Ideal-adic Semi-continuity of Minimal Log Discrepancies on Surfaces

Masayuki Kawakita

Following Kollár [4], de Fernex, Ein, and Mustaţă [1] proved the ideal-adic semicontinuity of log canonicity effectively, to obtain Shokurov's [6] ACC conjecture for \log canonical thresholds on smooth varieties. Mustaţă formulated this semicontinuity for minimal log discrepancies as follows.

Conjecture 1 (Mustaţă; see [3]). Let (X, Δ) be a pair, Z a closed subset of X, and \mathcal{I}_{Z} the ideal sheaf of Z. Let $\mathfrak{a}=\prod_{j=1}^{k} \mathfrak{a}_{j}^{r_{j}}$ be a formal product of ideal sheaves \mathfrak{a}_{j} with positive real exponents r_{j}. Then there exists an integer l such that the following holds: if $\mathfrak{b}=\prod_{j=1}^{k} \mathfrak{b}_{j}^{r_{j}}$ satisfies $\mathfrak{a}_{j}+\mathcal{I}_{Z}^{l}=\mathfrak{b}_{j}+\mathcal{I}_{Z}^{l}$ for all j, then

$$
\operatorname{mld}_{Z}(X, \Delta, \mathfrak{a})=\operatorname{mld}_{Z}(X, \Delta, \mathfrak{b})
$$

The case of minimal \log discrepancy 0 is the semi-continuity of \log canonicity. Conjecture 1 is proved in the Kawamata log terminal (klt) case in [3, Thm. 2.6]. However, log canonical (lc) singularities are inevitably treated in the study of limits of singularities in the ideal-adic topology because the limit of klt singularities is lc in general. For example, the limit of klt pairs $\left(\mathbb{A}_{x, y}^{2},\left(x, y^{n}\right) \mathcal{O}_{\mathbb{A}^{2}}\right)$ indexed by $n \in \mathbb{N}$ is the lc pair $\left(\mathbb{A}^{2}, x \mathcal{O}_{\mathbb{A}^{2}}\right)$ in the $(x, y) \mathcal{O}_{\mathbb{A}^{2}}$-adic topology. The purpose of this paper is to settle Mustaţă's conjecture for surfaces.

Theorem 2. Conjecture 1 holds when X is a surface.

We must handle a non-klt triple $(X, \Delta, \mathfrak{a})$ that has positive minimal log discrepancy; yet unlike in the klt case, the log canonicity is not retained when the exponent of \mathfrak{a} is increased as $\mathfrak{a}^{1+\varepsilon}$. For surfaces, however, we are reduced to the purely \log terminal (plt) case in which \mathfrak{a} has an expression $\mathfrak{a}^{\prime} \mathcal{O}_{X}(-C)$; then we can increase only the exponent of the part \mathfrak{a}^{\prime} to apply the result on \log canonicity.

We work over an algebraically closed field of characteristic 0 . We use the notation described next for singularities in the minimal model program.

Notation 3. A pair (X, Δ) consists of a normal variety X and an effective \mathbb{R} divisor Δ such that $K_{X}+\Delta$ is an \mathbb{R}-Cartier \mathbb{R}-divisor. We treat a triple $(X, \Delta, \mathfrak{a})$ by attaching a formal product $\mathfrak{a}=\prod_{j} \mathfrak{a}_{j}^{r_{j}}$ of finitely many coherent ideal sheaves \mathfrak{a}_{j} with positive real exponents r_{j}. A prime divisor E on a normal variety X^{\prime} with a

[^0]proper birational morphism $\varphi: X^{\prime} \rightarrow X$ is called a divisor over X, and the image $\varphi(E)$ on X is called the center of E on X and denoted by $c_{X}(E)$. We denote by \mathcal{D}_{X} the set of divisors over X. The \log discrepancy $a_{E}(X, \Delta, \mathfrak{a})$ of E is defined as $1+\operatorname{ord}_{E}\left(K_{X^{\prime}}-\varphi^{*}\left(K_{X}+\Delta\right)\right)-\operatorname{ord}_{E} \mathfrak{a}$. The triple $(X, \Delta, \mathfrak{a})$ is said to be log canonical (resp., Kawamata log terminal) if $a_{E}(X, \Delta, \mathfrak{a})$ is no less (resp., greater) than 0 for all $E \in \mathcal{D}_{X}$; this triple is said to be purely log terminal, canonical, or terminal according as whether $a_{E}(X, \Delta, \mathfrak{a})$ is (respectively) greater than 0 , no less than 1 , or greater than 1 for all exceptional $E \in \mathcal{D}_{X}$. A center $c_{X}(E)$ with $a_{E}(X, \Delta, \mathfrak{a}) \leq$ 0 is called a non-klt center. Let Z be a closed subset of X. The minimal log discrepancy $\operatorname{mld}_{Z}(X, \Delta, \mathfrak{a})$ over Z is the infimum of $a_{E}(X, \Delta, \mathfrak{a})$ for all $E \in \mathcal{D}_{X}$ with center in Z. We say that $E \in \mathcal{D}_{X}$ computes $\operatorname{mld}_{Z}(X, \Delta, \mathfrak{a})$ if $c_{X}(E) \subset Z$ and $a_{E}(X, \Delta, \mathfrak{a})=\operatorname{mld}_{Z}(X, \Delta, \mathfrak{a})\left(\right.$ or is negative when $\left.\operatorname{mld}_{Z}(X, \Delta, \mathfrak{a})=-\infty\right)$.

Prior to the proof of Theorem 2, we collect standard reductions and known results on Conjecture 1.

Lemma 4 [3, Rem. 2.5.3, 2.5.4]. Conjecture 1 can be reduced to the case where X has \mathbb{Q}-factorial terminal singularities, $\Delta=0$, and Z is irreducible. It then suffices to prove the inequality $\operatorname{mld}_{Z}(X, \mathfrak{a}) \leq \operatorname{mld}_{Z}(X, \mathfrak{b})$.

Theorem 5. Conjecture 1 holds in each of the following cases:
(i) $\operatorname{mld}_{Z}(X, \mathfrak{a})=-\infty$;
(ii) $\operatorname{mld}_{Z}(X, \mathfrak{a})=0[1 ; 4]$;
(iii) (X, \mathfrak{a}) is klt about $Z[3$, Thm. 2.6].

Remark 6. In Theorem 5(ii), one can take as l any integer greater than the maximum of $\operatorname{ord}_{E} \mathfrak{a}_{j} / \operatorname{ord}_{E} \mathcal{I}_{Z}$ by fixing an $E \in \mathcal{D}_{X}$ that computes $\operatorname{mld}_{Z}(X, \mathfrak{a})$. The estimate of l in (iii) involves the \log canonical threshold of \mathfrak{a}.

Conjecture 1 for surfaces is reduced to the plt case.
Lemma 7. With respect to Conjecture 1 for surfaces, one may assume the following:
(i) X is a smooth surface, $\Delta=0$, and Z is a closed point;
(ii) (X, \mathfrak{a}) is plt with unique non-klt center C;
(iii) C is a smooth curve.

Proof. By Lemma 4 we may assume that X is smooth with $\Delta=0$, and by parts (i) and (ii) of Theorem 5 we may assume that $\operatorname{mld}_{Z}(X, \mathfrak{a})>0$. Let C be the non-klt locus of (X, \mathfrak{a}). By Theorem 5(iii), we have only to work about $Z \cap C$. The assumption $\operatorname{mld}_{Z}(X, \mathfrak{a})>0$ means that Z contains no non-klt center, whence $Z \cap C$ consists of finitely many closed points. By replacing Z with $Z \cap C$ and working locally, we may assume that Z is a closed point x and that (X, \mathfrak{a}) has the non-klt locus C, which is a curve. The exceptional divisor E of the blow-up of X at x has positive \log discrepancy $a_{E}(X, \mathfrak{a})$, but it is at most $a_{E}(X, C)=2-$ mult $_{x} C$. Hence C must be smooth at x.

We work locally about the closed point $x=Z$ under the assumptions given in Lemma 7. We denote by \mathfrak{m} the maximal ideal sheaf at x and use notation similar to that in [3, Def. 2.3].

Definition 8. For $\mathfrak{b}=\prod_{j} \mathfrak{b}_{j}^{r_{j}}$ and $l \in \mathbb{N}$, we write $\mathfrak{a} \equiv \equiv_{l} \mathfrak{b}$ if $\mathfrak{a}_{j}+\mathfrak{m}^{l}=\mathfrak{b}_{j}+\mathfrak{m}^{l}$ for all j.

Set $c:=\operatorname{mld}_{x}(X, \mathfrak{a})$. The nontrivial locus of \mathfrak{a} (i.e., the locus where some \mathfrak{a}_{j} is nontrivial) is a divisor of the form $C+D$ about x. Since (X, \mathfrak{a}) is plt, we can fix $s, t>0$ and $t^{\prime} \geq 0$ such that $\operatorname{mld}_{x}\left(X, s D, \mathfrak{a m}^{t^{\prime}}\right)=\operatorname{mld}_{x}\left(X, \mathfrak{a m}^{t}\right)=0$. We fix a \log resolution $\varphi: \bar{X} \rightarrow X$ of $(X, \mathfrak{a m})$; that is, $\prod_{j} \mathfrak{a} \mathfrak{m} \mathcal{O}_{\bar{X}}$ defines a divisor with simple normal crossing support. Let \bar{C} and \bar{D} denote the strict transforms of (respectively) C and D. Since C is smooth, it follows that \bar{C} intersects only one prime divisor F in $\varphi^{-1}(x)$. This will play a crucial role in the proof. If $D \neq 0$ then, by blowing up \bar{X} further, we may assume that every divisor E in $\varphi^{-1}(x)$ intersecting \bar{D} satisfies

$$
\begin{equation*}
\operatorname{ord}_{E} D \geq s^{-1} c-1 \tag{1}
\end{equation*}
$$

We take an integer l such that

$$
\begin{equation*}
l>\operatorname{ord}_{E} \mathfrak{a}_{j} / \operatorname{ord}_{E} \mathfrak{m} \tag{2}
\end{equation*}
$$

for all j and $E \subset \varphi^{-1}(x)$. The following lemma is an application of Theorem 5(ii) and Remark 6 with the inequality (2).

Lemma 9. $\operatorname{mld}_{x}\left(X, s D, \mathfrak{b m}^{t^{\prime}}\right)=\operatorname{mld}_{x}\left(X, \mathfrak{b m}^{t}\right)=0$ for any $\mathfrak{b} \equiv_{l} \mathfrak{a}$.
We write

$$
\mathfrak{a}_{j} \mathcal{O}_{\bar{X}}=\mathcal{O}_{\bar{X}}\left(-H_{j}-V_{j}\right)
$$

with divisors H_{j} and V_{j} such that $\operatorname{Supp} H_{j} \subset \bar{C}+\bar{D}$ and $\operatorname{Supp} V_{j} \subset \varphi^{-1}(x)$. Let $\mathfrak{b} \equiv_{l} \mathfrak{a}$. For $E \subset \varphi^{-1}(x)$, we have $\operatorname{ord}_{E} \mathfrak{a}_{j}<\operatorname{ord}_{E} \mathfrak{m}^{l}$ by (2) and have $\operatorname{ord}_{E} \mathfrak{a}_{j}=$ $\operatorname{ord}_{E} \mathfrak{b}_{j}$ because $\mathfrak{a}_{j}+\mathfrak{m}^{l}=\mathfrak{b}_{j}+\mathfrak{m}^{l}$. Hence we can write

$$
\mathfrak{b}_{j} \mathcal{O}_{\bar{X}}=\mathfrak{b}_{j}^{\prime} \mathcal{O}_{\bar{X}}\left(-V_{j}\right) \quad \text { and } \quad \mathfrak{m}^{l} \mathcal{O}_{\bar{X}}=\mathcal{O}_{\bar{X}}\left(-M_{j}-V_{j}\right)
$$

with an ideal sheaf $\mathfrak{b}_{j}^{\prime}$ and an effective divisor M_{j} such that $\operatorname{Supp} M_{j}=\varphi^{-1}(x)$. Then the equality $\mathfrak{a}_{j}+\mathfrak{m}^{l}=\mathfrak{b}_{j}+\mathfrak{m}^{l}$ induces

$$
\begin{equation*}
\mathcal{O}_{\bar{X}}\left(-H_{j}\right)+\mathcal{O}_{\bar{X}}\left(-M_{j}\right)=\mathfrak{b}_{j}^{\prime}+\mathcal{O}_{\bar{X}}\left(-M_{j}\right) \tag{3}
\end{equation*}
$$

The next lemma establishes that $\operatorname{mld}_{x}(X, \mathfrak{b}) \geq c$; when combined with Lemma 4, this completes the proof of Theorem 2.

Lemma 10. $a_{G}(X, \mathfrak{b}) \geq c$ for any $\mathfrak{b} \equiv_{l} \mathfrak{a}$ and $G \in \mathcal{D}_{X}$ with $c_{X}(G)=x$.
Proof. We treat the three different cases corresponding to the possible positions of $c_{\bar{X}}(G)$:
(i) $c_{\bar{X}}(G) \not \subset \bar{C}+\bar{D}$;
(ii) $c_{\bar{X}}(G) \subset \bar{D}$;
(iii) $c_{\bar{X}}(G) \subset \bar{C}$.
(i) By equation (3) we have $\operatorname{Supp} H_{j} \cap \operatorname{Supp} M_{j}=\operatorname{Supp} \mathcal{O}_{\bar{X}} / \mathfrak{b}_{j}^{\prime} \cap \operatorname{Supp} M_{j}$, whence $\operatorname{Supp} \mathcal{O}_{\bar{X}} / \mathfrak{b}_{j}^{\prime} \cap \varphi^{-1}(x) \subset \bar{C}+\bar{D}$. In particular, $c_{\bar{X}}(G) \not \subset \operatorname{Supp} \mathcal{O}_{\bar{X}} / \mathfrak{b}_{j}^{\prime}$. This implies that $\operatorname{ord}_{G} \mathfrak{b}_{j}=\operatorname{ord}_{G} V_{j}=\operatorname{ord}_{G} \mathfrak{a}_{j}$, so $a_{G}(X, \mathfrak{b})=a_{G}(X, \mathfrak{a}) \geq c$.
(ii) Take a prime divisor E in $\varphi^{-1}(x)$ such that $c_{\bar{X}}(G) \subset E$. By inequality (1), we have $\operatorname{ord}_{G} D=\operatorname{ord}_{E} D \cdot \operatorname{ord}_{G} E+\operatorname{ord}_{G} \bar{D} \geq \operatorname{ord}_{E} D+1 \geq s^{-1} c$. Lemma 9 for $\left(X, s D, \mathfrak{b m}^{t^{\prime}}\right)$ implies that $a_{G}(X, \mathfrak{b}) \geq s \operatorname{ord}_{G} D$, and these two inequalities yield $a_{G}(X, \mathfrak{b}) \geq c$.
(iii) We know that $c_{\bar{X}}(G)$ is in the unique divisor $F \subset \varphi^{-1}(x)$ intersecting \bar{C}. There exists a divisor E in $\varphi^{-1}(x)$ with $a_{E}\left(X, \mathfrak{a m}^{t}\right)=0$. Let L be the union of all such E. Then $L \cup \bar{C}$ is connected by the connectedness lemma [5, Thm. 17.4]. Hence $F \subset L$-that is, $a_{F}\left(X, \mathfrak{a m}^{t}\right)=0$-and so $\operatorname{ord}_{F} \mathfrak{m}^{t}=a_{F}(X, \mathfrak{a}) \geq c$ (actually the equality holds by precise inversion of adjunction [2]). Lemma 9 for $\left(X, \mathfrak{b m}^{t}\right)$ now implies that $a_{G}(X, \mathfrak{b}) \geq \operatorname{ord}_{G} \mathfrak{m}^{t}$. Given $c_{\bar{X}}(G) \subset F$, we obtain $a_{G}(X, \mathfrak{b}) \geq \operatorname{ord}_{G} \mathfrak{m}^{t} \geq \operatorname{ord}_{F} \mathfrak{m}^{t} \geq c$.

Remark 11. The case division in the proof of Lemma 10 is in terms of the union H of divisors E, with $\operatorname{ord}_{E} \mathfrak{a}>0$ and with $c_{X}(E) \not \subset Z$, on a suitable log resolution \bar{X}. We write $H=H^{\prime}+H^{\prime \prime}$ so that H^{\prime} is the union of those E with $a_{E}(X, \mathfrak{a})=$ 0 . Then the cases (i), (ii), (iii) in the proof of Lemma 10 correspond to these respective conditions: $c_{\bar{X}}(G) \not \subset H ; c_{\bar{X}}(G) \subset H^{\prime \prime}$ and $c_{\bar{X}}(G) \not \subset H^{\prime} ;$ and $c_{\bar{X}}(G) \subset$ H^{\prime}. The proof of (i) works in any dimension, and that of (ii) works provided (X, \mathfrak{a}) is plt (or, more generally, dlt). However, the proof of (iii) does not work unless H^{\prime} intersects only one divisor in $\varphi^{-1}(Z)$.

Remark 12. In [3], Conjecture 1 is formulated for (X, Δ, \mathfrak{a}) with \mathfrak{a} an \mathbb{R}-ideal sheaf as an equivalence class of formal products of ideal sheaves. Our proof is valid also for this formulation.

Acknowledgments. This paper was motivated by discussions during a workshop at the American Institute of Mathematics. I am grateful to Prof. T. de Fernex for suggesting the connectedness lemma after increasing the boundary. I thank Mr. Y. Nakamura for his interest in the surface case and Prof. M. Mustaţă for his conjecture. The American Institute of Mathematics provided financial support for my participation.

References

[1] T. de Fernex, L. Ein, and M. Mustaţă, Shokurov's ACC conjecture for log canonical thresholds on smooth varieties, Duke Math. J. 152 (2010), 93-114.
[2] L. Ein, M. Mustaţă, and T. Yasuda, Jet schemes, log discrepancies and inversion of adjunction, Invent. Math. 153 (2003), 519-535.
[3] M. Kawakita, Ideal-adic semi-continuity problem for minimal log discrepancies, Math. Ann. (to appear).
[4] J. Kollár, Which powers of holomorphic functions are integrable?, preprint, arXiv:0805.0756.
[5] J. Kollár et al., Flips and abundance for algebraic threefolds, Astérisque 211 (1992).
[6] V. Shokurov, 3-fold log models, J. Math. Sci. (New York) 81 (1996), 2667-2699.

Research Institute for Mathematical Sciences
Kyoto University
Kyoto 606-8502
Japan
masayuki@kurims.kyoto-u.ac.jp

[^0]: Received June 11, 2012. Revision received August 6, 2012.
 Partially supported by Grant-in-Aid for Young Scientists (A) 24684003.

