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Point Pushing, Homology, and the
Hyperelliptic Involution

Tara E. Brendle & Dan Margalit

1. Introduction

Let Sg denote a closed, connected, orientable surface of genus g. The hyperelliptic
Torelli group SI(Sg) is the subgroup of the mapping class group Mod(Sg) con-
sisting of all elements that act trivially on H1(Sg; Z) and that commute with the
isotopy class of some fixed hyperelliptic involution s : Sg → Sg , that is, any order 2
homeomorphism acting by −I on H1(Sg; Z). Every hyperelliptic involution of Sg

is conjugate to the one shown in Figure 1.

. . .

Figure 1 Rotation by π about the indicated axis is a hyperelliptic involution

The group SI(Sg) arises in algebraic geometry in the following context. Let
T (Sg) denote the cover of the moduli space of Riemann surfaces corresponding
to the Torelli subgroup I(Sg) of Mod(Sg). The period mapping is a function from
T (Sg) to the Siegel upper half-space of rank g and is a 2-fold branched cover onto
its image. The branch locus is the set of hyperelliptic points of T (Sg), the union
of the fixed sets for the actions of the various hyperelliptic involutions on T (Sg).

These fixed sets are pairwise disjoint, and the fundamental group of each compo-
nent is isomorphic to SI(Sg). Because of this, SI(Sg) is related, for example, to
the topological Schottky problem; see [9, Prob. 1].

A basic tool in the theory of mapping class groups is the Birman exact sequence.
This sequence relates the mapping class group of a surface with marked points to
the mapping class group of the surface obtained by forgetting the marked points;
see Section 3. This is a key ingredient for performing inductive arguments on the
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mapping class group. For instance, the standard proof that Mod(Sg) is generated
by Dehn twists uses the Birman exact sequence in the inductive step on genus.

The main goal of this paper is to provide a Birman exact sequence for SI(Sg).

As in the case of Mod(Sg), the Birman exact sequence is crucial for inductive
arguments. As one such application, the authors and Childers showed that the
top-dimensional homology of SI(Sg) is infinitely generated [6]. More recently,
the authors and Putman used our Birman exact sequence to prove that SI(Sg) is
generated by Dehn twists about s-invariant separating simple closed curves [7];
see the discussion after Theorem 1.3.

Hyperelliptic Torelli Groups. In order to state our results, we need to de-
fine various hyperelliptic Torelli groups. First, the mapping class group Mod(S)
of a surface S with set of marked points P is the group of homotopy classes of
orientation-preserving homeomorphisms of S, where all homeomorphisms and
homotopies are required to preserve P and fix ∂S pointwise. The Torelli group
I(S) is then the subgroup of Mod(S) consisting of all elements that act trivially
on the relative homology H1(S,P ; Z).

A hyperelliptic involution of a surface S with marked points P is an order 2
homeomorphism of the pair (S,P) that acts by −I on H1(S,P ; Z). (More gen-
erally, we could say that an involution s of a surface S with marked points P is
hyperelliptic if it acts trivially on the homology of the space obtained from S by
identifying pairs of points of P interchanged by s, as in [18]; however, we will
not require this level of generality.) Given a hyperelliptic involution of (S,P),
we can define the hyperelliptic mapping class group SMod(Sg ,P) as the group
of isotopy classes of s-equivariant orientation-preserving homeomorphisms of the
pair (Sg ,P) that restrict to the identity on ∂S (isotopies are not required to be
s-equivariant). The corresponding hyperelliptic Torelli group is

SI(Sg ,P) = SMod(Sg ,P) ∩ I(Sg ,P).

In this paper, we will be interested in the hyperelliptic Torelli groups of a num-
ber of different surfaces of genus g ≥ 1. We already described the surface Sg with
its hyperelliptic involution s. We also need the following.

(1) Sg,1 = Sg with one s-invariant marked point p.
(2) Sg,2 = Sg with a pair of marked points P = {p1,p2} interchanged by s.

(3) S1
g = Sg minus the interior of a closed, embedded s-invariant disk.

(4) S 2
g = Sg minus the interiors of two closed, embedded, disjoint disks in Sg that

are interchanged by s, plus an s-invariant pair of marked points P = {p1,p2}
in the resulting boundary. (For symmetry, we could have defined S1

g so that it
has an s-invariant pair of marked points on the boundary; however, the result-
ing hyperelliptic Torelli group would be equal to the one we defined.)

(5) S1
g,2 = S1

g plus a pair of interior marked points P = {p1,p2} interchanged
by s.

In each of these cases s induces another hyperelliptic involution, which we also
denote by s. Then the hyperelliptic Torelli group is defined as above. We empha-
size that this notation does not carry all of the important aspects of the definitions;
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for instance, it is important that the two marked points of Sg,2 are interchanged
by s.

Birman Exact Sequences. There are forgetful maps from the hyperelliptic
Torelli groups of Sg,1, Sg,2, S1

g , and S 2
g to SI(Sg), and our Birman exact sequences

give precise descriptions of the kernels. In the first case, we show that the kernel
is trivial and so the Birman exact sequence degenerates to an isomorphism.

Theorem 1.1. Let g ≥ 1. The forgetful map SI(Sg,1) → SI(Sg) is an isomor-
phism.

Theorem 4.2 states that
SI(S1

g)
∼= SI(Sg) × Z.

On the one hand, it is surprising to realize SI(Sg) as a subgroup of SI(S1
g) since

there is no embedding of Sg into S1
g; on the other hand, in the course of the proof

we will identify SI(S1
g) with a subgroup of the pure braid group PB2g+1, which is

well known to split over its center.
Next we consider the kernel SIBK(Sg,2) of the forgetful homomorphism

SI(Sg,2) → SI(Sg) (the notation stands for “symmetric Torelli Birman ker-
nel”). Theorem 3.2 identifies the kernel of SMod(Sg,2) → SMod(Sg) with the
free group F2g+1, thought of as the fundamental group of a sphere with 2g + 2
punctures. So SIBK(Sg,2) is identified with a subgroup of F2g+1.

Denote the generators of F2g+1 by ζ1, . . . , ζ2g+1 and the generators for Z
2g+1 by

e1, . . . , e2g+1; the ζi are chosen so that they correspond to the loops shown in Fig-
ure 2 (in Section 4.2). Denote by F even

2g+1 the subgroup of F2g+1 consisting of all
even-length words in the ζi . We will show in Section 4 that there is a homomor-
phism ε : F even

2g+1 → Z
2g+1 defined by

ζ
α1
i1
ζ
α2
i2

�→ ei1 − ei2 ,

where αj = ±1 for each j. Since ε maps a nonabelian free group onto an infinite
group, its kernel is an infinitely generated free group.

Theorem 1.2. Let g ≥ 1. If we identify SIBK(Sg,2) with a subgroup of F2g+1

as before, then SIBK(Sg,2) = ker ε and the sequence

1 → SIBK(Sg,2) → SI(Sg,2) → SI(Sg) → 1

is split exact. In particular, SI(Sg,2) ∼= SI(Sg) � F∞.

Again, the fact that the short exact sequence in Theorem 1.2 is split is unexpected
because there is no embedding Sg → Sg,2.

We can again ask about the case where the marked points are blown up to
boundary components. It turns out that SI(S 2

g ) is isomorphic to SI(Sg,2) (see
Section 4.2), so we can replace the latter with the former in Theorem 1.2. Our
motivation for defining SI(S 2

g ) is simply because this group is more naturally
identified with a subgroup of PB2g+2.
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Mess [14] proved SI(S2) ∼= F∞, and so the g = 2 cases of Theorems 4.2 and
Theorem 1.2 give SI(S1

2)
∼= F∞ × Z and SI(S 2

2 )
∼= F∞ � F∞.

Applications to Generating Sets. Hain has conjectured that in the case of a
closed surface, the hyperelliptic Torelli group is generated by Dehn twists about
separating curves that are preserved by the hyperelliptic involution [9, Conj. 1; 15,
Sec. 4]; such curves are called symmetric. As one step toward Hain’s conjecture,
we prove the following theorem. In the statement, an element of Mod(Sg) is re-
ducible if it fixes a collection of isotopy classes of pairwise disjoint simple closed
curves in Sg.

Theorem1.3. Let g ≥ 1. Suppose that SI(Sk) is generated by Dehn twists about
symmetric separating curves for 0 ≤ k ≤ g − 1. Then each reducible element of
SI(Sg) is a product of Dehn twists about symmetric separating curves.

By Theorem 1.3, Hain’s conjecture is reduced to showing that the hyperelliptic
Torelli group is generated by reducible elements. The isomorphism of Theorem 4.2
identifies reducible elements with reducible elements and identifies Dehn twists
about symmetric separating curves with Dehn twists about symmetric separating
curves. We can thus replace the SI(Sg) and SI(Sk) in Theorem 1.3 with SI(S1

g)

and SI(S1
k).

The basic idea of the proof of Theorem 1.3 is to identify reducible elements
of SI(Sg) with elements of SI(S1

k) and SI(S 2
k ) where k < g and then to apply

Theorem 4.2 and the following theorem.

Theorem 1.4. For g ≥ 1, each element of SIBK(Sg,2) is a product of Dehn
twists about symmetric separating simple closed curves. What is more, it suffices
to use curves that cut off either a disk with two marked points or a genus 1 surface
with two marked points.

By work of Birman and Powell [4; 17], I(S2) is generated by Dehn twists about
separating curves. Moreover, every simple closed curve in S2 is homotopic to a
symmetric one (Fact 2.1). Thus Hain’s conjecture is known to be true for SI(S2);
it follows that SI(S1

2) and SI(S 2
2 ) are also generated by Dehn twists about sym-

metric separating curves. As mentioned, the authors, together with Andrew Put-
man, have proven Hain’s conjecture in general using Theorem 1.3.

We say that a separating curve in a surface has genus k if it cuts off a subsurface
of genus k with one boundary component. In Section 6.4 we prove the following
proposition.

Proposition 1.5. Let g ≥ 1. Every Dehn twist about a symmetric separating
curve in Sg is equal to a product of Dehn twists about symmetric separating curves
of genus 1 and 2.

By Proposition 1.5, Hain’s conjecture implies the stronger statement that SI(Sg)

is generated by Dehn twists about symmetric separating curves of genus 1 and 2
only. We explain at the end of Section 6.4 how to derive the analogous result for
SI(S1

g) and SI(S 2
g ).
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Applications to the Burau Representation. The (unreduced) Burau repre-
sentation of the braid group Bn is a homomorphism Bn → GL(n, Z[t, t−1]), and
the integral Burau representation is the Burau representation evaluated at t = −1.
When n is odd, the latter has a 1-dimensional trivial summand. We denote the ker-
nel of the integral Burau representation by BIn (for “braid Torelli”).

The braid group Bn is isomorphic to the mapping class group of a disk Dn

with n marked points. When n = 2g + 1 there is a 2-fold cover of S1
g over D2g+1

branched over the marked points, and the nontrivial deck transformation is a hyper-
elliptic involution. Each element of B2g+1 lifts to an element of SMod(S1

g), and
the resulting composition B2g+1 → SMod(S1

g) → Sp(2g, Z) is nothing other than
the nontrivial summand of the integral Burau representation; see [16, Rem. 4.3]
and [13].

One version of the Birman–Hilden theorem [8, Thm. 9.2] tells us that the map
B2g+1 → SMod(S1

g) is an isomorphism, and so SI(S1
g) is identified with BI2g+1.

Similarly, we can identify SI(S 2
g )

∼= SI(Sg,2) with BI2g+2.

By Theorem 4.2, BI2g+1/Z(BI2g+1) ∼= SI(Sg). We can further use Theo-
rem 1.2 to relate BI2g+2 to BI2g+1:

BI2g+2
∼= (BI2g+1/Z(BI2g+1)) � F∞.

Our methods do not give an analogous decomposition of BI2g+1. Indeed, there is
not even a natural homomorphism BI2g+1 → BI2g = BI2g/Z(BI2g).

Under the isomorphisms SI(S1
g) → BI2g+1 and SI(S 2

g ) → BI2g+2, Dehn
twists about symmetric separating curves correspond to squares of Dehn twists
about curves surrounding odd numbers of marked points. Thus Hain’s conjecture
can be translated as: the group BIn is generated by Dehn twists about curves sur-
rounding odd numbers of marked points. It is classically known that BI3

∼= Z ,
and Smythe proved that BI 4 is generated by squares of Dehn twists about curves
surrounding three marked points [19] (see also Proposition 5.3). Since SI(S1

2) and
SI(S 2

2 ) are both generated by Dehn twists about symmetric separating curves, we
have the following consequence.

Corollary 1.6. For n ≤ 6, the group BIn is generated by squares of Dehn
twists about curves surrounding odd numbers of marked points.

Acknowledgments. We would like to thank Joan Birman, Kai-Uwe Bux, Tom
Church, Benson Farb, Richard Hain, Chris Leininger, and Andrew Putman for
helpful discussions. We are grateful to the referee for many helpful comments and
suggestions.

2. The Birman–Hilden Theorem

In this section, we recall some special cases of a theorem of Birman and Hilden.
Throughout the paper, we denote by σ the homotopy class of the hyperelliptic
involution s.

The Birman–Hilden Theorem for Closed Surfaces. For g ≤ 2, the group
Mod(Sg) has a generating set consisting of Dehn twists about symmetric simple
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closed curves. Each such Dehn twist has a representative that commutes with s,
and so we obtain the following.

Fact 2.1. For g ≤ 2, we have SMod(Sg) = Mod(Sg).

For g ≥ 3, the group SMod(Sg) has infinite index in Mod(Sg). Indeed, if a is any
isotopy class of simple closed curves in Sg that is not fixed by σ, then no nontriv-
ial power of the Dehn twist Ta is an element of SMod(Sg) (note that, by Fact 2.1,
no such curves exist in a closed genus 2 surface!). However, there is a very useful
description of SMod(Sg) given by Birman and Hilden, which we now explain.

The quotient of Sg by s is a sphere S0,2g+2 with 2g + 2 marked points, namely
the images of the fixed points of s. By definition, any element f of SMod(Sg) has
an s-equivariant representative φ and hence descends to a homeomorphism φ̄ of
S0,2g+2. Birman and Hilden [5] proved that if φ is isotopic to the identity, then φ̄

is isotopic to the identity (equivalently, φ is s-equivariantly isotopic to the iden-
tity). In other words, there is a well-defined homomorphism θ : SMod(Sg) →
Mod(S0,2g+2). This map is surjective, as the standard half-twist generators for
Mod(S0,2g+2) all lift to homeomorphisms of Sg. We summarize this discussion in
the following theorem.

Theorem 2.2 (Birman–Hilden). For g ≥ 2, there is a short exact sequence

1 −→ 〈σ 〉 −→ SMod(Sg)
θ−→ Mod(S0,2g+2) −→ 1.

A Birman–Hilden Theorem for Surfaces with Marked Points. The quo-
tient Sg,2/〈s〉 is the pair (S0,2g+2, p̄), where p̄ ∈ S0,2g+2 is the image of the pair
of marked points in Sg,2. Elements of Mod(S0,2g+2, p̄) can permute the 2g + 2
marked points coming from S0,2g+2 but must preserve the marked point p̄. We
have the following analogue of Theorem 2.2.

Theorem 2.3 (Birman–Hilden). For g ≥ 1, there is a short exact sequence

1 −→ 〈σ 〉 −→ SMod(Sg,2)
θ−→ Mod(S0,2g+2, p̄) −→ 1.

The Birman–Hilden Theorem for the Torus. Theorem 2.2 does not hold as
stated for g = 1. In fact, in this case, the map θ is not even well-defined. This is
because there are nontrivial finite-order homeomorphisms of S0,4 that lift to home-
omorphisms of S1 that are homotopic to the identity. Therefore, we are forced to
redefine θ in this case. We have

SMod(S1,1) = Mod(S1,1) ∼= Mod(S1) = SMod(S1) ∼= SL(2, Z).

Let p̄ denote the image of the marked point of S1,1 in S0,4 (this is already one of
the four marked points). For g = 1, we can then define θ via the composition

SMod(S1)
∼=−→ SMod(S1,1) −→ Mod(S0,4, p̄),

where Mod(S0,4, p̄) is the subgroup of Mod(S0,4) consisting of elements that fix
the marked point p̄. We then have the following genus 1 version of Theorem 2.2.
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Theorem 2.4 (Birman–Hilden). There is a short exact sequence

1 −→ 〈σ 〉 −→ SMod(S1)
θ−→ Mod(S0,4, p̄) −→ 1.

3. Birman Exact Sequences for the Hyperelliptic
Mapping Class Group

In this section we give Birman exact sequences for hyperelliptic mapping class
groups in the two cases that will be of interest for us: first, forgetting one marked
point, and then forgetting two.

We begin by recalling the classical Birman exact sequence. Let S denote a con-
nected, orientable, compact surface with finitely many marked points in its inte-
rior. Assume that the surface S ◦ obtained by removing the marked points from S

has negative Euler characteristic. Let p ∈ S be an additional marked point (dis-
tinct from any others in S). There is a forgetful map Mod(S,p) → Mod(S), and
the Birman exact sequence identifies the kernel of this map with π1(S

◦,p):

1 −→ π1(S
◦,p)

Push−−→ Mod(S,p) −→ Mod(S) −→ 1.

Given an element α of π1(S
◦,p), we can describe Push(α) as the map obtained by

pushing p along α; see [8, Sec. 5.2] or [3, Sec. 1].

3.1. Forgetting One Point

As in the classical Birman exact sequence, there is a forgetful map SMod(Sg,1) →
SMod(Sg).

Theorem 3.1. Let g ≥ 1. The forgetful map SMod(Sg,1) → SMod(Sg) is
injective.

Note that this map is not surjective for g ≥ 2. For example, its image does not
contain a Dehn twist about a symmetric curve through the marked point.

Proof of Theorem 3.1. We already said SMod(S1,1) ∼= SMod(S1). So assume g ≥
2. The classical Birman exact sequence for a surface of genus g ≥ 2 is

1 −→ π1(Sg)
Push−−→ Mod(Sg,1) −→ Mod(Sg) −→ 1.

Therefore, to prove the theorem, we need to show that the image of π1(Sg) =
π1(Sg ,p) in Mod(Sg,1) intersects SMod(Sg,1) trivially (as usual, p is the marked
point of Sg,1). In other words, we need to show that σ ∈ SMod(Sg,1) does not com-
mute with any nontrivial element of the image of π1(Sg). For f ∈ Mod(Sg,1) and
α ∈ π1(Sg), we have that f Push(α)f −1 = Push(f!(α)). Therefore, we need to
show that σ!(α) �= α for all nontrivial α ∈π1(Sg).

Choose a hyperbolic metric on Sg so that s is an isometry. A concrete way to do
this is to identify Sg with a regular hyperbolic (4g + 2)-gon with opposite sides
glued and take s to be rotation by π through the center.
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Next, choose a universal covering H
2 → Sg. The preimage of p in H

2 is the
set {γ · p̃ : γ ∈π1(Sg)}, where p̃ is some fixed lift of p.

The map s has a unique lift s̃ to Isom+(H2) that fixes p̃. This lift has order 2.
By the classification of elements of Isom+(H2), it is a rotation by π. Thus, s̃ has
exactly one fixed point.

The action of s̃ on the set {γ · p̃} is given by

γ · p̃ �→ σ!(γ ) · p̃.
If σ!(α) = α, then it follows that s̃ fixes α · p̃. But we already said that s̃ has a
unique fixed point, namely p̃. So α = 1, as desired.

3.2. Forgetting Two Points

Let p̄ denote the image in S0,2g+2 of the pair of marked points of Sg,2. Let
SBK(Sg,2) denote the kernel of the forgetful homomorphism SMod(Sg,2) →
SMod(Sg) (the notation is for “symmetric Birman kernel”). We have a short exact
sequence

1 → SBK(Sg,2) → SMod(Sg,2) → SMod(Sg) → 1.

Here and throughout, when we write π1(S0,2g+2), we mean the fundamental
group of the punctured sphere obtained by removing the 2g + 2 marked points
from S0,2g+2.

Theorem 3.2. Let g ≥ 1. We have that SBK(Sg,2) ∼= F2g+1, where F2g+1 is
identified with π1(S0,2g+2, p̄).

Proof. We have the following commutative diagram.

1

��

1

��

〈σ 〉

��

∼= �� 〈σ 〉

��

1 �� SBK(Sg,2) �� SMod(Sg,2)

��

�� SMod(Sg) ��

��

1

1 �� π1(S0,2g+2, p̄)

∼=
��

�� Mod(S0,2g+2, p̄) ��

��

Mod(S0,2g+2) �� 1

F2g+1 1

The second horizontal short exact sequence is an instance of the Birman exact se-
quence, and the two vertical sequences are given by Theorems 2.2, 2.3, and 2.4.
From the diagram it is straightforward to see that SBK(Sg,2) ∼= π1(S0,2g+2).
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4. Birman Exact Sequences for Hyperelliptic
Torelli Groups

The main results of this paper, which are proved in this section, are Birman exact
sequences for hyperelliptic Torelli groups. As in the previous section, there are
two versions, corresponding to forgetting one point (Theorem 1.1) and forgetting
two points (Theorem 1.2).

4.1. Forgetting One Point

Let PMod(S0,2g+2) denote the subgroup of Mod(S0,2g+2) consisting of elements
that induce the trivial permutation of the marked points. The next fact follows
from the discussion after Lemma 1 of [1].

Lemma 4.1. Let g ≥ 1. Under the map θ : SMod(Sg) → Mod(S0,2g+2), the
image of SI(Sg) lies in PMod(S0,2g+2).

We are now ready for the proof of our first Birman exact sequence for hyperelliptic
Torelli groups.

Proof of Theorem 1.1. Since H1(Sg ,p; Z) and H1(Sg; Z) are canonically isomor-
phic, the forgetful map SMod(Sg,1) → SMod(Sg) restricts to a homomorphism
SI(Sg,1) → SI(Sg), and it follows immediately from Theorem 3.1 that this map
is injective. We will show that it is also surjective. Let f ∈ SI(Sg) and let φ be a
representative homeomorphism that commutes with s. By Lemma 4.1, the induced
homeomorphism of S0,2g+2 fixes each of the 2g+2 marked points. It follows that
φ fixes the marked point p ∈ Sg,1 and that φ represents an element f̃ of SI(Sg,1)

that maps to f.

Before moving on to the second Birman exact sequence for the hyperelliptic Torelli
group, we give a variation of Theorem 1.1 in which we forget (actually, cap) a
boundary component instead of a marked point.

Capping a Boundary Component. The inclusions S1
g → Sg and S1

g,2 → Sg,2

induce homomorphisms on the level of hyperelliptic Torelli groups, and so we can
again ask about the kernel.

Theorem 4.2. Let g ≥ 1. The inclusions S1
g → Sg and S1

g,2 → Sg,2 induce
isomorphisms

SI(S1
g)

∼= SI(Sg) × Z ,

SI(S1
g,2)

∼= SI(Sg,2) × Z.

In both cases the Z factor is the Dehn twist about the boundary.

Proof. We treat the case of S1
g; the case of S1

g,2 is essentially the same.
As in the introduction, SMod(S1

g) is isomorphic to B2g+1, which we identify
with Mod(D2g+1). By (a version of ) Lemma 4.1, the group SI(S1

g) is identified
with a subgroup of PB2g+1.
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For any n, the group PBn splits as a direct product over its center, which is gen-
erated by the Dehn twist T∂Dn

[8, Sec. 9.3]. Under the restriction θ̄ : SI(S1
g) ↪→

PB2g+1, we have θ̄−1(Z(PB2g+1)) = 〈T∂S1
g
〉. Thus, SI(S1

g) splits as a direct prod-
uct over 〈T∂S1

g
〉.

It remains to show that SI(S1
g)/〈T∂S1

g
〉 ∼= SI(Sg). There is a short exact sequence

1 → 〈T∂S1
g
〉 → Mod(S1

g) → Mod(Sg,1) → 1,

where the map Mod(S1
g) → Mod(Sg,1) is the one induced by the inclusion S1

g →
Sg,1; see [8, Prop. 3.19]. On the level of hyperelliptic Torelli groups, this gives

1 → 〈T∂S1
g
〉 → SI(S1

g) → SI(Sg,1) → 1.

We have already shown that SI(Sg,1) ∼= SI(Sg) (Theorem 1.1). Thus,

SI(S1
g)/〈T∂S1

g
〉 ∼= SI(Sg),

and we are done.

4.2. Forgetting Two Points

Recall from Theorem 3.2 that the kernel of SMod(Sg,2) → SMod(Sg) is
SBK(Sg,2) ∼= F2g+1, which is identified with π1(S0,2g+2, p̄), where p̄ is the image
in S0,2g+2 of the pair P of marked points of Sg,2. Let ζ1, . . . , ζ2g+1 be the genera-
tors for π1(S0,2g+2, p̄) ∼= F2g+1 shown in Figure 2. In what follows, we identify
F2g+1 with π1(S0,2g+2, p̄) = 〈ζ1, . . . , ζ2g+1〉.

. . .

ζ2g+1 ζ2g ζ1
p̄

Figure 2 The elements ζi of π1(S0,2g+2,p)

Since a homology between two simple closed curves in Sg,2 descends to a ho-
mology between the corresponding curves in Sg , the forgetful map SMod(Sg,2) →
SMod(Sg) restricts to a homomorphism SI(Sg,2) → SI(Sg). We now set about
describing the kernel.

As in the introduction, the even subgroup of F2g+1 is the kernel of the homomor-
phism F2g+1 → Z/2Z sending each ζi to 1. The elements of F even

2g+1 are products
ζ
α1
i1
ζ
α2
i2

· · · ζ αk

ik
, where k is even and αi ∈ {−1,1}.

Let
ε : F even

2g+1 → Z
2g+1

be the map given by
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ζ
α1
i1
ζ
α2
i2

· · · ζ αk

ik
�→

k∑
j=1

(−1)j+1eij ,

where {e1, . . . , e2g+1} are the standard generators for Z
2g+1.

Lemma 4.3. The map ε is a well-defined homomorphism.

Proof. It follows from the Reidemeister–Schreier method that F even
2g+1 is freely gen-

erated by elements of the form ζ2
1 and ζ1ζ

±1
i with i > 1. Therefore, there is a well-

defined homomorphism ε0 : F even
2g+1 → Z

2g+1 given by

ζ1ζ
±1
i �→ e1 − ei .

Given any other ζ α1
i1
ζ
α2
i2

, we can rewrite it as a product of at most two generators,
and we can check that in all cases ε0(ζ

α1
i1
ζ
α2
i2

) = ε(ζ
α1
i1
ζ
α2
i2

) = ei1 − ei2 . Likewise,
it follows that the homomorphism ε0 agrees with ε on any element ζ α1

i1
ζ
α2
i2

· · · ζ αk

ik
,

and we are done.

Theorem 1.2 states that, as a subgroup of SBK(Sg,2), the group SIBK(Sg,2) is
equal to the image of ker ε under the isomorphism

〈ζ1, . . . , ζ2g+1〉 = F2g+1
∼= π1(S0,2g+2, p̄)

∼=−→ SBK(Sg,2).

In order to prove Theorem 1.2, we will need two lemmas describing the action
of elements of SBK(Sg,2) on the relative homology H1(Sg ,P ; Z) (throughout this
section, P is the pair of marked points of Sg,2). Our argument has its origins in
the work of Johnson [11, Sec. 2], van den Berg [20, Sec. 2.4], and Putman [18,
Sec. 4].

A proper arc α in a surface S with marked points {pi} is a map α : [0,1] →
(S, {pi}), where α−1({pi}) = {0,1}.
Lemma 4.4. Let g ≥ 1. If f is an element of SBK(Sg,2) and if β is any oriented
proper arc in (Sg,2) connecting the two marked points, then f is an element of
SIBK(Sg,2) if and only if in H1(Sg ,P ; Z) we have f!([β]) = [β].

Proof. One direction is trivial: if f ∈ SIBK(Sg,2) then, by definition, f acts triv-
ially on H1(Sg ,P ; Z).

We now prove the other direction. There is a basis for H1(Sg ,P ; Z) given by
(the classes of ) finitely many oriented closed curves plus the oriented arc β. Thus,
to prove the lemma, we only need to show that any f ∈ SBK(Sg,2) preserves the
class in H1(Sg ,P ; Z) of each oriented closed curve in Sg.

Let φ be a representative of f. We can regard φ either as a homeomorphism of
Sg,2 or as a homeomorphism of Sg. Also, let γ be an oriented closed curve in Sg.

We can similarly regard γ as a representative of an element of either H1(Sg; Z) or
H1(Sg ,P ; Z).

Since f ∈ SBK(Sg,2), it follows that φ is isotopic to the identity as a homeo-
morphism of Sg. In particular, we have
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[γ ] = [φ(γ )] ∈H1(Sg; Z).

There is a natural map H1(Sg; Z) → H1(Sg ,P ; Z) where [γ ] maps to [γ ] and
[φ(γ )] maps to [φ(γ )]. Since this map is well-defined, it follows that

[γ ] = [φ(γ )] ∈H1(Sg ,P ; Z),

which is what we wanted to show.

Lemma 4.4 tells us that, in order to show that an element of the group SBK(Sg,2)

lies in the Torelli group, we only need to keep track of its action on the homology
class of a single arc. The only other ingredient we need to prove Theorem 1.2 is a
formula for how elements of SBK(Sg,2) act on such classes.

Via the isomorphism π1(S0,2g+2, p̄) → SBK(Sg,2), there is an action of
π1(S0,2g+2, p̄) on H1(Sg ,P ; Z). We denote the action of ζ ∈π1(S0,2g+2, p̄) by ζ!.

Each generator ζi of π1(S0,2g+2, p̄) is represented by a simple loop in S0,2g+2

based at p̄ (see Figure 2). The loop associated to ζi lies in the regular neighbor-
hood of an arc in S0,2g+2 that connects p̄ to the ith marked point of S0,2g+2. We
denote the preimage in Sg,2 of the ith such arc in (S0,2g+2, p̄) by βi. We orient the
βi so that they all emanate from the same marked point; see Figure 3.

. . .

β2g+1

β1

Figure 3 The arcs βi in Sg,2

For each i, we choose a neighborhood Ni of βi that is fixed by s. A half-twist
about βi is a homeomorphism of Sg,2 that is the identity on the complement of Ni

and is described on Ni by Figure 4. This half-twist is well-defined as a mapping
class.

Lemma 4.5. Let g ≥ 1, let ζ ∈π1(S0,2g+2, p̄), and say

ζ = ζ
α1
i1

· · · ζ αm

im

for ζij ∈ {ζi} and αi ∈ {−1,1}. We have the following formula for the action on
H1(Sg ,P ; Z):

ζ!([βk]) = [βk] + 2
m∑

j=1

(−1)j [βij ].

Proof. First of all, we claim that the image of ζi under the isomorphism
π1(S0,2g+2, p̄) → SBK(Sg,2) is the half-twist about βi. Indeed, the image of
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ζi under the map π1(S0,2g+2, p̄) → Mod(S0,2g+2, p̄) is a Dehn twist about the
boundary of a regular neighborhood of ζi, and the unique lift of this Dehn twist to
SBK(Sg,2) is a half-twist about βi.

We can now determine the action of ζ ∈π1(S0,2g+2, p̄) on [βk] ∈H1(Sg ,P ; Z).

We first deal with the case where ζ = ζ±1
i . If i = k, then we immediately see that

the half-twist about βi (or its inverse) simply reverses the orientation of βk; hence
we have

ζ!([βk]) = −[βk] = [βk] − 2[βk] = [βk] − 2[βi],

and the lemma is verified in this case.
If ζ = ζi where ζi �= ζk , then a neighborhood of βi ∪ βk in Sg,2 is an annulus

with two marked points. As above, ζ = ζi maps to the half-twist about βi. Simply
by drawing the picture of the action (see Figure 4), we check the formula

ζ!([βk]) = [βk] − 2[βi].

The case ζ = ζ−1
i is similar.

∼=
βi

βk

βk
ζi(βk)

Figure 4 The action of the half-twist about βi on βk

Since the action of SBK(Sg,2) on H1(Sg ,P ; Z) is linear, we can now complete
the proof of the lemma by induction. Suppose the lemma holds for m−1; that is,
the induced action of ζ αi

i1
· · · ζ αm−1

im−1
on [βk] is

[βk] �→ [βk] + 2
m−1∑
j=1

(−1)j [βij ].

By linearity, and applying the case where ζ = ζ±1
i , the image of the latter homol-

ogy class under ζ αm

im
is

([βk] − 2[βim ]) + 2
m−1∑
j=1

(−1)j([βij ] − 2[βim ]),

which we rewrite as

[βk] +
(

2
m−1∑
j=1

(−1)j [βij ]

)
+

(
4

m−1∑
j=1

(−1)j+1[βim ]

)
− 2[βim ].

The sum of the third and fourth terms is 2(−1)j [βim ], and so the lemma is proven.
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We are now poised to prove Theorem 1.2, which states that the map SI(Sg,2) →
SI(Sg) is surjective and identifies its kernel with ker ε.

Proof of Theorem1.2. By Lemma 4.4, an element ofSBK(Sg,2) lies inSIBK(Sg,2)

if and only if it fixes the relative class [β1] in H1(Sg ,P ; Z). It then follows from
Lemma 4.5 that an element of SBK(Sg,2) fixes [β1] if and only if it lies in the
image of ker ε.

It remains to show that there is a splitting SI(Sg) → SI(Sg,2). By Theorem 4.2,
there is an injective homomorphism SI(Sg) → SI(S1

g) with a left inverse induced
by the inclusion S1

g → Sg. Via the (symmetric) inclusion S1
g → Sg,2, we obtain

an injective homomorphism SI(S1
g) → SI(Sg,2). The composition is the desired

map SI(Sg) → SI(Sg,2).

Capping Two Boundary Components. We now aim to give an analogue of
Theorem 4.2; that is, we would like to give a version of Theorem 1.2 for a sur-
face with two boundary components instead of two punctures. The kernel of the
map SMod(S 2

g ) → SMod(Sg,2) obtained by capping both boundary components
with marked disks is 〈T∂1S

2
g
T∂2S

2
g
〉 ∼= Z , where ∂1S

2
g and ∂2S

2
g are the two bound-

ary components of S 2
g ; see Lemma 6.3. This element does not act trivially on

H1(S
2
g ,P ; Z) (here P is the pair of marked points in ∂S 2

g ), and so we conclude
that the forgetful map SI(S 2

g ) → SI(Sg,2) is an isomorphism. Therefore, we ob-
tain the boundary-capping version of Theorem 1.2 by simply replacing SI(Sg,2)

with SI(S 2
g ).

5. Generating SIBK(Sg,2) by Products of Twists

We will now use Theorem 1.2 to prove Theorem 1.4, which states that SIBK(Sg,2)

is generated by Dehn twists about symmetric separating curves that cut off either
a disk with two marked points or a genus 1 surface with two marked points.

Theorem 1.2 identifies the group SIBK(Sg,2) with ker ε, and so that is where
we begin. It is a general fact from combinatorial group theory that the kernel of a
homomorphism is normally generated by elements that map to the defining rela-
tors for the image of the homomorphism. We aim to exploit this fact, and so we
start by determining the image of ε.

Let Z
2g+1 → Z be the map that records the sum of the coordinates, and let

Z
2g+1
bal be the kernel (where “bal” stands for balanced).

Lemma 5.1. Let g ≥ 0. The image of F even
2g+1 under ε is Z

2g+1
bal .

Proof. It follows immediately from the definition of the map ε that ε(F even
2g+1) lies

in Z
2g+1
bal . To show that ε(F even

2g+1) is all of Z
2g+1
bal , it suffices to show that Z

2g+1
bal is

generated by the elements ε(ζiζj ) = ei − ej , where ei is a generator the ith factor
of Z

2g+1.

Let Z
2g+1 → Z be the function that records the sum of the absolute values of

the coordinates. We think of this function as a height function. The only element
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of Z
2g+1 at height 0 is the identity, which is the image of the identity element of

F even
2g+1. Let z be an arbitrary nontrivial element of Z

2g+1
bal . Since z is nontrivial, it

has at least one nonzero component, say the ith. By the definition of Z
2g+1
bal , there

must be one component, say the j th, with opposite sign. Say the ith component is
negative and the j th component is positive. The sum ε(ζiζj )+z has height strictly
smaller than that of z, so by induction the lemma is proven.

Lemma 5.2. Let g ≥ 0. The group Z
2g+1
bal has a presentation

〈e1,1, . . . , e2g+1,2g+1, e2,1, . . . , e2g+1,1 | ei,i = 1, [ei,1, ej,1] = 1〉.
Proof. Since Z

2g+1
bal is the subgroup of Z

2g+1 described by one linear equation (the
sum of the coordinates is 0), we see that Z

2g+1
bal

∼= Z
2g. Denote by η the isomor-

phism Z
2g+1
bal → Z

2g given by forgetting the first coordinate.
Denote ei − ej ∈ Z

2g+1 by ei,j . The group Z
2g is the free abelian group on

η(e2,1), . . . , η(e2g+1,1), so it has a presentation whose generators are η(e2,1), . . . ,
η(e2g+1,1) and whose relations are [η(ei,1), η(ej,1)] = 1.

We thus obtain a presentation for Z
2g+1
bal with generators e2,1, . . . , e2g+1,1 and rela-

tions [ei,1, ej,1] = 1. If we add (formal) generators ei,i to this presentation as well
as relations ei,i = 1, then we obtain a new presentation for the same group; this is
an elementary Tietze transformation [12, Sec. 1.5].

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. By Lemma 5.1, we have a short exact sequence

1 −→ ker ε −→ F even
2g+1

ε−→ Z
2g+1
bal −→ 1,

where ε(ζiζj ) = ei,1 and ε(ζ2
i ) = ei,i = 0.

Consider the presentation for Z
2g+1
bal given in Lemma 5.2. The generators for

that presentation are the images of the following generators for F even
2g+1:

{ζ2
1 , . . . , ζ2

2g+1} ∪ {ζ2ζ1, . . . , ζ2g+1ζ1}.
If we lift each relator in the presentation for Z

2g+1
bal to the corresponding element of

F even
2g+1, we obtain a normal generating set for ker ε; that is, these elements and their

conjugates in F even
2g+1 generate ker ε. The relators ei,i and [ei,1, ej,1] lift to elements

ζ2
i and [ζiζ1, ζj ζ1],

respectively.
Passing through the isomorphism F2g+1 → SBK(Sg,2) from Theorem 3.2 and

then applying Theorem 1.2, we obtain a normal generating set for SIBK(Sg,2).

Since the conjugate in SMod(Sg,2) of a Dehn twist about a symmetric separat-
ing curve is another such Dehn twist, it remains to show that the image of each ζ2

i

and [ζiζ1, ζj ζ1] in the group SBK(Sg,2) can be written as a product of Dehn twists
about symmetric separating curves.

To further simplify matters, the image of each ζ2
i in SBK(Sg,2) is conjugate

to ζ2
1 in SMod(Sg,2), and (up to taking inverses) the image of each [ζiζ1, ζj ζ1]
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is conjugate to [ζ3ζ1, ζ2ζ1] in SMod(Sg,2). (The point is that there are elements
of Mod(S0,2g+2, p̄) taking the elements ζ2

1 and [ζ3ζ1, ζ2ζ1] of π1(S0,2g+2, p̄) to
the other given elements.) Thus, we are reduced to checking that the images in
SBK(Sg,2) of ζ2

1 and [ζ3ζ1, ζ2ζ1] are both products of Dehn twists about symmet-
ric separating curves.

In the proof of Lemma 4.5, we showed that the image of ζ1 in the group
SBK(Sg,2) is a half-twist about the arc β1. It follows that the image of ζ2

1 is
the Dehn twist about the boundary of a regular neighborhood of β1. This bound-
ary is (isotopic to) a symmetric separating curve in Sg,2 cutting off a disk with two
marked points.

It remains to analyze the element [ζ3ζ1, ζ2ζ1]. There is a closed disk in S0,2g+2

that contains the distinguished marked point p̄; the first, second, and third marked
points ofS0,2g+2 (and no other marked points); and a representative of [ζ3ζ1, ζ2ζ1] ∈
π1(S0,2g+2, p̄). Under the isomorphism F2g+1 → SBK(Sg,2) from Theorem 3.2,
we see that the commutator [ζ3ζ1, ζ2ζ1] maps to an element of SI(Sg,2) supported
on a copy of S1

1,2 fixed by s. Any element of SI(Sg,2) supported on S1
1,2 restricts to

an element of SI(S1
1,2), and so Proposition 5.3 implies that the image of [ζ3ζ1, ζ2ζ1]

in SI(S1
1,2) is a product of Dehn twists about symmetric separating curves. Each

symmetric separating curve in S1
1,2 cuts off either a disk with two marked points or

a genus 1 surface with two marked points, so the image of [ζ3ζ1, ζ2ζ1] in SI(S1
1,2)

is equal to a product of Dehn twists about such curves. It follows that the image
of [ζ3ζ1, ζ2ζ1] maps to an element of SI(Sg,2) and is equal to a product of Dehn
twists about such curves, so we are done.

In the proof of Theorem 1.4, we used the following fact, which is equivalent to a
theorem of Smythe [19].

Proposition 5.3. The group SI(S1
1,2) is generated by Dehn twists about sym-

metric separating curves.

Proof. By Theorem 4.2, we have

SI(S1
1,2)

∼= SI(S1,2) × Z ,

where the Z factor is the Dehn twist about ∂S1
1,2. Therefore, it suffices to show

that SI(S1,2) is generated by Dehn twists about symmetric separating curves in
S1,2. This follows immediately from the equality SMod(S1,2) = Mod(S1,2) [8,
Sec. 3.4] and the fact that the Torelli group of a torus with two marked points is
generated by Dehn twists about separating curves (this can be proved directly via
the argument of [2, Lemma 7.2]; it can also be obtained immediately by combin-
ing [2, Lemma 7.2] with Proposition 6.6 in Section 6.2).

6. Application to Closed Surfaces

We now address Hain’s conjecture that SI(Sg) is generated by Dehn twists about
symmetric separating curves. Specifically, we will use Theorem 1.4 to prove The-
orem 1.3. The latter theorem states that, in order to prove Hain’s conjecture, it is
enough to show that SI(Sg) is generated by reducible elements.
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6.1. Reduction to the Symmetrically Reducible Case

We say that an isotopy class a of simple closed curves is symmetric if it has a sym-
metric representative and that it is pre-symmetric if it is not symmetric and if σ(a)
and a have disjoint representatives. Also, we say that an element f of SMod(Sg)

is symmetrically strongly reducible if there is an isotopy class of essential sim-
ple closed curves in Sg that is either symmetric or pre-symmetric and is preserved
by f.

We have the following standard fact (see, e.g., [8, Lemma 2.9]). In the state-
ment, we say that two simple closed curves α and β are in minimal position if
|α ∩ β| is minimal with respect to the homotopy classes of α and β.

Lemma 6.1. Let S be any compact surface. Let α and β be two simple closed
curves in S that are in minimal position and that are not isotopic. If φ : S → S

is a homeomorphism that preserves the set of isotopy classes {[α], [β]}, then φ is
isotopic to a homeomorphism that preserves the set α ∪ β.

Proposition 6.2. Let g ≥ 0. If f ∈ SI(Sg) is reducible, then f is symmetrically
strongly reducible.

Proof. First of all, Ivanov proved that every reducible element of I(Sg) has the
stronger property that it fixes the isotopy class of a single essential simple closed
curve in Sg [10, Thm. 3]. We can therefore choose an isotopy class a of simple
closed curves in Sg that is fixed by f. We may assume that σ(a) �= a, for other-
wise there is nothing to prove. Since f lies in SMod(Sg), we have

f(σ(a)) = σ(f(a)) = σ(a).

In other words, f fixes the isotopy class σ(a). Since σ has order 2, it preserves
the set of the isotopy classes {a, σ(a)}.

Let α and α ′ be representatives for a and σ(a) that are in minimal position. Let
µ denote the boundary of a closed regular neighborhood of α ∪ α ′, and let µ′ de-
note the multicurve obtained from µ by deleting the inessential components of µ
and replacing any set of parallel curves with a single curve. Lemma 6.1 implies
that both f and σ fix the isotopy class of µ′. By Ivanov’s theorem again, f fixes
the isotopy class of each component of µ′.

Let µ1, . . . ,µk denote the connected components of µ′. If k = 0—that is, if a

and σ(a) fill Sg—then it follows that f has finite order (see [8, Prop. 2.8]); since
I(Sg) is torsion free, f is the identity. Now suppose k > 0. By construction,
i(µi,µj) = 0 for all i and j, and σ acts as an involution on the set of isotopy
classes {[µi]}. Thus, there is either a singleton {[µi]} or a pair {[µi], [µj ]} fixed
by σ, and the proposition is proved.

6.2. Analyzing Individual Stabilizers

Our next goal is to prove Proposition 6.6, which identifies the stabilizer in SI(Sg)

of a symmetric or pre-symmetric curve with a product of hyperelliptic Torelli
groups of surfaces with one or two marked points.
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Let a be the isotopy class of an essential simple closed curve in Sg. Assume that
a is symmetric or pre-symmetric. If a is symmetric and separating, we choose a
representative simple closed curve α so that s(α) = α; and if a is nonseparating,
we choose a representative simple closed curve α so that s(α) ∩ α = ∅.

Let A denote either α or α∪s(α) according as whether a is separating or nonsep-
arating. Let R1 and R2 denote the closures in Sg of the two connected components
of Sg − A. Let R ′

1 and R ′
2 denote the surfaces obtained from R1 and R2 obtained

by collapsing each boundary component to a marked point. Let A′ denote the set
of marked points in either R ′

1 or R ′
2.

Each pair (R ′
k ,A′) is homeomorphic to either Sh,1 or Sh,2. The hyperelliptic

involution of Sh induces a hyperelliptic involution of each (R ′
k ,A′). We can thus

define SMod(R ′
k ,A′) and SI(R ′

k ,A′) as in Section 2.
We remark that if a is symmetric and nonseparating, then one of the surfaces

(R ′
k ,A′) is a sphere with two marked points. For this surface, SMod(R ′

k ,A′) ∼=
Z/2Z and SI(R ′

k ,A′) = 1. For such a, it would have been more natural to take a
representative α of a that is symmetric. However, the choice we made will allow
us to make most of our arguments uniform for the various cases of a.

Let SMod(Sg , a) denote the stabilizer of the isotopy class a in SMod(Sg), and
let SMod(Sg , �a) denote the subgroup of SMod(Sg , a) consisting of elements that
fix the orientation of a. We now define maps

.k : SMod(Sg , �a) → SMod(R ′
k ,A′)

for k = 1, 2.
Let f ∈ SMod(Sg , �a), and let φ be a representative that commutes with s. We

may assume that φ fixes α. Since φ commutes with s, it must also fix s(α). Since
f ∈ SMod(Sg , �a), it follows that φ does not permute the components of Sg − A

and hence induces a homeomorphism φ ′
k of R ′

k for each k. By construction, φ ′
k

commutes with the hyperelliptic involution of R ′
k. Finally, we define

.k(f ) = [φ ′
k].

We have the following standard fact; see [8, Prop. 3.20].

Lemma 6.3. Let g ≥ 2, and let a be either a symmetric or pre-symmetric isotopy
class of simple closed curves inSg. DefineR ′

i andA′ as before. The homomorphism

.1 × .2 : SMod(Sg , �a) → SMod(R ′
1,A′) × SMod(R ′

2,A′)

is well-defined and has kernel

ker(.1 × .2) =
{ 〈Ta〉 if a is symmetric,

〈TaTσ(a)〉 if a is pre-symmetric.

Let SI(Sg , a) denote SI(Sg) ∩ SMod(Sg , a). Since SI(Sg , a) is a subgroup of
SMod(Sg , �a), we can restrict each .k to SI(Sg , a).

Lemma 6.4. Let g ≥ 2. For k ∈ {1, 2}, the image of SI(Sg , a) under .k lies in
SI(R ′

k ,A′).

Proof. By the relative version of the Mayer–Vietoris sequence, we have the fol-
lowing exact sequence:
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H1(A,A) → H1(R1,A) × H1(R2,A) → H1(Sg ,A) → H0(A,A).

(In this sequence, and in the rest of the proof, we take the coefficients for all ho-
mology groups to be Z.) The first and last groups are trivial, so we have

H1(R1,A) × H1(R2,A) ∼= H1(Sg ,A).

For each k, the map Rk → R ′
k that collapses the boundary components to marked

points induces an isomorphism

H1(Rk ,A) ∼= H1(R
′
k ,A′).

The natural map H1(Sg) → H1(Sg ,A) is not surjective in general (it fails to be
surjective in the case that a is nonseparating). However, the composition

π : H1(Sg) −→ H1(Sg ,A)
∼=−→ H1(R

′
1,A′) × H1(R

′
2,A′) −→ H1(R

′
k ,A′)

is surjective for k ∈ {1, 2}. Indeed, any element x of H1(R
′
1,A′) ∼= H1(R1,A) is

represented by a collection of closed oriented curves in R1 and oriented arcs in R1

connecting A to itself. If we connect the endpoints of each oriented arc in R1 by
a similarly oriented arc in R2, we obtain an element of H1(Sg) that maps to x.

By construction, the following diagram is commutative:

H1(Sg)
f! ��

π

��

H1(Sg)

π

��

H1(R
′
k ,A′)

.k(f )! �� H1(R
′
k ,A′).

The lemma follows immediately.

Let ı̂(·, ·) denote the algebraic intersection form on H1(Sg; Z).

Lemma 6.5. Let g ≥ 2, and let a and b be isotopy classes of oriented sim-
ple closed curves in Sg. Suppose that a is pre-symmetric, b is symmetric, and
ı̂([a], [b]) is odd. Let k ∈ Z. If [b] + k[a] is represented by a symmetric simple
closed curve, then k is even.

Proof. Let V ∼= (Z/2Z)2g+1 denote the mod 2 homology of the surface obtained
from S0,2g+2 by removing the marked points. Choosing a distinguished marked
point in S0,2g+2 gives a natural basis forV. Arnol’d proved that the branched cover
Sg → S0,2g+2 induces an isomorphism of H1(Sg; Z/2Z) with the kernel of the
map V → Z/2Z obtained by summing coordinates [1, Lemma 2]. Under this
identification, the algebraic intersection number on H1(Sg; Z/2Z) descends to the
usual dot product on V. Also, the elements of H1(Sg) with symmetric representa-
tives are exactly the ones mapping to elements of V with exactly two or 2g nonzero
entries. Elements of H1(Sg) with pre-symmetric representatives map to elements
of V that fail this property. The result follows easily.

Proposition 6.6. Let g ≥ 2, and let a be the isotopy class of a simple closed
curve in Sg that is either symmetric or pre-symmetric. Define A′ and R ′

k as before.
The homomorphism
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(.1 × .2)|SI(Sg,a) : SI(Sg , a) → SI(R ′
1,A′) × SI(R ′

2,A′)

is surjective with kernel

ker(.1 × .2)|SI(Sg,a) =
{ 〈Ta〉 if a is separating,

1 if a is nonseparating.

Proof. The kernel of (.1 × .2)|SI(Sg,a) is ker(.1 × .2) ∩ SI(Sg , a). The de-
scription of ker(.1×.2)|SI(Sg,a) in the statement of the lemma then follows from
Lemma 6.3.

By Lemma 6.4, we have

(.1 × .2)(SI(Sg , a)) ⊆ SI(R ′
1,A′) × SI(R ′

2,A′).

It remains to show that (.1 × .2)|SI(Sg,a) is surjective. Let f ′ ∈ SI(R ′
1,A′) ×

SI(R ′
2,A′). Choose some f ∈ SMod(Sg , �a) that maps to f ′.

Fix some orientation of a. Consider the natural map

η : H1(Sg; Z)/〈[a]〉 → H1(R
′
1,A′; Z) × H1(R

′
2,A′; Z).

The mapping classes f and f ′ induce automorphisms f! and f ′
! of H1(Sg; Z) and

Im(η), respectively. Since f!([a]) = [a], we also have that f! induces an auto-
morphism f̄! of H1(Sg; Z)/〈[a]〉.

If we give a an orientation, then it represents an element of H1(Sg; Z). We have
the following commutative diagram:

H1(Sg; Z)/〈[a]〉 f̄! ��

η

��

H1(Sg; Z)/〈[a]〉
η

��

Im(η)
f ′
! �� Im(η) ⊂ H1(R

′
1,A′; Z) × H1(R

′
2,A′; Z).

Since f ′
! is the identity and η is injective, it follows that f̄! is the identity.

If a is separating, then [a] = 0 and so f! = f̄! is the identity. Thus, f is an
element of SI(Sg , a), and since .1 × .2 maps f to f ′, we are done in this case.

If a is nonseparating, we can find an isotopy class b of oriented symmetric sim-
ple closed curves in Sg with ı̂([a], [b]) = 1. Since f̄! is the identity, we have

f!([b]) = [b] + k[a]

for some k ∈ Z.

Our next goal is to find some h ∈ ker(.1 × .2) such that (hf )! fixes [b]. If
a is symmetric, then we can simply take h to be T k

a (cf. [8, Prop. 8.3]). If a is
pre-symmetric, then this does not work because T k

a /∈ SMod(Sg). However, if a is
pre-symmetric, then Lemma 6.5 implies that k is even. Thus we can take h to be
(TaTσ(a))

k/2.

Now, let x be any element of H1(Sg; Z). Since f̄! is the identity and since h

induces the identity map on H1(Sg; Z)/〈[a]〉, we have (hf )!(x) = x + j [a] for
some j ∈ Z. Since (hf )! is an automorphism of H1(Sg; Z), it follows that
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ı̂(x, [b]) = ı̂((hf )!(x), (hf )!([b]))

= ı̂(x + j [a], [b])

= ı̂(x, [b]) + j ı̂([a], [b])

= ı̂(x, [b]) + j

and so j = 0. Thus (hf )!(x) = x and so hf ∈ SI(Sg , a). Since h∈ ker(.1×.2),
we have that (.1 × .2)(hf ) = f ′, and we are done.

6.3. Finishing the Proof

In Section 6.1 we showed that reducible elements of SI(Sg) are strongly symmet-
rically reducible, and in Section 6.2 we studied strongly symmetrically reducible
elements of SI(Sg). We now combine the results from these sections with our
Birman exact sequences for SI(Sg) from Section 3 in order to prove Theorem 1.3.

Proof of Theorem 1.3. As in the statement of the theorem, we assume that SI(Sk)

is generated by Dehn twists about symmetric separating curves for all k < g. Let
f ∈ SI(Sg) be a reducible element. When g = 1 there is nothing to do, since
SI(Sg) is trivial, so assume that g ≥ 2.

By Proposition 6.2, f is symmetrically strongly reducible. In other words, there
is an isotopy class a of essential simple closed curves in Sg , where a is either sym-
metric or pre-symmetric and where f ∈ SI(Sg , a).

Define A′, R ′
1, and R ′

2 as in Section 6.2. According to Proposition 6.6, there is
a (surjective) homomorphism

(.1 × .2)|SI(Sg) : SI(Sg , a) → SI(R ′
1,A′) × SI(R ′

2,A′),

and each element of the kernel is a power of a Dehn twist about a symmetric sep-
arating curve (when a is nonseparating, the kernel is trivial). For i = 1, 2, each
Dehn twist about a symmetric separating simple closed curve in SI(R ′

i,A
′) has a

preimage in SI(Sg , a) that is also a Dehn twist about a symmetric separating curve.
Thus, to prove the theorem, it suffices to show that each element of SI(R ′

i,A
′) is

a product of Dehn twists about symmetric separating curves.
Fix i ∈ {1, 2}. Say that R ′

i has genus gi. Note that 0 ≤ gi < g. Combining The-
orem 1.1 with Theorem 1.4 yields a short exact sequence

1 → SIBK(R ′
i,A

′) → SI(R ′
i,A

′) → SI(Sgi ) → 1,

where each element of SIBK(R ′
i,A

′) is a product of Dehn twists about sym-
metric separating simple closed curves in (R ′

i,A
′) (when a is separating, we have

SIBK(R ′
i,A

′) = 1). Recall that we assume SI(Sgi ) to be generated by Dehn twists
about symmetric separating curves. Since each such Dehn twist has a preimage
in SI(R ′

i,A
′) that is also a Dehn twist about a symmetric separating curve, it fol-

lows that each element of SI(R ′
i,A

′) is a product of Dehn twists about symmetric
separating curves, and we are done.

6.4. Small Twists

Finally, we prove Proposition 1.5, which states that every Dehn twist in SI(Sg) is
a product of Dehn twists about symmetric separating curves of genus 1 and 2. In
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particular, this tells us that Hain’s conjecture—that SI(Sg) is generated by Dehn
twists about symmetric separating curves—implies that SI(Sg) is in fact gener-
ated by Dehn twists about symmetric separating curves of genus 1 and 2.

Proof of Proposition 1.5. We prove by induction that any Dehn twist about a sym-
metric separating curve of genus k is equal to a product of Dehn twists about
symmetric separating curves of genus 1 and 2. For k ≤ 2 there is nothing to do,
so assume that k ≥ 3. Let c be a symmetric separating curve of genus k. Then let
d be a symmetric separating curve of genus k − 1 lying on the side of c homeo-
morphic to S1

k , and let a be a symmetric nonseparating curve in Sg lying between
c and d. It suffices to show that TcT

−1
d is equal to a product of Dehn twists about

symmetric separating curves of genus 1 and 2.
At this point, we proceed in a similar fashion to the proof of Theorem 1.3. Con-

sidering TcT
−1
d as an element of SI(Sg , a), define the subsets A′,R ′

1,R ′
2 ⊂ Sg as

in Section 6.2. Since a is symmetric and nonseparating, we can assume that R ′
1

and R ′
2 have genus g − 1 and 0, respectively. In particular, SI(R ′

2,A′) is trivial.
Denote the two points of A′ by p1 and p2. Since R ′

1
∼= Sg−1, Proposition 6.6 then

gives that there is an isomorphism SI(Sg , a) → SI(Sg−1,2).

The image in SI(Sg−1,2) of the product TcT
−1
d lies in the kernel of the forget-

ful map
SI(Sg−1,2) → SI(Sg−1).

By Theorem 1.4, the image of the product TcT
−1
d in SI(Sg−1,2) is equal to a prod-

uct of Dehn twists about symmetric separating curves, each of which cuts off either
a disk with two marked points or a torus with two marked points. The preimages
of these two kinds of twists in SI(Sg , a) are Dehn twists about symmetric sepa-
rating curves of genus 1 and 2, respectively. Thus, TcT

−1
d equals a product of such

Dehn twists.

It is also true for SI(S1
g) and SI(S 2

g ) that each Dehn twist is a product of Dehn
twists about symmetric separating curves of genus 1 and 2 (thus, there is an analo-
gous theorem for BIn). To prove this, we need to strengthen Theorem 1.4 so that
it also covers the cases of S1

g,2 and S 2
g,2 (the latter has one pair of interior marked

points and one pair of boundary components, both interchanged by s). The main
difference in these cases is that the quotient surface is a disk instead of a sphere.
This is not crucial because the fundamental group is still F2g+1, and if we treat the
leftmost marked point in Figure 2 as a boundary component then we can use the
same generating set as before. After making this adjustment, the proof is essen-
tially the same.
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