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1. Introduction

A group G is coherent if finitely generated subgroups are finitely presented. A
group G is locally quasiconvex if each finitely generated subgroup is quasiconvex.
A subgroup H of G is quasiconvex if there is a constant L such that every geodesic
in the Cayley graph of G that joins two elements of H lies in an L-neighborhood
of H. While L depends upon the choice of Cayley graph, it is well known that the
quasiconvexity of H is independent of the finite generating set when G is hyper-
bolic. As quasiconvex subgroups are finitely presented, it is clear local quasi-
convexity implies coherence.

The class of coherent groups includes fundamental groups of compact 3-mani-
folds by a result of Scott [13], mapping tori of free group automorphisms by work of
Feighn and Handel [3], and1-relator groups with sufficient torsion by McCammond
and Wise [11]. In contrast, the class of locally quasiconvex groups is substantially
smaller. It includes fundamental groups of infinite-volume hyperbolic 3-manifolds
by a result of Thurston ([12, Prop. 7.1] or [9, Thm. 3.11]), and there are criteria for
local quasiconvexity for certain classes of small cancellation groups [8; 11].

Criteria for proving coherence and local quasiconvexity of groups acting freely
on simply connected 2-complexes was introduced in [15] based on a notion of
combinatorial sectional curvature. These methods do not apply on groups with
torsion unless they are known to be virtually torsion free. It is an open question
whether negatively curved groups are virtually torsion free [5].

In this paper we revisit the notion of combinatorial sectional curvature. We
provide criteria for coherence and local quasiconvexity of groups acting properly
and cocompactly on simply connected 2-complexes. This extends the methods
in [15] to groups with torsion. Our extension of these results involves a general-
ization of the notion of sectional curvature and an extension of the combinatorial
Gauss–Bonnet theorem to complexes of groups, and it surprisingly requires the
use of �2-Betti numbers.

We revisit the following notion of sectional curvature in Section 3.

Definition 1.1 (Sectional Curvature ≤ α). An angled 2-complex X is a com-
binatorial 2-complex with an assignment of a real number to each corner of each
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2-cell of X. A locally finite angled 2-complex X has sectional curvature at most α
if the following two conditions hold.

(i) For each 0-cell x and each finite subgraph 
 of link(x) containing a cycle
but no valence-1 vertex, we have Curvature(
) ≤ α, where

Curvature(
) = 2π − π · χ(
) −
∑

e∈Edges(
)

�(e)

and �(e) is the angle assigned to the corner e ∈ Edges(
); each edge of the
link of a 0-cell x ∈X corresponds to a corner of a 2-cell whose attaching map
contains x.

(ii) For each 2-cell f of X, we have Curvature(f ) ≤ 0, where

Curvature(f ) =
( ∑

c∈Corners(f )

�(c)

)
− π(|∂f | − 2),

and Corners(f ) denotes the set of corners of the 2-cell f.

Definition1.2 (AngledG-Complex). LetGbe a group. A complexX equipped
with a cellular G-action without inversions is a G-complex. A G-complex X is
proper (resp., cocompact ) if the G-action is proper (resp., cocompact). An angled
G-complex is a 2-dimensional G-complex equipped with a G-equivariant angle
assignment. A G-complex is trivial if it is empty or a single point.

Theorem 1.3 (Cocompact Core). Let X be a simply connected, proper, and co-
compact angled G-complex with negative sectional curvature. If H is a subgroup
of G and Y ⊆ X is a connected H-cocompact subcomplex of X, then there is a
simply connected H-cocompact subcomplex Z such that Y ⊆ Z ⊆ X.

The strategy of the proof is as follows. A sequence of H-equivariant immersions
Yn → X is constructed inductively from the inclusion map Y0 = Y → X. The
complexYi+1 is obtained fromYi by either “killing a loop” or correcting a “failure of
injectivity”. From the construction, a computation shows that the orbifold Euler
characteristic of H \Yn is bounded from below by the first �2-Betti number of
H \Y0. Using that X has negative sectional curvature, an analysis of the structure
of Yn shows that the number of orbits of 0-cells with nonnegative curvature does
not increase with n. Then, using a version of the combinatorial Gauss–Bonnet the-
orem for orbihedra and the previous two upper bounds, we obtain that the number
of orbits of 0-cells of Yn with negative curvature is uniformly bounded, and hence
the total number of orbits of 0-cells of Yn is uniformly bounded. Then a count-
ing argument shows that there are finitely many possibilities for the immersions
Yi → X up to G-equivalence, and therefore the sequence Yn → X stabilizes in an
embedding Z → X of a simply connected complex.

Corollary 1.4 (Coherence Criterion). Let G be a group admitting a proper
cocompact action on a simply connected 2-complex with negative sectional cur-
vature. Then each finitely generated subgroup of G is finitely presented.
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Proof. Let X a simply connected proper and cocompact G-complex with nega-
tive sectional curvature. Since X is connected, for any finitely generated subgroup
H ≤ G there is a connected and cocompact H-subcomplex of X; by Theorem 1.3
this subcomplex can be assumed to be simply connected. Then the corollary fol-
lows by the well-known fact that a group is finitely presented if and only if it acts
properly and cocompactly on a simply connected 2-complex [7].

Conjecture 1.5. Let X be a simply connected, proper, and cocompact angled
G-complex with sectional curvature ≤ 0. If H is a subgroup of G and Y ⊆ X is
a connected H-cocompact subcomplex of X, then there is a simply connected H-
cocompact subcomplex Z such that Y ⊆ Z ⊆ X.

The main result of the paper is the following criterion for local quasiconvexity. A
subspace Y of a geodesic space X is quasiconvex if there is a constant L such that
every geodesic in X that joins two elements of Y lies in the L-neighborhood of Y.

Theorem 1.6 (Quasiconvex Cores). Let X be a 2-dimensional proper cocom-
pact CAT(0) G-complex whose cells are convex. Assign angles as they arise from
the CAT(0)-metric. Suppose X has negative sectional curvature. If H < G and
Y is a simply connected cocompact H-subcomplex, then Y is a quasiconvex sub-
space of X.

Corollary 1.7 (Local Quasiconvexity Criterion). Let G be a group admitting
a proper cocompact action on a 2-dimensional CAT(0)-complex with convex cells
and negative sectional curvature. Then G is a locally quasiconvex hyperbolic
group.

Proof. Let X be a G-complex as in the statement. Since X has negative sectional
curvature and angles are positive, X satisfies Gersten’s negative weight test [15,
Lemma 2.11]. It follows that X satisfies a linear isoperimetric inequality and hence
X is a δ-hyperbolic space and G is a hyperbolic group [4, Thm. A6]. By Theo-
rem 1.3, every finitely generated subgroup H of G admits a simply connected
and H-cocompact subcomplex of X; then Theorem 1.6 implies that these subcom-
plexes are quasiconvex in X.

The strategy of the proof of Theorem 1.6 is the following. Let � be a geodesic with
respect to the CAT(0)-metric in X with endpoints in the 0-skeleton of Y. Since
� is not a combinatorial path in the cell structure of X, we approximate � with a
combinatorial path PL → X that has the same endpoints and is uniformly close.
We also take a path PY → Y between the endpoints of �. The choices of PY and
PL are made under some technical assumptions; in particular, they minimize the
area of the disk diagram D with boundary cycle PLP

−1
Y → X. Let u be a 0-cell

of PL → X. Analyzing the cell structure of D, we show that there exists a good
path Q → D with initial point u and terminal point in PY → X; by “good” we
mean that if a 0-cell x of Q → D → X intersects � then x is in the interior of D.

Using that X has a CAT(0)-structure, we construct an H-equivariant immersion
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Z ′ → X ′, where X ′ is a subdivision of X, any good path Q → D → X lifts as
an internal path of Q′ → Z ′ (after subdividing), and the number of H-orbits of
0-cells with negative curvature of Z ′ is bounded by a constant independent of �.
By the existence of good paths, we can take a path Q → X of minimal length
from u to PY → X such that there is a lifting Q′ → Z ′ that is internal. Then the
proof concludes in the following way. Since X ′ has nonpositive sectional curva-
ture, if a 0-cell x of Z ′ is internal (i.e., if link(x) has a cycle) then its curvature
is nonpositive. Since X has negative sectional curvature, if x has zero curvature
in Z ′ and is internal then its image in X is not a 0-cell. Therefore the length of
Q → X equals the number of 0-cells of Q′ → Z ′ with negative curvature plus 1.
By minimality, no two 0-cells of Q → X are in the same H-orbit; therefore |Q|
is bounded by the number of orbits of 0-cells of Z ′ with negative curvature plus 1.
By construction of Z ′, this number is uniformly bounded independently of �.

A (p, q, r)-complex is a combinatorial 2-complex X such that the attaching map
of each 2-cell has length ≥ p, for each x ∈ X 0 the link(x) has girth ≥ q, and
each 1-cell e of X appears no more than r times among the attaching maps of
2-cells. The second author provides a criterion for negative sectional curvature of
(p, q, r)-complexes in [16], from which the following application follows.

Corollary 1.8. Let X be a 2-complex, where:

(i) X is a (p, 3,p − 3)-complex for p ≥ 7;
(ii) X is a (p, 4,p − 2)-complex for p ≥ 5; or

(iii) X is a (p, 5,p − 1)-complex for p ≥ 4.

Then any group G acting properly and cocompactly on X is a locally quasiconvex
hyperbolic group.

Outline of the Paper. Section 2 discusses preliminaries. Section 3 contains
definitions of sectional curvature and generalized sectional curvature that are used
in the rest of the paper. Section 4 discusses the combinatorial Gauss–Bonnet the-
orem for angled G-complexes. Section 5 recalls some results in the literature on
�2-Betti numbers. Section 6 discusses equivariant immersions as a preliminary of
the proof of the main results of the paper. The proof of the simply connected core
theorem is the content of Section 7. Section 8 contains the proof of Theorem 1.6.
The last section discusses a criterion establishing that certain quotients of locally
quasiconvex groups are locally quasiconvex.

Acknowledgment. We thank the anonymous referee for a very careful read-
ing, many suggestions, and for pointing out a serious gap in an earlier version of
the paper.

2. Preliminaries

2.1. Complexes and Disk Diagrams

This paper follows the notation used in [10], and in this section we quote much
of the relevant notation for the convenience of the reader. All complexes consid-
ered in this paper are combinatorial 2-dimensional complexes, and all maps are
combinatorial.
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Definition 2.1 (Path and Cycle) [10, Def. 2.5]. A path is a mapP → X, where
P is a subdivided interval or a single 0-cell. A cycle is a map C → X, where C is
a subdivided circle. Given two paths P → X and Q → X such that the terminal
point of P and the initial point of Q map to the same 0-cell of X, their concatena-
tion PQ → X is the obvious path whose domain is the union of P and Q along
these points. The path P → X is closed if the endpoints of P map to the same
0-cell of X. A path or cycle is simple if the map is injective on 0-cells. The length
of the path P or cycle C is the number of 1-cells in the domain and is denoted by
|P | or |C|, respectively. The interior of a path is the path minus its endpoints. A
subpath Q of a path P is given by a path Q → P → X in which distinct 1-cells
of Q are sent to distinct 1-cells of P.

Definition 2.2 (Disc Diagram) [10, Def. 2.6]. A disc diagram D is a com-
pact contractible 2-complex with a fixed embedding in the plane. A boundary
cycle P of D is a closed path in ∂D that travels entirely around D (in a manner re-
specting the planar embedding of D). For a precise definition we refer the reader
to [11].

Let P → X be a closed null-homotopic path. A disc diagram in X for P is a
disc diagram D together with a map D → X such that the closed path P → X

factors as P → D → X, where P → D is the boundary cycle of D. Define
area(D) as the number of 2-cells in D.

Definition 2.3 (Arc) [10, Def. 5.4]. An arc in a diagram D is an embedded
path P → D such that each of its internal 0-cells is mapped to a 0-cell with va-
lence 2 in D. The arc is internal if its interior lies in the interior of D, and it is a
boundary arc if it lies entirely in ∂D.

Definition 2.4 (Internal Path). A path P → X is internal if each 0-cell in the
interior of P is mapped to a 0-cell of X whose link contains an embedded cycle.

Definition 2.5 (Links) [10, Def. 4.1]. Let X be a locally finite complex and
let x be a 0-cell of X. The cells of X each have a natural partial metric obtained by
making every 1-cell isometric to the unit interval and every n-sided 2-cell isomet-
ric to a Euclidean disc of circumference n whose boundary has been subdivided
into n curves of length 1. In this metric, the set of points that are a distance equal
to ε from x will form a finite graph. If ε is sufficiently small, then the graph ob-
tained is independent of the choice of ε. This well-defined graph is the link of x
in X and is denoted by link(x,X).

Definition 2.6 (Immersions, Near-Immersions) [10, Def. 2.13]. The map
Y → X is an immersion if it is locally injective. The map Y → X is a near-
immersion if Y\Y (0) → X is locally injective. Equivalently, a map is an im-
mersion if the induced maps on links of 0-cells are embeddings and a map is a
near-immersion if the induced maps on links of 0-cells are immersions.

The following lemma is essential for the rest of the paper. It is an immediate con-
sequence of the fact that immersions of graphs are π1-injective.



512 Eduardo Martínez-Pedroza & Daniel T. Wise

Lemma 2.7 (Near-Immersions Map Internal 0-Cells to Internal 0-Cells). Let
X → Y be a near-immersion mapping the 0-cell x to y. If link(x) has an embed-
ded cycle then link(y) has an embedded cycle.

Definition 2.8 (Corners) [10, Def. 4.2]. Let X be a 2-complex, let x be a 0-
cell of X, and let R → X be a 2-cell of X. Regard the 2-cells of X as polygons.
Then the edges of link(x) correspond to the corners of these polygons attached
to x. We will refer to a particular edge in link(x) as a corner of R at x.

2.2. G-Complexes

All group actions on complexes are without inversions; that is, a setwise stabilizer
of a cell is a pointwise stabilizer. Under this assumption, quotients of complexes
by group actions have an induced cell structure.

Definition 2.9 (Ip(G,X) and |Gσ|−1). LetX be aG-complexX. Let Ip(G,X)

be the set of orbits of p-dimensional cells. For σ ∈ Ip(G,X), let |Gσ|−1 denote
the reciprocal of the order of the G-stabilizer of a representative of σ in X, where
|Gσ|−1 is understood to be zero if the order is infinite.

Definition 2.10 (Angled K-Graph). Let K be a group. An angled K-graph is
a graph & equipped with a K-action and a K-map � : Edges(&) → R. For an
edge e of &, the number �(e) is called the angle at e.

Remark 2.11 (Connection with Angled G-Complexes). If X is an angled G-
complex and x is a 0-cell of X, then each edge e of link(x) corresponds to a cor-
ner of a 2-cell of X and is thus associated to a real number �(e). This assignment
of angles to the edges of link(x) is preserved under the Gx-action. In particular,
link(x,X) is an angled Gx-graph.

3. Curvature

Definition 3.1 (Curvature of K-Graphs). Let K be a group. For a cocompact
angled K-graph &, define

Curvature(K,&) = 2π · |K|−1 −
∑

v∈I 0(K,&)

π · |Kv|−1 +
∑

e∈I1(K,&)

(π −�(e)) · |Ke|−1.

Definition 3.2 (Regular Section). Suppose that & is an angled K-graph and
H is a subgroup of K. An H -subgraph 
 is an H-invariant subgraph of &, and
an H -section is an H-subgraph that is H-cocompact. An edge having a vertex
with valence 1 is called a spur, and a graph with no vertices of valence 1 is called
spurless. A spurless, connected, and not edgeless H-section is called regular. An
edgeless H-section is called trivial.

Definition 3.3 (Sectional Curvature ≤ α). An angled complex X has sectional
curvature ≤ α if the following two conditions hold.
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(i) For each 0-cell x, each regular section of the angled 1-graph link(x) has cur-
vature ≤ α, where 1 denotes the trivial group.

(ii) For each 2-cell f of X we have Curvature(f ) ≤ 0, where

Curvature(f ) =
( ∑

c∈Corners(f )

�(c)

)
− π(|∂f | − 2).

If α ≤ 0 then we say that X has nonpositive sectional curvature.

Definition 3.4 (Generalized Sectional Curvature ≤ α). An angled G-complex
X has generalized sectional curvature ≤ α if:

(i) for each 0-cell x and each H ≤ Gx , each regular H-section of the angled
Gx-graph link(x) has curvature ≤ α; and

(ii) for each 2-cell f of X, we have Curvature(f ) ≤ 0.

When X is a proper G-complex, these two notions are equivalent.

Proposition 3.5. Let X be a proper, cocompact, and angled G-complex with
sectional curvature ≤ α ≤ 0. Let K = K(G,X) be an upper bound for the car-
dinality of 0-cell stabilizers. Then X has generalized sectional curvature ≤ α/K.

Proof. Let x be a 0-cell of X, let H be a subgroup of Gx , and let 
 be an H-
invariant regular section of link(x). The result follows by observing that

|H | · Curvature(H,
) = Curvature(1,
).

Definition 3.6 (Corners, Sides). Let X be a G-complex and suppose that G
acts without inversions on X. For v ∈ I 0(G,X), let Corners(v) and Sides(v) de-
note the sets of edges and vertices of the link of v in G\X. Let Corners(G,X)

denote the disjoint union
⋃

v∈I 0 Corners(v), and analogously for f ∈ I 2(G,X)

let Corners(f ) denote the subset of Corners(G,X) determined by f. For e ∈
Corners(v), let |Ge|−1 denote |Gσ|−1, where σ is the 2-cell of G\X determined
by e. For a ∈ Sides(v) define |Ga|−1 analogously.

Remark 3.7. Each element of Sides(v) is determined by a 1-cell in G\X. In
particular, there is a natural two-to-one surjection⋃

v∈I 0

Sides(v) −→ I1(G,X).

Definition 3.8. Let X be a cocompact G-complex. For v ∈ I 0(G,X), the cur-
vature κ(v) is defined by

κ(v) = 2π · |Gv|−1 −
∑

e∈Sides(v)

π · |Ge|−1 +
∑

c∈Corners(v)

(π − �(c)) · |Gc|−1.

The curvature of f ∈ I 2(G,X) is defined by

κ(f ) =
[( ∑

c∈Corners(f )

�(c)

)
− π(|∂f | − 2)

]
· |Gf |−1.
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Remark 3.9. Let X be a cocompact angled G-complex, let v ∈ I 0(G,X), and
let f ∈ I 2(G,X). Observe that κ(v) and κ(f ) are finite real numbers. Moreover,

κ(v) = Curvature(Gx , link(x)),

where x is a representative of v in X, and analogously

κ(f ) = Curvature(σ) · |Gσ|−1,

where σ is a representative of f in X.

4. The Combinatorial Gauss–Bonnet Formula

Definition 4.1. (Euler Characteristic). Let X be a 2-dimensional cocompact
G-complex. The Euler characteristic χ(G,X) is defined by

χ(G,X) =
∑

σ∈I 0(G,X)

|Gσ|−1 −
∑

σ∈I1(G,X)

|Gσ|−1 +
∑

σ∈I 2(G,X)

|Gσ|−1.

Theorem 4.2 (Combinatorial Gauss–Bonnet). If X is an angled and cocompact
G-complex, then

2π · χ(G,X) =
∑

v∈I 0(G,X)

κ(v) +
∑

f∈I 2(G,X)

κ(f ). (1)

Proof. From the definition of κ(v) and the natural two-to-one surjection of Re-
mark 3.7, we have∑
v∈I 0

κ(v) =
∑
v∈I 0

2π · |Gv|−1−
∑
e∈I1

2π · |Ge|−1+
∑
v∈I 0

∑
c∈Corners(v)

(π −�(c)) · |Gc|−1.

(2)
Observe that∑
f∈I 2

κ(f ) =
∑
f∈I 2

2π · |Gf |−1 +
∑
f∈I 2

[( ∑
c∈Corners(f )

�(c)

)
− π · |∂f |

]
· |Gf |−1

=
∑
f∈I 2

2π · |Gf |−1 −
∑
f∈I 2

∑
c∈Corners(f )

(π − �(c)) · |Gf |−1, (3)

where the first equality follows from the definition of κ(f ) and the second equal-
ity holds since |∂f | = |Corners(f )| for each 2-cell f.

Moreover,∑
f∈I 2

∑
c∈Corners(f )

(π − �(c)) · |Gf |−1 =
∑
f∈I 2

∑
c∈Corners(f )

(π − �(c)) · |Gc|−1

=
∑
v∈I 0

∑
c∈Corners(v)

(π − �(c)) · |Gc|−1, (4)

where the first equality follows from Gc = Gf for each c ∈ Corners(f ) and the
second equality holds since {Corners(v)}v∈I 0 and {Corners(f )}f∈I 2 are partitions
of the set Corners(G,X).
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The chains of equalities (3) and (4) imply that∑
f∈I 2

κ(f ) =
∑
f∈I 2

2π · |Gf |−1 −
∑
v∈I 0

∑
c∈Corners(v)

(π − �(c)) · |Gc|−1. (5)

The Gauss–Bonnet formula (1) now follows by adding equations (2) and (5).

5. Euler Characteristic and �2-Betti Numbers

For a G-complex X, the pth �2-Betti number b(2)
p (G,X) of X is a element of the

extended interval [0, ∞]. We follow the approach of Lück and refer the reader
to [6] for definitions and a general exposition on the subject. The approach of
Lück to �2-Betti numbers fits the work of this paper because there are no assump-
tions on the G-action on X; in particular, the G-action is not required to be free.

Theorem 5.1 (Atiyah’s Formula) [6,Thm. 6.80]. For a cocompactG-complexX,

χ(G,X) =
∑
p≥0

(−1)p · b(2)
p (G,X).

Definition 5.2. For a G-space X and H ≤ G, let XH denote the subspace of X
consisting of points fixed by all elements of H. For a G-map X → Y and H < G,
we have f(XH) ⊆ YH ; denote by f H the restriction of f to XH → YH.

Theorem 5.3 [6, Thm. 6.54(1)]. Let X and Y be G-complexes, and let f : X →
Y be a G-map. Suppose for n ≥ 1 that, for each subgroup H ≤ G, the induced
map f H : XH → YH is C-homologically n-connected ; that is, the map

H sing
p (f H ; C) : H sing

p (XH ; C) −→ H sing
p (YH ; C)

induced by f H on singular homology with complex coefficients is bijective for
p < n and surjective for p = n. Then

b(2)
p (G,X) = b(2)

p (G,Y ) for p < n,

b(2)
n (G,X) ≥ b(2)

n (G,Y ) for p = n.

Theorem 5.4 [6, Thm. 6.54(3)]. Let X be a G-complex. Suppose that for all
x ∈ X the stabilizer Gx is finite or satisfies b(2)

p (Gx) = 0 for all p ≥ 0. Then
b(2)
p (G,X) = b(2)

p (G,EG×X) for p ≥ 0, where EG is a classifying space for G.

Corollary 5.5. Let X and Y be connected G-complexes, and let f : X → Y

be a G-map such that the induced map on singular homology, f∗ : H1(X, C) →
H1(Y, C), is surjective. Suppose that for all x ∈X the stabilizer Gx is finite or sat-
isfies b(2)

p (Gx) = 0 for all p ≥ 0, and analogously for all y ∈ Y. Then b
(2)
1 (G,X) ≥

b
(2)
1 (G,Y ).

Proof. Since EG × X and EG × Y are connected free G-complexes, the map
1 × f : EG × X → EG × Y is C-homologically 1-connected. By Theorem 5.3,
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it follows that b(2)
1 (G,EG × X) ≥ b

(2)
1 (G,EG × Y ). Since isotropy groups are

finite or satisfy b(2)
p (Gx) = 0 for p ≥ 0, Theorem 5.4 implies that b(2)

1 (G,X) ≥
b
(2)
1 (G,Y ).

Corollary 5.6. Let X and Y be contractible G-complexes, let f : X → Y be
a G-map, and suppose that for all x ∈ X the stabilizer Gx is finite or satisfies
b(2)
p (Gx) = 0 for all p ≥ 0, and analogously for all y ∈ Y. Then b(2)

p (G,X) =
b(2)
p (G,Y ) for p ≥ 0. In particular, χ(G,X) = χ(G,Y ).

Proof. Since EG × X and EG × Y are free G-complexes, the Künneth formula
implies that the map 1×f : EG×X → EG×Y is C-homologically n-connected
for all n. Theorem 5.3 implies b(2)

p (G,EG × X) = b(2)
p (G,EG × Y ) for p ≥ 0.

Since isotropy groups are finite or satisfy b(2)
p (Gx) = 0 for p ≥ 0, Theorem 5.4

implies that b(2)
p (G,X) = b(2)

p (G,Y ) for p ≥ 0.

6. Equivariant Immersions

Definition 6.1. Let X be a G-complex. Define

• Bnd(G,X) as the subset of v ∈ I 0(G,X) such that link(x,X) is a single vertex
or has spurs for a representative x ∈X of v, and

• Isd(G,X) as the subset of v ∈ I 0(G,X) such that link(x,X) has at least one
vertex of valence 0 for a representative x ∈X of v.

Definition 6.2 (Essential Path). A path P → Y is essential if the lift to the
universal cover P → Ỹ is not closed.

Theorem 6.3 (Collapsing Essential Paths). Let X be a simply connected H-
complex, let Y → X be an H-equivariant immersion, and let P → Y be an
essential path. Suppose P → Y → X is a closed path that is simple in the sense
that it embeds except at its endpoints. Then Y → X factors as a composition Y →
Z → X of H-equivariant maps, where Y → Z is π1-surjective, Z → X is an
immersion, and the path P → Y → Z is closed and null-homotopic. Moreover,
we can choose Z such that the following hold :

(i) if Y is connected then Z is connected ;
(ii) if Y is H-cocompact then Z is H-cocompact ;

(iii) |Bnd(H,Z) ∪ Isd(H,Z)| ≤ |Bnd(H,Y ) ∪ Isd(H,Y )|.
The strategy of the proof is as follows. A disk diagramD → X with boundary path
P → X is equivariantly attached to Y to obtain an H-complex Z ′ and H-maps
Y → Z ′ → X; this is performed using pushouts of equivariant immersions. Then
the complex Z ′ is equivariantly folded to obtain H-maps Z ′ → Z → X such that
Z → X is an immersion. The proof of the theorem requires some preliminary
results.
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6.1. Equivariant Folding and Pushouts

Lemma 6.4 (Equivariant Folding). Let W → X be a G-map with W locally fi-
nite. Then W → X factors as W → Z → X, where Z → X is an immersion,
W → Z is both a surjection and a π1-surjection, and all maps are G-invariant.

Proof. The statement is clear when W is compact and G is trivial. In general, let
W = ⋃

iWi be a filtration by compact sets. For each i, let Wi → Zi → X be a
factorization such thatZi → X is an immersion andWi → Zi is surjective and π1-
surjective. Observe that for i < j there is a commutative diagram on the left below.

Wi

��

⊆ Wj

��
Zi

�� Zj

U1
��

��

U2
��

��

U3

��
V1

�� V2
�� V3

· · ·

For a sequence U1 → U2 → U3 → · · · , we define U∞ to be the direct limit.
Specifically, U∞ is the combinatorial complex whose p-cells are tales of p-cells
ci → ci+1 → ci+2 → · · · for some i ≥ 1, where two tales are equivalent if they
are eventually the same. If {Ui} is a filtration of U, then U∞ equals U. A morphism
{Ui} → {Vi} between two such sequences is a commutative diagram as on the right
above. Any such morphism induces a map U∞ → V∞. Observe that if the vertical
arrows of the morphism are surjective, then the map U∞ → V∞ is surjective.

By surjectivity, the morphism {Wi} → {Zi} induces a surjective map W∞ →
Z∞. As before, W∞ equals W. Let Xi = X and let X1 → X2 → X3 → · · · be
the identity sequence, and note that X∞ equals X. It follows that we have a map
W → Z → X, where Z = Z∞.

Let us verify that Z → X is an immersion. Since each Zi → X is an immer-
sion and X is locally finite, Z is locally finite. In particular, for each 0-cell z ∈Z

there is an index i for which Zi → Z maps zi �→ z and link(zi) maps isomorphi-
cally onto link(z); the factorization Zi → Z → X shows that Z → X is locally
injective at z.

To see that Z is an H-complex and W → Z is an H-map, we observe that for
h ∈ H there is another filtration W = ⋃

i hWi. For each i there is an i∗ such that
hWi ⊆ Wi∗ , and this induces a map hi : Zi → Zi∗ ; it follows that {hi} induces
a map h : Z → Z defining an action of H onto Z. By construction, the action
commutes with the map W → Z.

To see that W → Z is π1-surjective, observe that each closed path σ in Z occurs
in some Zi. Since Wi → Zi is π1-surjective, σi → Zi is homotopic to (the image
of) a closed path σi → Wi → W.

Lemma 6.5 (Pushouts of Equivariant Maps). Let φ : C → A and ψ : C → B

be G-maps of complexes. Then there is a G-complex Z and there are G-maps
ı : A → Z and  : B → Z such that ı � φ =  � ψ. The pushout (Z, ı, ) is uni-
versal in the sense that the equivariant maps A → X and B → X for which
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the diagram below commutes induce a unique equivariant map Z → X that also
makes the diagram commute.

A

ı
���

��
��

��

���������������������

C

ψ ���
��

��
��

φ
���������

Z �������� X

B


���������

���������������������

Moreover, if A and B are G-cocompact (resp., proper ) then Z is G-cocompact
(resp., proper ). If A is connected and ψ(C) intersects all connected components
of B, then Z is connected.

Proof. The construction of the pushout of φ and ψ is standard and is briefly de-
scribed. Let Z be the combinatorial complex obtained by taking the quotient of
the disjoint union of A and B by the relation φ(σ) = ψ(σ) for σ in C. The re-
sulting complex admits a natural G-action. The statements on inheritance of co-
compactness, properness, and connectedness are routine; the details are left to the
reader.

6.2. Proof of Theorem 6.3

Since X is simply connected, there is a near-immersion D → X of a disk dia-
gram with boundary path P → X. Since P → X is a simple closed path, D is
homeomorphic to an Euclidean disk.

Let
⋃

H P denote the disjoint union of copies of P, one for each element of
H. Define

⋃
H D analogously. By Lemma 6.5, let Z ′ be the pushout of the nat-

ural H-maps
⋃

H P → ⋃
H D and

⋃
H P → Y. By the universal property of the

pushout, the immersion Y → X and the natural map
⋃

H D → X induce an
H-map Z ′ → X. By Lemma 6.4, let Z → X be the H-equivariant immersion
obtained after an equivariant folding of Z ′ → X. We refer to the following com-
mutative diagram.

Y

����
��

��
��

�������������������������

⋃
H P

		��
��

��
��



									

Z ′ �� Z �� X

⋃
H D

��









�����������������������

The main conclusions of Theorem 6.3 are proved in Lemmas 6.6–6.9.

Lemma 6.6. Y → Z ′ → Z is π1-surjective.
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Proof. By Lemma 6.4, Z ′ → Z is π1-surjective. Hence it remains to prove that
Y → Z ′ isπ1-surjective. Let Y ′ denote the image of Y inZ ′, and note that Y ′ → Z ′
is π1-surjective since the complement of Y ′ in Z ′ is a collection of disjoint open
disks. Observe that π1Y

′ is generated by the image of π1Y → π1Y
′ together with

closed paths corresponding to H-translates of P → Y → Z ′. Since these addi-
tional paths become null-homotopic by the addition of theH-translates ofD → Z ′,
the result follows.

Lemma 6.7. If Y is H-cocompact then Z is H-cocompact. If Y is connected then
Z is connected.

Proof. Suppose Y is H-cocompact. By Lemma 6.5, the pushout Z ′ is H-cocom-
pact. Lemma 6.4 implies that Z ′ → Z is surjective. It follows that Z is H-
cocompact. Suppose that Y is connected. Then Z ′ is connected by Lemma 6.5.
Since Z ′ → Z is surjective, Z is connected.

For the next two lemmas, consider the natural map I 0(H,Y ) → I 0(H,Z) induced
by Y → Z.

Lemma 6.8. The image of Isd(H,Y ) contains Isd(H,Z).

Proof. Suppose that v ∈ Isd(H,Z) and let z ∈Z be a representative. Let e be the
1-cell of Z giving rise to the isolated vertex of link(z,Z). Since Z ′ → Z is surjec-
tive, there is a 1-cell e ′ of Z ′ mapping to e and a corresponding 0-cell z ′ mapping
to z. Since link(z,Z) has an isolated vertex induced by e, link(z ′,Z ′) has an iso-
lated vertex s induced by e ′. Suppose that e ′ has a preimage f in

⋃
H D. Then f is

on the boundary path of a component of
⋃

H D. It follows that e ′ has a preimage in⋃
H P and so e ′ has a preimage in Y. Hence there is a y ∈ Y such that the image of

link(y,Y ) in link(z ′,Z ′) contains the isolated vertex s. It follows that link(y,Y )

has an isolated vertex and thus there is a u∈ Isd(H,Y ) mapping to v.

Lemma 6.9. The image of Bnd(H,Y ) ∪ Isd(H,Y ) contains Bnd(H,Z).

Proof. Suppose that v ∈ Bnd(H,Z). Let z ∈ Z be a representative of v. If
link(z,Z) is a single point, then v ∈ Isd(H,Y ) and Lemma 6.8 shows that there
is a u∈ Isd(H,Y ) that maps to v. Consider the case where link(z,Z) has a spur s
with terminal vertex t.

Suppose that s corresponds to a 2-cell in the image of Y → Z. Then there is
a y ∈ Y mapping to z such that the image of link(y,Y ) → link(z,Z) contains s.

Since Y → Z is an immersion, link(y,Y ) is a subgraph of link(z,Z) and hence
it has a spur. In particular, there is a u∈ Bnd(H,Y ) that maps to v.

Otherwise, there is a 0-cell w of
⋃

H D that maps to z, and the image of
link

(
w,

⋃
H D

) → link(z,Z) contains s. In particular, link
(
w,

⋃
H D

)
has a

spur and therefore w is in the boundary of a connected component of
⋃

H D.

Hence there is also a y ∈ Y that maps to z, and the image of link(y,Y ) →
link(z,Z) contains t. As

⋃
H D → Z and Y → Z are immersions, link(y,Y )
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and link
(
w,

⋃
H D

)
are subgraphs of link(z,Z). Both subgraphs contain the ver-

tex t, but link(y,Y ) does not contain s. It follows that t is an isolated vertex of
link(y,Y ). Therefore, there is a u∈ Isd(H,Y ) that maps to v.

Lemmas 6.8 and 6.9 imply that the image of Bnd(H,Y ) ∪ Isd(H,Y ) contains
Bnd(H,Z) ∪ Isd(H,Z), and this concludes the proof of Theorem 6.3.

6.3. No Self-Immersions

Lemma 6.10 (No Self-Immersions). Let X be a G-cocompact, proper, and con-
nected complex. Any G-equivariant immersion φ : X → X is an isomorphism.

Proof. The quotient space X/G is a combinatorial complex, and φ induces a self-
immersion ψ : X/G → X/G. Since X/G is compact and connected, ψ is an
isomorphism [15, Lemma 6.3] and hence φ is onto.

Let u be a 0-cell. Since ψ is an isomorphism, all elements of φ−1(u) are G-
equivalent. Therefore |φ−1(u)| is a lower bound for the size of the G-stabilizer
of u. Since X is G-cocompact and proper, there is an upper bound on the cardi-
nality of cell stabilizers. Therefore |φ−1(φn(u))| = 1 for some n > 0 depending
on u. By cocompactness, there is an m > 0 such that φ restricted to φm(X) = X

is injective.

7. Existence of Cores

This section contains the proof of Theorem 1.3. The section is divided into five
subsections. The first four subsections contain preliminary results, and the last
subsection discusses the proof of the theorem.

7.1. Angled Graphs

Lemma 7.1 (Curvature and Connected Components). Let 
 be a cocompact an-
gled H-graph. Let 
1, . . . ,
� be a collection of representatives of H-orbits of con-
nected components of
, and letHi be the stabilizer of
i. If Curvature(Hi,
i) ≤
π · |Hi |−1 for 1 ≤ i ≤ �, then Curvature(H,
) ≤ Curvature(Hi,
i) for
1 ≤ i ≤ �.

Proof. First notice that

Curvature(H,
) =
�∑

i=1

Curvature(Hi,
i) + 2π ·
(
|H |−1 −

�∑
i=1

|Hi |−1

)
. (6)

If � = 1 and H = H1, then 
 = 
1 and obviously κ(H,
) = κ(H1,
1).

Otherwise, 2|H |−1 ≤ ∑�
i=1|Hi |−1 and hence equation (6) implies that

Curvature(H,
) ≤
�∑

i=1

(Curvature(Hi,
i) − π · |Hi |−1).

Since Curvature(Hi,
i) ≤ π · |Hi |−1, it follows that Curvature(H,
) ≤
Curvature(Hi,
i).
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Proposition 7.2. Let & be an angled G-graph such that, for each subgroup
K ≤ G, every regular K-section has curvature ≤ α ≤ 0. Suppose H is a sub-
group of G and 
 is a nonempty and spurless H-section of &. The following
statements hold.

(i) If 
 contains an edge, then Curvature(H,
) ≤ α.

(ii) Curvature(H,
) > 0 if and only if 
 is a single vertex and H is a finite
group.

Proof. Let 
i, Hi, and � be as in the statement of Lemma 7.1. Since 
 is spur-
less, for each i either 
i is a regular Hi-section of 
 or else 
i is a single vertex.
It follows that Curvature(Hi,
i) ≤ 0 ≤ π|Hi |−1 for each i.

Suppose 
 contains an edge. Without loss of generality, assume that 
1 is a
connected component with at least one edge. Then 
1 is a regular H1-section and,
by Lemma 7.1, Curvature(H,
) ≤ Curvature(H1,
1) ≤ α.

Suppose that Curvature(H,
) > 0. Since α ≤ 0, Lemma 7.1 implies that each
connected component of 
 is a single point. Therefore 0 < Curvature(H,
) =
2π|H |−1−π

∑�
i=1|Hi |−1. This implies that � = 1,H is a finite group, andH1 = H.

In particular, 
 is a single point and H is a finite group. The “if” part of state-
ment (ii) is immediate.

Corollary 7.3. Let & be an angled G-graph such that each regular section has
curvature ≤ α < 0. Suppose that 
 is an H-section of & such that 
 is nonempty
and spurless. Then Curvature(H,
) = 0 if and only if 
 is an edgeless graph
and either

(i) 
 consists of two vertices and H acts trivially on 
 or
(ii) the stabilizer of each vertex of 
 is infinite.

Proof. Let 
i, Hi, and � be as in the statement of Lemma 7.1. Suppose that
Curvature(H,
) = 0. Since α < 0, Proposition 7.2 implies that each 
i is a
single vertex. Then

0 = Curvature(H,
) = 2π · |H |−1 − π ·
�∑

i=1

|Hi |−1.

If H is an infinite group then each Hi is infinite, and therefore the stabilizer of
each point of 
 is an infinite subgroup of H. If H is a finite group, then 2 =∑�

i=1[H : Hi], where [H : Hi] is the index of Hi in H. Hence � = 2 and Hi = H

for i = 1, 2; in particular, the action of H on 
 is trivial.
The “if” part of the statement follows by a direct computation of Curvature(H,
)

and is left to the reader.

7.2. Counting Immersions in Nonpositively Curved Complexes

Definition 7.4 (G-Equivalent Maps). Let X be a G-complex, let H be a sub-
group of G, and for i = 1, 2 let Yi be an H-complex. A pair of H-equivariant
immersions φ1 : Y1 → X and φ2 : Y2 → X are G-equivalent if there is an H-
isomorphism of complexes ψ : Y1 → Y2 and a g ∈G such that g � φ1 = φ2 � ψ.
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Definition 7.5. Let X be a nontrivial cocompact and proper angled G-complex.
Define

• Zero(G,X) as the set of v ∈ I 0(G,X) with κ(v) = 0,
• Neg(G,X) as the set of v ∈ I 0(G,X) with κ(v) < 0, and
• Pos(G,X) as the set of v ∈ I 0(G,X) with κ(v) > 0.

Theorem 7.6 (Counting Immersions in Nonpositively Curved G-Complexes).
Let X be a nontrivial, cocompact, and proper angled G-complex with sectional
curvature ≤ 0. Let H be a subgroup of G, and let r, s, t be fixed numbers. Up to
G-equivalence, there are finitely many H-equivariant immersions Y → X with
the following properties:

(i) Y is H-cocompact and connected ;
(ii) χ(H,Y ) ≥ r;

(iii) |Zero(H,Y )| ≤ s;
(iv) |Bnd(H,Y )| ≤ t.

Lemma 7.7 (Immersions Determined by a Compact Complex). LetX be a proper
G-complex, let H be a subgroup of G, let K be a finite connected complex, and let
ψ : K → X be an immersion. There are finitely many G-equivalence classes of
H-equivariant immersions φ : Y → X such that there is an embedding ı : K ↪→ Y

satisfying φ � ı = ψ and the H-translates of K cover Y.

Proof. Observe that if φ : Y → X is an H-equivariant immersion and K is a sub-
complex with

⋃
h∈H K = Y, then φ is completely determined by its restriction

to K.

The H-proper complex Y is completely determined by the finite set of elements
{g ∈H : K ∩ gK �= ∅} of H and the isomorphisms between the complexes Jg =
g−1K ∩ K and J ′

g = K ∩ gK. Indeed, one can recover Y by taking H × K and
identifying the various h × Jg with hg × J ′

g using the isomorphism.
To show that there are finitely many possibilities for the above data, we argue as

follows. Let g1, . . . , gn be the set of elements of H such that ψK ∩ gψK �= ∅, and
note that this set is finite since G acts properly on X. For each i, there are finitely
many choices of isomorphisms between subcomplexes Ji ⊂ K and J ′

i ⊂ K.

Lemma 7.8 (Counting Immersions). Let X be a proper, cocompact, and con-
nected G-complex, let H be a subgroup of G, and let M be a positive integer. Up
to G-equivalence, there are finitely many H-equivariant immersions Y → X such
that Y is connected and |I 0(H,Y )| < M.

Proof. Observe that every H-cocompact complex Y with |I 0(H,Y )| < M con-
tains a connected subcomplex K with |K 0| < M. Since X is proper and G-
cocompact, there are finitely many G-equivalent classes of immersions K → X

where K is connected and |K 0| < M. The result then follows from Lemma 7.7.
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Lemma 7.9. Let X be a nontrivial, cocompact, and proper angled G-complex
with generalized sectional curvature ≤ 0. Then

I 0(G,X) = Zero(G,X) ∪ Neg(G,X) ∪ Bnd(G,X).

Proof. Let v ∈ I 0(G,X), and suppose that v /∈ Bnd(G,X). Since X is nontrivial
and connected, link(x,X) is nonempty. Since v /∈ Bnd(G,X), link(x) is spurless
and not a single point. Since X has generalized sectional curvature ≤ 0, Propo-
sition 7.2 implies that Curvature(Gx , link(x,X)) ≤ 0. Hence v ∈ Zero(G,X) ∪
Neg(G,X).

Definition 7.10 (N(G,X), P(G,X)). Let X be a cocompact and proper angled
G-complex. There are finitely many 0-cells of X up to the action of G. Since
X is proper and cocompact it follows that, for each 0-cell x of X, the angled
Gx-graph link(x) has finitely many sections. Let N(G,X) be the maximum cur-
vature among all possible such sections with negative curvature; if there are no
sections with negative curvature let N(G,X) = −1. Analogously, let P(G,X) be
the maximum curvature among all sections with nonnegative curvature; if there
are no sections with nonnegative curvature let P(G,X) = 0.

Remark 7.11. For a cocompact and proper angled G-complex X, N(G,X) <

0 ≤ P(G,X).

Lemma 7.12. Let X be a cocompact and proper angled G-complex. Suppose
that κ(f ) ≤ 0 for each 2-cell of X. If H is a subgroup of G, Y is a cocompact
H-complex, and Y → X is an H-equivariant immersion, then

|Neg(H,Y )| ≤ 2π · χ(H,Y ) − P(G,X) · |Pos(H,Y )|
N(G,X)

.

Proof. For v ∈ I 0(H,Y ) we have κ(v) = Curvature(Hy , link(y,Y )), where y is
a representative of v. Let x ∈ X be the image of y. Since Y → X is an immer-
sion, link(y,Y ) is an Hy-section of the Gx-graph link(y,X). In particular, κ(v) ≤
N(G,X) < 0 or 0 ≤ κ(v) ≤ P(G,X).

By the Gauss–Bonnet Theorem 4.2 and the assumption that 2-cells have non-
positive curvature,

2π · χ(H,Y ) ≤ N(G,X) · |Neg(H,Y )| + P(G,X) · |Pos(H,Y )|.
Since N(G,X) < 0, the conclusion of the lemma is immediate.

Proof of Theorem 7.6. Let Y → X be an H-equivariant immersion satisfying the
listed properties. By Proposition 3.5, X has generalized sectional curvature ≤ 0.
Therefore Y has generalized sectional curvature ≤ 0 as well. By Lemma 7.9,
I 0(H,Y ) = Zero(H,Y ) ∪ Neg(H,Y ) ∪ Bnd(H,Y ). By Lemmas 7.9 and 7.12,

|I 0(H,Y )| ≤ |Zero(H,Y )| + |Bnd(H,Y )| + |Neg(H,Y )|
≤ s + t + 2π · r − P(G,X) · t

N(G,X)
.
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Since there is an upper bound for the size of I 0(H,Y ) that is independent of H

and Y, Lemma 7.8 implies that there are finitely many posibilities for Y → X.

7.3. Proof of the Simply Connected Core Theorem 1.3

Construct a sequence of H-equivariant immersions φn : Yn−1 → Yn for n ≥ 1 and
ψn : Yn → X for n ≥ 0 in the following way.

Y0
φ1 ��

ψ0

��

Y1
φ2 ��

ψ1

��
��

��
��

��
· · · φn �� Yn

ψn

��
φn+1 �� · · ·

X

LetY0 = Y and letψ0 : Y0 → X be the inclusion map. Assume thatψn : Yn → X

has been defined. Suppose there is a nontrivial path P → Yn such that either

• P → Yn is a closed path that is not null-homotopic or
• P → Yn is not a closed path but P → Yn → X is a closed path.

Such a path is called essential. Choose a path P → Yn of minimal length with the
above property. Observe that P → Yn → X is a simple closed path by minimal-
ity. Let φn+1 : Yn → Yn+1 be the π1-surjective map and let ψn+1 : Yn+1 → X be
the H-equivariant immersion provided by Theorem 6.3 applied to the immersion
ψn : Yn → X and the path P → Yn. If there is no path P → Yn as above, then the
sequence stabilizes in the sense that Ym = Yn, ψm = ψn, and φm is the identity
map for all m ≥ n + 1. (We will show that the sequence always stabilizes.)

Lemma 7.13. Yn is connected and H-cocompact.

Proof. This follows by induction using Theorem 6.3 with base case that Y0 is con-
nected and H-cocompact.

Lemma 7.14. φn is an immersion and is π1-surjective.

Proof. The property of π1-surjectivity follows from the definition of φn in terms
of Theorem 6.3. Since ψn+1 � φn+1 = ψn and ψn is an immersion, φn+1 is an
immersion.

Lemma 7.15. |Zero(H,Yn) ∪ Bnd(H,Yn)| ≤ |Isd(H,Y0) ∪ Bnd(H,Y0)|.
Proof. By Theorem 6.3(iii), an induction argument shows that

|Isd(H,Yn) ∪ Bnd(H,Yn)| ≤ |Isd(H,Y0) ∪ Bnd(H,Y0)|.
Therefore it is enough to prove that Zero(H,Yn) ∪ Bnd(H,Yn) is a subset of
Isd(H,Yn) ∪ Bnd(H,Yn). Let v ∈ Zero(H,Yn) − Bnd(H,Yn) and let y be a rep-
resentative of v. Since Yn → X is an immersion, Yn has negative sectional cur-
vature. By Corollary 7.3, link(y,Yn) consists of two vertices and no edge. Thus
v ∈ Isd(H,Yn).



Coherence and Negative Sectional Curvature in Complexes of Groups 525

Lemma 7.16. χ(H,Yn) ≥ −b
(2)
1 (H,Y0).

Proof. By Lemma 7.14 and an induction argument, Y0 → Yn+1 is π1-surjective.
Then Corollary 5.5 implies that b(2)

1 (H,Y0) ≥ b
(2)
1 (H,Yn). Then the conclusion

follows from χ(H,Yn) ≥ −b
(2)
1 (H,Yn).

For positive integers m < n, let φm,n denote the immersion φn−1 � · · · �φm+1 from
Ym to Yn.

Lemma 7.17. There is an m0 > 0 such that φm0,n is an H-equivariant isomor-
phism for every n > m0.

Proof. By Theorem 7.6 and the previous lemmas, the sequence contains only
finitely many non–G-equivalent immersions. If the statement is false, then there
are positive integers m < n such that Ym → X and Yn → X are G-equivalent but
the H-equivariant immersion φm,n : Ym → Yn is not an isomorphism. Since Ym

and Yn are isomorphic as H-complexes, φm,n would be a self-immersion that is
not an isomorphism—contradicting Lemma 6.10.

Conclusion of the Proof of Theorem 1.3. By Lemma 7.17, it follows that there
exists an m0 > 0 such that Ym0 has no essential paths as defined in the construc-
tion of the Yi. In particular, ψm0 is an embedding and Ym0 is simply connected.
Therefore ψm0(Ym0) is a simply connected H-cocompact subcomplex of X con-
taining Y0.

8. Quasiconvex Cores

This section contains the proof of Theorem 1.6. Let X be a proper cocompact
CAT(0) G-complex whose cells are convex. This is a complete geodesic metric
space [1]; for background on CAT(0) cell-complexes we refer the reader to [2].

The proof is split into several subsections. Assign angles as they arise from the
CAT(0)-metric and suppose X has negative sectional curvature. Let H be a sub-
group of G and let Y be a simply connected cocompact H-subcomplex. Let � be
a geodesic segment in X such that its endpoints are 0-cells of Y.

8.1. The Carrier L of �, the Paths PL,PY , and the Disk Diagram D

Let R1, . . . ,Rn be the sequence of open cells of X that intersect � in the order in
which they are traversed by �. Since cells of X are convex, there are no repetitions
in the sequence and ∂Ri ∩ ∂Rj is connected. Let L be the complex constructed
by taking the disjoint union of closures R̄1 � · · · � R̄n and identifying the two
copies of ∂Ri ∩ ∂Ri+1 in R̄i and R̄i+1 for 1 ≤ i < n. Observe that L → X is a
near-immersion, L is simply connected, and � ↪→ X factors as � → L → X. See
Figure 1.
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Figure 1 Sequence of open cells ofX intersecting the geodesic � (top); the resulting
complex L (bottom)

Since Y and L are connected, there are edge paths PY → Y and PL → L con-
necting the endpoints s and t of �. Since X is simply connected, there is a disk
diagram D → X between PY → X and PL → X. Choose PY → Y and PL →
L and D → X such that (area(D), |∂D|) is minimal in the lexicographical order.

Lemma 8.1 (� Is Uniformly Close to PL). If R → X is an open cell intersecting
�, then its closure R̄ → X intersects the image of PL → X.

Proof. Since PL → L connects the endpoints of � → L, if a closed cell S discon-
nects L then PL → L intersects S. By definition of L, if R is an open cell of X
intersecting � then the closure of R in L disconnects L.

Definition 8.2 (Cut 0-Cells and Cut Components). A 0-cell v is called a cut
0-cell of D provided that D − {v} is not connected. Let V be the set of all cut
0-cells of D. Closures of connected components of D − V are cut components.
A cut component is nonsingular if it contains a 2-cell.

Lemma 8.3. The path PY → D is embedded.

Proof. Suppose that PY → D is not embedded. Then PY is a concatenation
U1VU2 such that (a) the terminal point of U1 → PL → D and also the initial point
of U2 → PL → D is a 0-cell u and (b) V → PY → D is a nontrivial path with
no internal 0-cells in common with PL → D. Observe that u is a cut 0-cell of D.

Let ṖY → D be the path U1U2 → D, and observe that ṖY → D → X factors
through Y → X and ṖY → X connects the endpoints of �. The paths ṖY → D

and PL → D bound a subdiagram Ḋ of D. Since V → D is nontrivial, the com-
plexity of Ḋ is strictly smaller than the complexity of D. Then ṖY and Ḋ violate
the minimality of D.

Lemma 8.4 (2-Cells of D Intersecting PL). If R → D is a 2-cell such that
∂R → D intersects PL → D, then the interior of R → X does not intersect �.

Proof. If the interior of R → X intersects �, then ∂R → X factors through
L → X. Since ∂R → D intersects PL → D, it follows that PL is a concatenation
U1cU2 where c is a cell mapped into ∂R → D. In particular, ∂R is a concatena-
tion cQ where Q → ∂R is a path; if c is a 0-cell then c is the initial point of the
path Q. Let Ḋ be the subdiagram of D obtained by removing the interiors of c
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and R; in the case that c is a 0-cell, remove the interior of R, remove c, and add
two copies of c to obtain a simply connected diagram. Let ṖL → L be the path
U1Q

−1U2 (or U1QU2) and observe that ṖL and Ḋ violate the minimality of D. See
Figure 2.

Figure 2 Reduction of complexity in the proof of Lemma 8.4: if a cut component
of D has a 2-cell R → D with two different boundary arcs intersecting �, then D

has no minimal complexity

Lemma 8.5 (Internal Paths in D). If there is a nontrivial internal path T → D,
as described in Definition 2.4, such that T → D → X factors through L → X

and has endpoints in PL → D, then D does not have minimal complexity.

Proof. Suppose that T → D is an internal path satisfying the hypothesis of the
lemma. Without loss of generality, we can assume that T → D is an embedding;
indeed, its image contains an internal and embedded path T ′ → D with the same
endpoints as T → D. The endpoints of T split the boundary path of D as a con-
catenation of paths UV → ∂D such that T and U have the same endpoints and
PY → D is a subpath of U−1 (the path V may be trivial). Then PL → D is a
concatenation U1VU2, where each Ui is a subpath of U. Let ṖL → D be the path
U1T

−1U2 and observe that ṖL → D → X factors through L → X. The paths
PY → D and ṖL → D bound a subdiagram Ḋ of D. Since T → D is internal,
the complexity of Ḋ is strictly smaller than the complexity of D. Then ṖL and Ḋ

violate the minimality of D. See Figure 3.

Figure 3 Reduction of complexity in the proof of Lemma 8.5

Lemma 8.6 (2-Cells of D Intersecting �). Let R → D be a 2-cell. Suppose
∂R → D is a concatenation S1T1 . . . SmTm, where each Si → D is a boundary
path Si → ∂D and each Ti → D is a nontrivial internal path in D. Then at most
one subpath Si → X intersects � and factors through PL → X.
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Proof. Suppose that two different paths Si → X intersect � and factor through
PL → X. By convexity of R, either the interior of R → X intersects � or else there
is a path Ti → D that maps into �. The former case is impossible by Lemma 8.4
and the latter case is impossible by Lemma 8.5.

Lemma 8.7 (Cut 0-Cells of D). Let u be a cut 0-cell of D.

(i) If u is in PY → D, then u is also in PL → D.

(ii) If u → D → X is contained in �, then u is in PY → D.

Proof. Since PY → D is embedded by Lemma 8.3, the first statement is immedi-
ate. To prove the second statement, suppose that the image of u in X is contained
in � and that u is not in PY → D. Hence u is in PL → D. Observe that all
points of PL that map to u ∈ D map to the same point in L. This follows since
� → X is injective, contains the cell u → X, and factors through L → X. Let
V → D be the subpath of PL → D starting and ending at u and traveling around
the components of D − U not containing PY → D. Express PL as a concatena-
tion U1VU2 and note that V → D and PY → D are disjoint. Let ṖL be the path
U1U2. Observe that ṖL → X is a path that connects the endpoints of �, factors
through L → X, and factors through PL → D. Moreover, the paths ṖL → D

and PY → D bound a subdiagram Ḋ of D. Since V → D is nontrivial, the com-
plexity of Ḋ is strictly smaller than the complexity of D. Then ṖL and Ḋ violate
the minimality of D.

8.2. Good Path in D

The main goal of this subsection is to prove Proposition 8.9.

Definition 8.8 (Good Paths in D). A path Q → D is a good path if, for every
0-cell c in the interior of the path Q → D, either c is an internal cell of the dia-
gram D or the image of c → D → X does not intersect �.

Proposition 8.9 (Good Paths with Terminal Point in PY ). Let u be a 0-cell of
∂D. Suppose u is not an internal 0-cell of a boundary arc of D. Then there is a
good path Q → D from u to a 0-cell of PY → D.

The following lemma is immediate.

Lemma 8.10 (Concatenation of Good Paths). Let P1 → D and P2 → D be
good paths such that the terminal point w of P1 equals the initial point of P2.

Suppose the image of w in D → X does not intersect �. Then the concatenation
P1P2 → D is a good path.

Lemma 8.11 (Good Paths along a Boundary of a 2-Cell). Let R → D be a 2-cell
such that ∂R is a concatenation S1T1 . . . SmTm, where each Si → D is a boundary
arc Si → ∂D and each Ti → D is a nontrivial internal path in D.

(i) Suppose each Si → D factors through PL → D. If u and v are distinct 0-cells
in the intersection of ∂R → D and ∂D and if u and v are not internal 0-cells
of a boundary arc of D, then there is a good path between them.
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(ii) Suppose ∂R → D intersects PL → D but some Si → D does not factor
through PL → D. If u is a 0-cell in the intersection of ∂R → D and ∂D and
if u is not an internal cell of a boundary arc of D, then there is a good path
from u to a 0-cell v in the intersection of ∂R → D and PY → D.

Proof. Suppose that all Si → D factor through PL → D. By Lemma 8.6, we
can assume without loss of generality that Si → D → X does not intersect � for
i ≥ 2. Then the path P = T1S2 . . . SnTn → D is a good path since if a 0-cell is
mapped into � then it must be in the interior of D. Since u and v are not internal
cells of a boundary arc of ∂D, u and v are in P → D. The first statement follows.

Suppose ∂R → D intersectsPL → D but some Si → D does not factor through
PL → D. Since u is not an internal cell of a boundary arc, it follows that u is an
endpoint of Sj → D for some j. If Si → D does not factor through PL → D,
then it factors through PY → D. Therefore ∂R → D has 0-cells of PY → D, and
in particular there is a 0-cell v that is an endpoint of Si → D for some i and is
in PY → D. Lemma 8.6 implies that at most one of the paths Si → D → X in-
tersects � and factors through PL → D. Without loss of generality, assume that if
there is such a path then it is S1 → D. It follows that T1S2 . . . SnTn is a good path
containing u and v.

Proof of Proposition 8.9. There is a sequence of cells c1, c2, . . . , cn in D such that:

(i) each ci is either an open 2-cell or an open 1-cell disconnecting D;
(ii) c̄i ∩ c̄i+1 either is a cut 0-cell or contains a 1-cell;

(iii) u∈ c̄1, and c̄n intersects PY → D;
(iv) ci is not equal to ci+1; and
(v) c̄i does not intersect PY → D for i < n.

Indeed, consider a path S → D from u to PY → D. Each open 1-cell of S → D

either disconnects D or lies in the closure of a 2-cell. For consecutive edges e1, e2

that lie in 2-cells, either the 0-cell a that lies between e1 and e2 is a cut 0-cell of D
or we add a sequence of 2-cells corresponding to a path in link(a,D) between the
vertices associated to e1 and e2. The last two properties are guaranteed by possibly
passing to a subsequence.

If n = 1 and c1 is a 2-cell, the proof concludes by letting P → D be a good
path from u to PY → D as provided by Lemma 8.11(ii). If n = 1 and c1 is a 1-cell,
then the conclusion is immediate.

Suppose n > 1. A good path Q → D from u to PY → D is constructed as a
concatenation Q = P1 . . . Pn of good paths Pi → D as follows. For each i > 0,
either let bi be a 1-cell in c̄i ∩ c̄i+1 or let bi be the cut 0-cell of D equal to c̄i ∩ c̄i+1.

Let b0 = u. If ci is an isolated 1-cell of D, then let Pi → D equal ci .
Suppose that ci is a 2-cell and i < n. Observe that if bi is a 0-cell then bi is

a cut 0-cell of D and, by Lemma 8.7, does not map into �. Suppose that bi is a
1-cell. By Lemma 8.6 it is impossible for both endpoints of bi to lie in ∂D and
also to lie on PL → D and map into �. If both endpoints of bi lie on ∂D, then
property (v) of the sequence {cn} implies that the endpoints of bi lie on PL → Y.

Therefore either bi is a cut 0-cell of D, or some (chosen) endpoint of bi is either
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internal or does not map into �. Since c̄i is disjoint from PY → D, Lemma 8.11(i)
provides a good path Pi → ∂D from (our chosen points in) bi−1 to bi. Note that
the hypotheses are satisfied. Indeed, if bi is a 0-cell then it is a cut 0-cell of D

and therefore is not an internal 0-cell of a boundary arc of D. If bi is a 1-cell, then
either the chosen endpoint is internal, or the chosen endpoint is on ∂D and does
not map into � and is not an internal 0-cell of a boundary arc of D.

If cn is a 2-cell, Lemma 8.11(ii) implies that there is a good path Pi → ∂D from
the chosen endpoint of bn−1 to a 0-cell of PY → D.

Finally, the good path P → D is the concatenation P1 . . .Pn, which is a good
path by Lemma 8.10.

8.3. Subdivisions, Good Paths, and Internal Paths

Lemma 8.12 (Subdividing along �). There is an H-equivariant subdivision X ′
of X that satisfies the following properties:

(i) � is contained in the 1-skeleton of X ′;
(ii) each cell of X ′ is convex;

(iii) each 0-cell of X ′ with nonzero curvature is a 0-cell of X; and
(iv) if X has nonpositive sectional curvature then so does X ′.

Proof. Since � intersects finitely many cells and H acts properly on X, we see that
each cell intersects finitely many H-translates of �. The 1-skeleton of X ′ equals
X1∪H�. In particular, the 0-skeleton of X ′ consists of three types of cells: 0-cells
ofX, intersections ofH-translates of �with open1-cells ofX, and self-intersections
of distinct H-translates � within open 2-cells of X. Since each cell of X is convex
and � is a geodesic segment, it follows that each cell of X ′ is convex.

We now verify the third statement. Observe that each new 0-cell in X ′ is in the
interior of either a 2-cell or a 1-cell of X. In the former case, the link is a circle
with 2π -angle sum. In the latter case, the link is a finite subdivision of a bipartite
graph D with two vertices, and each edge of D has angle π.

Finally, link(x,X ′) is a subdivision of link(x,X) when x ∈ X 0. Thus the last
statement follows.

The subdivision X ′ of X induces a subdivision of any complex that is immersed
in X. Induced subdivisions of PL, PY , D, Y, and L are denoted by P ′

L, P ′
Y , D ′, Y ′,

and L′, respectively. The geodesic � is an edge path in L′. Divide the path P ′
L →

L′ into paths P ′
1, . . . ,P ′

k such that each P ′
i either is a subpath of � or else inter-

sects � only at its endpoints. Let �i be the subpath of � between the endpoints of
P ′

i . (Note that the concatenation �1 . . . �k may not equal �, although it is a path
within �.) Let K ′

i ⊆ L′ be the subdiagram between �i and P ′
i . Let K ′ be the com-

plex obtained by attaching to P ′
L a copy of K ′

i along the subpath P ′
i for each i.

Observe that K ′ → L′ is a near-immersion and that P ′
L → K ′ and �1 . . . �k →

K ′ are embeddings. Since K ′ is contractible, K ′ → L′ is a disk diagram between
P ′
L → L′ and �1 . . . �k → L′. See Figure 4.
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Figure 4 The paths � → L and PL → L (top); the embedding P ′
L → K ′ (bottom)

Let E ′ be the complex obtained by identifying D ′ and K ′ along the images of
P ′
L → D ′ and P ′

L → K ′. Since D ′ and K ′ are disk diagrams and P ′
L → K ′ is an

embedding, it follows that E ′ is a disk diagram. The minimality assumption on D

implies that E ′ → X ′ is a near-immersion; see Lemma 8.13. Therefore, E ′ → X ′
is a disk diagram between P ′

Y → X ′ and �1 . . . �k → X ′. See Figure 5.

Figure 5 The disk diagramE ′ →X ′ between the pathsP ′
Y →X ′ and �1 . . . �k →X ′

Lemma 8.13. The map E ′ → X ′ is a near-immersion.

Proof. As D → X and K ′ → X ′ are near-immersions, it suffices to examine the
1-cells of E ′ along P ′

L → E ′. Let e ′ be a 1-cell of P ′
L. Suppose R ′

1 and R ′
2 are

distinct 2-cells of E ′ at (the image of) e ′ that map to the same 2-cell in X ′. Since
both P ′

L → K ′ and D ′ → E ′ are embeddings, assume without loss of generality
that R ′

1 is in K ′ and that R ′
2 is in D ′.

We will show that the minimality of D is violated. Let e be the 1-cell of PL con-
taining e ′, let R1 be the 2-cell of L containing the image of R ′

1, and let R2 be the
2-cell of D containing the image of R ′

2. Let ∂R1 = Qe−1 and let ṖL be formed
from PL by replacing e with Q. Similarly, let Ḋ be the subdiagram of D obtained
by removing the open cells e and R2. Observe that Ḋ → X is a disk diagram be-
tween ṖL → X and PY → X that violates the minimality of D.

We now consider the case where both R ′
1 and R ′

2 are in K ′. Observe that R ′
1,R ′

2
meet each other along the 1-cell c ′ of D ′ (the image of e ′). Again, let e be the
1-cell of PL containing e ′ and let c be the 1-cell of D containing c ′. Then PL is a
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concatenation S1eS2fS3, where e and f travel through the 1-cell c. Let ṖL equal
S1S3 and note that P−1

Y ṖL → D bounds a subdiagram Ḋ of D—namely, the part
of D that remains after removing the subdiagram bounded by eS2f. Observe that
ṖL is a path in L since e and f map to the same 1-cell of L. As before, Ḋ violates
the minimality of D.

8.4. The Immersion Z ′ → X ′

Let W ′ = Y ′ �HPY
HE ′ denote the union of Y ′ and copies of E ′ attached along

the distinct H-translates of PY . Since E ′ is a finite complex, W ′ is a cocompact
H-complex. Since Y ′ and E ′ are simply connected, W ′ is simply connected. In
view of Lemma 6.4, the H-map W ′ → X ′ factors as the composition of a sur-
jection W ′ → Z ′ and an immersion Z ′ → X ′, where Z ′ is a simply connected
cocompact H-complex.

Lemma 8.14 (�2-Euler Characteristic). χ(H,Z ′) = χ(H,Y ).

Proof. Since Z ′ → X ′ is a immersion, Z ′ is a locally CAT(0)-space. Since Z ′
is simply connected, it is contractible. Analogously, Y ′ is contractible. Since Y ′
and Z ′ are both proper H-complexes and the embedding Y ′ → Z ′ is an H-map,
Corollary 5.6 implies that χ(H,Z ′) = χ(H,Y ′). Moreover, χ(H,Y ′) = χ(H,Y )

by the Gauss–Bonnet theorem or because the definition of �2-Betti numbers is in-
dependent of the cell structure of the space.

Lemma 8.15 (0-Cells with Positive Curvature). |Pos(H,Z ′)| ≤ |Pos(H,Y )|.
Proof. It is enough to show that if z is a 0-cell of Z ′ such that

Curvature(link(z),Hz) > 0

then z is in the image of Y ′ → Z ′. Indeed, this statement implies that there is an
injective map Pos(H,Z ′) → Pos(H,Y ′); moreover, |Pos(H,Y ′)| = |Pos(H,Y )|
since 0-cells of Y ′ arising as a result of the subdivision have zero curvature by
Lemma 8.12.

Let z be a 0-cell of Z ′ and suppose that z is not in the image of Y ′ → Z ′. We
show that Curvature(link(z),Hz) ≤ 0. Since Z ′ has nonpositive sectional curva-
ture and is positively angled, if link(z,Z ′) has a cycle or is disconnected then it
is easy to see that Curvature(link(z),Hz) ≤ 0. Suppose that link(z,Z ′) is a tree.

Let w be a preimage of z by W ′ → Z ′. Since z is not in the image of Y ′ → Z ′,
it follows that w is a 0-cell in the image of hE ′ → W ′ for some h ∈ H. Without
loss of generality, assume that h = 1. Since E ′ → Z ′ → X ′ is a near-immersion
and link(z) is a tree, it follows that link(w) is a tree. Since E ′ is a disk diagram,
it follows that w is in the image of ∂E → W ′. Since the image of w by W ′ → Z ′
is not contained in the image of Y ′ → Z ′, it follows that w is not in the image of
P ′

Y → E ′. Therefore w is a 0-cell in the interior of �1 . . . �k → W ′, and hence z is
in the interior of �1 . . . �k → Z ′.

Suppose that �1 . . . �k → Z ′ is locally a geodesic at z. By the construction of
K ′, if e1 and e2 are 1-cells of �1 . . . �k with a common endpoint z then link(z,Z ′)
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has a path between the vertices induced by e1 and e2 with angle sum at least π;
hence Curvature(link(z),Hz) ≤ 0.

Suppose �1 . . . �k → Z ′ is not locally an embedding around z (i.e., suppose
there is a backtrack). By the construction of K ′, z is the terminal point of �i for
some i < k and the path �i�i+1 → X ′ has a backtrack. It follows that link(z,K ′)
consists of two nonedgeless components and that the angle sum of link(z,K ′) is
π. Observe that the two components of link(z,K ′) are mapped into link(z,X ′)
to a path with angle sum equal to π; in particular, the angle sum of link(z,Z ′) is
no less than π and hence Curvature(link(z),Hz) ≤ 0.

Lemma 8.16 (0-Cells with Negative Curvature).

|Neg(H,Z ′)| ≤ 2π · χ(H,Y ) − P(G,X) · |Pos(H,Y )|
N(G,X)

.

Proof. Since angles are positive, observe that the constants of Definition 7.10
satisty N(G,X ′) = N(G,X) and P(G,X) = P(G,X ′). By Lemma 7.12,

|Neg(H,Z ′)| ≤ 2π · χ(H,Z ′) − P(G,X) · |Pos(H,Z ′)|
N(G,X)

.

The conclusion follows from the previous two lemmas and the above inequality.

8.5. Conclusion of the Proof of the Quasiconvex Core Theorem

Lemma 8.17 (From Good to Internal). Suppose that Q → D is a good path
whose interior does not intersect PY → D. Then all 0-cells of Q → D are
mapped to internal 0-cells of Z ′ by Q′ → Z ′.

Proof. SinceD ′ → E ′ is an embedding, each 0-cell of the interior ofD ′ is mapped
to the interior of E ′. Suppose u is a 0-cell of Q → D that is not in the interior of
D. Since Q → D is good path, the image of u in X does not intersect �; and by
assumption, u is not in PY → D. Therefore u is mapped into the interior of E ′.
Since E ′ → Z ′ is a near-immersion, the conclusion follows.

Since X is G-cocompact, there is an upper bound C = C(X) on the length of
boundary paths of 2-cells of X.

Lemma 8.18 (PL is uniformly close to PY ). Let u be a 0-cell of PL. Then the
combinatorial distance from u to the subcomplex Y is bounded by the constant

1 + C(X) + 2π · χ(H,Y ) − P(G,X) · |Pos(H,Y )|
N(G,X)

.

Proof. If u is in the C(X)-neighborhood of Y in X then the statement is clear.
Otherwise, u is not in PY → D and so Lemma 8.7 implies that u is not a cut 0-cell
of D. It follows that u is in the closure of a boundary arc of D and hence there is a
v in PL that is not an internal cell of a boundary arc of D and the distance between
u and v is bounded by C(X).
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By Proposition 8.9, there is a good path Q → D from v to a 0-cell of
PY → X. Assume that Q → X has minimal combinatorial length. Then the
interior of Q → X does not intersect PY → D. By Lemma 8.17, Q → X fac-
tors as Q′ → Z ′ → X ′ and each 0-cell z of Q → D is mapped to an internal cell
of Z ′.

Since Z ′ → X ′ is an immersion, link(z,Z ′) has a cycle for each 0-cell z of
Q → D. Since X has sectional curvature ≤ α < 0, it follows that

Curvature(Hz, link(z,Z ′)) < 0.

By minimality, Q → X is embedded and, moreover, no pair of distinct 0-cells of
Q′ → Z ′ are in the same H-orbit. Therefore |Q| ≤ 1 + |Neg(H,Z ′)|.

An upper bound for the combinatorial distance between v and PY → X follows
from the previous inequality and Lemma 8.16. The proof concludes by adding the
upper bound C(X) on the distance between u and v.

By Lemmas 8.1 and 8.18, there is a uniform upper bound for the distance between
� and Y that is independent of �. This concludes the proof of Theorem 1.6.

9. Large Quotients

Theorem 9.1. Let X be a CAT(0) cocompact and proper G-complex with sec-
tional curvature ≤ α < 0. Let g ∈ G be an infinite-order element. Let γ be an
axis for g and suppose γ ∩ fγ is a discrete set for any f ∈G − 〈g〉.

There exists an N > 0 such that, for any n ≥ N, the group Ḡ = G/〈〈gn〉〉 has a
CAT(0) cocompact Ḡ-complex with sectional curvature ≤ ᾱ < 0.

Lemma 9.2. Let &̄ be a graph, let e be an edge, and let & equal &̄ − e. Suppose
& is an angle graph with nonnegative angles and sectional curvature ≤ α ≤ 0,
and suppose the angle distance �(ιe, τe) in & is no less than π. Then &̄ has sec-
tional curvature ≤ 0 by assigning �(e) = π.

Suppose that & has sectional curvature ≤ α < 0, �(ιe, τe) = θ > π, and
�(e) > π + α. Then &̄ has sectional curvature < 0.

Proof. Let K̄ be a connected, spurless, and not edgeless subgraph of &̄, and let
K be K̄ ∩ &. If K = K̄ then Curvature(K̄) = Curvature(K) ≤ α by hypoth-
esis. If e is an edge of K̄ then Curvature(K̄) = Curvature(K) + π − �(e).

Therefore, Curvature(K̄) ≤ α + π − �(e) ≤ 0 if K was not a tree because re-
moving spurs gives a section. Observe that the last inequality is strict if �(e) >

π + α. Otherwise, removing some spurs gives rise to a subdivided interval and
hence Curvature(K) ≤ π − �(ιe, τe). In this case, Curvature(K̄) ≤ 0 with strict
inequality if �(ιe, τe) > π.

Proof of Theorem 9.1. Slightly decreasing all the angles yields a CAT(−ε) struc-
ture on X. Let X̂ be the quotient of X by 〈〈gn〉〉.

Let X ′ be a G-invariant subdivision of X such that γ lies in the 1-skeleton of X ′.
If we slightly increase the curvature of all 2-cells (increasing all the angles), then



Coherence and Negative Sectional Curvature in Complexes of Groups 535

X ′ has negative sectional curvature at all new 0-cells corresponding to intersec-
tions of γ with 1-cells of X and translates of γ.

Let σn be the subpath of γ from p to gnp. Form X̄ from X̂ by attaching a 2-cell
h̄R along the cycle h̄σ n of X̂; attach a 2-cell for each left coset h̄〈ḡ〉 in Ḡ. Extend
the Ḡ-action on X̂ to X̄ by letting each 〈ḡ h̄〉 act with a fixed point at the center
of h̄R. Regard R as a Euclidean n-gon whose ith side is the translate of σ1 by ḡ i.

Now we claim that for sufficiently large n, the complex X̄ has negative sectional
curvature.

Observe that the links of vertices of X̄ are independent of n. By making all
angles of X slightly larger, we can assume that the angle distances between the
initial and terminal vertices of corners along � all exceed π. By Lemma 9.2, for
sufficiently large n we can assign an angle of (n − 2)π/n to the corners of R and
its translates. We assign an angle of π to the other corners along the interior of σ1.

By subdividing R into n 2-cells using its barycenter and then making its corners
slightly smaller, we can assume that the barycenter has negative curvature and that
G acts without inversions on X̄.
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