our next theorem is a variation on [BPS, Thm. 3.1]. The main difference is that
we replace the number η(g) there with n+ 2m and the inequality (3.1) of [BPS]
with the more precise inequality (2.1). In addition, we have extracted some useful
information from the proof in [BPS] that was not included in the theorem’s orig-
inal statement. In particular, highlighting the short loops α1, . . . ,αn is crucial for
our application.

Theorem 2.2. LetM be a compact Riemann surface of genus g equipped with a
hyperbolic metric of curvature −1. Denote by n the maximal number of homologi-
cally independent closed geodesics of length less than 2 arcsinh(1) onM. For any
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positive integerm<g−n, there aren+2m closed geodesicsα1, . . . ,αn,γ1, . . . ,γ2m

on M with the following properties.

(i) The homology classes of α1, . . . ,αn,γ1, . . . ,γ2m are part of a basis of
H1(M, Z).

(ii) The pair αi and αj are disjoint for any 1 ≤ i �= j ≤ n, and γ1 ∪ · · · ∪ γ2m

is disjoint from α1 ∪ · · · ∪ αn.
(iii) For each i, 1 ≤ i ≤ n,

length(αi) ≤ 2 arcsinh(1);
and for each j, 1 ≤ j ≤ 2m,

length(γj ) ≤ 215 g + (n+m)

g − (n+m)
log(2g − 2(n+m)+ 2).

(iv) Each member of {α1, . . . ,αn,γ1, . . . ,γ2m} has a collar of width at least
w0 = 1

2 arcsinh(1).

Proof. The proof follows that of [BPS, Thm. 3.1] with a few minor modifications.
Instead of repeating the full proof, we shall sketch the argument with precise ref-
erences to the proof in [BPS] and will indicate where modifications are needed.

Let α1, . . . ,αn be homologically independent closed geodesics on M of length
less than 2 arcsinh(1). By the collar lemma, these geodesics are disjoint and there
is a collar of width 1> w0 around each of them, which verifies all of the points in
(i)–(iv) that are concerned only with the αi.

The key idea of [BPS] is to introduce an auxiliary compact Riemann surface S
of genus g+ n with the property that all homologically nontrivial loops on S have
length at least 2 arcsinh(1) > 1. This surface S is constructed by attaching fat tori
to a certain deformation of M \ {α1, . . . ,αn}. We refer the reader to the second
and the third paragraphs in the proof of Theorem 3.1 in [BPS] for the construction
of S.

Applying Theorem 2.1 to S with h = g + n, we can choose 2m + 4n ≤
2(g + n) homologically independent loops γ1, . . . ,γ2m+4n on S satisfying

length(γk) ≤ 216 g + n

2(g + n)− (2m+ 4n)+ 1
log(2(g + n)− (2m+ 4n)+ 2)

= 216 g + n

2g − 2n− 2m+ 1
log(2g − 2n− 2m+ 2),

which implies

length(γk) ≤ 215 g + (n+m)

g − (n+m)
log(2g − 2(n+m)+ 2). (2.1)

Among the loops γ1, . . . ,γ2m+4n, we can choose 2mmembers (say, γ1, . . . ,γ2m)

that naturally correspond to simple closed geodesics on M; these geodesics on
M are likewise denoted by γ1, . . . ,γ2m. This is explained, modulo replacing η(g)
there by 2m + n, in the second paragraph of [BPS, p. 52]. Here the number 2m
is obtained from (2m+ 4n)− 2 × (2n) = 2m, where 2n is the number of fat tori
attached to M \ {α1, . . . ,αn} in the construction of S.
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The property (i) is proved in the third paragraph of [BPS, p. 52], and the first
paragraph there confirms property (ii). Property (iii) follows from the same rea-
soning as that in the fourth paragraph of [BPS, p. 52] if one replaces (3.2) of [BPS]
with our (2.1). Finally, Step 2 of the proof of Theorem 3.1 in [BPS] proves prop-
erty (iv).

3. Result on Jacobians

Theorem 2.2 enables us to obtain the following result.

Theorem 3.1. Let M be a compact Riemann surface M of genus g ≥ 2, and let
(V/�,H ) be its Jacobian (with the conventions V = H 0(M,KM)∗ and � =
H1(M, Z)). Then, for any positive integer k < g, there exist lattice vectors
v1, . . . , vk ∈� ⊂ V that are linearly independent over C and satisfy

H(vi, vi) ≤ 215 g + k

g − k
log(2g − 2k + 2)

for every i ∈ {1, 2, . . . , k}.
We will use the following result of [BuSa].

Lemma 3.2. LetM be a compact Riemann surface with hyperbolic metric of cur-
vature −1 and let (V/�,H ) be its Jacobian. Suppose there exists a simple closed
geodesic γ ⊂ M with a collar of width at least w0 = 1

2 arcsinh(1) such that the
homology class of γ is an element of a basis of H1(M, Z). Then the lattice vector
v ∈� determined by the homology class of γ satisfies

H(v, v) ≤ length(γ ).

Proof. This result is contained in [BuSa, pp. 36–37] and also in the proof of [BPS.
Thm. 3.7]. We briefly recall the argument for the reader’s convenience.

Let U be the collar of widthw0 around γ. Let F be any smooth function defined
on U that takes the value 0 on one connected component of ∂U and the value 1 on
the other. Define the 1-form ω with integral periods by setting ω equal to dF on U
and to 0 outside of U . Then the cohomology class of ω becomes (up to sign) the
Poincaré dual of the homology class of γ. Thus,

H(v, v) ≤
∫
M

ω ∧ ∗ω ≤
∫

U
dF ∧ ∗dF.

The minimum of the last integral among possible choices of F is the capacity of
the collar. By [BuSa, (3.4)],

H(v, v) ≤ length(γ )

π − 2θ0
≤ length(γ );

here θ0 = arcsin(1/cosh(w0)). This completes the proof.

For the C-linear independence, we need the following lemma.
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Lemma 3.3. In the setting of Theorem 2.2, let (V/�,H ) be the Jacobian of M.
Let ui ∈ � (resp. wj ∈ �) be the lattice vector corresponding to the homology
class of αi (resp. γj ). Then there are m vectors among w1, . . . ,w2m (call them
w1, . . . ,wm) such that

u1, . . . , un,w1, . . . ,wm

are linearly independent over C as vectors in V.

Proof. Denote by J : V → V the complex structure of V corresponding to multi-
plication by

√−1. We recall thatE = ImH is a real symplectic form onV and that
S(u, v) := E(J(u), v) is a positive definite real symmetric form on V. Moreover,
E takes Z-values on � corresponding to the intersection product on cohomology.

Define two real subspaces U,W of V as

U := Ru1 + · · · + Run and W := Rw1 + · · · + Rw2m

with dimR U = n and dimR W = 2m. For any pair 1 ≤ i, i ′ ≤ n, the loops αi
and αi′ are disjoint and so E(ui, ui′) = 0. That is, U is isotropic with respect to
the symplectic form E.

We claim that U ∩ J(U) = 0—in other words, that U is totally real. In fact, if
u = J(u′) for some u, u′ ∈U then

0 = E(u, u′) = E(J(u′), u′) = S(u′, u′).

This implies u′ = 0 by the positive definiteness of S, proving the claim. Hence
u1, . . . , un are linearly independent over C and

U C := Cu1 + · · · + Cun

has complex dimension n.
Next we claim that U C ∩W = 0. If w ∈ U C ∩W then we can write w =

u+ J(u′) for some u, u′ ∈U. Observe that E(W,U) = 0 because γ1 ∪ · · · ∪ γ2m

is disjoint from α1 ∪ · · · ∪ αn. Therefore,

0 = E(w, u′) = E(u, u′)+ E(J(u′), u′) = S(u′, u′).

By the positive definiteness of S, we obtain u′ = 0. Then

w = u∈U ∩W = 0

establishes that w = 0, proving the claim.
Let φ : V → V/U C be the C-linear projection of complex vector spaces.

Since U C ∩W = 0, it follows that the image φ(W ) is isomorphic to W. Hence
φ(w1), . . . ,φ(w2m) are R-linearly independent vectors in the complex vector space
V/U C. After renumbering, then, we can assume that φ(w1), . . . ,φ(wm) are lin-
early independent over C.

To complete the proof, it suffices to show that

u1, . . . , un,w1, . . . ,wm

are linearly independent over C. Suppose that
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n∑
i=1

aiui +
m∑
j=1

bjwj = 0

for some ai, bj ∈ C. Applying φ to both sides, we obtain bj = 0 by the C-linear
independence of φ(w1), . . . ,φ(wm). Then the C-linear independence of u1, . . . , un
implies ai = 0.

Proof of Theorem 3.1. First we consider the case when k > n. Settingm = k−n,
we choose v1, . . . , vk as

u1, . . . , un,w1, . . . ,wm

(using the terminology of Lemma 3.3). These vectors are linearly independent
over C by Lemma 3.3. From Theorem 2.2 and Lemma 3.2, we can deduce that
H(vi, vi) is bounded by

215 g + k

g − k
log(2g − 2k + 2).

When k ≤ n, we choose vi := ui for 1 ≤ i ≤ k. Then v1, . . . , vk are linearly
independent over C by Lemma 3.3. Applying Lemma 3.2 now yields the required
bound on H(vi, vi).

4. Application to Prym Varieties

We recall the definition (in [Be]) of Prym varieties and fix our notation for the
proof of Theorem 1.1. Let f : C̃ → C be an étale double cover of a compact Rie-
mann surface C of genus p + 1 ≥ 3. The genus of C̃ is 2p + 1. Let J(C̃ ) =
V/� be the Jacobian of C with the polarization H. The involution of C̃ exchang-
ing the two sheets of f induces an involution σ : V → V that preserves both the
lattice � and the polarization H of J(C̃ ). Write V = V + ⊕ V − for the decom-
position of V into (+1)-eigenspace and (−1)-eigenspace of σ. Then dimV + =
p+1, dimV − = p, and P := V −/(�∩V −) is an abelian subvariety of J(C̃ ) that
we call the Prym variety of the cover f. There exists a principal polarization HP

on P satisfying 2HP = H |P .
Proof of Theorem 1.1. Apply Theorem 3.1 to M = C̃, g = 2p + 1, and k =
p + 2. We thus obtain C-linearly independent vectors v1, . . . , vp+2 ∈� with

H(vi, vi) ≤ 215 3p + 3

p − 1
log(2p) ≤ 219 log(2p).

Using the involution σ on V, define

yi := vi − σ(vi)∈� ∩V −.

Now suppose that yi = 0 for all i, 1 ≤ i ≤ p + 2. Then vi = σ(vi) ∈ V +.
Since dimV + = p + 1, we obtain a contradiction to the C-linear independence
of v1, . . . , vp+2. Thus there must be some nonzero yi. Since yi ∈ � ∩ V −, it is a
nonzero lattice vector for the Prym variety P with
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√
H(yi, yi) ≤ √

H(vi, vi)+ √
H(σ(vi), σ(vi)) = 2

√
H(vi, vi).

Then

HP (yi, yi) = 1

2
H(yi, yi) ≤ 2H(vi, vi) ≤ 220 log(2p),

which proves Theorem 1.1.
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