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A Generalization of Roth’s Theorem
in Function Fields

Yu-Ru Liu & XIAOMEI ZHAO

1. Introduction

Forne N ={1,2,...},let D3([1,n]) denote the maximal cardinality of an integer
subset of [1, n] containing no nontrivial 3-term arithmetic progression. In a funda-
mental paper [9], Roth proved that D3([1,n]) < n/loglogn. His result was later
improved by Heath-Brown [4] and Szemerédi [11] to D3([1,n]) < n/(logn)* for
some small positive constant @ > 0 (¢ = 1/20 in [11]). By introducing the no-
tion of Bohr sets, Bourgain [2; 3] further improved this bound and showed that
D3([1,n]) < n(loglogn)?/(logn)?/3.

One can consider Roth’s theorem in function fields. Let IF,[¢] be the ring of
polynomials over the finite field F,. For N € N, let Sy be the subset of F,[¢] con-
taining all polynomials of degree strictly less than N and let |Sy | be the cardinality
of Sy. We denote by D3(Sy) the maximal cardinality of a subset of Sy containing
no nontrivial 3-term arithmetic progression. When ¢ is not divisible by 2, the re-
sult of Meshulam in [8, Thm. 1.2] implies that D3(Sy) < |Sy|/log|Sy|, which is
a sharper estimate than its integer analogue. Meshulam’s method is applicable to
all finite abelian groups of odd order. The additional abelian group structure also
allows him to provide a beautiful short proof of the 3-term arithmetic progression
problem. In [6], Lev extended Meshulam’s result to any finite abelian group G
such that 2G = {2g | g € G} is nontrivial.

An important point for function field arithmetic is that, because there are many
signs (i.e., nonzero elements in F,), as the finite field gets larger it becomes a
family of questions, each with respect to a fixed choice of signs for the terms. Al-
though the appearance of abelian group structure on the underlying set makes the
original 3-term arithmetic progression problem easier, the approach of Meshulam
does not work for other choices of signs.

One can formulate a generalization of Meshulam’s result in IF,[¢] as follows.
For s € Nwiths > 3,letg = (g1,...,&5) be a vector of nonzero elements of
IFy[2] satisfying g1 + - - - + gs = 0. Let Dg(Sy) denote the maximal cardinality of
aset A C Sy for which the equation g1x; + - - - + gyx; = 0 is never satisfied by
distinct elements xi,...,x; € A. In the special case that g = (1, —2,1), we have
Dg(Sy) = D3(Sy). In [7] it was proved that if g; € F, \ {0} (1 < i < s) then

Received July 6, 2011. Revision received October 3, 2011.
The research of the first author is supported in part by an NSERC discovery grant.

839



840 Yu-Ru Liu & XIAOMEI ZHAO

Dy (Sy) K¢ |Sn|/(log|Sy [)*~2. Their proof is an application of the circle method
for IF, [¢]. It also combines the observation that Sy is a finite vector space over F,
with the fact that, for an F,-linear transformation 7, the map composition g; o T
isequalto T o g; (see [7, Lemma 2]).

In this paper, we further generalize the setting in [7] by allowing g; € IF,[t]\ {0}
(I <i <s). Since multiplication by a nonzero element of F,[#] is no longer com-
mutative with an [,-linear transformation, the approach of [7] fails to yield an
effective result for this general setting. In order to bound Dg(Sy) for general g,
we establish a version of the circle method for F, [¢] that is more flexible than that
of [7]. We also employ a modification of the Bohr set technology developed by
Bourgain in [2] and [3]. Then we can prove the following result.

THEOREM 1. Fors e Nwiths > 3,let g = (g1,...,8s) with g; € F,[t] \ {0}
(I1<i<s)and g+ ---+ g; =0. Then there exists a constant C = C(g; q) > 0
such that

2(s—2)%
(loglog|Sy|)* ) -9
e el . (1)

Dy(Sy) < C|3N|< logSx |

A major difference between a “Bohr set in integers” (for definition, see [3, 0.11])
and a “Bohr set in I, [¢]” (see Definition 1) is that the latter is a vector space over
IF,. This additional structure allows us to compute explicitly the size of “major
arcs” (see Lemma 2). Thus, our estimates of the major arc contribution (see the
proof of Lemma 11(i)) differ significantly from their integer analogues in [3, (6.6)—
(6.9)]. The appearance of vector space structure also allows the analogue of [3,
integral (6.14)] in our analysis to be zero. Thus, the case considered in [3, Sec. 7]
is not required in our argument. Finally, an important technique used in [3] is to
replace a probability measure by a convolution of two probability measures. In
the integer case, the resulting errors are well controlled (see [3, Lemmas 3.16 and
3.29]) but do lead to difficulties in constructing new Bohr sets. However, analo-
gous errors in our setting are zero (see Lemma 7(ii)), since a Bohr set in F,[#]
inherits vector space structure. Because of these advantages, the density increment
arguments in [3] are greatly simplified in this paper. Finally, we would like to re-
mark that Sanders [10] has recently improved Bourgain’s result to D3([1,n]) <«
n(loglogn)’/logn. In future work, we will show how his method can be imple-
mented to improve the result in this paper.

2. Preliminaries

We begin this section by introducing the Fourier analysis for function fields. Let
A = F,[t] and K = TF,(¢) be the field of fractions of A. Let Ko, = F,((1/1))
be the completion of K at co. We may write each element o € K, in the form
o = Zi<va[ti for some v € Z and a; = a;(@) € F, (i < v). If a, # 0, we
define orda = v. We adopt the convention that ord0 = —oo. Also, it is often
convenient to refer to a_; as being the residue of «, denoted by resa. Let T =
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{d € Ko | orde < 0}. Given any Haar measure do on K., we normalize it in
such a manner that |, ¢ ldo = 1. We are now equipped to define the exponential
function on K. Suppose that the characteristic of I, is p. Let e(z) denote ez,
and let tr: I, — I, denote the familiar trace map. There is a nontrivial additive
charactere, : F, — C* defined for each a € I, by taking e, (a) = e(tr(a)/p). This
character induces a map e: Ko, — C* by defining, for each element o € K, the
value of e(a) to be ¢, (res ). The orthogonality relation underlying the Fourier
analysis of IF,[¢], established in [5, Lemma 1], takes the form

1 if h=0,
/e(ha) do = { )
T 0 if heF,[f]\{0}.

Finally, we denote by rk Z the rank of a matrix Z and by ker A the kernel of a
function A.

LEMMA 2. Let W C A be a finite vector space, and let W denote the character
group of W. Let A: T — W be a function defined such that, for each o € T and
x € W, we have
Ala)(x) = e(ax).

(i) Forany o, B €T, Alx + B) = Ala) A(B).

(i) ker A ={a €T | res(ax) =0 forall x e W}.
(iii) T/kerA = W.

(iv) meas(ker A) = |W |\

(v) For o € T and o ¢ ker A, we have erw e(ax) =0.

Proof. (i) Forany o, B € T and x € W,

Ala + B)(x) = e((a + p)x) = e(ax)e(Bx) = (Al@)A(B))(x).

(ii) Let A = {¢ € T | res(ax) = O for all x € W}, which is a subset of
ker A. Suppose there exists a 8 € ker A\ .A. Then there exists a z € W such that
res(Bz) # 0. Thus,

{res(Bx) | x e W} =F,.

Since e = ¢, ores = e, o tr o res and since tr is surjective, we deduce that
{AB)(x) | xe W} ={e(n/p) |n=0,...,p—1}.
It follows that 8 ¢ ker A, a contradiction. Therefore, ker A = A.
(iii) Let r be the dimension of W, and let {zy, ..., z,} be a basis for W. Let m be
the maximal degree of z; € A (1 <i < r). Then we can write
z,-:a,-,()+ai71t+--~+ai,mtm (1515}’)
witha; ;€F, (1<i <r,0<j<m). Letp=),_,bit' €T. Then
res(Bz;)) = ajob_1+---+aimb_p_1 (1=<i=<r).

Write
Z= (ai,j)lsifr,OEjgm and b= (bfl, cesb_p).
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It follows from part (ii) of the lemma that 8 € ker A if and only if Zb = 0.
Let M = t~"~'T. Thus, (ker A)/M is isomorphic to the null space of Z. Since
Z1,...,2, are linearly independent, we see that tk Z = r. Then we have
(ker A)/M ZF" 07,
Since
T/ M= IE‘q”‘H and T/ker A = (T/M)/(ker A/ M),
we see that
|T/ker Al = q" = |W]|.

By part (i), A is a surjective homomorphism from T to W. It then follows from
the first isomorphism theorem that
T/ker A = W.
(iv) Let r be the dimension of W. Because the dimension of W is also r, by
part (iii) there exist 8; € T (1 <i < g") such that

r

q
T=| |(B +kerA).
i=l
Thus,
1 =¢" - meas(ker A),

from which it follows that
meas(ker A) = ¢~ = |W|7".

(v) If o ¢ ker A, then A(w) is a nontrivial character of W. Therefore,

Z e(ax) = Z Alx)(x) =0. O

xeW xeW
DEFINITION 1. Forar = )_,_ ait’ € Koo, let {a} = ), _ga;t’. For NeN,d €
NU{0},0 = (0,,...,6;) €T% andn = (n,,...,ny) € N¢ we define
V(N;0;n) ={xeA|ordx < N and ord{x6;} < —n; (1 < j <d)}.

We say that U is a Bohr space if there are a € A \ {0} and V = V(N; 0; n) such
that U = aV = {ax | x € V}. We also say that the length of n is d, denoted by
length(n) = d.

REMARK 1. Since ord is a non-Archimedean valuation, a Bohr space is a finite
vector space over ;. Also, by taking @ = 1 and d = 0 in Definition 1, we see that
the set Sy is also a Bohr space.

LEMMA 3. For NeN,d eNU{0},0 = (0y,...,60,) € T4 andn = (ny,...,ny) €
N4 let |n| = n, + - - - + ng and write

0 => byt' (1<j<d).

I<—1
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Foreachi,1 <i < N, let
Ci = (b1, —1-Ntis -+ s D1 —ny—Ntis -+ s Dd 1= Ntis -+ s Dd—ng—N4i)
Let K = K(N; 6;n) be a |n| x N matrix defined by
K = (Ci,...,Cy).
Then
[V(N; 6;:m)| = g" ™K.

Proof. If x € A satisfies ord x < N then we write x = ay_t¥ '+ -+ ait +aq,
where a; €F, (0 <i < N —1). We have

{x6;} = Z(IJN—lbj,k—(N—l) + - dagh )ttt (1< j<d).
k=—1
Thus, ord{x6;} < —n; (1 < j < d) if and only if
an—1bjr—n-y + - +aobjr =0 (—n; <k=<-1,1<j<d);
that is,
Bjk—N—1ys - s bj)an—1, .. a0) =0 (—n; <k <-1,1<j <d).

It follows that x € V(N; 6; n) if and only if (ay_i,...,ai,aq) is a solution of
Ky = 0. Thus,
[V(N; 6;:m)| = g" ™K.

This completes the proof of the lemma. O

In what follows, unless stated otherwise we have a € A\ {0}, N e N, d e NU {0},
0 = (91,...,9d) GTd, and n = (nl,...,nd) ENd.
LemMma 4. (i) Let 0’ = (0,0441) € T and n' = (n,1) e N4*L. Then
V(N;0';0') CV(N;6;n) and |V(N;6';n)| > ¢~ '|V(N;0;n)].
(ii)For N >2,let M =N —landm=n+ (1,...,1) e N Then
V(M;0;m) CV(N;0;n) and |[V(M;60;m)| =g~ P |V(N;0;n).
Proof. Let C; (1 <i < N) and K be defined as in Lemma 3. Write
6, = Zb,,,t’ (A<j<d+1).
1<—1

(i) By Definition 1 we have V(N;6’;n’) C V(N;0;n). For each i with 1 <
i < N, write
Ci/ = (bl,flfNJri» . .,bl,,nI,N+i, . '9bd,717N+i’ . ~sbd,7nd7N+i’ bd+1,717N+i)T'
Then

K
K'=K(N;0';n') = (C|,....,Cy) = <b>’

where



844 Yu-Ru Liu & XIAOMEI ZHAO

b = (bat1,-n,---»bay1,-1).
We see that tk K’ < 1+ rk K. By Lemma 3, we have
VN2 00| = ¢V K = g 7lgN T = g TV (v 65 m).
(ii) Foreach i with 1 < i < M, write
C/' = (b1, —1—Mtis-+>P1—my—Mtis s bd —1-Mtis s bd —mg—r4i)"

= (b1,7N+ia ~~-,b1,7n17N+i, ""bd,fNJris---,bd,fndiJri)T'
Then
K"=KM;0;m)=(C/,...,Cyp).

(i)

Thus, K" is row equivalent to

where
bi,_nN+1 bi-ny2 - b1
by ny1 by ny2 -0 b2
]=
ba,—ny1 ba_Ni2 -+ ba
and
K> = (Cy,....Cn-1).
It follows that

tkK"<d+1kK, <d+1kK.
By Lemma 3 we have
V(M 0;m)| = g HE = gV = @D YN 0w,

which completes the proof of the lemma. O

LEMMA 5. Let U = aV(N;0;n) withn; > orda (1 < j < d). Let U =
V(N';0;n'), where
N =N+orda and n' =n— (orda,...,orda) € N
Then we have
Ucvu.
Proof. Lety e U andn’ = (nj,...,n)) € N4, Then there exists an x € V(N; 0; n)
with y = ax. Since
ord(a{x0;}) = orda + ord({x6;}) < orda — n; = —njf <0 (I<j<d)),

we have a{x6;} = {ax0;}. Therefore, y = ax € V(N’;0;n’) and the lemma

follows. O

LEMMA 6. For gi,...,85 € A, let g = g18>---gs and n = ord g. For each
jefll,....s}, leth; = g/g;. Let U = aV(N;0;n) with N > n and let U =
aV(N; 0; n), where
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N=N-—-n and ﬁ:n—i—(n,...,n)eNd.
Then we have
hUCU and |U|>q " U|.
Proof. By Lemma 5, for each h; (1 < j < s) we have
hjU = ah;V(N; 6; i)

C aV(N +ordh;; ;0 — (ord by, ..., ord ;)

CaV(N+n;0;:0—n(,...,1)

=aV(N;0;n) =U.
In addition, from Lemma 4(ii) it follows that
U] = ¢ DUl.

This completes the proof of the lemma. O

DEerFINITION 2. Let V C A be a finite vector subspace over [F,. We say that
v: A — Ris a probability measure on A defined by V if it satisfies

1/|v] if xeV,

0 otherwise.

v(x) = {

Also, for S C A we define

v(S) =Y v(x).

xes

LEmMMA 7. Let Vy, V; be finite vector subspaces of A, and let vy, v, be the prob-
ability measures on A defined by V,, V, (respectively). For x € A, define

Vi V() = Y va(yIvilx — ).

yeh
(i) We have
VI % Vg = Vg % V. 2)
(i1) Suppose that V, C Vi. Then
Vi * Uy = V). (3)

(iii) Suppose that V, C Vi, and let o € K. Suppose that e(az) = 1 for each
z € V,. Then, for any subset S C A, we have

Y vime(ax) =Y vi(y)va(S — ye(@y); “)
xe§ yeA
here S —y ={x — y | x € §}. In particular, if « = 0 then (4) implies that
vi(S) = Y vi(»)a(S — ). (5)

yeA
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Proof. (i) Forany x € A,
Vi va(X) = ) va(ilx —y) = Y va(x — 2Ivi(2) = vy # vy (x).
yeA z€A
(ii) Let z € V. Since V, C Vi, for y € V, we have z — y € V). Therefore,

vixva(2) = ) va(ywiz —y) = Y va(yvi(z — )

yeA yeVa
= Vi7" Y v = Vil = i@,
YeV2
Let x € V \Vy; then vi(x) = 0. If vy * vy(x) # O then there exists a y € V, such
that x — y € Vj. Since V, C V|, we have x € V;—a contradiction. Thus,
vk vo(x) =0 = vi(x).

In both cases, v * vy = vy.
(iii) Let @ € Ko, and suppose that e(az) = 1 for each z € V,. Then, by parts
(i) and (ii),

Z vi(x)e(ax) = Z Vi x va(x)e(ax)

xeS xeS

=Y "> vi(y)valx — y)e(ax)
xeS yeA

=Y viyel@y) Y valx — ye(a(x — y))
yeA xes

=Y vie@y) Y valx —y)
yeA xes

=Y vi()va(S — y)e(ay).
yeA

This completes the proof of the lemma. UJ

3. Density Increments

Fors e Nwiths > 3,let g,..., g, € Fy[t] \ {0} with g1 +--- + g; =0. Let g =
8182+ &s. Write n = ordg. Let U = aV(N; 0;n) with N > n. Let U and h;
(1 < j < s) be defined as in Lemma 6, and let

Vi=hU (1<j<5s).
Then we have
gVit+ - +gV,=gU+---+gU =3gU.
Also, it follows from Lemma 6 that

V,CU (1<j<ys).
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Let i be the probability measure on A defined by U. For each j (1 < j <), let
v; be the probability measure on A defined by V;. By Lemma 7(ii) we have
pxvi=pn (1<j=<s).

Let B’ C A with u(B’) = §,. Suppose that the equation gy x; + - - - + gyx; =
0 is never satisfied by distinct elements xy,...,x; € B’. Write d = length(n) and
Co =2%""!(3). Suppose that

log|U| — (logg)n(d + 1) > 21log §;2 + 2log C. (6)

Recall that U = aV(1\7,0,ﬁ) for N = N —nandthath = n + (n,...,n). By
Lemma 6, we have
d = length(n) = length(n),

U] = ¢~ MU, 7
Then from (6) we obtain
U]"? = max{5; >, Co}. )
Hereafter, we fix ¢ as follows:
0<e<(@s)'s. 9)

LemMA 8 (Density Increment I).  Suppose that, for each y € A, there exists a
Jj=Jj(y) €fl,...,s} such that

lvi(B" +y) — 8| = 2se.
Then there existi € {1,...,s} and z € A such that
vi(B'+2) > 8 +e.
Proof. For each y € A, we have

> B +y) = 81| = 2se.

J=1

Hence
DD B ) =il =Y n(3) D [y(B' +y) — & = 2se.
Jj=1 yeA yeA j=1

It follows that there exist i € {1, ..., s} such that
D nvi(B' + y) — 81| = 2.
yeA
For each x € A, from Definition 2 it is clear that ;(x) = w(—x). By (5), we have
=B =) nwi(B' —x) =) u(yvi(B'+y).
xeA yeA
Therefore,
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Y () Wi(B' +y) = 81) = 0.

yeA
Combining these estimates establishes the existence of a z € A such that
vi(B'+2) > 8 +e.
This completes the proof of the lemma. UJ

In the rest of this section we assume that there exists a y € A such that
(B +y) =6 <2se (1<j<ys), (10)
since the complementary case has already been treated in Lemma 8. Write B =
B’ + y. From (9) it follows that
Wi <vi(B) <28 (1=<j<9). (11)
For o € T, define
file; BY =) vi(x)e(agix) (1<j<s)

xeB
and

F(a; B) =[] fi(e: B).
j=1
To estimate F(«; B), we apply the circle method for F,[¢]. Let W = gV, +--- +

gV, = gU andlet A: T — W be defined as in Lemma 2. The set of major arcs 9
is defined to be

M = ker A.
Also, we denote by m = T \ 9 the complementary set of minor arcs. By
Lemma 2(iv), ~
meas M = |W| ' =|0|7.

Let o € m. Since g;V; = W, it follows from Lemma 2(v) that, for each j €
{1,...,s},
> elagiy) =Y e(ax) =0. (12)

yev; xeW
LEMMA 9 (Density Increment I1). Foreachl e{l,...,s} and o € T, define
Vi = hjaV(N: 6; ),

where _
0 = (0,{aga}) and m = (n,l).

(i) We have V; C V; and, for any y € V,, e(ag;y) = 1. Also,
Vil = ¢~ "M,
length(m) — length(n) = 1.
(i1) Suppose there exist j € {1,...,s} and o € m such that
| fi(a; B)| =225 + De.



A Generalization of Roth’s Theorem in Function Fields 849

Let v; be the probability measure on A defined by 17] Then there exists a z € A
such that

ﬁj(B +2)>6+e.
Proof. (i) In view of the definition of V;, by Lemma 4 we have
Vi € hiaV(N; 0; ) = V.

Letye V. Then there exists an x € V(N 0; m) such that y = hjax. Since g =
grh;, we have

ord{ag;y} = ord{ag hjax} = ord{aegax} = ord{{agalx} < —1.

Thus, e(ag;y) = 1. When we combine Lemma 4(i) with (7), the remaining state-
ment follows.
(ii) By part (i) and Lemma 7(iii), we have

fila: BY =) vi(y)e(agiy) = > vi(»)T;(B — y)eleg;y).
yeB yeA
Since o € m, we see from (12) that
1

Y vi(yelagy) = v

yeA

Z e(agiy) =0.

yev;
Combining the previous two equalities yields

file; B) =" v;(»)([5;(B — ) — vj(B))e(ag;y),

yeA
which implies that
Y viWITHB =) — (B = 225 + De.
yeA
By part (i) and Lemma 7(iii) we see that
Y v (B — y) = vi(B):;
yeA

therefore,

> v @;(B = y) — vi(B)) =0.

yeA
Combining these estimates establishes the existence of an x € A such that
Vi(B—x)—vj(B) = (2s + De.
Let z = —x. Now, by (10), we have
Di(B+2z) >vj(B)+ (2s+1)e>8 +e.

This completes the proof of the lemma. UJ
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For a subset W C {l,...,s}, let W€ = {1,...,s} \ W be the complement of W.
Also, define

Fla; B;W) =[] file; B).

iew

LEMMA 10. Let T = {ji1, j2} S {1,...,s}. Then

/|F(a; B; T)lda < 28|07,
T
Proof. Tt follows from the Cauchy—Schwarz inequality that

/TIF(Ol:B;T)Ida=fT|J§'1(Oé;B)fj2(a;B)|da

1/2 1/2
§</T|fj1(oc;3)|2doc) (A|ﬁ2<a;3>|2da) .

For each i € {1,2}, by the definition of fj,(a; B) we have

fT | fii(es BYP do = > v, (x)vj,(y) fT e(ag;,(x — y) dor =Y v;(x)%

Xx,yeB X€EB

From (11) it follows that
Y v =1V T w0 = 1017 vy (x) < 2801017

XeB XeB xXeB
Thus,
/|F(a; B; T)|da <28|0|"
T
This completes the proof of the lemma. O

LeEmMA 11. (i) We have
/IF(a; B)|do > 27718510] 7.
m
(i) If
4

e =225+ )7l
then there exists a j € {1, ..., s} such that

sup| fj(a; B)| = 2(2s + De.

oaem

Proof. (i) Letx = (x1,...,x5) € B®. We have

/ F(a; B)da = Z l_[vj(xj)/ e(a(gix1+ -+ gsx5))da
T T

xeBs j=1

= Z an(Xj).
j=1

xeB*
g1X1+- +gsx;=0
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Recall that the equation g;x; + - - - + g,x; = 0 is never satisfied by distinct ele-
ments xp,...,x; € B. Since B = B+ yand g+ --- + g5 = 0, it follows that
g1x1 + - -+ + gsx; = 01is never satisfied by distinct elements xy,...,x; € B. By
(11) and the definition of v; (1 < j < s) we know that

Z l_[ vi(x;) < Z Z 1_[ vi(x;)
j=1 j=1

xeB* 1<ji<j2<s xeB*
g1X1+-+85%,=0 g1x1t-+85%5=0
Xj1 =X
N
< 12 v (%))
= J\Aj
1<ji<j2<s xjeB  j=1

JEjL 2 J#EIL 02
s—2¢05—21771—2
Ci2° 76,7 |U| ™,

IA

where C; = (3). Then
/ F(a; B)da <2°72Cy8: 72|02
T

For o € M, we have

s

F(a;B)= ) (]‘[ v_,~<x,,->)e<a<g1x, +ogex)) =[[vi®.

xeBs N j=1 j=l1
It follows from (11) that
/ F(a; B)do = <H vj(B)) meas(9) > 276 |U| .
m =1
By (8), we have
872 < |U|Y* and 2%7'Cy = Co < U]V

Therefore, ~
22&—2 C15;2|U|_1 < 2—1'

Combining these three inequalities now yields
/lF(a; B)|da > / F(a; B)da f F(a; B)da
m m T

(ii) Let 7 = {1,2}. By Lemma 10, we have

>277187|0| 7.

[ 1P BTl da < 28001
T
Also, by part (i) we have

(suplF(e: B: 7)) f |F(a; B; T)ldo = f |F( B)|da = 276110
aem T m
After combining these two estimates, we see that

sup|F(a; B; T9)| > 275728\,

oaem
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Since |7 ¢| = s — 2, there exists a j € {1,..., s} such that

4
suplfi(a: B)| = 27172515,

aem
4
Since & = 2777 3(2s + 1)_1811““5, it follows that
sup| fj(e; B)| = 2(2s + De.

xem
This completes the proof of the lemma. UJ
In the rest of this section we assume that, for each i € {1, ..., s},

sup|fi(a; B)| < 2(2s + De,

xem

since the complementary case was treated in Lemma 9.
LeEmMA 12. (i) Foreachi €{l,...,s}, define

m, = {aeem| | fie: B)| =22 61+ ).
Then there exists a j € {1, ..., s} such that

/’|F(cx; B)|da > 5712757285107\,
m.
J

(ii) Let j and m} be defined as in part (1). For T e R with t > 0, define

m, = {aem] | 518 < | fi(a; B)| < 278}

—s=3 1
Then there exists a T with 2ﬁ8f’2 <1 <4Q2s+ 1)85;1 such that

s—1
|F(e: B: {j)9)|dat = Cy————— |0
m, 7(14+1logé; ")
where Cy = s 12757335 — )7!(s — 2).
(iii) Let j be chosen as in part (1), and let m, be defined as in part (i1). Then
there exists a k # j such that

s

82 -
| fule: B da = 273 C,—— |0
e (1 +logé; )

Proof. (i) Letaw € m\ |J;_, m’. Then, for eachi €{1,...,s},
|fila; B) <257 85,
Let 7 = {1,2}. By Lemma 10, we have
/|F<a; B:T)lda <28|0|7"
T

Thus,
/ |F(a; B)|da < 2772851017\,
m\UJi m;
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Now combining this estimate with Lemma 11(i) yields

/ |F(a; B)|da > 277285107,
™

Hence there exists a j € {1, ..., s} such that

/ |F(a; B)|da > s™12757285|0 7"
m’

ey L
(ii) Let tg = 22 8;*. Foreach n € N, let 7, = 27,,_;. Then

"1 1
=7;61,21;61 | = | =7061,27,61 ).
,-L_J()<2T 1, 2T 1) <2T01 T 1)

Letn = [log 7y 141, where [x] denotes the greatest integer not exceeding a real
number x. Since 7, = 2", we see from (9) that

21,81 = 2" 108 > 28, > 2(2s + De.

—5—3
Foreach o em} we have ZﬁSIHﬁ < |fj(a; B)| < 2(2s+1)¢, soit follows that

1
( = 31+r 2,2(2s + 1)8) (51051,2r,,81>.

Therefore,
n
!
m; < (Jme.
i=0

Suppose that, for each 7; (0 <i < n),
s—1

/ |F(a: B: (j})|dat < Co——————— |07
me, 7;(14+1logé; )

here C> = s 1277335 — 1)~'(s — 2). Since
n+1<—logato+2 < @Bs—D(s—2)""(1+1ogs™),
it follows that

/ |F(e; B)| da <2Zr,61/ |F(a; B; {j}%)] da

i=0 Mz
8! N
<221,81 y————— U
7;(1 +1logé; b}
-1 -1 8i -1
=2CBs —D(s —2)7 (1 +logd; ) ————|U]|
1+logd;

— S—lz—x—z(sivlﬁl—l,

which contradicts part (i). Then there existsa t = t; for some 0 < i < n such that

8&71

|F(a; B; {j}9)|da = Czl—_l I
M t(1+4+1ogé; )
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1
By the definition of t;, we have T > 79 = 2%;38?. In addition, ¥ # m, C
m}. For ¢ € m,, since %1:81 < |fjla; B)] < 2(2s + e it follows that T <
4Q2s + Des.
(iii) Let {ji, j2} € {j}°. Then, by the Cauchy—Schwarz inequality,

| i (a5 B)|| fj,(a; B)| do
e 12 1/2
5( Ifjl(a;B)lzda> (f If,-z(a;B)lzda> .

/'ffl(“? B>|2daz/ | fix(e; B da.

me

Suppose that

Let k = j;. By (11), we have

|F(a; B; {j})|da < (231)‘“3/ | fii(a; B)|| fj,(a; B)| dex

me me

<807 | 1fila; B) da.
me
We saw in part (ii) that
s—1
|F(a: B; {j})] do > Co————— |0
m, t(14+1logé; )

Combining these two estimates results in

82 -
| fi(ez B)P da = 273 Cp—————|U
m, t(1+4+1logé; )

This completes the proof of the lemma. U

For the rest of this section, let j,k € {1,...,s} and let m, satisfy Lemma 12. In
view of the definitions of 9t and m,, we may assume that there exists a Q; € N
such that

()]
me =|_|(B: +M).
i=1

Write Bi =6 +M1 <i < Q). Since T/M is an [F,-vector space, we assume
without loss of generality that {8, ..., B} is a maximal linearly independent sub-
setof {Bi,...,B0,}

LeMMA 13 (Density Increment I11). Forl e{l,...,s}, define
V/ = haV(N; 0';m'),

where

0 =0U{{Biga}|1<i<Q} and m'=(n,1,...,1).
——
Q copies
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(i) We have V] C V; and, for each y € V/, e(Bigiy) =1 (1 <i < Q).
Furthermore,
|V1/| > qu—'l(dJrl)'U"

length(m’) — length(h) = Q.

(ii) Let vy, be the probability measure on A defined by V. Then there exists a

z € A such that

5
Vi(B+2) =270,
t(1+logé, ")

where C» is defined as in Lemma 12(ii).

Proof. (i) The result follows from a similar argument as in Lemma 9(i).
(ii) Fix @ € m; and write @ = « +901. Then there exist by, ..., by € IF, such that

a=bp +"'+bQ/§Q.
Let y € V/. Since gV, C giVi, it follows from the definition of 2t that
e(agry) = e((bifi+ -+ boBo)gky).
Note that b;y € Vk/ (1 <i < Q). By part (i) of the lemma, we see that

Q
e(agey) = [ [ e(Bigxbiy) = 1.

i=1

By (4) we deduce that, for each @ € m,,

fele; B =) vi(3)vi (B — y)e(agiy).

yeA
Hence
2 2
13 mmis = ye@an| daz [ |3 un0wies - e da
Tlyea Melyeh
= | Ifile; B)] da.
Since

2
da =) () vi(B — ),

yeA

J

it follows from the foregoing estimates and Lemma 12(iii) that

D vk(Vi(B — ye(agey)

yeA

82 -
S w3 B =y? = | Ifile: B)Pda = 27 C,————— 0|
Ve me t(14+1logé; )
Therefore,
2
(max vi(B = ) - Vel D ok wi(B = 9) 2 275y
ves t(1+log ;")

yeA
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Note that |Vi| = |U]. Combining (5) and (11) with part (i) now yields that
Y v(¥)vi(B — y) = vi(B) < 281.
yeA

Hence there exists a z € A such that

3
V(B +z) = maxv (B —y) > 27°"2C —11
yeA T(14+1logé; )
This completes the proof of the lemma. O

LEMMA 14. Let @ # 7 C {1,...,Q}. For each i € Z, let a; € C and define
pi: A — Rby
@i(x) = Re(a;e(Big;x)),

where Re(z) denotes the real part of z € C. Define @ = Q(Z;a): A — Rby
Q) =[]+ ei(x).

iel

D v =1.

x€A

Then we have

Proof. For a complex number z, we denote by 7 its conjugate. Note that

Q) =[]+ pix)

ielT
1 11—
= [T(1+ jaieBigix) + S aie(Big;x)
ieT
1y i
=1+ Y <5> > (Hbj,>e<<n1ﬁ,-.+---+nhﬁ,-,,>g,x),
1<h<|Z| Jisees Jn€ZL N=1
.il<"'<j11
n,...np==1
where @, if =1,
bj, = { _ .
aj, if g =-1.
Therefore,
> vn)Q(x)
xeA
= v(x)
xeA
1! "
+ X0 X (3) X (TTo)econsy+-+ mugn
xeA 1<h<|T| Jlseer Jn€T N=1
jl<"'<jh
Mseeey np==1
1y h
=1+ Y (5) > (Hb,-,)Zvju)e((mﬂjl+---+nh/3,h)gjx>.
I<h<|Z| Jlseees, jheZ Nl=1 xeA
Ji<-<Jn

Nyeees np==1
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Since { ji, ..., ju} € {L,..., Q}, it follows that B;,, ..., B;, are F,-linearly indepen-
dent. Thus, n;8j, + - - - + nuBj, € m. On recalling (12), we have

Do vie(mB + -+ +mBi)gix) =0;

xeA
hence
> Q) =1
x€A
This completes the proof of the lemma. U

LEMMA 15 (Density IncrementIV). (i) Let T be defined as in Lemma 12(ii), and
let y = t/20. Foreachi €{l,..., Q}, there exists ab; € Cwith |b;| = % such that

Re(b; fj(Bi; B)) > ybi.
For x e R, define
@i(x) = Re(bie(Bigjx)) (1=<i=<Q).
Then there exist absolute constants C3, C4 > 0 such that, whenever
10s¢ log 81_1
C3y%8
there is a subset Ty C {1,..., Q} satisfying

s

s+3
|Zo| < (400c;1c4szﬁ)83“‘ﬁ and Y vi(x) [JA+¢i(x) > 8 +e.

xXeB i€y
(ii) Suppose that Q and I satisfy the described properties, and let o = |Zy)|.
Foreachl ef{l,...,s}, define
Vi = haV(N; 6; m),
where

0 =0U{{Biga}|i€To) and m= (a,l,...,1).
——

o copies
Then ‘71 C Vyand, forany y € ‘71, e(Bigiy) =1(i €Zy). Furthermore,
Vil = ¢~ "Dy,
length(m) — length(n) = o.

(iii) Let VJ be defined as in part (ii), and let v; be the probability measure on A
defined by \_/J Then there is a z € A such that

D(B+2z)> 8 +e.

Proof. (i) Fix i with1 <i < Q. Since ; € m,, we have %181 < |fi(Bi; B)| <
278y. Then either |Re(f;(B;; B))| > itél or [Im(f;(Bi; B))| > irSl, where
Im(z) is the imaginary part of z € C. Hence there exists a b; € C with |b;| = %

such that Re(b; fj(Bi; B)) > y8; with y = 5;7. Then |@;(x)| < } and
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D eix(x) = Re(bi(z vj(x)e(ﬂ,«gm)) = Re(bif;(Bi: B)) > vi.
xXeB xXeB
Foreach ¥ 27 C {1,..., Q}, we deduce from Lemma 14 that
S v ]+ =1
xeA ieT

By [3, Prop. ()] there exist absolute constants C3, C4 > 0 such that, for each @ #
T C{l,...,Q}, we can identify a subset Z( C 7 satisfying

Cyy|T Cuy|Z
4 1| < |Tol < 4Y| 1|
logd; log s,
and Zol
YILo
> vi(x) ]"[(1 +gi(x)) > (1 + 5 )vj(B>.
X€eB i€l
10s¢log 87"
Suppose that 0 > T We now take a subset Z C {1,..., Q} such that
3 1
10selog 8;! 20s¢log 8,
—EO8% g < RE0N
C3y?8, C3y28,
Then there exists a subset Zy C 7 satisfying
10se < Tl < 20Cyse
1231 C3yd

and

Zvj(x) H(l + @i(x)) > (1 + J/|I()|>Vj(B) > (1—|—5ss81_l)vj(B).

. 2
xeB i€Zy
By (9) and (10) it follows that v;(B) > & — 2se and 0 < sed;" < 1. Thus,
(14 55e8;)v;(B) > (1 + 5s5e8;)(8) — 258) > 8, +e.

1

Also, since y = 2—101' and T > 2%7236{?2 we have
20C4se  400C4se
C3)/81 - C3‘551

(ii) This part can be proved using a similar argument as for Lemma 9(i).

(iii) Write Q(x) = l—[ido(l + ¢i(x)). Since e(B;g;jy) = 1 (i € Io) for any
y €V}, we find that, for any x € A,

Qx) =Qx —y).

Then, by part (ii) and Lemma 7(ii),

> Q) = Z(Z vi(x — y)@-(y))sz(x - )

XEB XeEB “yeA

=Y > viw)i(x — w)Q(w)

weA xeB

=Y i) Qw)v(B — w).

weA

s+3
\Zol < < (400C;'Cy522 )68,
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It now follows from Lemma 14 that

Zvj(w)sz(w) =1

weA

Note that, for any w € A, we have v;(w) > 0, Q(w) > 0, and v;(B — w) > 0.
Thus, by the two previous equalities,

Z vi(x)Q2(x) < max Vi(B—w) = max (B + 2).

xeB

Using part (i), we obtain

D vin)Q(x) > 8 +e.

xeB

Combining these two inequalities reveals that there is a z € A such that
vi(B+2z) > 8 +e.

This completes the proof of the lemma. UJ

4. Summary

LetU =aV(N;0;n),n,d, hj, V;,v; (1 < j <s), B, and §; be defined as in the
beginning of Section 3. Recall that

log|U| — (logg)n(d + 1) > 210g81_2 + 2log Cy,

where Cy = 22‘“1(;). In the following steps, we summarize the density incre-
ments established in Section 3. For the balance of this section, all implicit con-
stants depend only on g = (gy,..., &) and q.

Step 1. Suppose that, for each y € A, there existsai = i(y) € {1, ..., s} such that
[vi(B'+y) — 81| > 2se.

By Lemmas 6 and 8, there existip € {1, ...,s}, Vi, = hiOaV(IV; 0;n),and zp € A
such that
vi,(B'+z0) > 8 + ¢,

d = length(n), d —d =0, (13)
Viol = 7P |U.
Step 2. Suppose there exists a y € A such that
i(B'+y) =81l <2se (1<i<5s).
Write B = B’ + y, and let fi(«; B) (1 <i < s) be defined as in Section 3.
Step 2.1. Suppose there exist an i} € {1,...,s} and an & € m such that
|fi(; B)| = 2(2s + De.

By Lemma 9, there exist ‘71'1 = hilaV(IV; 0~; m) and z; € A such that
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Vi (B+z1) =81 +e,
d =length(m), d—d=1, (14)
Vil = ¢~ Do),
Step 2.2. Suppose that
sup| fi(a; B)| <22s+1De (1 <i<s).

aem

Step 2.2.1. By Lemmas 12 and 13, there exist i» € {1,..., s},
V! =hi,aV(N;6';n'),
and z, € A such that, for some v with 51‘“%2 LT K 8371,
31
t(1+logsh’
d' =length(n’), d'—d = Q,
Vil = g~ 9" ).

v, (B +z2) >
(15)

Step 2.2.2. Let Q be defined as in the paragraph before Lemma 12 (the same Q
as the one in (15)). Suppose that it satisfies the condition of Lemma 15(i)—that is,

elogs;!
‘L'281
By parts (ii) and (iii) of Lemma 15, there exist i3 € {1,..., s},
Viy = hi;aV(N; 6; m),

o>

and z3 € A such that
Viy(B +23) > 81 +¢,

_ 1

- —-1--L
d =length(m), 0<d—d <Kes ‘7, (16)
|Vial = g~ D),

REMARK 2. When . 1
£ =2"""22s + )78,

it follows from Lemma 11(ii) that there exists a j € {1,..., s} such that

sup| fi(a; B)| > 2(2s + De.

aem

Then applying (13) and (14) suffices to increase the density.

5. Proof of Theorem 1

The goal of this section is to prove the following theorem, which is a generaliza-
tion of Theorem 1.

THEOREM 1*. For s € Nwiths > 3, let g = (g1,...,8s) with g; € F,[t] \ {0}
(I<i<s)andg+---+ g; =0. Let U = aV(N; 0; n) with length(n) < M,
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where M = M(g; q) > 0. Define Dg(U) to be the maximal cardinality of a subset
A C U for which the equation

g1x1+"'+gsxs=0 (17)

is never satisfied by distinct elements x1,...,xs; € A. Then there exists a constant
C =C(g q; M) > 0 such that

2(s—2)2
(log 10g|U|)2> 459

18
log|U| (18)

Dg(U)SCIUI<

REMARK 3. According to Remark 1 (see Section 2), Sy is a Bohr space of length 0.
Therefore, Theorem 1 follows directly from Theorem 1*.

LEMMA 16. Let u,v € R with u,v > 0. Suppose that a sequence {A;};enujo)
satisfies
0<Ag<1 and A;> A+ vATiGeN).

Letm = min{i e N | A; > 1}. Then there is a constant E = E(u,v) > 0 such that
m < EAy".

Proof. Let Ly = [(vA“O)_l] 4+ 1. Foreachi e Nlet L;; = L; +I;, where [; =
[(vA% )~']+ 1. Since for each j € N we have

A=A+ UA_I]-JZ'? >Aj 1+ UAIOH,

it follows that
AL, > Ao+ Ly - (AY™) > 2A,.

Note that if
Ap, > 2'Ag

fori € N, then
Ap, = Ap +1- AT > 24, > 271A.
Thus, by induction, for each i € N we have
Ap, > 2'Ay.
Take r = [log, Af)l] + 1. Then 2"Ay > l and so A, > 1. Thus,
m<L,=Li+L+- -+l
S AT+ A )T Ay )T
<ADT H@- 2" AT 4 (24T T

o0
< AF! Z(r")" +r
i=0

Observe that r < log, ABI +1< u’lAB" +1lLLetE=v'A-2"T4u1+1.
Then m < EAy", which completes the proof of the lemma. O
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Proof of Theorem 1*. Write n = ord(g;--- g5). Let A C U = aV(N; 0; n) with

N > n,and let § = |A|/|U|. Suppose that (17) is never satlsﬁed by distinct ele-
ments x1,...,x; € A. Letu = s—%_ oo )z,andletv =27 2(2s—i—1) —1. Write
80 =38, No=N,0y=20,ny =n, and dy = length(ng). Suppose that

log|U| — (logg)n(dg + 1) < 210g872 + 2log Cy,
where Co = 22"7!(3). Then

S < C1/2 n(do+l)/4|U|—1/4’

whence there exists an Eqg = Ey(g; g; M) > 0 such that

—7)2

2s=2)
<(10g 10g|UI)2) 4=

S < E
=\ T logu

19)

It remains to consider the case where
log|U| — (logg)n(dy + 1) > 21og 82 + 21og Cy.

We now increase the density of A in Bohr spaces by repeatedly applying the process
described in Section 4. For each i € N, write §; for the density obtained at the ith
step and ¢; for the density increment taken at the ith step. We divide all the steps
into three stages.

Stage 1. We start from §y = §. At the ith step, we increase §;_; to §; by taking
& = v8ilf1” and applying procedure (13), (14), or (16). Thus we obtain

Ui =a;V(N;; 0;;n;), d; = length(n;),

8 > 81+ vt
1 (20)
0<d —di_1 <38" **2,

|U;| > q*(di*di—l)*”(d[—l*i’l)|Ui_1|_
Stage 2. 1If at some point (say, at the jth step) procedure (15) is required, then
for some t with 813 LT K 8}‘71 we get
U =a;jV(N;; 0;:m)),  d; = length(n)),
8> 8t (1+1ogs: !~
" B (21)
0<dj—d;- 1—Q<<8 1(10g 1)7 2
|ljj| zq (dj djfl) n(dj I+1)|ljj—l|-

1 l
Stage 3. We continue the process and take &; = v§; _ e *attheithstep (i > j).
By applying procedures (13) and (14) (see Remark 2 1n the previous section), we

obtain
Ui = a;V(N;; 0;;n), d; = length(n;),
]

5 > 8+ 8,
0<di—di-1 =1,
e /K

(22)
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Thus, procedure (15) is applied at most once. The process terminates once we
derive a §; for which

S+ 8T > 1 23)
or
log|Ui| — (logg)n(dy + 1) < 210g8k_2 + 2log Cy.

We now consider two cases.

Case 1: Procedure (15) is never required. In other words, only Stage 1 is needed.
It then follows from Lemma 16 that

kg s™

By (20) and this estimate, we have

k

1 1

dk — d() = E (d, - d,'71) < k(Su_E < 5 2
i=l

and
k

_ Cu L

n Z(di + 1) <ntk+D(dp +1) € k2" =2 87"

i=0
Hence there exists an E; = Ej(g; g; M) > 0 such that
k
1
210g Co +2log 87> + (log q)(dy — do) + (logg)n Y _(d; +1) < E;8™" "+

i=0

Now suppose that
2(s—2)%

E, 45-9
> 9
(10g|U I)

1 _ 9-4s
and note that —u — .- = SRR Then

1
log|U| > E;§7"
k

> 2log Co + 21og 872 + (log q)(dy — do) + (logg)n »_(d; +1).
i=0
It follows from (20) and this estimate that

log|Uy| — (logg)n(di + 1) \

> —(log q)(di — do) — (logg)n Y _ (di +1) + log|U]|
i=0
> 2logs 2 +2log C

> 2log ;> + 2log Co.

Thus, the iterating process termlnates only because of (23). We then increase the
density 8y to §x+1 > 8k + V6 45 > 1, a contradiction. Therefore,

2(s—2)

E 459 26— 2)2 log log|U|)?
- i < (B 5 (loglog|U|) ‘ 24)
log|U| log|U|
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Case 2: Procedure (15) is applied at the jth step. By Lemma 16, j < §7*. By
an argument similar to the one used in Case 1, we deduce that

_ Ui gL
dioy—do <872 and n) (di+1) <8
i=0

Continuing with the iteration (22) until the process ends, we conclude by Lemma 16
that ]
di —dj <k — j <552

Now, by (21) and (22), we have

di—dj<i—j@>)),

1 - 1
k—j <528, P (14 log 8,2,
0 < %8} (logs; ),

1

8§71 KT K8
It follows that

k
ny (di+1)
i=j

k
=n Y (d—d)+nk—j+Dd+1)
i=j+1

<n(k—j)?+ntk=j+DQ+d-1+1)

Lol 2 -3 I e AT HC S
< (1 +]og5j’_l) (TS_ZSj—TZ + 752 5j_xl—2 + 7528, xl—za J—Z)

S = =1 Con) Jer N S
< (1+1logs) (51.;1 +o T s o s 2)
Recall that u = ﬁ - ﬁ We have
-3 n 1 n 1 <u—2 2u —2
——dtu=—u-— < .
s—2 (s —2)2 §—2 " s5=2 s—2

Since §;_; > 4, it follows that

1 1 1 u—1
()t =2 o
Sj R (Sj_lz +8j_§8

2u—2
5—2
8.7 +

2u—2 1 u—=2

-3
IR = Y LT I

1
K 8§ ",
Thus,

k
0y (di+1) < (141og8 267 i < (14 logs™)%s ™" 2.
i=)

Similarly, we have
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dy —dy = (dy — dj) + (dj — dj—1) + (dj_1 — do)
<(k—j)+ 0+ (dj-1—do)
& (14 logs™)2s™" 52,

Once we combine the preceding estimates, it is clear that

k k j—1
(de —do) +n Yy (di+1)=(d—do)+n) (di+D+n) @i+
i=0 i=j i=0

& (1+logs™)2™" 2
—454+9

= (1+logs~")2g2—27,

Hence there exists a constant E, = E»(g; g; M) > 0 such that

k
2log Co + 21og 87> + (log g)(dx — do) + (logq)n Y _(d; + 1)
i=0
—4549

< E28%-2*(1 + log 8 ™H2
Combining this estimate with (20)—(22) yields

log|Ux| — (log g)n(dx +1) )
> —(logq)(dx — do) — (logq)n Y _(d; +1) + log|U|
i=0
—4s+9

> 2log Cy +2log 82 — E2826-2"(1 4+ log 87 1)% + log|U|.

c _ 2s—2)?
If 6 < q/(log|U|)¢, where ¢ = =/ —-,

only to consider the case when 8 > ¢/(log|U|)¢ (i.e., 1 +1log$~! < cloglog|U]).
Suppose

then the proof is complete. So it remains

2(s—2)%
E>(cloglog|U|)?\ -9
5> ——————~— .
log|U |
Then
— 4549 —454+9
log|U| = E»82-2*(cloglog|U|)* = E»82-2*(1 + logs™1)?
and so

log|Ui| — (log ¢)n(dy + 1) > 2log 6% 4 21log Cp > 2log 8, + 2 log Cy.
A contradiction results when we argue as in Case 1. Therefore,
2(s—2)2
5 < (CPEy) i - (—(loglogW')z)M.
log|U|

2(s—2)2 2(s—2)2
If we let C = max{Ey, E;#-5, (c?E;) 49 }, then the theorem follows from the

combination of (19), (24), and (25). O

(25)
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REMARK. After the paper was submitted, T. Bloom extended the recent improve-
ment of Roth’s theorem on 3-term arithmetic progression by Sanders to obtain an
improvement of Dg(Sy). For more details, see [1].

ACKNOWLEDGMENT. The authors wish to thank the referee for several valuable
comments.
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