Topological Symmetry Groups and Mapping Class Groups for Spatial Graphs

Sangbum Cho \& Yuya Koda

Introduction

By a graph we shall mean the underlying space of a finite connected simplicial complex of dimension 1. A spatial graph is a graph embedded in a 3-manifold. The theory of spatial graphs is a generalization of classical knot theory. For a spatial graph Γ in S^{3}, the mapping class group $\operatorname{MCG}\left(S^{3}, \Gamma\right)$ (resp., $\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right)$) is defined as the group of isotopy classes of the self-homeomorphisms (resp., orientation-preserving self-homeomorphisms) of S^{3} that preserve Γ setwise. The cardinality of the group describes how many symmetries the spatial graph admits. In [16] it is shown that the group $\operatorname{MCG}\left(S^{3}, \Gamma\right)$ is always finitely presented.

Simon [19] (see also [3; 4] for details) introduced a similar concept, called the topological symmetry group of a spatial graph Γ in S^{3} and denoted by $\operatorname{TSG}\left(S^{3}, \Gamma\right)$, to describe the symmetries of a spatial graph Γ in S^{3}. This group is defined as the subgroup of the automorphism group of Γ induced by homeomorphisms of the pair (S^{3}, Γ). When we allow only orientation-preserving homeomorphisms, we obtain the positive topological symmetry group $\mathrm{TSG}_{+}\left(S^{3}, \Gamma\right)$.

The aim of this paper is to provide complete answers (Theorems 2.5 and 3.2) to the following question.

Question. When is $\operatorname{TSG}\left(S^{3}, \Gamma\right)$ (resp., $\operatorname{TSG}_{+}\left(S^{3}, \Gamma\right)$) isomorphic to $\operatorname{MCG}\left(S^{3}, \Gamma\right)$ (resp., $\mathrm{MCG}_{+}\left(S^{3}, \Gamma\right)$)?

We remark that one of the answers to this question (viz., Theorem 2.5) implies that, if the group $\mathrm{MCG}_{+}\left(S^{3}, \Gamma\right)$ is finite, then by [3] it is a finite subgroup of $\mathrm{SO}(4)$.

Notation. Let X be a subset of a given polyhedral space Y. Throughout the paper, we denote the interior of X by Int X. We will use $N(X ; Y)$ to denote a closed regular neighborhood of X in Y. If the ambient space Y is clear from the context, we denote it more briefly by $N(X)$. Let M be a 3-manifold, and let $L \subset M$ be a submanifold with or without boundary. When L is of dimension 1 or 2, we write $E(L)=M \backslash \operatorname{Int} N(L)$. When L is of dimension 3, we write $E(L)=M \backslash \operatorname{Int} L$.

[^0]
1. Mapping Class Groups and Topological Symmetry Groups

Throughout this paper, we will work in the piecewise linear category.

1.1. Mapping Class Groups

Let N be a (possibly empty) subspace of a compact orientable manifold M. We will denote by

$$
\operatorname{Homeo}(M, N) \quad(\text { resp., } \operatorname{Homeo}(M \text { rel } N))
$$

the space of self-homeomorphisms of M preserving N setwise (resp., pointwise). We call the group

$$
\pi_{0}(\operatorname{Homeo}(M, N)) \quad\left(\text { resp., } \pi_{0}(\operatorname{Homeo}(M \text { rel } N))\right)
$$

-that is, the group of isotopy classes of elements of $\operatorname{Homeo}(M, N)$ (resp., $\operatorname{Homeo}(M \operatorname{rel} N)$ in which the isotopies are required to preserve N setwise (resp., pointwise)-a mapping class group and denote it by

$$
\operatorname{MCG}(M, N) \quad(\operatorname{resp} ., \operatorname{MCG}(M \operatorname{rel} N)) .
$$

The "positive" subscripts, as in Homeo $_{+}(M, N)$ and $\operatorname{MCG}_{+}(M, N)$, mark the subgroups of $\operatorname{Homeo}(M, N)$ and $\operatorname{MCG}(M, N)$ that consist of orientation-preserving homeomorphisms and their isotopy classes, respectively.

Recall that we use graph to mean the underlying space of a finite connected simplicial complex of dimension 1. A point x in a graph is called a vertex if x does not have an open neighborhood that is homeomorphic to an open interval. We denote by $v(G)$ the set of all vertices of a graph G. We assume throughout that a graph has no valency-1 vertices; that is, no vertex admits any open neighborhood homeomorphic to $[0,1)$. The closure of each component of $G \backslash v(G)$ is called an $e d g e$. An edge e of a graph Γ is called a cut edge if $\Gamma \backslash$ Int e is disconnected. Observe that our definition of a graph allows multiple edges between two vertices as well as an edge from a vertex to itself (i.e., a loop); however, our definition of a vertex excludes vertices of valency 2 . These definitions differ from the usual definitions of a graph and a vertex.

A spatial graph Γ is a graph embedded in a 3-manifold M. Two spatial graphs are said to be equivalent if one can be transformed into the other by an ambient isotopy of the 3-manifold. Note that a knot K in M is also a spatial graph. For a spatial graph Γ in S^{3}, the group $\operatorname{MCG}\left(S^{3}, \Gamma\right)$ describes the symmetries of Γ. For a knot K in S^{3}, the group $\operatorname{MCG}\left(S^{3}, K\right)$ is called the symmetry group of K; see [15].

The following statement is proved in [16].
Theorem 1.1. For a spatial graph Γ in S^{3}, the group $\operatorname{MCG}\left(S^{3}, \Gamma\right)$ is finitely presented.

1.2. Topological Symmetry Groups of Graphs

Let Γ be a graph, and let X be a 1-dimensional simplicial complex such that $\Gamma=$ $|X|$. We denote by $\operatorname{Aut}(\Gamma)$ the group of all simplicial automorphisms of the simplicial complex X. It is clear that the group $\operatorname{Aut}(\Gamma)$ does not depend on the choice of X. Let Γ be a spatial graph in S^{3}. The topological symmetry group $\operatorname{TSG}\left(S^{3}, \Gamma\right)$ and the positive topological symmetry group $\mathrm{TSG}_{+}\left(S^{3}, \Gamma\right)$ of the spatial graph Γ in S^{3} are subgroups of $\operatorname{Aut}(\Gamma)$ defined as follows:

$$
\begin{aligned}
\operatorname{TSG}\left(S^{3}, \Gamma\right) & =\left\{f \in \operatorname{Aut}(\Gamma) \mid \exists \tilde{f} \in \operatorname{Homeo}\left(S^{3}, \Gamma\right) \text { s.t. }\left.\tilde{f}\right|_{\Gamma} \text { induces } f\right\} \\
\operatorname{TSG}_{+}\left(S^{3}, \Gamma\right) & =\left\{f \in \operatorname{Aut}(\Gamma) \mid \exists \tilde{f} \in \operatorname{Homeo}_{+}\left(S^{3}, \Gamma\right) \text { s.t. }\left.\tilde{f}\right|_{\Gamma} \text { induces } f\right\} .
\end{aligned}
$$

These groups were originally defined by Simon [19]; see [3; 4] for details. Obviously, the group $\operatorname{TSG}\left(S^{3}, \Gamma\right)$ is a finite group.

The following proposition is a straightforward consequence of the definitions.
Lemma 1.2 [16]. Let Γ be a spatial graph in S^{3}. Then there is an exact sequence

$$
\begin{gathered}
1 \rightarrow \operatorname{MCG}\left(S^{3} \text { rel } \Gamma\right) \rightarrow \operatorname{MCG}\left(S^{3}, \Gamma\right) \rightarrow \operatorname{TSG}\left(S^{3}, \Gamma\right) \rightarrow 1 \\
\left(\text { resp., } 1 \rightarrow \operatorname{MCG}_{+}\left(S^{3} \text { rel } \Gamma\right) \rightarrow \operatorname{MCG}_{+}\left(S^{3}, \Gamma\right) \rightarrow \operatorname{TSG}_{+}\left(S^{3}, \Gamma\right) \rightarrow 1\right)
\end{gathered}
$$

Hence $\operatorname{MCG}\left(S^{3}, \Gamma\right) \cong \operatorname{TSG}\left(S^{3}, \Gamma\right)\left(\right.$ resp., $\left.\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right) \cong \operatorname{TSG}_{+}\left(S^{3}, \Gamma\right)\right)$ if and only if $\operatorname{MCG}\left(S^{3}\right.$ rel $\left.\Gamma\right) \cong 1\left(\right.$ resp., $\operatorname{MCG}_{+}\left(S^{3}\right.$ rel $\left.\left.\Gamma\right) \cong 1\right)$.

Given this lemma, we can answer the question posed in the Introduction by determining when $\operatorname{MCG}\left(S^{3} \mathrm{rel} \Gamma\right.$) (or $\mathrm{MCG}_{+}\left(S^{3} \mathrm{rel} \Gamma\right)$) is trivial.

1.3. Review of Boundary Patterns

Here we review the notion of a boundary pattern as defined in [14] and [17]. Let M be a compact 3 -manifold. A boundary pattern for M consists of a set $\underline{\underline{m}}$ of compact connected surfaces in ∂M such that the intersection of any i of them is empty or consists of (3-i)-manifolds. A boundary pattern is said to be complete when $\bigcup_{B \in \underline{\underline{m}}} B=\partial M$.

A boundary pattern $\underline{\underline{m}}$ of a 3-manifold M is said to be useful if any disk D properly embedded in M, where ∂D intersects ∂B transversely for each $B \in \underline{\underline{m}}$ and where $\#\left(D \cap\left(\bigcup_{B \in \underline{\underline{m}}} \partial B\right)\right) \leq 3$, bounds a disk E in ∂M such that $E \cap\left(\bigcup_{B \in \underline{\underline{m}}} \partial B\right)$ is the cone on $\partial D \cap=\left(\bigcup_{B \in \underline{m}} \partial B\right)$.

A 3-manifold M with a complete boundary pattern $\underline{\underline{m}}$ is said to be simple if it satisfies the following three conditions:
(1) M is irreducible and each element B of $\underline{\underline{m}}$ is incompressible;
(2) every incompressible torus in M is parallel to an element of $\underline{\underline{m}}$ that is a torus; and
(3) every incompressible annulus A in M with $\partial A \cap\left(\bigcup_{B \in \underline{\underline{m}}} \partial B\right)=\emptyset$ is parallel into an element B of $\underline{\underline{m}}$.

The mapping class group of a manifold M with a boundary pattern $\underline{\underline{m}}$, denoted by $\operatorname{MCG}(M, \underline{m})$, is the group $\operatorname{MCG}\left(M, B_{1}, B_{2}, \ldots, B_{k}\right)$ if $\underline{\underline{m}}=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$.

Theorem 1.3 [14, Prop. 27.1]. Let $(M, \underline{\underline{m}})$ be a simple 3-manifold with complete and useful boundary pattern. Then $\operatorname{MCG}(M, \underline{\underline{m}})$ is finite.

2. Positive Topological Symmetry Groups and Positive Mapping Class Groups

Let V be a handlebody and let $D_{1}, D_{2}, \ldots, D_{n}$ be mutually disjoint and mutually nonparallel essential disks in V. Suppose that $V \backslash\left(\bigcup_{i=1}^{n}\right.$ Int $\left.N\left(D_{i} ; V\right)\right)$ consists of 3-balls. Then there exists a graph Γ embedded in Int V such that:
(1) Γ is a deformation retract of V;
(2) Γ intersects $\bigcup_{i=1}^{n} D_{i}$ transversely at the points in the interior of the edges of Γ; and
(3) Γ has exactly n edges $e_{1}, e_{2}, \ldots, e_{n}$ and $\#\left(e_{i} \cap D_{j}\right)=\delta_{i j}$, where $\delta_{i j}$ is the Kronecker delta.

We call such a graph Γ the dual graph of $\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$. Note that a dual graph is uniquely determined up to isotopy.

Lemma 2.1 [16]. Let V be a handlebody. Let Γ be a graph, embedded in V, that is a deformation retract of V. Then the group $\operatorname{MCG}(V, \Gamma$ rel $\partial V)$ is trivial.

Let Γ be a spatial graph in S^{3}. Set $V=N(\Gamma)$. Let

$$
\Delta=\left\{D_{1}, D_{2}, \ldots, D_{n_{1}}, D_{1}^{\prime}, D_{2}^{\prime}, \ldots, D_{n_{2}}^{\prime}, D_{1}^{\prime \prime}, D_{2}^{\prime \prime}, \ldots, D_{n_{3}}^{\prime \prime}\right\}
$$

be the family of essential disks in V such that

- Γ is a dual graph of Δ,
- the set $\left\{D_{1}, D_{2}, \ldots, D_{n_{1}}\right\}$ corresponds to the set of loops of Γ,
- the set $\left\{D_{1}^{\prime}, D_{2}^{\prime}, \ldots, D_{n_{2}}^{\prime}\right\}$ corresponds to the set of cut edges of Γ, and
- the set $\left\{D_{1}^{\prime \prime}, D_{2}^{\prime \prime}, \ldots, D_{n_{3}}^{\prime \prime}\right\}$ corresponds to the set of non-loop, non-cut edges of Γ.

For each $1 \leq i \leq n_{1}$ we take parallel copies $D_{i, 1}, D_{i, 2}, D_{i, 3}$, and $D_{i, 4}$ of D_{i}, and for each $1 \leq i \leq n_{3}$ we take parallel copies $D_{i, 1}^{\prime \prime}$ and $D_{i, 2}^{\prime \prime}$ of $D_{i}^{\prime \prime}$; hence all the disks $D_{i, j}, D^{\prime}$, and $D_{i, j}^{\prime \prime}$ are mutually disjoint.

Denote by Δ^{\prime} the collection of disks

$$
\begin{aligned}
\left\{D_{i, j} \mid 1 \leq i \leq n_{1}, j=1,2,3,4\right\} & \cup\left\{D_{1}^{\prime}, D_{2}^{\prime}, \ldots, D_{n_{1}}^{\prime}\right\} \\
& \cup\left\{D_{i, j}^{\prime \prime} \mid 1 \leq i \leq n_{3}, j=1,2\right\}
\end{aligned}
$$

Figure 1 A spatial graph Γ and the corresponding boundary pattern $m(\Gamma)$

Let $m(\Gamma)$ be the set consisting of the closure of each component of $\partial N(\Gamma) \backslash$ $\bigcup_{D \in \Delta^{\prime}} \overline{\bar{\partial} D}$. Then $\underline{m(\Gamma)}$ is a complete and useful boundary pattern of $E(\Gamma)=$ $E(V)$; see Figure 1 .

Lemma 2.2. Let $\Gamma \subset S^{3}$ be a spatial graph. Then

$$
\begin{aligned}
\operatorname{MCG}\left(S^{3}, \Gamma\right) & \cong \operatorname{MCG}(E(\Gamma), \underline{\underline{m(\Gamma)}}) \\
\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right) & \cong \operatorname{MCG}_{+}(E(\Gamma), \underline{\underline{m(\Gamma)}})
\end{aligned}
$$

Proof. Set $V=N(\Gamma)$. Let Δ^{\prime} be the collection of essential disks in V defined as before. By Lemma 2.1, we see at once that $\operatorname{MCG}\left(S^{3}, \Gamma\right) \cong \operatorname{MCG}\left(S^{3}, V, \bigcup_{D \in \Delta^{\prime}} D\right)$ $\left(\right.$ resp., $\left.\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right) \cong \operatorname{MCG}_{+}\left(S^{3}, V, \bigcup_{D \in \Delta^{\prime}} D\right)\right)$ and $\operatorname{MCG}\left(S^{3}, V, \bigcup_{D \in \Delta^{\prime}} D\right) \cong$ $\operatorname{MCG}(E(\Gamma), \underline{\underline{m(\Gamma)}})\left(\right.$ resp., $\operatorname{MCG}_{+}\left(S^{3}, V, \bigcup_{D \in \Delta^{\prime}} D\right) \cong \operatorname{MCG}_{+}(E(\Gamma), \underline{\underline{m(\Gamma)})})$ by using Alexander's trick. Hence the assertion follows.

By a handlebody-knot we shall mean a handlebody V embedded in the 3-sphere. We note that the exterior $E(V)$ of V is always irreducible. We recall that a 3manifold is said to be atoroidal if it contains no embedded torus that is nonboundary parallel and incompressible.

Lemma 2.3. Let $V \subset S^{3}$ be a handlebody-knot of genus at least 2. Assume that $E(V)$ is atoroidal. Then $\mathrm{MCG}_{+}(E(V)$ rel $\partial E(V))=1$.

Proof. Let Γ be a spatial graph in S^{3} such that $N(\Gamma)=V$ and $(E(V), \underline{\underline{m}})$ is simple, where $\underline{\underline{m}}=\underline{\underline{m(\Gamma)}}$. Such a graph can be taken, for instance, as follows. Let g be the genus of $\overline{V \text {. If } g}=2$, take Γ as a θ-curve (i.e., a graph on two vertices with three edges joining them); if $g>2$, take Γ as a wheel graph with $g+1$ vertices (i.e., the 1 -skeleton of a g-gonal pyramid). By Theorem 1.3, $\operatorname{MCG}_{+}(E(V), \underline{\underline{m}})$ is finite.

Consider the following exact sequence, which corresponds to the fibration Homeo $_{+}(E(V)) \rightarrow$ Homeo $_{+}(\partial E(V))$:

$$
\begin{aligned}
\cdots & \rightarrow \pi_{1}\left(\operatorname{Homeo}_{+}(\partial E(V))\right) \rightarrow \mathrm{MCG}_{+}(E(V) \text { rel } \partial E(V)) \rightarrow \mathrm{MCG}_{+}(E(V)) \\
& \rightarrow \operatorname{MCG}_{+}(\partial E(V)) \rightarrow 0 .
\end{aligned}
$$

Since the genus of $\partial E(V)$ is at least 2 , we have

$$
\pi_{1}\left(\operatorname{Homeo}_{+}(\partial E(V))\right)=1
$$

by [5; 6; 7]. It follows that the map $\mathrm{MCG}_{+}(\partial E(V)$ rel $\partial E(V)) \rightarrow \mathrm{MCG}_{+}(E(V))$ in the preceding sequence is an injection. On the other hand, the sequence of inclusions

$$
\operatorname{Homeo}_{+}(E(V) \text { rel } \partial E(V)) \subset \operatorname{Homeo}_{+}(E(V), \underline{\underline{m}}) \subset \operatorname{Homeo}_{+}(E(V))
$$

induces the following sequence of homomorphisms:

$$
\mathrm{MCG}_{+}(E(V) \text { rel } \partial E(V)) \rightarrow \mathrm{MCG}_{+}(E(V), \underline{\underline{m}}) \rightarrow \mathrm{MCG}_{+}(E(V))
$$

Since the homomorphism $\mathrm{MCG}_{+}(E(V)$ rel $\partial E(V)) \rightarrow \mathrm{MCG}_{+}(E(V))$ is an injection and since $\mathrm{MCG}_{+}(E(V), \underline{\underline{m}})$ is finite, the group $\mathrm{MCG}_{+}(E(V)$ rel $\partial E(V))$ is also finite. By [12] (see also [9]), the group $\mathrm{MCG}_{+}(E(V)$ rel $\partial E(V)$) is torsion free; hence $\mathrm{MCG}_{+}(E(V)$ rel $\partial E(V))=1$.

Remark. In this proof, when working in the piecewise linear category we use results for the homotopy groups of the automorphism groups of 2-manifolds and 3 -manifolds in the topological and smooth categories. However, in dimensions not exceeding 3 , it has been shown that the information on the homotopy types of automorphism groups of manifolds is the same as in the smooth, topological, and piecewise linear categories (see e.g. [8]).

Because the group $\operatorname{MCG}(V$ rel $\partial V)$ is trivial, Lemma 2.3 immediately implies the following result for a handlebody V.

Corollary 2.4. Let V be a handlebody-knot in S^{3} whose genus is at least 2. Then $\mathrm{MCG}_{+}\left(S^{3}\right.$ rel $\left.V\right) \cong 1$ if and only if $E(V)$ is atoroidal.

This corollary implies that $\mathrm{MCG}_{+}\left(S^{3}, V\right)$ can be regarded as a subgroup of the handlebody group $\mathrm{MCG}_{+}(V)$ when $E(V)$ is atoroidal.

Definition. Let Γ be a spatial graph in S^{3}.
(1) Let P be a 2-sphere that is embedded in S^{3} and satisfies:

- the sphere P intersects Γ in a single vertex; and
- each of the two components of $S^{3} \backslash P$ contains the nonempty part of Γ.

Then P is called a type I sphere for Γ. See the left part of Figure 2.
(2) Let P be a 2 -sphere embedded in S^{3} and satisfying:

- the sphere P intersects Γ in exactly two vertices,
- the closure of neither component of $\left(S^{3} \backslash P\right) \cap \Gamma$ is a single point or a single edge; and
- the annulus $P \cap E(\Gamma)$ is incompressible in $E(\Gamma)$.

Then P is called a type II sphere for Γ. See the middle part of Figure 2.
(3) A 2-sphere with two points identified to a single point is called a pinched sphere, and the identified point is called its pinch point. Let P be a pinched sphere in S^{3} with a pinch point p satisfying:

Figure 2 Spheres of type I, II, and III

- the pinch point p is a vertex of Γ such that $P \cap \Gamma=\{p\}$;
- the closure of neither component of $\left(S^{3} \backslash P\right) \cap \Gamma$ is a single point or a single loop; and
- the annulus $P \cap E(\Gamma)$ is incompressible in $E(\Gamma)$.

Then Γ is called a type III sphere for Γ. See the right part of Figure 2.
Theorem 2.5. Let Γ be a spatial graph in S^{3} that is not a knot. Then

$$
\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right) \cong \operatorname{TSG}_{+}\left(S^{3}, \Gamma\right)
$$

if and only if $E(\Gamma)$ is atoroidal and Γ does not admit spheres of type I, II, or III.
Proof. The "only if" part is straightforward.
Let Γ be a spatial graph in S^{3} such that $E(\Gamma)$ is atoroidal and Γ admits neither type I, II, nor III spheres. By Lemma 1.2, it suffices to show that $\operatorname{MCG}_{+}\left(S^{3}\right.$ rel $\left.\Gamma\right)=1$. Set $\underline{\underline{m}}=\underline{\underline{m(\Gamma)}}$. Recall that $\operatorname{MCG}_{+}(E(\Gamma), \underline{\underline{m}})$ is a finite group by Theorem 1.3.

Let $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{n^{\prime}}\right\}$ (resp., $\mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$) be the set of annulus (resp., non-annulus) components of $\underline{\underline{m}}$. We note that each B_{i} is a planar surface. Set $\partial B_{i}=C_{i_{1}} \cup C_{i_{2}} \cup \cdots \cup C_{i_{n_{i}}}$.

Suppose that $\mathrm{MCG}_{+}(E(\Gamma), \underline{\underline{m}})$ is not trivial. Then there exists an element $f \in$ Homeo $_{+}(E(\Gamma), \underline{\underline{m}})$ that is not isotopic to the identity. The proof is divided into two cases.

Case 1: For each $B_{i} \in \mathcal{B},\left.f\right|_{B_{i}}$ is trivial as an element of $\mathrm{MCG}_{+}\left(B_{i}, C_{i_{1}}, C_{i_{2}}, \ldots\right.$, $C_{i_{n_{i}}}$. We may assume that $\left.f\right|_{\cup_{i=1}^{m} B_{i}}$ is the identity. Then there exists a set of pairwise disjoint and pairwise nonparallel essential simple closed curves $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{l}$ in $\bigcup_{i=1}^{n^{\prime}} A_{i}$ such that $\left.f\right|_{\partial E(\Gamma)}$ is $\prod_{i=1}^{l} \tau_{\gamma_{i}}^{\alpha_{i}}$ as an element of $\operatorname{MCG}_{+}(\partial E(\Gamma))$, where $\tau_{\gamma_{i}}$ is a Dehn twist along γ_{i} and α_{i} is a nonzero integer. By Lemma 2.3, $\prod_{i=1}^{l} \tau_{\gamma_{i}}^{\alpha_{i}} \neq 1 \in$ $\mathrm{MCG}_{+}(\partial E(\Gamma))$. It follows that the order of $\left.f\right|_{\partial E(\Gamma)}$ as an element of $\operatorname{MCG}(\partial E(\Gamma))$ is infinite because each γ is a boundary of a meridian disk of $N(\Gamma)$. This contradicts the fact that $\mathrm{MCG}_{+}(E(\Gamma), \underline{\underline{m}})$ is a finite group.

Case 2: There exists an element $B_{i} \in \mathcal{B}$ such that $\left.f\right|_{B_{i}}$ is not trivial as an element of $\mathrm{MCG}_{+}\left(B_{i}, C_{i_{1}}, C_{i_{2}}, \ldots, C_{i_{n_{i}}}\right)$. Since the group $\mathrm{MCG}_{+}\left(B_{i}, C_{i_{1}}, C_{i_{2}}, \ldots, C_{i_{n_{i}}}\right)$ is torsion free by [2], this again contradicts the fact that $\mathrm{MCG}_{+}(E(\Gamma), \underline{\underline{m}})$ is a finite group.

Let $\Gamma \subset S^{3}$ be a spatial graph. If Γ admits either type I, II, or III spheres then $\mathrm{MCG}_{+}\left(S^{3}, \Gamma\right)$ is not a finite group, since $\mathrm{MCG}_{+}(E(\Gamma), m(\Gamma))$ admits nontrivial twists along essential disks or annuli corresponding to the spheres. Hence we have our next corollary.

Corollary 2.6. Let Γ be a spatial graph in S^{3}. Then $\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right)$ is a finite group if and only if $\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right) \cong \operatorname{TSG}_{+}\left(S^{3}, \Gamma\right)$.

It follows from Theorem 2.5 and [3] that the group $\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right)$ is a finite subgroup of $\mathrm{SO}(4)$ when (a) $E(\Gamma)$ is atoroidal and (b) Γ admits neither type I, II, nor III spheres.

Let k be a natural number. Recall that a graph Γ is said to be k-connected if there does not exist a set $\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}$ of $k-1$ vertices of Γ such that $\Gamma \backslash\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}$ is not connected as a topological space.

The next corollary follows immediately from Theorem 2.5.
Corollary 2.7. Let Γ be a 3-connected graph. Then an embedding of Γ into S^{3} satisfies $\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right) \cong \operatorname{TSG}_{+}\left(S^{3}, \Gamma\right)$ if and only if Γ is atoroidal.

We note that even when Γ is not 3-connected, most embeddings of Γ into S^{3} satisfy $\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right) \cong \operatorname{TSG}_{+}\left(S^{3}, \Gamma\right)$. See Section 4 .

3. Topological Symmetry Groups and Mapping Class Groups

In Section 2 we discussed a topological condition for a spatial graph $\Gamma \subset S^{3}$ such that the positive mapping class group $\mathrm{MCG}_{+}\left(S^{3}, \Gamma\right)$ is isomorphic to the positive topological symmetry group $\mathrm{TSG}_{+}\left(S^{3}, \Gamma\right)$. Of course, even when $\mathrm{MCG}_{+}\left(S^{3}, \Gamma\right)$ is isomorphic to $\operatorname{TSG}_{+}\left(S^{3}, \Gamma\right)$, it may be that $\operatorname{MCG}\left(S^{3}, \Gamma\right)$ differs from $\operatorname{TSG}\left(S^{3}, \Gamma\right)$. A trivial example is a spatial 3-connected graph $\Gamma \subset S^{3}$ contained in an embedded 2 -sphere S^{2} in S^{3}. In this case, there exists a reflection f through the 2sphere; then f fixes the 2 -sphere pointwise and, in particular, restricts to an identity on Γ. Obviously, f is orientation reversing and hence $\operatorname{MCG}\left(S^{3}\right.$ rel $\left.\Gamma\right) \cong \mathbb{Z} / 2 \mathbb{Z}$ whereas $\mathrm{MCG}_{+}\left(S^{3} \mathrm{rel} \Gamma\right) \cong 1$. By Lemma 1.2, this implies that $\operatorname{MCG}\left(S^{3}, \Gamma\right) \nsubseteq$ $\operatorname{TSG}\left(S^{3}, \Gamma\right)$ whereas $\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right) \cong \operatorname{TSG}_{+}\left(S^{3}, \Gamma\right)$. In this section, we prove that this is the only case.

Proposition 3.1. Let Γ be a spatial graph in S^{3} such that Γ is not a knot. Let h be an orientation-reversing homeomorphism of S^{3} fixing Γ pointwise such that $h^{2} \in \operatorname{Homeo}_{+}\left(S^{3} \mathrm{rel} \Gamma\right)$ is isotopic ($\mathrm{rel} \Gamma$) to the identity. Then there exists a homeomorphism $f \in \operatorname{Homeo}_{+}\left(S^{3} \mathrm{rel} \Gamma\right.$) such that h is isotopic (rel Γ) to f and such that $f^{2}=\mathrm{id}$.

Proof. By an isotopy (rel Γ) we may assume that $h(N(\Gamma))=N(\Gamma)$. Since $E(\Gamma)$ is not a Seifert fibered 3-manifold, it follows from $[10 ; 11]$ that h can be isotoped (rel Γ) to a map $h_{1}:\left(S^{3}, \Gamma\right) \rightarrow\left(S^{3}, \Gamma\right)$ with $h_{1}(E(\Gamma))=E(\Gamma)$ and $\left(\left.h_{1}\right|_{E(\Gamma)}\right)^{2}=\operatorname{id}_{E(\Gamma)}$. Let $e_{1}, e_{2}, \ldots, e_{n}$ be the edges of Γ. Using a standard argument
of Riemannian geometry, it is easy to see that, for each edge e_{i} of Γ, there exists a meridian disk D_{i} of $N(\Gamma)$ such that $h_{1}\left(\partial D_{i}\right)=\partial D_{i}$ and D_{i} intersects Γ once and transversely at a point p_{i} in Int e_{i}. Note that $\left.h_{1}\right|_{\partial D_{i}}=\operatorname{id}_{D_{i}}$ for each i. Since D_{i} and $h_{1}\left(D_{i}\right)$ are parallel in $N(\Gamma)$, it follows that h_{1} can be isotoped (rel $\left.E(\Gamma) \cup \Gamma\right)$ to a map $h_{2}:\left(S^{3}, \Gamma\right) \rightarrow\left(S^{3}, \Gamma\right)$ with $h_{2}\left(D_{i}\right)=D_{i}$ for each i. Then, by Alexander's trick, we may isotope $h_{2}($ rel $E(\Gamma) \cup \Gamma)$ while preserving each meridian disk D_{i} as a set to a map $h_{3}:\left(S^{3}, \Gamma\right) \rightarrow\left(S^{3}, \Gamma\right)$ with $\left(\left.h_{3}\right|_{D_{i}}\right)^{2}=\operatorname{id}_{D_{i}}$ for each i. Finally, let B be the closure of a component of $N(\Gamma) \backslash \bigcup_{i} D_{i}$. Since $B \cap \Gamma$ is the cone over points in ∂B with vertex at the center of B, we may isotope $h_{3}($ rel $E(B)$) to a map h_{4} with $\left(\left.h_{4}\right|_{B}\right)^{2}=\mathrm{id}_{B}$. Performing this isotopy for the closure of each component of $N(\Gamma) \backslash \bigcup_{i} D_{i}$, we see that h_{4} can be isotoped $\left(\operatorname{rel} E(\Gamma) \cup \Gamma \cup \bigcup_{i} D_{i}\right)$ to a required orientation-reversing involution $f:\left(S^{3}, \Gamma\right) \rightarrow\left(S^{3}, \Gamma\right)$.

A spatial graph $\Gamma \subset S^{3}$ is called a plane graph if Γ is embedded in a sphere S^{2} in S^{3}.

Theorem 3.2. Let Γ be a spatial graph in S^{3} such that Γ is not a knot and $\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right) \cong \operatorname{TSG}_{+}\left(S^{3}, \Gamma\right)$. Then $\operatorname{MCG}\left(S^{3}, \Gamma\right) \cong \operatorname{TSG}\left(S^{3}, \Gamma\right)$ if and only if Γ is not a plane graph.

Proof. The "only if" part is clear.
Assume that $\operatorname{MCG}\left(S^{3}, \Gamma\right) \not \approx \operatorname{TSG}\left(S^{3}, \Gamma\right)$. This is equivalent to saying that $\operatorname{MCG}\left(S^{3}\right.$ rel $\left.\Gamma\right) \neq 1$ and hence that $\operatorname{MCG}\left(S^{3}\right.$ rel $\left.\Gamma\right) \cong \mathbb{Z} / 2 \mathbb{Z}$. Then there exists an orientation-reversing homeomorphism $h \in \operatorname{Homeo}\left(S^{3}\right.$ rel Γ) such that $h^{2} \in$ Homeo $_{+}\left(S^{3} \mathrm{rel} \Gamma\right.$) is isotopic (rel Γ) to the identity.

By Proposition 3.1, h can be isotoped (rel Γ) to an orientation-reversing involution $f:\left(S^{3}, \Gamma\right) \rightarrow\left(S^{3}, \Gamma\right)$ with $\Gamma \subset \operatorname{Fix}(f)$, where Fix (f) for a map $f: S^{3} \rightarrow S^{3}$ is the set of fixed points of f. Since the fixed point set of an orientation-reversing involution of S^{3} is either a 2 -sphere or two points by Smith theory ([20]; see also [13]), $\operatorname{Fix}(f)$ is the 2 -sphere. This implies that Γ is a plane graph.

Remark. Theorem 3.2 implies that $\operatorname{MCG}\left(S^{3}\right.$ rel $\left.\Gamma\right) \neq \operatorname{MCG}_{+}\left(S^{3}\right.$ rel $\left.\Gamma\right)$ if and only if Γ is a plane graph under the condition $\mathrm{MCG}_{+}\left(S^{3}\right.$ rel $\left.\Gamma\right) \cong 1$. Finding a general condition capable of detecting when $\operatorname{MCG}\left(S^{3}, \Gamma\right)$ differs from $\mathrm{MCG}_{+}\left(S^{3}, \Gamma\right)$ is another interesting problem (see e.g. [18]).

Let Γ be the spatial graph depicted in Figure 3. It is easily seen that Γ is not a plane graph and that $\operatorname{MCG}\left(S^{3}, \Gamma\right)$ differs from $\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right)$.

Figure 3

4. Easy Examples

One of the simple but important examples of spatial graphs in S^{3} is a tunnel number 1 knot or link together with a specific tunnel attached. A tunnel number 1 knot (or link) in S^{3} is a knot (or link) K with an arc τ, called a tunnel for K, such that $K \cap \tau=K \cap \partial \tau$ and $E(K \cup \tau)$ is a genus-2 handlebody. Allowing that $\partial \tau$ could be a single point (i.e., a tunnel could be a circle rather than an arc), the spatial graph $\Gamma=K \cup \tau$ is either a θ-curve or a bouquet of two circles if K is a knot, or a handcuff if K is a link (a tunnel number 1 link necessarily consists of at most two components).

In this section, we give a complete list of the groups $\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right), \operatorname{MCG}\left(S^{3}, \Gamma\right)$, $\operatorname{TSG}_{+}\left(S^{3}, \Gamma\right)$, and $\operatorname{TSG}\left(S^{3}, \Gamma\right)$ for every spatial graph Γ that is the union of a tunnel number 1 knot or link K and its tunnel τ. The following lemma is just a direct translation of [1, Prop. 17.2] to our cases.

Lemma 4.1. Let Γ be the union of a nontrivial tunnel number 1 knot or link K and its tunnel τ in S^{3}, which is either a θ-curve or a handcuff.
(1) If K is a Hopf link and τ is its upper or lower tunnel when K is considered as a 2-bridge link, then $\operatorname{MCG}\left(S^{3}, \Gamma\right)$ is isomorphic to the dihedral group D_{4} of order 8 .
(2) If K is a nontrivial 2-bridge knot or link that is not a Hopf link and if τ is its upper or lower tunnel, then $\operatorname{MCG}\left(S^{3}, \Gamma\right)$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
(3) Otherwise, $\operatorname{MCG}\left(S^{3}, \Gamma\right)$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$.

From Lemma 4.1 and Theorems 2.5 and 3.2 with some computations, the following proposition is immediate. We note that the plane handcuff and the plane bouquet admit the spheres of type I whereas the other embeddings of these graphs considered in this proposition do not.

Proposition 4.2. Let Γ be the union of a tunnel number 1 knot or link and its tunnel in S^{3}.
(1) Let Γ be a θ-curve.
(a) If Γ is a plane graph, then

$$
\begin{aligned}
\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right) & \cong \operatorname{TSG}_{+}\left(S^{3}, \Gamma\right)=\operatorname{TSG}\left(S^{3}, \Gamma\right)=\operatorname{Aut}(\Gamma) \cong \mathbb{Z} / 2 \mathbb{Z} \times D_{3}, \\
\operatorname{MCG}\left(S^{3}, \Gamma\right) & \cong \mathbb{Z} / 2 \mathbb{Z} \ltimes \operatorname{MCG}_{+}\left(S^{3}, \Gamma\right),
\end{aligned}
$$

where D_{3} is the dihedral group of order 6 .
(b) If Γ is the union of a nontrivial 2-bridge knot and its upper or lower tunnel, then

$$
\begin{aligned}
\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right)=\operatorname{MCG}\left(S^{3}, \Gamma\right) & \cong \operatorname{TSG}_{+}\left(S^{3}, \Gamma\right)=\operatorname{TSG}\left(S^{3}, \Gamma\right) \\
& \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
\end{aligned}
$$

(c) Otherwise,

$$
\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right)=\operatorname{MCG}\left(S^{3}, \Gamma\right) \cong \operatorname{TSG}_{+}\left(S^{3}, \Gamma\right)=\operatorname{TSG}\left(S^{3}, \Gamma\right) \cong \mathbb{Z} / 2 \mathbb{Z}
$$

(2) Let Γ be a handcuff.
(a) If Γ is a plane graph, then

$$
\begin{aligned}
\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right) & \cong \mathbb{Z} / 2 \mathbb{Z} \ltimes(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z}), \\
\operatorname{MCG}\left(S^{3}, \Gamma\right) & \cong \mathbb{Z} / 2 \mathbb{Z} \ltimes \operatorname{MCG}_{+}\left(S^{3}, \Gamma\right) ; \\
\operatorname{TSG}_{+}\left(S^{3}, \Gamma\right)=\operatorname{TSG}\left(S^{3}, \Gamma\right) & =\operatorname{Aut}(\Gamma) \cong \mathbb{Z} / 2 \mathbb{Z} \ltimes(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}) .
\end{aligned}
$$

In this case, $\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right)$ and $\operatorname{MCG}\left(S^{3}, \Gamma\right)$ are not finite whereas $\operatorname{TSG}_{+}\left(S^{3}, \Gamma\right)$ and $\operatorname{TSG}\left(S^{3}, \Gamma\right)$ are finite and of order 8.
(b) If Γ is the union of a Hopf link and its upper or lower tunnel, then

$$
\begin{aligned}
\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right) & \cong \operatorname{TSG}_{+}\left(S^{3}, \Gamma\right) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \\
\operatorname{MCG}\left(S^{3}, \Gamma\right) & \cong \operatorname{TSG}\left(S^{3}, \Gamma\right) \cong \mathbb{Z} / 2 \mathbb{Z} \ltimes \operatorname{MCG}_{+}\left(S^{3}, \Gamma\right) \cong D_{4}
\end{aligned}
$$

(c) If Γ is the union of any nontrivial 2-bridge link (except the Hopf link) and its upper or lower tunnel, then

$$
\begin{aligned}
\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right)=\operatorname{MCG}\left(S^{3}, \Gamma\right) & \cong \operatorname{TSG}_{+}\left(S^{3}, \Gamma\right)=\operatorname{TSG}\left(S^{3}, \Gamma\right) \\
& \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
\end{aligned}
$$

(d) Otherwise,

$$
\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right)=\operatorname{MCG}\left(S^{3}, \Gamma\right) \cong \operatorname{TSG}_{+}\left(S^{3}, \Gamma\right)=\operatorname{TSG}\left(S^{3}, \Gamma\right) \cong \mathbb{Z} / 2 \mathbb{Z}
$$

(3) Finally, let Γ be a spatial bouquet of two circles. Then the following statements hold.
(a) If Γ is a plane graph, then

$$
\begin{aligned}
\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right) & \cong \mathbb{Z} / 2 \mathbb{Z} \ltimes(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z}), \\
\operatorname{MCG}\left(S^{3}, \Gamma\right) & \cong \mathbb{Z} / 2 \mathbb{Z} \ltimes \operatorname{MCG}_{+}\left(S^{3}, \Gamma\right) ; \\
\operatorname{TSG}_{+}\left(S^{3}, \Gamma\right)=\operatorname{TSG}\left(S^{3}, \Gamma\right) & =\operatorname{Aut}(\Gamma) \cong \mathbb{Z} / 2 \mathbb{Z} \ltimes(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}) .
\end{aligned}
$$

(b) Otherwise,

$$
\operatorname{MCG}_{+}\left(S^{3}, \Gamma\right)=\operatorname{MCG}\left(S^{3}, \Gamma\right) \cong \operatorname{TSG}_{+}\left(S^{3}, \Gamma\right)=\operatorname{TSG}\left(S^{3}, \Gamma\right) \cong \mathbb{Z} / 2 \mathbb{Z}
$$

Acknowledgments. The authors wish to express their gratitude to Erica Flapan for posing the question and to Darryl McCullough for providing his very helpful idea on the topic. Part of this work was carried out while the second-named author was visiting the Mathematisches Forschungsinstitut Oberwolfach. The institute kindly offered these accommodations when his university was affected by the 2011 Tôhoku earthquake. He is grateful to the MFO and its staff for the offer, financial support, and their warm hospitality. He would also like to thank the Leibniz Association for travel support. Finally, the authors are grateful to an anonymous referee whose helpful comments improved the presentation.

References

[1] S. Cho and D. McCullough, The tree of knot tunnels, Geom. Topol. 13 (2009), 769-815.
[2] E. Fadell and Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118.
[3] E. Flapan, R. Naimi, J. Pommersheim, and H. Tamvakis, Topological symmetry groups of graphs embedded in the 3-sphere, Comment. Math. Helv. 80 (2005), 317-354.
[4] E. Flapan and H. Tamvakis, Topological symmetry groups of graphs in 3-manifolds, preprint, 2011, arXiv:1108.2880.
[5] M.-E. Hamstrom, Some global properties of the space of homeomorphisms on a disc with holes, Duke Math. J. 29 (1962), 657-662.
[6] ——, The space of homeomorphisms on a torus, Illinois J. Math. 9 (1965), 59-65.
[7] ——, Homotopy groups of the space of homeomorphisms on a 2-manifold, Illinois J. Math. 10 (1966), 563-573.
[8] -, Homotopy in homeomorphism spaces, TOP and PL, Bull. Amer. Math. Soc. 80 (1974), 207-230.
[9] A. Hatcher and D. McCullough, Finiteness of classifying spaces of relative diffeomorphism groups of 3-manifolds, Geom. Topol. 1 (1997), 91-109.
[10] W. Heil and J. L. Tollefson, Deforming homotopy involutions of 3-manifolds to involutions, Topology 17 (1978), 349-365.
[11] ——, Deforming homotopy involutions of 3-manifolds to involutions. II, Topology 22 (1983), 169-172.
[12] ——, On Nielsen's theorem for 3-manifolds, Yokohama Math. J. 35 (1987), 1-20.
[13] M. W. Hirsch and S. Smale, On involutions of the 3-sphere, Amer. J. Math. 81 (1959), 893-900.
[14] K. Johannson, Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes in Math., 761, Springer-Verlag, Berlin, 1979.
[15] A. Kawauchi, Survey of knot theory, Birkhäuser, Basel, 1996.
[16] Y. Koda, Automorphisms of the 3-sphere that preserve spatial graphs and handlebody-knots, preprint, 2011, arXiv:1106.4777.
[17] D. McCullough, Virtually geometrically finite mapping class groups of 3-manifolds, J. Differential Geom. 33 (1991), 1-65.
[18] R. Nikkuni and K. Taniyama, Symmetries of spatial graphs and Simon invariants, Fund. Math. 205 (2009), 219-236.
[19] J. Simon, Topological chirality of certain molecules, Topology 25 (1986), 229-235.
[20] P. A. Smith, Fixed points of periodic transformations, Algebraic topology (S. Lefschetz, ed.), Amer. Math. Soc. Colloq. Publ., 27, Appendix B, Amer. Math. Soc., New York, 1942.

S. Cho

Department of Mathematics Education Hanyang University
Seoul 133-791
Korea
scho@hanyang.ac.kr
Y. Koda

Mathematical Institute
Tôhoku University
Sendai 980-8578
Japan
koda@math.tohoku.ac.jp

[^0]: Received November 28, 2011. Revision received June 14, 2012.
 The first-named author is supported in part by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2012R1A1A1006520). The second-named author is supported in part by Grant-in-Aid for Young Scientists (B) (no. 20525167), Japan Society for the Promotion of Science.

