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On Invariants of Complete Intersections

Sandra Spiroff

Introduction and Background

When R is a local hypersurface (that is, the quotient of a regular local ring by a reg-
ular element), Hochster [8, p. 98] defined the invariant θR for any pair of finitely
generated R-modules M,N such that the localization of N at any prime other than
the maximal ideal has finite projective dimension over the corresponding localized
ring. This invariant is simply the difference in lengths of two consecutive Tor mod-
ules in high enough degree. The vanishing of this invariant is tied to the dimension
inequality; to wit, when R is an admissible hypersurface and the tensor product of
M and N has finite length, θR(M,N) = 0 if and only if dimM + dimN ≤ dimR

[8, Thm. 1.4]. (A ring R is admissible if a completion R̂ of R at a maximal ideal
satisfies R̂ ∼= T/(f ) and if the dimension inequality, vanishing, and positivity of
Serre [14, V.5.1] hold for T ; Serre showed that these conditions on T hold when
T is a regular local ring containing a field.)

In this paper, we introduce a new invariant, denoted �R
c , in the case that the ring

is a standard graded complete intersection with isolated singularity, and we show
that if the tensor product of a graded pair M,N has finite length, then �R

c (M,N) =
0 if and only if dimM +dimN ≤ dimR. Moreover, dimM +dimN ≤ dimR+1
regardless of the value of �R

c (M,N). See Corollary 2.6.
This work continues in the spirit of recent research and takes its motivation from

H. Dao, W. F. Moore et al., and Y. Kobayashi. To be specific, Dao [2; 3] provided
an in-depth study of θR, especially in the case that the ring has an isolated singular-
ity at the maximal ideal, tying the invariant to questions of dimension and rigidity.
Along with W. F. Moore, G. Piepmeyer, and M. E. Walker, the author continued
this particular study of θR under the additional assumption that R is graded and
contains a field. In particular, we established the vanishing of θR for every pair of
finitely generated modules when the dimension of R is even [12, Thm. 3.2], prov-
ing, in the graded case, a conjecture posed by Dao [3, Conj. 3.15]. In addition, we
showed that θR factors through cohomology and gave a formula for the pairing in
odd dimension.

Let R be a complete intersection (that is, the quotient of a regular ring Q by a
regular sequence of length c). If the TorRj (M,N) eventually have finite length, then
these lengths follow predictable patterns in high degree on even and odd indices.

Received February 21, 2012. Revision received November 1, 2012.

209



210 Sandra Spiroff

Specifically, as per [13, Prop. 2.1], there are polynomials of degree at most c − 1
that determine the lengths of the even and odd Tor modules, respectively, for all
j � 0. These are used by Moore et al. [13, Def. 2.2] to study an invariant first
introduced by Dao [4, 4.2], namely the invariant ηR

c (M,N). Moreover, when R

has an isolated singularity, we establish that ηR
c (M,N) vanishes for all pairs of

finitely generated modules when c > 1 [13, Thm. 4.5, Cor. 4.7].
Some key properties of ηR

c differ fundamentally from those of θR. Here we
introduce and study a new invariant, �R

c (M,N), which shares many of the same
properties as θR, for example, how its vanishing relates to the dimension inequality,
as noted previously. We establish results analogous to those in [12]. Additionally,
we investigate the “expected dimension” of the intersection of two modules M and
N versus its actual dimension, and we tie �R

c (M,N) to a generalized Bézout’s
theorem relating the degrees of the modules, their associated homology modules,
and the ambient ring. See Theorem 2.4. Finally, we briefly return to ηR

c and also
tie it to a generalized Bézout’s theorem. Some examples are calculated.

1. The �R
c Invariant

Let R be the quotient of a Noetherian ring Q by a regular sequence f1, . . . , fc and
let M and N be finitely generated R-modules. Suppose that, for all j � 0, the
Q-modules TorQj (M,N) vanish and the TorRj (M,N) have finite length.

Under these hypotheses, the authors [13, Prop. 2.1] show that there are poly-
nomials of degree at most c − 1 that determine the lengths of the even and odd
Tor modules, respectively, for high indices. These polynomials make it possible
to make the following definition.

Definition 1.1 [13, Def. 2.2, Prop. 2.1]. With R, M, and N as in the opening
paragraph of this section, define

ηR
c (M,N) = (Pev − Podd)

(c−1)

2c · c!
,

the (c− 1)th iterated first difference of Pev −Podd, where the polynomials Pev and
Podd depend on M and N, have degree at most c − 1, and satisfy

len(TorR2j(M,N)) = Pev(j), len(TorR2j+1(M,N)) = Podd(j) for all j � 0.

(The first difference of a polynomial q(j) is the polynomial q(1)(j) = q(j) −
q(j − 1), and recursively one defines q(i) = (q(i−1))(1).)

When the ring is graded and M and N are finitely generated graded, the value for
ηR
c (M,N) can be realized via Hilbert series.
The Hilbert series of a finitely generated, nonnegatively graded R-module M is∑
i≥0 dimk(Mi)t

i, denoted HM(t). In fact, it is a rational function with a pole of
order dimM at t = 1. To be specific,

HM(t) = eM(t)

(1 − t)dimM
, (1.1)
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where eM(t) is a polynomial in Z[t], sometimes called the multiplicity polynomial
of M [1, 1.1]. The value of eM(1) is always a positive integer, which is called the
multiplicity or degree of M.

The modules TorRj (M,N), which are graded when M and N are graded, will
often be abbreviated to Tj , and their Hilbert series denoted by HTj (t).

Lemma 1.2 [13, Lemma 3.6]. Let k be a field and Q = k[x0, . . . , xn+c−1], where
deg xl = 1 for all l. Set R = Q/(f1, . . . , fc), where f1, . . . , fc forms a regular
Q-sequence and each fi is a homogeneous polynomial of degree di for 1 ≤ i ≤ c.

Let M and N be finitely generated graded R-modules such that the TorRj (M,N)

eventually have finite length. Then, for E � 0 with E an even integer, there is a
unique polynomial ηR

c,E(M,N)(t) in Q[t] such that

∑
j≥E

(−1)jHTj (t) = ηR
c,E(M,N)(t)

eR(t)(1 − t)c
and ηR

c,E(M,N)(1) = 2cc! · ηR
c (M,N),

where eR(t) is the multiplicity polynomial of R as in (1.1). (See also (1.3) in
Lemma 1.7.)

A more explicit, but equivalent, definition for ηR
c,E(M,N)(t) under the assump-

tions of Lemma 1.2 is as follows.

Definition 1.3. Let s1(t), . . . , sc(t) denote the elementary symmetric func-
tions on t d1, . . . , t dc, and set s0(t) ≡ 1. (To be specific s1(t) = t d1 + · · · + t dc ;∑

1≤i<j≤c t
di+dj, . . . ; and sc(t) = t d1+···+dc.) Then for E � 0 and even, as in

Lemma 1.2,

ηR
c,E(M,N)(t) =

c−1∑
j=0

( c−(j+1)∑
i=0

(−1)isi(t)(HTE+2j (t) − HTE+2j+1(t)

)
.

It is easy to see that when R is a hypersurface, this formula immediately reduces
to the definition of θR(M,N), namely len(TorRE(M,N)) − len(TorRE+1(M,N)).

The following example uses a generic construction of complete intersections by
Jorgensen [10, Exm. 2.8]. We will revisit this calculation in Section 3.

Example 1.4. Let R = k[X,Y,Z1, . . . ,Z8]/(XY,Z1Z2Z3 −Z3
4,Z5Z6 −Z7Z8),

where k is a field, and set M = R/(x, z1, . . . , z8) and N = R/(y). Then R is a
complete intersection and len(TorRj (M,N)) is 1 if j ≥ 0 is even and 0 if j is odd.

Therefore, eT2j (t) = HT2j (t) = t 2j and, by Definition 1.3,

ηR
3,E(M,N)(t)

= (1 − 2t 2 − t 3 + t 4 + 2t 5)(HTE (t) − HTE+1(t))

+ (1 − 2t 2 − t 3)(HTE+2(t) − HTE+3(t)) + (HTE+4(t) − HTE+5(t))

for E � 0. In particular, ηR
3,E(M,N)(t) = tE(1 − t)2(1 + t)(1 + t + t 2) and

hence ηR
3 (M,N) = 0.
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If R has an isolated singularity then, under the assumptions in the Lemma (where
now the eventual finite length of the Tor modules is guaranteed), it is shown in [13]
that ηR

c (M,N) always vanishes when c > 1. We are thus motivated to define a new
invariant by the fact that—unlike Hochster’s original θR invariant, which is zero
if and only if the dimension inequality is satisfied and the length of M ⊗R N is
finite—the vanishing of ηR

c (M,N) is independent of dimension and length consid-
erations for c > 1. It is from this result that we define the new invariant �R

c (M,N).

Throughout the remainder of this section and the next, we make the following
assumptions:

• k is a separably closed field;
• R = k[x0, . . . , xn+c−1]/(f1, . . . , fc), where deg xl = 1 for all l and

each fi is a homogeneous polynomial of degree di, 1 ≤ i ≤ c;
• f1, . . . , fc forms a regular sequence;

(1.2)
• X = ProjR is a smooth k-variety, and m = (x0, . . . , xn+c−1) is the

only nonregular prime of R;
• M and N are finitely generated graded R-modules;
• E � 0 is an even integer such that ηR

c,E(M,N)(1) = 2cc! · ηR
c (M,N).

1.1. Definition and Preliminaries

Theorem 1.5 [13, Thm. 4.5]. Under assumptions (1.2), ηc,E(M,N)(t) has a
zero at t = 1 of order at least c − 1. In particular, ηR

c (M,N) = 0 for c > 1.

Definition1.6. Under assumptions (1.2), define�R
c,E(M,N)(t) to be the unique

polynomial that satisfies

ηR
c,E(M,N)(t) = (1 − t)c−1�R

c,E(M,N)(t).

With this definition, the following relation is analogous to the one in Lemma 1.2.

Lemma 1.7. The polynomial �R
c,E(M,N)(t) satisfies

∑
j≥E

(−1)jHTj (t) = �R
c,E(M,N)(t)

eR(t)(1 − t)
, where eR(t) =

∏c
i=1(1 − t di )

(1 − t)c
. (1.3)

Proof. This follows easily from Lemma 1.2, Theorem 1.5, and Definition 1.6.

Proposition 1.8. The value of �R
c,E(M,N)(t) at t = 1 is independent of E.

Therefore, �R
c (M,N) := �R

c,E(M,N)(1) is well-defined.

Proof. For E � 0 and even, (1.3) holds. In particular, len(TorRj (M,N)) < ∞
for j ≥ E. Thus

�R
c,E(M,N)(t) − �R

c,E+2(M,N)(t) = eR(t)(1 − t)(HTE (t) − HTE+1(t)),

which is an equation in Q[t]. Evaluate at t = 1.

Proposition 1.9. �R
c (·, ·) is a symmetric pairing, and it is biadditive on short

exact sequences of finitely generated graded R-modules.
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Proof. The first statement is obvious. For the biadditivity, let 0 → M ′ → M →
M ′′ → 0 be a short exact sequence of finitely generated graded R-modules. Ten-
sor with N to obtain the following long exact sequence, where for j large enough,
the Tor modules have finite length:

· · · −→ TorRj (M ′,N) −→ TorRj (M,N) −→ TorRj (M ′′,N)
δ−→ TorRj−1(M

′,N) −→ · · · .

As HTj (t) denotes the Hilbert series of TorRj (M,N), let H ′
Tj
(t) and H ′′

Tj
(t) denote

the Hilbert series of TorRj (M ′,N) and TorRj (M ′′,N), respectively. Then for an
even integer E � 0 such that all of the Tor modules have finite length for j ≥ E

and Lemma 1.7 applies to all three pairs (M,N), (M ′,N), (M ′′,N), we have

eR(t)(1 − t)

(∑
j≥E

(−1)jH ′
Tj
(t) −

∑
j≥E

(−1)jHTj (t) +
∑
j≥E

(−1)jH ′′
Tj
(t)

)

= �R
c,E(M

′,N)(t) − �R
c,E(M,N)(t) + �R

c,E(M
′′,N)(t). (1.4)

Let CE be the cokernel of the map TorRE(M,N) → TorRE(M
′′,N). Since the

Hilbert series is an additive function on the category of graded R-modules, the
term in large parentheses in (1.4) can be replaced with the Hilbert series of CE.

Since CE has finite length, its Hilbert series is simply a polynomial, say q(t).

Thus, evaluating

eR(t)(1 − t)q(t) = �R
c,E(M

′,N)(t) − �R
c,E(M,N)(t) + �R

c,E(M
′′,N)(t)

at t = 1 yields the result.
The proof of biadditivity in the second component follows from the fact that the

pairing is symmetric.

Corollary 1.10. �R
c (·, ·) defines a pairing on the Grothendieck group of finitely

generated graded R-modules.

1.2. Geometric Interpretation of �R
c (M,N)

Many of the properties satisfied by Hochster’s original theta function are also sat-
isfied by �R

c . To establish this, we rely heavily upon our previous work and hence
refer the reader to [12, Sec. 2] and [13, Sec. 4] for more explanation of the maps
and groups used in this section. Good general references for this material are [7]
and [6].

ByG(Z) andK(Z)we denote the Grothendieck groups of coherent sheaves and
locally free coherent sheaves, respectively, when Z is a quasi-projective scheme
over a field k. Recall that ProjR = X ⊆ P n+c−1, where the smooth variety X has
dimension n−1 and degree d = d1 · · · dc. Since k is infinite, for an open subset U
containing X there is a linear rational map P n+c−1 ��� P n−1 determining a regular
function on U. This induces a finite, flat, regular map ρ : X → P n−1 of degree d.

Moreover,
ρ∗ : K(X) ∼= G(X) → G(P n−1) ∼= K(P n−1)
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and Z[t]/(1 − t)n ∼= K(P n−1) via t �→ [O(−1)] (see [7, Exr. III.5.4]). We iden-
tify K(P n−1) ⊗Z Q with Q[t]/(1 − t)n.

Lemma 1.11 (cf. [12, Lemma 4.2; 13, Lemma 4.3]). Under assumptions (1.2),
for any sufficiently large even integer E, the rational function

(1 − t)n−1
�R

c (M,N)(t)

(eR(t))2

does not have a pole at t = 1. Its image in Q[t](t)/(1 − t)n = Q[t]/(1 − t)n =
K(P n−1)Q satisfies the equation

(1 − t)n−1
�R

c,E(M,N)(t)

(eR(t))2
=
(
ρ∗([M̃ ])

ρ∗(1)
· ρ∗([Ñ ])

ρ∗(1)
− ρ∗([M̃ ] · [Ñ ])

ρ∗(1)

)
.

In particular, since degX = d,

(1 − t)n−1�R
c (M,N) =

(
d · ρ∗([M̃ ])

ρ∗(1)
· d · ρ∗([Ñ ])

ρ∗(1)
− d 2 · ρ∗([M̃ ] · [Ñ ])

ρ∗(1)

)
.

Proof. Apply [13, Lemma 4.3] with m = 0 and use the substitution

ηR
c,E(M,N)(t) = (1 − t)c−1�R

c,E(M,N)(t).

The next two results use étale cohomology, and [5] serves as a good reference.
The étale cohomology of a scheme Z with coefficients in Q)(i) will be denoted
by H

j

ét(Z, Q)(i)), where ) is some fixed prime not equal to the characteristic of k.
Via the étale Chern character, there is a ring homomorphism

chét : K(Z)Q → H 2∗
ét (Z, Q)(∗)),

where H 2∗
ét (Z, Q)(∗)) = ⊕

i H
2i
ét (Z, Q)(i)) is a commutative ring under cup

product.
Let Y be a smooth projective variety over k. For the push-forward along the

structure map Y → Spec k, write∫
Y

: H 2∗
ét (Y, Q)) → Q).

This mapping takes values in H 2∗
ét (Spec k, Q)) = H 0

ét(Spec k, Q)) = Q). In par-
ticular, if ς ∈H 2

ét(P
n−1, Q)(1)) is the class of a hyperplane, then H 2∗

ét (P
n−1, Q)) ∼=

Q)[ς ]/〈ςn〉 and ∫
P n−1

ςi =
{

0 for i = 0, . . . , n − 2,

1 for i = n − 1.

Proposition 1.12. Under assumptions (1.2),

�R
c (M,N) =

∫
P n−1

(
ρ∗(chét[M̃ ]) · ρ∗(chét[Ñ ]) − d · ρ∗(chét([M̃ ] · [Ñ ]))

)
.
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Proof. The case c = 1 is simply [12, Prop. 3.1]. For larger values of c, the proof is
similar but also uses results from [13]. To see this, let c > 1. Apply chét to the sec-
ond equation in Lemma 1.11 and simplify using the commutative diagram in [13,
Lemma 4.4]; that is, ρ∗ � chét = (d/ρ∗(1)) · chét � ρ∗. This gives

�R
c (M,N)chét(1 − t)n−1 = ρ∗(chét[M̃ ]) ·ρ∗(chét[Ñ ])− d ·ρ∗(chét([M̃ ] · [Ñ ])).

The rest of the proof now follows exactly as in the proof of [12, Prop. 3.1].

The next result establishes the vanishing of �R
c in even dimension, a fact that has

implications for our main theorem in Section 2; see Theorem 2.4.

Theorem1.13. Under assumptions (1.2), if dimR is even then �R
c vanishes; that

is, for every pair of finitely generated gradedR-modulesM andN,�R
c (M,N) = 0.

Proof. The case c = 1 is simply [12, Thm. 3.2]. For larger values of c the proof
uses ideas similar to those in [13, Thm. 4.5, Cor. 4.7]. Let c > 1. Multiply the
first equation in Lemma 1.11 by d 2. Next, apply chét and simplify using the com-
mutative diagram in [13, Lemma 4.4] (i.e., ρ∗ � chét = (d/ρ∗(1)) · chét � ρ∗) to
obtain

d 2 · chét((1 − t)n−1 · �R
c,E(M,N)(t))

chét((eR(t))2)

= ρ∗ chét[M̃ ] · ρ∗ chét[Ñ ] − d · ρ∗(chét[M̃ ] · chét[Ñ ]). (1.5)

Define a pairing + on H 2∗
ét (X, Q)(∗)) by the formula

+(α,β) = ρ∗(α) · ρ∗(β) − d · ρ∗(α · β).
Then the right-hand side of (1.5) is +(chét[M̃ ], chét[Ñ ]). We claim that + is zero
when dimR is even.

Letα be in the image of the ring mapρ∗ : H 2∗
ét (P

n−1, Q)(∗)) → H 2∗
ét (X, Q)(∗)),

say α = ρ∗(α ′). Recall that ρ∗(1) = d = d1 · · · dc and employ the projection for-
mula ρ∗(ρ∗(α ′) · ω) = α ′ · ρ∗(ω), where ω is taken to be 1 or β. Then

ρ∗(ρ∗(α ′)) · ρ∗(β) − d · ρ∗(ρ∗(α ′) · β) = α ′ρ∗(1) · ρ∗(β) − d · α ′ρ∗(β).

In other words, +(α,β) = 0 in this case. The same holds true if β = ρ∗(β ′) for
some β ′ ∈H 2∗

ét (P
n−1, Q)(∗)). Now the map

ρ∗ : H 2j
ét (P

n−1, Q)(j)) → H
2j
ét (X, Q)(j))

is an isomorphism in every degree except for possibly degree 2j = n −1 because
X is a complete intersection in projective space (see [15, XI.1.6]). Therefore, when
the dimension of R is even, one of these two cases must hold, and hence the claim
is verified. Clearly, since + is zero when dimR is even, so too is the left-hand
side of (1.5). Thus it follows that chét((1 − t)n−1�R

c,E(M,N)(t)) = 0 as well.
The remainder of the proof now follows along the lines of [13, Thm. 4.5]. To

wit, since the Chern character map with coefficients from Q) induces an isomor-
phism on projective space, namely,
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chét : K(P n−1) ⊗ Q)

∼=−→H 2∗
ét (P

n−1, Q)(∗)),
it follows that (1 − t)n−1 · �R

c,E(M,N)(t) = 0 in Q[t]/(1 − t)n. In other
words, (1 − t)n divides (1 − t)n−1 · �R

c,E(M,N)(t) in Q[t], and hence
�R

c,E(M,N)(t)/(1 − t) is a polynomial. Consequently, �R
c (M,N) :=

�R
c,E(M,N)(1) = 0.

2. Expected Dimension versus Actual Dimension

In this section, under the same assumptions as in (1.2), our goal is to answer
the question of when the actual dimension of SuppM ∩ SuppN is no less than
dimM + dimN − dimR, the “expected dimension” of the intersection, and to
relate these values to the invariant �R

c (M,N). One motivation for this question
is a paper by Kobayashi—in particular, [11, Thm. 8], which we reconsider in the
language of the invariants �R

c (M,N) and ηR
c (M,N). The latter is considered in

Section 3, specifically Theorem 3.1.
Throughout this section, we set p = dimM + dimN − dimR. We also recall

a definition that we will use in Theorem 2.4.

Definition 2.1 [11, p. 652]. Let M be a finitely generated graded module over
R. For each integer j with 0 ≤ j ≤ dimR, define

ej(M) =
{

0 if dimM < j,

degM if dimM = j.

Recall that the degree of a graded module M is eM(1), as per (1.1). The notation
is similar, but ej(M) equals eM(1) only in the case that j = dimM.

Remark 2.2. Kobayashi asserts the following. LetM andN be finitely generated
graded R-modules for R a graded algebra generated by homogeneous elements of
degree 1 over a field. Set p = dimM + dimN − dimR. Then:

(1) dim(M ⊗R N ) ≥ p;
(2) if p ≥ 1 and the equality holds in (1) and if R is nonsingular at every q ∈

V(M) ∩ V(N ) such that dimR/q = p, then ep(TorRj (M,N)) = 0 for j >

dimR − p and

degM degN = degR ·
dimR−p∑

j=0

(−1)jep(TorRj (M,N)). (∗)

(Note that V(M) = {q ∈ ProjR : q ⊇ annR(M)}.)
However, Example 2.3 (cf. [8, Exm. 1.5]) provides a counterexample to (1) and
(2) [11, Thm. 8], where �R

1 is simply the original θR function.

Example 2.3. LetR = C[X1,X2,Y1,Y2 ]/(X1Y1−X2Y2) and setM = R/(x1, x2).

If N = R/(y1, y2), then len(M ⊗R N ) < ∞ and p = 2 + 2 − 3 = 1 provides
a counterexample to (1). Next, reset N = R/(x1, y2). Then dim(M ⊗R N ) =
1 = p, and len(TorRj (M,N)) is 0 if j > 0 is even and 1 if j > 0 is odd.
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Therefore, e1(TorR0 (M,N)) = 1 and e1(TorRj (M,N)) = 0 for j = 1, 2. Also,
degR = 2. Since R is regular away from the irrelevant maximal ideal, the
hypotheses in Remark 2.2(2) are satisfied, yet equation (∗) yields

(1)(1) = degM degN = degR ·
2∑

j=0

(−1)je1(TorRj (M,N)) = 2(1).

In fact, �R
1 (M,N) = −1 in this example, and applying Theorem 2.4 via equa-

tion (2.2), where we can take E as small as 2, yields

degM degN = degR ·
1∑

j=0

(−1)je1(TorRj (M,N)) + �R
1 (M,N).

It is interesting to note that, under the assumptions in this section, Remark 2.2(1)
is valid outside the lone case that p = 1 and dimR is odd. We demonstrate these
ideas in our main result as follows.

Theorem 2.4. Let R, M, and N be the same as in assumptions (1.2). Set dTj =
dim TorRj (M,N) and p = dimM+dimN−dimR. Then the following statements
hold.

(1) If p ≥ 2, then dT0 ≥ p. Moreover, if p = dT0 , then

degM degN = degR ·
E−1∑
j=0

(−1)jep(TorRj (M,N)). (2.1)

(2) If p = 1, then dT0 ≥ p whenever dimR is even.
If dT0 = 0, then dimR is odd and degM degN = �R

c (M,N) �= 0; that is,
θR
c,E(M,N)(t) has a zero at t = 1 of order exactly c − 1.
If dT0 = 1, then

degM degN = degR ·
E−1∑
j=0

(−1)je1(TorRj (M,N)) + �R
c (M,N). (2.2)

(3) If p ≤ 0, then dT0 ≥ p.

If dT0 = 0, then �R
c (M,N) = 0; that is, θR

c,E(M,N)(t) has a zero at t = 1
of order at least c.

If p = 0 = dT0 , then

degM degN = degR ·
E−1∑
j=0

(−1)je0(TorRj (M,N)) − �′
c,E(M,N)(1), (2.3)

where �′
c,E denotes the first derivative of �R

c,E(M,N)(t) with respect to t.

Remark 2.5. We note that under the assumption dT0 = p, the finite sums can be
written in terms of the degrees of the torsion modules, thus giving a Bézout-like
result between those degrees and the degrees of M, N, and R. To be specific, the
right-hand side of equation (2.1), (2.2), and (2.3), respectively, can be written as:
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degR ·
∑

0≤j≤E−1
dTj =p

(−1)j deg(TorRj (M,N));

degM degN = degR ·
∑

0≤j≤E−1
dTj =1

(−1)j deg(TorRj (M,N)) + �R
c (M,N);

degR ·
E−1∑
j=0

(−1)j deg(TorRj (M,N)) − �′
c,E(M,N)(1).

Proof of Theorem 2.4. We start with the equation from [1, Lemma 7]:

HM(t) · HN(t)

HR(t)
=
∑
j≥0

(−1)jHTj (t),

which simplifies via (1.1) to

eM(t)eN(t) = eR(t)

(∑
j≥0

(−1)jHTj (t)

)
(1 − t)p.

Splitting the sum at an even E � 0 and using equation (1.3), this can be reconfig-
ured as

eM(t)eN(t) = eR(t)

E−1∑
j=0

(−1)jeTj (t)(1 − t)p−dTj

︸ ︷︷ ︸
(†)

+ �R
c,E(t)(1 − t)p−1. (2.4)

The goal is to evaluate equation (2.4) at t = 1. Our argument relies on the fact that
the left-hand side has neither zero nor pole at t = 1; to be specific, eM(1)eN(1) =
degM degN. Thus, the argument involves simplifying the right-hand side and
evaluating at t = 1. Essentially, this is an analysis of (†).

Case 1: p ≥ 2. The rightmost term vanishes upon evaluation at t = 1. If dT0 <

p, then dTj < p for all j and so the entire right-hand side of equation (2.4) would
be zero when evaluated at t = 1. Therefore, dT0 must be greater than or equal to
p. Now assume dT0 = p. Any of the individual terms in (†) with dTj < p vanish
upon evaluation at t = 1. Thus equation (2.1) follows easily.

Case 2: p = 1. If dT0 = 0 then (†) is zero and, evaluating at t = 1, we have
degM degN = �R

c (M,N). By Theorem 1.13, �R
c (M,N) vanishes when dimR

is even; hence this equation is contradictory unless dimR is odd. Now assume
dT0 = 1. Any of the individual terms in (†) with dTj = 0 vanish upon evaluation
at t = 1, yielding equation (2.2).

Case 3: p ≤ 0. The first sentence is obvious. Assume dT0 = 0. Then dTj = 0
for all j. As a result, eTj (1) = deg Tj > 0 for all j such that eTj (t) is nonzero. Now
if �R

c,E(1) �= 0, then the rightmost term will have a pole at t = 1 of order 1 − p,
while any poles at t = 1 in (†), if they exist, will have order at most −p <

1 − p. Therefore, �R
c,E(1) must be zero. Write �R

c,E(t) = (1 − t)q(t) for some
q(t)∈ Q[t].



On Invariants of Complete Intersections 219

Now assume that p = 0 = dT0 . Thus, equation (2.4) becomes

eM(t)eN(t) = eR(t)

E−1∑
j=0

(−1)jeTj (t) + q(t).

Equation (2.3) follows by evaluating at t = 1.

Corollary 2.6 (Finite-length case). Let R, M, and N be as in assumptions
(1.2). In addition, assume that M ⊗R N has finite length. Then:

(i) dimM + dimN ≤ dimR + 1;
(ii) if dimR is even, then dimM + dimN ≤ dimR;

(iii) dimM + dimN ≤ dimR if and only if �R
c (M,N) = 0.

Proof. If M ⊗R N has finite length, then p ≤ 1 by Theorem 2.4(1). This estab-
lishes part (i). Next, if dimR is even then p �= 1 by Theorem 2.4(2). Third, if the
dimension inequality is satisfied, then Theorem 2.4(3) establishes the vanishing of
�R

c (M,N). Conversely, if �R
c (M,N) vanishes then �R

c,E(M,N)(t) can be fac-
tored as (1− t)q(t) for some q(t)∈ Q[t]. Putting this into equation (2.4), we have

eM(t)eN(t) = eR(t)

E−1∑
j=0

(−1)jeTj (t)(1 − t)p + q(t)(1 − t)p. (2.5)

Recall that the left-hand side of (2.5) has neither zero nor pole at t = 1. Likewise,
none of eTj (t) or q(t) has a pole at t = 1 since all are polynomials. If p > 0, then
the right-hand side of (2.5) is zero when evaluated at t = 1. Contradiction.

Note that in the case where c = 1, we are simply dealing with Hochster’s original
θR function, and we can recover some of his results. See [8, Thm. 1.4].

3. The Invariant ηR
c (M , N) Revisited

In this section, we consider the question of actual versus expected dimension from
the perspective of the invariant ηR

c (M,N), relaxing the isolated singularity hypoth-
esis on R. Again, p = dimM + dimN − dimR. Also, ηR

c,E(M,N)(t) will be
abbreviated to ηR

c,E(t). We revisit Example 1.4, interpreting it via the following
theorem, and also include an example in codimension 2.

Theorem 3.1. Let k be a field and Q = k[x0, . . . , xn+c−1], where deg xl = 1 for
all l. Set R = Q/(f1, . . . , fc), where f1, . . . , fc forms a regular Q-sequence and
each fi is a homogeneous polynomial of degree di for 1 ≤ i ≤ c. Let M and
N be finitely generated graded R-modules such that the TorRj (M,N) eventually
have finite length, and let E � 0 be an even integer such that ηR

c,E(M,N)(1) =
2cc! · ηR

c (M,N).

(1) If p > c, then dT0 ≥ p. Moreover, if dT0 = p, then

degM degN = degR ·
E−1∑
j=0

(−1)jep(TorRj (M,N)). (3.1)
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(2) For p = c:
(a) if dT0 < p, then degM degN = ηR

c (M,N) �= 0;
(b) if dT0 = p, then

degM degN

= degR ·
E−1∑
j=0

(−1)jep(TorRj (M,N)) + 2cc! · ηR
c (M,N). (3.2)

(3) For p < c:
(a) if dT0 < p, then ηR

c,E(t) has a zero at t = 1 of order exactly c − p and

degM degN = (−1)c−p

(c − p)!
η
(c−p)

c,E (1), (3.3)

where η
(c−p)

c,E denotes the iterated derivative of ηR
c,E(t) with respect to t;

(b) if dT0 = p, then ηR
c,E(t) has a zero at t = 1 of order at least c − p and

degM degN

= degR ·
E−1∑
j=0

(−1)jep(TorRj (M,N)) + (−1)c−p

(c − p)!
η
(c−p)

c,E (1). (3.4)

Proof. Via the method used in the proof of Theorem 2.4, we arrive at the equation

eM(t)eN(t) = eR(t)

E−1∑
j=0

(−1)jeTj (t)(1 − t)p−dTj

︸ ︷︷ ︸
(‡)

+ ηR
c,E(t)(1 − t)p−c, (3.5)

which we analyze as we did before—again relying heavily on the fact that the left-
hand side has neither zero nor pole at t = 1 (i.e., eM(1)eN(1) = degM degN).

Case 1: p > c. If dT0 < p, then dTj < p for all j and so the entire right-hand
side of equation (3.5) would be zero when evaluated at t = 1. Therefore, dT0 must
be greater than or equal to p. When dT0 = p > c, equation (3.1) follows easily.

Case 2: p = c. Then (3.5) becomes

eM(t)eN(t) = eR(t)

E−1∑
j=0

(−1)jeTj (t)(1 − t)p−dTj + ηR
c,E(t).

(a) If dT0 < p = c, then (‡) vanishes when evaluated at t = 1 and so ηR
c,E(t) can

not; that is, degM degN = ηR
c (M,N) �= 0.

(b) If dT0 = p = c, then equation (3.2) follows easily.

Case 3: p < c.

(a) If dT0 < p, then (‡) vanishes upon evaluation at t = 1. As a result, ηc,E(t)

must have a zero at t = 1 of order exactly c − p, else the right-hand side of
equation (3.5) would either be zero or have a pole at t = 1. From this, equa-
tion (3.3) follows.
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(b) If dT0 = p < c, then (‡) has no pole at t = 1. Thus, as in Case 3(a), ηc,E(t)

must have a zero at t = 1 of order at least c − p. Equation (3.4) follows.

Corollary 3.2 (Finite-length case). Let R, M, and N be as in Theorem 3.1. In
addition, assume that M ⊗R N has finite length. Then ηR

c,E(M,N)(t) has a zero
at t = 1 of order at least c if and only if dimM + dimN ≤ dimR.

Proof. If M ⊗R N has finite length, then dTj = 0 for all j ; hence (3.5) becomes

eM(t)eN(t) = eR(t)

E−1∑
j=0

(−1)jeTj (t)(1 − t)p + ηR
c,E(t)(1 − t)p−c.

Assume dimM + dimN ≤ dimR. Now if ηR
c,E(t) does not have a zero of order at

least c at t = 1, then the rightmost term will have a pole at t = 1 of order strictly
greater than −p. However, the individual terms in (‡) either are zero or have poles
at t = 1 of order exactly −p. Since all poles must cancel, ηR

c,E(t) must have a zero
of order at least c at t = 1.

Conversely, if ηR
c,E(t) has a zero of order at least c at t = 1, write ηR

c,E(t) =
(1 − t)cq(t) for some polynomial q(t)∈ Q[t]. Then (3.5) becomes

eM(t)eN(t) = eR(t)

E−1∑
j=0

(−1)jeTj (t)(1 − t)p + q(t)(1 − t)p.

If p > 0, then the entire right-hand side vanishes upon evaluation at t = 1.
Contradiction. Thus, the dimension inequality must be satisfied.

To illustrate the preceding results, we provide some examples. The first is familiar
from Example 1.4 and illustrates Case 3(a).

Example 3.3. Let R = C[X,Y,Z1, . . . ,Z8]/(XY,Z1Z2Z3 −Z3
4,Z5Z6 −Z7Z8),

and set M = R/(x, z1, . . . , z7) and N = R/(y). Then dimR = 7, dimM = 1, and
dimN = 7, so dimM + dimN = dimR +1. Moreover, the length of M ⊗R N is
finite; that is, dT0 = 0, p = 1, and c = 3. The Hilbert series are

HR(t) = (1 + t)2(1 + t + t 2)

(1 − t)7
, HM(t) = 1

1− t
, HN(t) = (1 + t)(1 + t + t 2)

(1 − t)7
,

where the numerators are eR(t), eM(t), and eN(t), respectively. We recall that
ηR

3,E(M,N)(t) = tE(1 − t)2(1 + t)(1 + t + t 2). Then, by (3.3) in Theorem 3.1,

degM degN = (−1)2

2!
η ′′

3,E(1).

The left-hand side is eM(1)eN(1) = (1)(6) while the right-hand side is 12/2.

Our next example is illustrative of the most complicated cases involving dT0 , p,
and c (namely, when dT0 > p), which are not covered in Theorem 3.1. We detail
in Theorem 3.5 what (little) we can say in these cases via our methods.
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Example 3.4 [9, Exm. 4.2]. Let R = C[X,Y,Z]/(XZ − Y 2,XY − Z2), and
set M = R/(x, y) and N = R/(x, z). Then dimR = 1 and dimM = dimN = 0,
so dimM + dimN = dimR − 1. Moreover, the length of M ⊗R N is finite (i.e.,
p = −1, dT0 = 0, and c = 2). The Hilbert series are

HR(t) = (1 + t)2

1 − t
, HM(t) = 1 + t, HN(t) = 1 + t,

where eR(t) is the numerator of HR(t), eM(t) = HM(t), and eN(t) = HN(t).

Since len(TorRj (M,N)) is 1 if j = 0 or 1 and is 0 if j ≥ 2, it follows that
ηR

2,E(M,N)(t) ≡ 0. Thus, via equation (3.5), we have

eM(t)eN(t) = eR(t)

(
1

1 − t
− t

1 − t

)
+ 0.

Simplifying and evaluating at t = 1, we have (2)(2) = degM degN = degR =
(2)2.

Theorem 3.5. Let R, M, and N be as in Theorem 3.1.

(1) If dT0 > p = c, then

degM degN = degR

(
Q(1)+

∑
0≤j≤E−1

dTj =p

(−1)jep(TorRj (M,N))

)
+ηR

c (M,N),

where Q(t) is the polynomial
∑

0≤j≤E−1,dTj>p(−1)jeTj (t)(1 − t)p−dTj .

(2) If dT0 > p �= c, then

degM degN = degR

(
Q(1) +

∑
0≤j≤E−1

dTj =p

(−1)jep(TorRj (M,N))

)
,

where

Q(t) =




the same polynomial as in part (1) if p > c,∑
0≤j≤E−1

dTj>p

(−1)jeTj (t)(1 − t)p−dTj

+ ηR
c,E(M,N)(t)(1 − t)p−c if p < c.

Proof. The formulas again follow from equation (3.5). By hypotheses, some indi-
vidual terms in (‡) have poles of order dTj −p at t = 1. For (1), since the rightmost
term, namely ηR

c,E(t) (since p = c), does not and the left-hand side does not, these
poles must cancel, leaving a polynomial Q(t). The same holds true for (2), where
the rightmost term either is zero when p > c or is subsumed by the polynomial
Q(t) when p < c because the poles at t = 1 on the right-hand side of (3.5) must
cancel.
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