Geometry of Brill-Noether Loci on Prym Varieties

Andreas Höring

1. Introduction

Given a smooth curve X, it is well known that the Brill-Noether loci $W_{d}^{r} X$ contain much interesting information about the curve X and its polarized Jacobian $\left(J X, \Theta_{X}\right)$. Given a smooth curve C and an étale double cover $\pi: \tilde{C} \rightarrow C$, one can analogously define Brill-Noether loci V^{r} for the Prym variety (P, Θ) (see Section 2). Several fundamental results on these loci have been known for some time: the expected dimension is $g(C)-1-\binom{r+1}{2}$, the loci are nonempty if the expected dimension is nonnegative [Ber, Thm. 1.4], and they are connected if the expected dimension is positive [D3, Exm. 6.2]. If C is general in the moduli space of curves, then all the Brill-Noether loci are smooth and have the expected dimension [W2, Thm. 1.11]. Whereas the Brill-Noether locus $V^{1} \subset P^{+}$is the canonically defined theta-divisor and has received the attention of many authors, the study of higher Brill-Noether loci (and the information they contain about the étale cover $\pi: \tilde{C} \rightarrow C$) is a more recent development. Casalaina-Martin, Lahoz, and Viviani [CaLV] show that V^{2} is set-theoretically the theta-dual (cf. Definition 2.1) of the Abel-Prym curve. Lahoz and Naranjo [LN] refine this statement and prove a Torelli theorem: the Brill-Noether locus V^{2} determines the covering $\tilde{C} \rightarrow C$. That finding motivates a more detailed study of the geometry of V^{2}. Our first result is as follows.
1.1. Theorem. Let C be a smooth curve of genus $g(C) \geq 6$, and let $\pi: \tilde{C} \rightarrow C$ be an étale double cover such that the Prym variety (P, Θ) is an irreducible principally polarized abelian variety.
(a) Suppose that C is hyperelliptic. Then V^{2} is irreducible of dimension $g(C)-3$.
(b) Suppose that C is not hyperelliptic. Then V^{2} is a reduced Cohen-Macaulay scheme of dimension $g(C)-4$. If the singular locus $V_{\text {sing }}^{2}$ has an irreducible component of dimension at least $g(C)-5$, then C is a plane quintic, trigonal, or bielliptic.

The condition on the irreducibility is always satisfied unless C is hyperelliptic and \tilde{C} is not. In that case, (P, Θ) is isomorphic to a product of Jacobians [M2].

[^0]In the hyperelliptic case (cf. Proposition 4.2), the statement is a straightforward extension of [CaLV]. In the non-hyperelliptic case, it is based on the following observation: if the singular locus of V^{2} is large, then the singularities are exceptional in the sense of [B3]. This provides a link with certain Brill-Noether loci on $J C$.

An immediate consequence of the theorem is that V^{2} is irreducible unless C is a plane quintic, trigonal, or bielliptic (Corollary 3.6). The case of trigonal curves is very simple: (P, Θ) is isomorphic to a Jacobian $J X$ and V^{2} splits into two copies of $W_{g(C)-4}^{0} X$. For a plane quintic, V^{2} is reducible if and only if (P, Θ) is isomorphic to the intermediate Jacobian of a cubic threefold; in this case, V^{2} splits into two copies of the Fano surface F. Note that the Fano surface F and the Brill-Noether loci $W_{d}^{0} X$ are expected to be the only subvarieties of principally polarized abelian varieties having the minimal cohomology class $\left[\frac{\Theta^{k}}{k!}\right]$ [D2]. By [dCPr], the cohomology class of V^{2} is $\left[2 \frac{\Theta^{g(C)-4}}{(g(C)-4)!}\right]$; therefore, a reducible V^{2} provides an important test for this conjecture. Our second result is the following theorem.
1.2. Theorem. Let C be a smooth non-hyperelliptic curve of genus $g(C) \geq 6$, and let $\pi: \tilde{C} \rightarrow C$ be an étale double cover. Denote by (P, Θ) the polarized Prym variety. The Brill-Noether locus V^{2} is reducible if and only if at least one of the following statements holds:
(a) C is trigonal;
(b) C is a plane quintic and (P, Θ) an intermediate Jacobian of a cubic threefold;
(c) C is bielliptic and the covering $\pi: \tilde{C} \rightarrow C$ belongs to the family $\mathcal{R}_{\mathcal{B}_{g(C), g\left(C_{1}\right)}}$ with $g\left(C_{1}\right) \geq 2\left(c f\right.$. Remark 5.11). Then V^{2} has two or three irreducible components, but none of them has minimal cohomology class.

If C is bielliptic of genus $g(C) \geq 8$, then the Prym variety is not a Jacobian of a curve [S]. Moreover, these Prym varieties form $\left\lfloor\frac{g(C)-1}{2}\right\rfloor$ distinct subvarieties of $\mathcal{A}_{g(C)-1}$ [D1]. For exactly one of these families, the general member has the property that the cohomology class of any subvariety is a multiple of the minimal class $\frac{\Theta^{k}}{k!}$. The proof of Theorem 1.2 shows that the Brill-Noether locus V^{2} is irreducible if and only if the Prym variety belongs to this family! This is the first evidence for Debarre's conjecture that is not derived from low-dimensional cases or considerations on Jacobians and intermediate Jacobians (cf. [D2, Hö2, R]).

Acknowledgments. The work of O. Debarre, M. Lahoz, and J.-C. Naranjo plays an important rôle in this paper. I want to thank them for patiently answering my numerous questions. The author acknowledges the support of the Albert-Ludwigs-Universität Freiburg, where the main part of this work was done.

2. Notation

Most of our arguments are valid for an arbitrary algebraically closed field of characteristic $\neq 2$. However, we work over \mathbb{C} so that we can apply [ACGH] and [D3],
which are crucial for Theorem 1.1 and its consequences. For standard definitions in algebraic geometry we refer to [Ha] and for Brill-Noether theory to [ACGH].

Given a smooth curve C, we denote by Pic C its Picard scheme and by

$$
\operatorname{Pic} C=\bigcup_{d \in \mathbb{Z}} \operatorname{Pic}^{d} C
$$

the decomposition into its irreducible components. We will identify the Jacobian $J C$ and the degree- 0 component $\mathrm{Pic}^{0} C$ of the Picard scheme. In order to simplify the notation we denote by $L \in \operatorname{Pic} C$ the point corresponding to a given line bundle L on C. We will abuse terminology somewhat and say that a line bundle is effective if it has a global section.

For $\varphi: X \rightarrow Y$ a finite cover between smooth curves and D a divisor on X, we denote the norm by $\operatorname{Nm} \varphi(D)$. In the same way, $\operatorname{Nm} \varphi$: Pic $X \rightarrow \operatorname{Pic} Y$ denotes the norm map. If \mathcal{F} is a coherent sheaf on X (in general, \mathcal{F} will be the locally free sheaf corresponding to some divisor), then we denote by $\varphi_{*} \mathcal{F}$ the push-forward as a sheaf.

Let C be a smooth curve of genus $g(C)$ and let $\pi: \tilde{C} \rightarrow C$ be an étale double cover. We have $(\mathrm{Nm} \pi)^{-1}\left(K_{C}\right)=P^{+} \cup P^{-}$, where $P^{-} \simeq P^{+} \simeq P$ are defined by

$$
\begin{aligned}
& P^{-}:=\left\{L \in(\operatorname{Nm} \pi)^{-1}\left(K_{C}\right)|\operatorname{dim}| L \mid \equiv 0 \bmod 2\right\}, \\
& P^{+}:=\left\{L \in(\operatorname{Nm} \pi)^{-1}\left(K_{C}\right)|\operatorname{dim}| L \mid \equiv 1 \bmod 2\right\} .
\end{aligned}
$$

For $r \geq 0$ we set

$$
W_{2 g(C)-2}^{r} \tilde{C}:=\left\{L \in \operatorname{Pic}^{2 g(C)-2} \tilde{C}|\operatorname{dim}| L \mid \geq r\right\}
$$

The Brill-Noether loci of the Prym variety [W2] are defined as the schemetheoretical intersections

$$
V^{r}:= \begin{cases}W_{2 g(C)-2}^{r} \tilde{C} \cap P^{-} & \text {if } r \text { is even }, \\ W_{2 g(C)-2}^{r} \tilde{C} \cap P^{+} & \text {if } r \text { is odd. }\end{cases}
$$

The notion of theta-dual was introduced by Pareschi and Popa in their work on Fourier-Mukai transforms (see [PPo2] for a survey).
2.1. Definition. Let (A, Θ) be a principally polarized abelian variety, and let $X \subset A$ be any closed subset. Then the theta-dual $T(X)$ of X is the maximal subset $Z \subset A$ such that $A-Z \subset \Theta$.

Note that $T(X)$ has a natural scheme structure [PPo2].

3. The Singular Locus of $\boldsymbol{V}^{\mathbf{2}}$

Throughout this section we denote by C a smooth non-hyperelliptic curve of genus $g(C)$ and by $\pi: \tilde{C} \rightarrow C$ an étale double cover. The following lemma will be used repeatedly.
3.1. Lemma. Let $L \in V^{r}$ be a line bundle such that $\operatorname{dim}|L|=r$. If the Zariski tangent space $T_{L} V^{r}$ satisfies

$$
\operatorname{dim} T_{L} V^{r}>g(C)-2 r,
$$

then there exist
(a) a line bundle M on C such that $\operatorname{dim}|M| \geq 1$ and
(b) an effective line bundle F on \tilde{C} such that

$$
L \simeq \pi^{*} M \otimes F
$$

3.2. Remark. For $r=1$, the scheme $V^{1}=W_{2 g(C)-2}^{1} \tilde{C} \cap P^{+}$identifies with the canonical polarization Θ. The theta-divisor has dimension $g(C)-2$, so the condition

$$
\operatorname{dim} T_{L} V^{1}>g(C)-2
$$

is equivalent to V^{1} being singular in L. Thus, for $r=1$ we obtain the well-known statement that if a point $L \in \Theta$ with $\operatorname{dim}|L|=1$ is in $\Theta_{\text {sing }}$ then the singularity is exceptional (in the sense of Beauville [B3]).

Proof of Lemma 3.1. We consider the Prym-Petri map introduced by Welters [W2, 1.8]:

$$
\beta: \wedge^{2} H^{0}(\tilde{C}, L) \rightarrow H^{0}\left(\tilde{C}, K_{\tilde{C}}\right)^{-}, \quad s_{i} \wedge s_{j} \mapsto s_{i} \sigma^{*} s_{j}-s_{j} \sigma^{*} s_{i}
$$

here $\sigma: \tilde{C} \rightarrow \tilde{C}$ is the involution induced by the double cover. Note that $H^{0}\left(\tilde{C}, K_{\tilde{C}}\right)^{-}$is identified with the tangent space of the Prym variety; in particular, it has dimension $g(C)-1$. By [W2, Prop. 1.9], the Zariski tangent space of V^{r} at the point L is equal to the orthogonal of the image of β. Thus, if $\operatorname{dim} T_{L} V^{r}>$ $g(C)-2 r$ then $\mathrm{rk} \beta<2 r-1$. Because $\wedge^{2} H^{0}(\tilde{C}, L)$ has dimension $\frac{r(r+1)}{2}$, that statement is equivalent to

$$
\begin{equation*}
\operatorname{dim} \operatorname{ker} \beta>\frac{r(r+1)}{2}-2 r-1 \tag{1}
\end{equation*}
$$

The locus of decomposable 2-forms in $\wedge^{2} H^{0}(\tilde{C}, L)$ is the affine cone over the Plücker embedding of $G\left(2, H^{0}(\tilde{C}, L)\right)$ in $\mathbb{P}\left(\wedge^{2} H^{0}(\tilde{C}, L)\right)$, so it has dimension $2 r-1$. Thus, by (1) there is a nonzero decomposable vector $s_{i} \wedge s_{j}$ in $\operatorname{ker} \beta$. This means that $s_{i} \sigma^{*} s_{j}-s_{j} \sigma^{*} s_{i}=0$ and so s_{j} / s_{i} defines a rational function h on C. We conclude by taking $M=\mathcal{O}_{C}\left((h)_{0}\right)$ and F the maximal common divisor between $\left(s_{i}\right)_{0}$ and $\left(s_{j}\right)_{0}$. By construction, F is effective and $\operatorname{dim}|M| \geq 1$.

By [CaLV,Thm. 2.2; IPau, Lemma 2.1], every irreducible component of the BrillNoether locus V^{2} has dimension at most $g(C)-4$ provided C is not hyperelliptic. The following estimate is a generalization of their statement to arbitrary r.
3.3. Lemma. We have

$$
\operatorname{dim} V^{r} \leq g(C)-2-r \quad \forall r \geq 2
$$

Proof. Denote by $\left|K_{C}\right| \subset C^{(2 g(C)-2)}$ the set of effective canonical divisors and by $\mathrm{Nm} \pi: \tilde{C}^{(2 g(C)-2)} \rightarrow C^{(2 g(C)-2)}$ the norm map. Since the canonical linear system $\left|K_{C}\right|$ defines an embedding, it follows from [B3, Sec. 2, Cor.] that $\mathrm{Nm} \pi^{-1}\left(\left|K_{C}\right|\right)$
has exactly two irreducible components, Λ_{0} and Λ_{1}, and that both are normal varieties of dimension $g(C)-1$. Let

$$
i: \tilde{C}^{(2 g(C)-2)} \rightarrow \operatorname{Pic}^{2 g(C)-2} \tilde{C}, \quad D \mapsto \mathcal{O}_{\tilde{C}}(D)
$$

be the Abel-Jacobi map; then, up to renumbering,

$$
\varphi\left(\Lambda_{0}\right)=P^{-} \quad \text { and } \quad \varphi\left(\Lambda_{1}\right)=\Theta \subset P^{+}
$$

Recall that for all $L \in \operatorname{Pic} \tilde{C}$ we have the set-theoretic equality $i^{-1}(L)=|L|$. In particular, we see that

$$
\begin{equation*}
\operatorname{dim} i^{-1}\left(V^{r}\right) \geq \operatorname{dim} V^{r}+r \tag{2}
\end{equation*}
$$

for every $r \geq 0$.
Suppose now that r is even (the odd case is analogous and is left to the reader). For a general point $L \in P^{-}$one has $\operatorname{dim}|L|=0$. Thus, for $r \geq 2$,

$$
i^{-1}\left(V^{r}\right) \subsetneq \Lambda_{1}
$$

hence $i^{-1}\left(V^{r}\right)$ has dimension at most $g(C)-2$. We conclude by using (2).
3.4. Remark. In the proof we used non-hyperelliptic C only to show that Λ_{0} and Λ_{1} are irreducible. Since inequality (2) is valid without this property, we obtain

$$
\operatorname{dim} V^{r} \leq g(C)-1-r \quad \forall r \geq 2
$$

We will see in Section 4.A that this estimate is optimal.
We can now use Marten's theorem to give an estimate of the dimension of the singular locus $V_{\text {sing }}^{2}$.
3.5. Proposition. Suppose that $g(C) \geq 6$ and $V_{\text {sing }}^{2}$ has an irreducible component S of dimension at least $g(C)-5$. Then there exist
(a) ad$\in\{3,4\}$ such that

$$
\operatorname{dim} W_{d}^{1} C=d-3
$$

and
(b) an irreducible component $W \subset W_{d}^{1} C$ of maximal dimension such that, for every $M \in W$,

$$
\operatorname{dim}\left|K_{C} \otimes M^{\otimes-2}\right|=g-d-2
$$

For every L in S we have

$$
L \simeq \pi^{*} M \otimes F
$$

for some $M \in W$ and some effective line bundle F on \tilde{C}. In particular, S is of dimension $g(C)-5$.

Proof. Let $L \in S$ be a generic point; then, by Lemma 3.3, $\operatorname{dim}|L|=2$. Since V^{2} is singular in L, it follows that

$$
\operatorname{dim} T_{L} V^{2}>g(C)-4
$$

Hence by Lemma 3.1 there exist a line bundle $M \in W_{d}^{1} C$ for some $d \leq g(C)-1$ and an effective line bundle F on \tilde{C} such that

$$
L \simeq \pi^{*} M \otimes F
$$

The family of such pairs (M, F) is a finite cover of the set of pairs (M, B) for which $M \in W_{d}^{1} C$ for some $d \leq g(C)-1$ and B is an effective divisor of degree $2 g(C)-2-2 d \geq 0$ on C such that $B \in\left|K_{C} \otimes M^{\otimes-2}\right|$.

By hypothesis, the parameter space T of the pairs (M, B) has dimension at least $g(C)-5$. Note that if $\operatorname{deg} M=g(C)-1$ then $K_{C} \otimes M^{\otimes-2} \simeq \mathcal{O}_{C}$. Thus M is a theta-characteristic and the space of pairs (M, B) is finite-a contradiction to $g(C)-5>0$. Because C is not hyperelliptic, $3 \leq \operatorname{deg} M<g(C)-1$. Moreover, by Clifford's theorem we have

$$
\begin{equation*}
\operatorname{dim}\left|H^{0}\left(C, K_{C} \otimes M^{\otimes-2}\right)\right| \leq g(C)-1-d-1 \tag{3}
\end{equation*}
$$

Thus the variety W parameterizing the line bundles M has dimension at least $d-3$. By construction we have $W \subset W_{d}^{1}$; by Marten's theorem [ACGH, IV, Thm. 5.1],

$$
\begin{equation*}
\operatorname{dim} W \leq \operatorname{dim} W_{d}^{1} C \leq d-3 \tag{4}
\end{equation*}
$$

Therefore, T and S each have dimension at most $g(C)-5$. Since (by hypothesis) S has dimension at least $g(C)-5$, it follows that (3) and (4) are equalities-at least for $M \in W$ generic. By upper semicontinuity and Clifford's theorem, we obtain equality for every $M \in W$.

The last remaining point is to show that this situation can occur only for $d \in$ $\{3,4\}$. We have already established the existence of a finite map

$$
W \rightarrow W_{2 g(C)-2-2 d}^{g-d-2} C, \quad M \mapsto K_{C} \otimes M^{\otimes-2}
$$

If $2 g(C)-2-2 d \leq g(C)-1$ then, by Marten's theorem, $\operatorname{dim} W_{2 g(C)-2-2 d}^{g(C)-2-2} C \leq 1$. Because $\operatorname{dim} W=d-3$, we see that $d \leq 4$. Now if $2 g(C)-2-2 d \geq g(C)$, we use the isomorphism

$$
W_{2 g(C)-2-2 d}^{g(C)-d-2} C \rightarrow W_{2 d}^{d-1} C, \quad K_{C} \otimes M^{\otimes-2} \mapsto M^{\otimes 2}
$$

together with Marten's theorem to show that $\operatorname{dim} W_{2 g(C)-2-2 d}^{g(C)-d-2} C \leq 1$; hence, again we obtain $d \leq 4$.

Proof of Theorem 1.1. The hyperelliptic case is settled in Proposition 4.2, so we suppose that C is not hyperelliptic.

By [D3, Exm. 6.2.1], the Brill-Noether-locus V^{2} is a determinantal variety. Since for non-hyperelliptic C it has the expected dimension, V^{2} is CohenMacaulay. Since $\operatorname{dim} V_{\text {sing }}^{2} \leq g(C)-5$ by Proposition 3.5, it follows that all the irreducible components of V^{2} are generically reduced. Recall that a generically reduced Cohen-Macaulay scheme is itself reduced. If dim $V_{\text {sing }}^{2} \geq g(C)-5$ then, by Proposition 3.5, $\operatorname{dim} W_{d}^{1} C=d-3$ for $d=3$ or 4 . Thus the second statement follows from Mumford's refinement of Marten's theorem [ACGH, IV, Thm. 5.2].

Remark. Lahoz and Naranjo [LN] use completely different methods to show that V^{2} is reduced and Cohen-Macaulay.
3.6. Corollary. Let C be a smooth non-hyperelliptic curve of genus $g(C) \geq 6$, and let $\pi: \tilde{C} \rightarrow C$ be an étale double cover. If V^{2} is reducible, then C is a plane quintic, trigonal, or bielliptic.

Remark. Teixidor i Bigas [T] uses the Martens-Mumford theorem to determine when the singular locus of a Jacobian of a curve is reducible.

Proof of Corollary 3.6. By a theorem of Debarre [D3, Exm. 6.2.1], the locus V^{2} is $(g(C)-5)$-connected. In other words, if V^{2} is not irreducible then there exist two irreducible components $Z_{1}, Z_{2} \subset V^{2}$ such that $Z_{1} \cap Z_{2}$ has dimension at least $g(C)-5$ in one point [D3, p. 287]. So if V^{2} is reducible, its singular locus has dimension at least $g(C)-5$. Now conclude using Theorem 1.1.

4. Examples

4.A. Hyperelliptic Curves

Let C be a smooth hyperelliptic curve of genus $g(C)$. Let $\pi: \tilde{C} \rightarrow C$ be an étale double cover such that the Prym variety (P, Θ) is an irreducible principally polarized abelian variety (i.e., \tilde{C} is also a hyperelliptic curve). Let $\sigma: \tilde{C} \rightarrow \tilde{C}$ be the involution induced by π.

Recall from [BiLa, Chap. 12, Sec. 5] that in this case, for a fixed $p_{0} \in C$, the Abel-Prym map

$$
\alpha: \tilde{C} \rightarrow P, \quad p \mapsto \sigma(p)-p+\sigma\left(p_{0}\right)-p_{0}
$$

is two-to-one onto its image C^{\prime} (which is a smooth curve) and the Prym variety (P, Θ) is isomorphic to $\left(J\left(C^{\prime}\right), \Theta_{C^{\prime}}\right)$.

In [CaLV, Lemma 2.1] the authors show that, for C not hyperelliptic, V^{2} is a translate of the theta-dual of the Abel-Prym embedded curve $\tilde{C} \subset P$. In fact, their argument works also for C hyperelliptic if one replaces $\tilde{C} \subset P$ by $\alpha(\tilde{C})=$ $C^{\prime} \subset P$. Thus we have the following statement.
4.1. Lemma. The Brill-Noether locus V^{2} is a translate of the theta-dual $T\left(C^{\prime}\right)$.

Since the Prym variety (P, Θ) is isomorphic to $\left(J\left(C^{\prime}\right), \Theta_{C^{\prime}}\right)$, it follows that the theta-dual of C^{\prime} is a translate of $W_{g(C)-3}^{0} C^{\prime}$. In particular, V^{2} is irreducible of dimension $g(C)-3$.
4.2. Proposition. Let C be a smooth hyperelliptic curve of genus $g(C) \geq 6$, and let $\pi: \tilde{C} \rightarrow C$ be an étale double cover such that the Prym variety (P, Θ) is an irreducible principally polarized abelian variety. Then V^{2} is irreducible of dimension $g(C)-3$ and, set-theoretically, it is a translate $W_{g(C)-3}^{0} C^{\prime}$.

For any point $L \in V^{2}$ we have

$$
L \simeq \pi^{*} H \otimes F
$$

where H is the unique g_{2}^{1} on C and F is an effective line bundle on \tilde{C}.

Proof. By Remark 3.4 we have a proper inclusion $V^{4} \subsetneq V^{2}$, so a general $L \in V^{2}$ satisfies $\operatorname{dim}|L|=2$. By Lemma 3.1 there exists a line bundle $M \in W_{d}^{1} C$ for some $d \leq g(C)-1$ and an effective line bundle F on \tilde{C} such that

$$
L \simeq \pi^{*} M \otimes F
$$

We can now argue as in the proof of Proposition 3.5 to obtain the statement. We need only observe that the inequality

$$
\operatorname{dim}\left|H^{0}\left(C, K_{C} \otimes M^{\otimes-2}\right)\right| \leq g(C)-1-d-1
$$

is also valid on a hyperelliptic curve unless M is a multiple of the g_{2}^{1}.

4.B. Plane Quintics

Let $C \subset \mathbb{P}^{2}$ be a smooth plane quintic and let $\pi: \tilde{C} \rightarrow C$ be an étale double cover. We denote by H the restriction of the hyperplane divisor to C and by $\eta \in \operatorname{Pic}^{0} C$ the 2-torsion line bundle inducing π. Let $\sigma: \tilde{C} \rightarrow \tilde{C}$ be the involution induced by π.
4.3. Example. Suppose that $h^{0}\left(C, \mathcal{O}_{C}(H) \otimes \eta\right)$ is odd-that is, suppose the Prym variety P^{-}is isomorphic to the intermediate Jacobian $J(X)$ of a cubic threefold $X[\mathrm{ClG}]$. Let us fix such an isomorphism of principally polarized abelian varieties $J(X) \xrightarrow{\sim} P^{-}$. The Fano variety F parameterizing lines on the threefold X is a smooth surface that has a natural embedding in the intermediate Jacobian $J(X)$. By [ClG], the surface $F \subset P$ has minimal cohomology class $\left[\frac{\Theta^{3}}{3!}\right]$. Moreover, it follows from [Höl] and [PPol] that the theta-dual satisfies $T(F)=-F$. It is well known that $\tilde{C} \subset F$ (up to translation), so

$$
-F=T(F) \subset V^{2}=T(\tilde{C})
$$

Since the condition $\operatorname{dim}|L| \geq 2$ is invariant under isomorphism, the Brill-Noether locus V^{2} is stable under the map $x \mapsto-x$. Thus $-F \subset V^{2}$ implies that $F \subset V^{2}$. Since the cohomology class of V^{2} is $\left[2 \frac{\Theta^{3}}{3!}\right]$, we see that (up to translation) V^{2} is a union of F and $-F$. In particular, V^{2} is reducible and its singular locus is the intersection of the two irreducible components. Since V^{2} is Cohen-Macaulay, the singular locus has pure dimension 1 .

We will now prove the converse of this example.
4.4. Proposition. The Brill-Noether locus V^{2} is reducible if and only if $h^{0}\left(C, \mathcal{O}_{C}(H) \otimes \eta\right)$ is odd-in other words, iff the Prym variety is isomorphic to the intermediate Jacobian of a cubic threefold. In this case, the singular locus $V_{\text {sing }}^{2}$ is a translate of \tilde{C}.

Proof. Suppose that $V_{\text {sing }}^{2}$ has a component S of dimension 1. Since C is not trigonal, we know from Proposition 3.5 that S corresponds to a 1-dimensional component $W \subset W_{4}^{1} C$ such that, for every $[M] \in W$,

$$
\left|K_{C} \otimes M^{\otimes-2}\right| \neq \emptyset
$$

By adjunction we have $K_{C} \simeq \mathcal{O}_{C}(2 H)$, and from [B2, Sec. 2, (iii)] it follows that $M \simeq \mathcal{O}_{C}(H-p)$, where $p \in C$ is a point. Hence $K_{C} \otimes M^{\otimes-2} \simeq \mathcal{O}_{C}(2 p)$ and a general point $L \in S$ is of the form

$$
L \simeq \pi^{*} \mathcal{O}_{C}(H-p) \otimes \mathcal{O}_{\tilde{C}}\left(q_{1}+q_{2}\right)
$$

where q_{1}, q_{2} are points in \tilde{C}. Since $\operatorname{Nm} \pi(L) \simeq \mathcal{O}_{C}(2 H)$ and C is not hyperelliptic, we obtain that $q_{i} \in \pi^{-1}(p)$. Then we can write

$$
L \simeq \pi^{*} H \quad \text { or } \quad L \simeq \pi^{*} \mathcal{O}_{C}(H) \otimes \mathcal{O}_{\tilde{C}}(q-\sigma(q)) \text { for some } q \in \tilde{C}
$$

Because L varies in a 1-dimensional family, we can exclude the first case. By Mumford's description of a Prym variety whose theta-divisor has a singular locus of dimension $g(C)-5$, we know that $h^{0}\left(C, \mathcal{O}_{C}(H) \otimes \eta\right)$ is even if and only if $h^{0}\left(\tilde{C}, \pi^{*} \mathcal{O}_{C}(H) \otimes \mathcal{O}_{\tilde{C}}(q-\sigma(q))\right)$ is even [M2, p. 347]. Since $V^{2} \subset P^{-}$, this shows the statement.

The description of the general points $L \in S$ shows that $V_{\text {sing }}^{2}$ has a unique 1dimensional component and that $V_{\text {sing }}^{2}$ is the translate by $\pi^{*} \mathcal{O}_{C}(H)$ of the AbelPrym embedded $\tilde{C} \subset P$.

4.C. Trigonal Curves

Let C be a trigonal curve of genus $g(C) \geq 6$. Let $\pi: \tilde{C} \rightarrow C$ be an étale double cover and (P, Θ) the corresponding Prym variety. By a theorem of Recillas [Re], the Prym variety is isomorphic as a principally polarized abelian variety to the polarized Jacobian $\left(J X, \Theta_{X}\right)$ of a tetragonal curve X of genus $g(C)-1$. By Recillas's construction [BiLa, Chap. 12.7] we also know how to recover the double cover $\pi: \tilde{C} \rightarrow C$ from the curve X. Namely, let $s: X^{(2)} \times X^{(2)} \rightarrow X^{(4)}$ be the sum map; then

$$
\tilde{C} \simeq p_{1}\left(s^{-1}\left(\mathbb{P}^{1}\right)\right),
$$

where $\mathbb{P}^{1} \subset X^{(4)}$ is the linear system giving the tetragonal structure and p_{1} is the projection onto the first factor. In particular, we see that

$$
\tilde{C} \subset X^{(2)} \simeq W_{2}^{0} X
$$

Therefore, up to choosing an isomorphism $(P, \Theta) \simeq\left(J X, \Theta_{X}\right)$ (and appropriate translates),

$$
T\left(W_{2}^{0} X\right) \subset T(\tilde{C}) \simeq V^{2}
$$

By [PPo1, Exm. 4.5], the theta-dual of $W_{2}^{0} X$ is $-W_{g(C)-4}^{0} X$. As in the case of the intermediate Jacobian described in Example 4.3, we see that (up to translation)

$$
V^{2}=-W_{g(C)-4}^{0} X \cup W_{g(C)-4}^{0} X
$$

moreover, the singular locus of V^{2} is the union of $\pm\left(W_{g(C)-4}^{0} X\right)_{\text {sing }}$, which has dimension at most $g(C)-6$, and the intersection of the two irreducible components, which has dimension $g(C)-5$.

5. Prym Varieties of Bielliptic Curves, I

5.A. Special Subvarieties

We recall some well-known facts about special subvarieties that we will use in the next section.

Let $\varphi: X \rightarrow Y$ be a double cover (which may be étale or ramified) of smooth curves. We suppose that $g(Y)$ is at least 1 and denote by $\operatorname{Nm} \varphi:$ Pic $X \rightarrow$ Pic Y the norm morphism. Let M be a globally generated line bundle of degree $d \geq 2$ on Y. Denote by $\mathbb{P}^{r} \subset Y^{(d)}$, where $r:=\operatorname{dim}|M|$, the set of effective divisors in the linear system $|M|$. If $\operatorname{Nm} \varphi: X^{(d)} \rightarrow Y^{(d)}$ is the norm map, then $\Lambda:=\operatorname{Nm} \varphi^{-1}\left(\mathbb{P}^{r}\right)$ is a reduced Cohen-Macaulay scheme of pure dimension r and the map $\Lambda \rightarrow|M|$ is étale of degree 2^{d} over the locus of smooth divisors in $|M|$ that do not meet the branch locus of φ.

If φ is étale then Λ has exactly two connected components, Λ_{0} and Λ_{1} [W1]. If φ is ramified, the scheme Λ is connected [N, Prop. 14.1]. Let

$$
i_{Y}: Y^{(d)} \rightarrow \operatorname{Pic}^{d} Y, \quad D \mapsto \mathcal{O}_{Y}(D)
$$

and

$$
i_{X}: X^{(d)} \rightarrow \operatorname{Pic}^{d} X, \quad D \mapsto \mathcal{O}_{X}(D)
$$

be the Abel-Jacobi maps; then we have the commutative diagram

The fibre of $i_{X}\left(X^{(d)}\right) \rightarrow i_{Y}\left(Y^{(d)}\right)$ over the point M-and thus the intersection of $i_{X}\left(X^{(d)}\right)$ with $\operatorname{Nm} \varphi^{-1}(M)$-is equal (at least set-theoretically) to $i_{X}(\Lambda)$.

Fix now a connected component $S \subset \Lambda$. Then we call $V:=i_{X}(S)$ a special subvariety associated to M. (In general it is not true that S is irreducible; in particular, the special subvariety may not be a variety. Note also that in general it should be obvious which covering we consider, and otherwise we say that V is a φ-special subvariety associated to M.) It is clear that

$$
\begin{equation*}
\operatorname{dim} V=r-\operatorname{dim}\left|\mathcal{O}_{X}(D)\right| \tag{5}
\end{equation*}
$$

where $D \in S$ is a general point.
The following technical definition will be crucial in the next section.
5.1. Definition. Let $\varphi: X \rightarrow Y$ be a double cover of smooth curves. An effective divisor $D \subset X$ is not simple if there exists a point $y \in Y$ such that $\varphi^{*} y \subset D$, and it is simple if this is not the case.

Note that if an effective divisor $D \subset X$ is not simple then $\operatorname{Nm} \varphi(D)$ is not reduced. Hence, if Y is an elliptic curve and M a line bundle of degree $d \geq 2$ on Y, then a
general divisor $D \in X^{(d)}$ such that $\operatorname{Nm} \varphi(D) \in|M|$ is simple: the linear system $|M|$ is base point free, so a general element is reduced.
5.2. Lemma. Let $\varphi: X \rightarrow Y$ be a ramified double cover of smooth curves such that Y is an elliptic curve. Denote by δ_{φ} the line bundle of degree $g(X)-1$ defining the cyclic cover φ. Let $M \not \approx \delta_{\varphi}$ be a line bundle of degree $2 \leq d \leq g(X)-1$ on Y. Then the following statements hold:
(a) Λ is smooth and irreducible;
(b) a general divisor $D \in \Lambda$ is simple and satisfies $\operatorname{dim}\left|\mathcal{O}_{X}(D)\right|=0$.

In particular, there exists a unique special subvariety associated to M and it is irreducible of dimension $d-1$.

Proof. We start by showing part (b). By the foregoing, D is simple and so, according to [M1, p. 338], we have an exact sequence

$$
0 \rightarrow \mathcal{O}_{Y} \rightarrow \varphi_{*} \mathcal{O}_{X}(D) \rightarrow \mathcal{O}_{Y}(\operatorname{Nm} \varphi(D)) \otimes \delta_{\varphi}^{*} \rightarrow 0
$$

Since $\operatorname{deg} D \leq \operatorname{deg} \delta_{\varphi}$ and $\mathcal{O}_{Y}(\operatorname{Nm} \varphi(D)) \simeq M \nsucceq \delta_{\varphi}$, we have

$$
h^{0}\left(Y, \mathcal{O}_{Y}(\operatorname{Nm} \varphi(D)) \otimes \delta_{\varphi}^{*}\right)=0
$$

Therefore, $1=h^{0}\left(Y, \mathcal{O}_{Y}\right)=h^{0}\left(Y, \varphi_{*} \mathcal{O}_{X}(D)\right)$.
For the proof of part (a) we note first that, since Λ is connected, it is sufficient to show the smoothness. Let $D \in \Lambda$ be any divisor. Then we have a unique decomposition

$$
D=\varphi^{*} A+R+B
$$

where A is an effective divisor on Y; the divisor R is effective, with support contained in the ramification locus of φ; and B is effective, simple, and has support disjoint from the ramification locus of φ. Since Y is an elliptic curve, we have

$$
h^{0}\left(Y, M \otimes \mathcal{O}_{Y}(-A-\operatorname{Nm} \varphi(R))\right)=h^{0}(Y, M)-\operatorname{deg}(A+\operatorname{Nm} \varphi(R))
$$

unless $\operatorname{deg} M=\operatorname{deg}\left(A+\varphi_{*} R\right)$ and $M \otimes \mathcal{O}_{Y}(-A-\operatorname{Nm} \varphi(R))$ is not trivial. Because $\operatorname{deg} M=\operatorname{deg} D$, this last case could occur only when $A=0$ and $B=0$; hence $D=R$. Yet by construction we have $M \simeq \mathcal{O}_{Y}(\operatorname{Nm} \varphi(D))=\mathcal{O}_{Y}(\operatorname{Nm} \varphi(R))$, so $M \otimes \mathcal{O}_{Y}(-A-\operatorname{Nm} \varphi(R))$ is trivial. By [N, Prop. 14.3] this shows the smoothness of Λ. The statement on the dimension follows by part (b) and equation (5).

5.B. The Irreducible Components of V^{2}

In this section C will be a smooth curve of genus $g(C) \geq 6$ that is bielliptic; in other words, we have a double cover $p: C \rightarrow E$ onto an elliptic curve E. As usual, $\pi: \tilde{C} \rightarrow C$ will be an étale double cover. In this section we suppose that the covering $p \circ \pi: \tilde{C} \rightarrow E$ is Galois. Then one sees easily that the Galois group is $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Using the Galois action on \tilde{C} yields the commutative diagram

(The presentation here follows [D1, Chap. 5], to which we refer for details.) It is straightforward to see that

$$
g\left(C_{1}\right)+g\left(C_{2}\right)=g(C)+1
$$

and we will assume without loss of generality that $1 \leq g\left(C_{1}\right) \leq g\left(C_{2}\right) \leq g(C)$. Denote by Δ the branch locus of p and by δ the line bundle inducing the cyclic cover p. Then $2 \delta \simeq \Delta$ and, by the Hurwitz formula, $\operatorname{deg} K_{C}=\operatorname{deg} \Delta$; hence

$$
\operatorname{deg} \delta=g(C)-1
$$

The cyclic covers p_{1} and p_{2} are analogously given by line bundles δ_{1} and δ_{2} such that $\operatorname{deg} \delta_{1}=g\left(C_{1}\right)-1$ and $\operatorname{deg} \delta_{2}=g\left(C_{2}\right)-1$.

For any $a \in \mathbb{Z}$ we define closed subsets $Z_{a} \subset$ Pic $C_{1} \times \operatorname{Pic} C_{2}$ by

$$
\begin{aligned}
\left\{\left(L_{1}, L_{2}\right) \mid L_{1}\right. & \in W_{g\left(C_{1}\right)-1+a}^{0} C_{1}, \\
& \left.L_{2} \in W_{g\left(C_{2}\right)-1-a}^{0} C_{2}, \operatorname{Nm} p_{1}\left(L_{1}\right) \otimes \operatorname{Nm} p_{2}\left(L_{2}\right) \simeq \delta\right\}
\end{aligned}
$$

We note that the sets Z_{a} are empty unless $1-g\left(C_{1}\right) \leq a \leq g\left(C_{2}\right)-1$. Pulling back to \tilde{C} we obtain natural maps

$$
\left(\pi_{1}^{*}, \pi_{2}^{*}\right): Z_{a} \rightarrow \operatorname{Pic} \tilde{C}, \quad\left(L_{1}, L_{2}\right) \mapsto \pi_{1}^{*} L_{1} \otimes \pi_{2}^{*} L_{2}
$$

and by [D1, p. 230] the image $\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(Z_{a}\right)$ is in P^{-}if and only if a is odd. Moreover, we can argue as in [D1, Prop. 5.2.1] to show that

$$
\begin{equation*}
V^{2} \subset\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(\bigcup_{a \text { odd }} Z_{a}\right) \tag{6}
\end{equation*}
$$

5.3. Lemma. For a odd, the sets Z_{a} are empty or

$$
\begin{equation*}
\operatorname{dim} Z_{a}=g(C)-1-a \tag{7}
\end{equation*}
$$

Furthermore, Z_{a} is irreducible unless $g\left(C_{1}\right)=1$ and $a \geq g\left(C_{2}\right)-2$.
Proof. We divide the proof into two cases as follows.
Case 1: $g\left(C_{1}\right)>1$. We prove the statement for positive a (the argument is analogous for negative a). The projection onto the second factor gives a surjective
map $Z_{a} \rightarrow W_{g\left(C_{2}\right)-1-a}^{0} C_{2}$, and the fibres of this map are parameterized by effective line bundles L_{1} with fixed norm. Because $a \geq 1$, the line bundles L_{1} are of degree at least $g\left(C_{1}\right)$ and so are automatically effective. Thus the fibres identify to fibres of the norm map $\operatorname{Nm} p_{1}: \operatorname{Pic} C_{1} \rightarrow \operatorname{Pic} E$. Since the double covering p_{1} is ramified, it follows that the $\left(\operatorname{Nm} p_{1}\right)$-fibres are irreducible of dimension $g\left(C_{1}\right)-1$; hence Z_{a} is irreducible of the expected dimension.

Case 2: $g\left(C_{1}\right)=1$. The sets Z_{a} are empty for a negative, so suppose that a is positive. Arguing as in the first case, we obtain the statement on the dimension. In order to see that Z_{a} is irreducible for $a \leq g\left(C_{2}\right)-3$, we consider the surjective map induced by the projection onto the first factor $Z_{a} \rightarrow \operatorname{Pic}^{g\left(C_{1}\right)-1+a} C_{1}$. The fibre over a line bundle L_{1} is the union of the p_{2}-special subvarieties associated to $\delta \otimes \operatorname{Nm} p_{1} L_{1}^{*}$. Since $2 \leq \operatorname{deg} \delta \otimes \operatorname{Nm} p_{1}\left(L_{1}^{*}\right) \leq g\left(C_{2}\right)-2$, it follows from Lemma 5.2 that the unique special subvariety is irreducible and so the fibres are irreducible.

Since all the irreducible components of V^{2} have dimension $g(C)-4$, by (6) and (7) we have

$$
\begin{equation*}
V^{2} \subset\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(\bigcup_{a \text { odd, }|a| \leq 3} Z_{a}\right) \tag{8}
\end{equation*}
$$

If $\left(L_{1}, L_{2}\right) \in Z_{ \pm 3}$ then, by the Riemann-Roch theorem, it follows that $\operatorname{dim}\left|L_{1}\right| \geq 2$ and $\operatorname{dim}\left|L_{2}\right| \geq 2$; therefore,

$$
\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(Z_{ \pm 3}\right) \subset V^{2} .
$$

For the sets $Z_{ \pm 1}$ this cannot be true, since equation (7) shows that they have dimension $g(C)-2$. We introduce the following smaller loci:

$$
\begin{aligned}
W_{1} & :=\left\{\left(L_{1}, L_{2}\right) \in Z_{1} \mid L_{1} \in W_{g\left(C_{1}\right)}^{1} C_{1}\right\} \\
W_{-1} & :=\left\{\left(L_{1}, L_{2}\right) \in Z_{-1} \mid L_{2} \in W_{g\left(C_{2}\right)}^{1} C_{2}\right\}
\end{aligned}
$$

Note that if $g\left(C_{1}\right)=1$ then $W_{1}=\emptyset$: there is no g_{1}^{1} on a nonrational curve. Because $\operatorname{dim} W_{g\left(C_{1}\right)}^{1} C_{1}=g\left(C_{1}\right)-2$ (resp., $\operatorname{dim} W_{g\left(C_{2}\right)}^{1} C_{1}=g\left(C_{2}\right)-2$), one may easily deduce (from the proof of Lemma 5.2) that the sets $W_{ \pm 1}$ are either empty or irreducible of dimension $g(C)-4$.

By the same lemma we see that, for fixed L_{1} (resp. L_{2}) and general L_{2} (resp. $\left.L_{1}\right)$ such that $\left(L_{1}, L_{2}\right) \in W_{1}$ (resp. $\left.\left(L_{1}, L_{2}\right) \in W_{-1}\right)$, the linear system $\left|L_{1}\right|$ (resp. $\left.\left|L_{2}\right|\right)$ contains a unique effective divisor and this divisor is simple.

Observe that if $\left(L_{1}, L_{2}\right) \in W_{ \pm 1}$ then $\operatorname{dim}\left|\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(L_{1}, L_{2}\right)\right| \geq 1$. Since these sets map into the component P^{-}, we obtain

$$
\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(W_{ \pm 1}\right) \subset V^{2}
$$

5.4. Proposition. We have

$$
V^{2}=\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(Z_{-3} \cup W_{-1} \cup W_{1} \cup Z_{3}\right)
$$

The proof requires some technical preparation.
5.5. Definition. Let $\varphi: X \rightarrow Y$ be a double cover of smooth curves, and let L be a line bundle on X such that $\operatorname{dim}|L| \geq 1$. Then the line bundle L is simple if every divisor in $D \in|L|$ is simple in the sense of Definition 5.1.
5.6. Lemma [D1, Cor. 5.2.8]. In our situation, let $L_{1} \in \operatorname{Pic} C_{1}$ and $L_{2} \in \operatorname{Pic} C_{2}$ be effective line bundles such that $L \simeq \pi_{1}^{*} L_{1} \otimes \pi_{2}^{*} L_{2}$. If L_{1} is p_{1}-simple, then

$$
h^{0}(\tilde{C}, L) \leq 2 h^{0}\left(C_{2}, L_{2}\right)+g\left(C_{2}\right)-1-\operatorname{deg} L_{2} .
$$

Analogously, if L_{2} is p_{2}-simple then

$$
h^{0}(\tilde{C}, L) \leq 2 h^{0}\left(C_{1}, L_{1}\right)+g\left(C_{1}\right)-1-\operatorname{deg} L_{1}
$$

Proof of Proposition 5.4. Let $L \in V^{2}$ be an arbitrary line bundle. By the inclusion (8) we need only show that if $L \in\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(Z_{ \pm 1}\right)$ and $L \notin\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(Z_{-3} \cup Z_{3}\right)$ then $L \in\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(W_{ \pm 1}\right)$. We will suppose that $L \in\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(Z_{1}\right)$; the other case is analogous and is left to the reader. Because $L \in\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(Z_{1}\right)$, we can write

$$
L \simeq \pi_{1}^{*} L_{1} \otimes \pi_{2}^{*} L_{2}
$$

with L_{1} effective of degree $g\left(C_{1}\right)$ and L_{2} effective of degree $g\left(C_{1}\right)-2$. If L_{2} is not simple then L is in $\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(Z_{3}\right)$, which we have already excluded. Hence L_{2} is simple and so, by Lemma 5.6,

$$
3 \leq h^{0}(\tilde{C}, L) \leq 2 h^{0}\left(C_{1}, L_{1}\right)+g\left(C_{1}\right)-1-g\left(C_{1}\right)
$$

Therefore, $\operatorname{dim}\left|L_{1}\right| \geq 1$ and $L \in\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(W_{1}\right)$.
5.7. Corollary. If $g\left(C_{1}\right)=1$ then

$$
V^{2}=\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(Z_{3}\right)
$$

In particular, V^{2} is irreducible.
Proof. Since the sets Z_{-3}, W_{-1}, and W_{1} are empty for $g\left(C_{1}\right)=1$, the first statement is immediate from Proposition 5.4. Since $g\left(C_{1}\right)=1$ implies that $g\left(C_{2}\right)=g(C)$ and $g(C) \geq 6$ by hypothesis, it follows from Lemma 5.3 that Z_{3} is irreducible.

We now focus on the case $g\left(C_{1}\right) \geq 2$. Proposition 5.4 reduces the study of V^{2} to understanding the sets $W_{ \pm 1}, Z_{ \pm 3}$ and their images in P^{-}. We start with the following observation.
5.8. Lemma. For $g\left(C_{1}\right) \geq 2$,

$$
\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(W_{1}\right)=\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(W_{-1}\right)
$$

Proof. We claim that the following holds: If $L_{1} \in W_{g\left(C_{1}\right)}^{1} C_{1}$ is a general point then
(a) L_{1} is not simple and
(b) there exists a point $x \in E$ such that

$$
L_{1} \simeq p_{1}^{*} \mathcal{O}_{E}(x) \otimes \mathcal{O}_{C_{1}}\left(D_{1}\right)
$$

with D_{1} an effective divisor such that $\mathcal{O}_{E}\left(\operatorname{Nm} p_{1}\left(D_{1}\right)+x\right) \simeq \delta_{1}$.

Assuming this for the time being, let us show how to conclude. If $L \in\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(W_{1}\right)$ is a general point, then $L \simeq \pi_{1}^{*} L_{1} \otimes \pi_{2}^{*} L_{2}$ with $L_{1} \in W_{g\left(C_{1}\right)}^{1} C_{1}$ a general point and L_{2} a p_{2}-simple line bundle. Thus, by the claim we can write

$$
L \simeq \pi_{1}^{*} \mathcal{O}_{C_{1}}\left(D_{1}\right) \otimes \pi_{2}^{*}\left(L_{2} \otimes p_{2}^{*} \mathcal{O}_{E}(x)\right)
$$

Since $\mathcal{O}_{E}\left(\operatorname{Nm} p_{1}\left(D_{1}\right)+x\right) \simeq \delta_{1}$ and $\delta \simeq \delta_{1} \otimes \delta_{2}$, a short computation shows that $\mathrm{Nm} p_{2}\left(L_{2}\right) \otimes \mathcal{O}_{E}(x) \simeq \delta_{2}$. Moreover L_{2} is p_{2}-simple and so, by [D1, Prop. 5.2.7], $\operatorname{dim}\left|L_{2} \otimes p_{2}^{*} \mathcal{O}_{E}(x)\right| \geq 1$. Hence L is in $\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(W_{-1}\right)$. This shows one inclusion; the proof of the other is analogous.

Proof of the claim. Set

$$
S:=\left\{\left(x, D_{1}\right) \in E \times C_{1}^{\left(g\left(C_{1}\right)-2\right)}\left|x+\operatorname{Nm} p_{1}\left(D_{1}\right) \in\right| \delta_{1} \mid\right\} .
$$

(For $g\left(C_{1}\right)=2$, the symmetric product $C_{1}^{\left(g\left(C_{1}\right)-2\right)}$ is a point; it corresponds to the zero divisor on C_{1}.) Observe that the projection $p_{2}: S \rightarrow C_{1}^{\left(g\left(C_{1}\right)-2\right)}$ on the second factor is an isomorphism, so S is not uniruled. For $\left(x, D_{1}\right) \in S$ general, the divisor D_{1} is p_{1}-simple by Lemma 5.2 and so, by [M1, p. 338], we have the exact sequence

$$
0 \rightarrow \mathcal{O}_{E}(x) \rightarrow\left(p_{1}\right)_{*} \mathcal{O}_{C_{1}}\left(p_{1}^{*} x+D_{1}\right) \rightarrow \mathcal{O}_{E}\left(x+\operatorname{Nm} p_{1}\left(D_{1}\right)\right) \otimes \delta_{1}^{*} \rightarrow 0
$$

By construction we have $\mathcal{O}_{E}\left(x+\operatorname{Nm} p_{1}\left(D_{1}\right)\right) \otimes \delta_{1}^{*} \simeq \mathcal{O}_{E}$. Thus $H^{1}\left(E, \mathcal{O}_{E}(x)\right)=$ 0 implies that $h^{0}\left(C_{1}, \mathcal{O}_{C_{1}}\left(p_{1}^{*} x+D_{1}\right)\right)=2$. Hence the image of

$$
\tau: S \rightarrow \operatorname{Pic} C_{1}, \quad\left(x, D_{1}\right) \mapsto \mathcal{O}_{C_{1}}\left(p_{1}^{*} x+D_{1}\right)
$$

is contained in $W_{g\left(C_{1}\right)}^{1} C_{1}$. Because S is not uniruled, the general fibre of $S \rightarrow \tau(S)$ has dimension 0. By Riemann-Roch, the residual map $W_{g\left(C_{1}\right)}^{1} C_{1} \rightarrow W_{g\left(C_{1}\right)-2}^{0} C_{1}$ is an isomorphism and so $W_{g\left(C_{1}\right)}^{1} C_{1}$ is irreducible of dimension $g\left(C_{1}\right)-2$. Hence τ is surjective on $W_{g\left(C_{1}\right)}^{1}\left(C_{1}\right)$.

Suppose that $g\left(C_{1}\right) \geq 2$. Let $\left(J C_{1}, \Theta_{C_{1}}\right)$ and $\left(J C_{2}, \Theta_{C_{2}}\right)$ be the Jacobians of the curves C_{1} and C_{2} with their natural principal polarizations. Since p_{1} and p_{2} are ramified, the pull-backs $\pi_{1}^{*}: J E \rightarrow J C_{1}$ and $\pi_{2}^{*}: J E \rightarrow J C_{2}$ are injective and the restricted polarizations $B_{1}:=\left.\Theta_{C_{1}}\right|_{J E}$ and $B_{2}:=\left.\Theta_{C_{2}}\right|_{J E}$ are of type (2) [M1, Chap. 3]. We define

$$
P_{1}:=\operatorname{ker}\left(\operatorname{Nm} p_{1}: J C_{1} \rightarrow J E\right), \quad P_{2}:=\operatorname{ker}\left(\operatorname{Nm} p_{2}: J C_{2} \rightarrow J E\right)
$$

We set $A_{1}:=\left.\Theta_{C_{1}}\right|_{P_{1}}$ and $A_{2}:=\left.\Theta_{C_{2}}\right|_{P_{2}}$; then the polarizations A_{1} and A_{2} are of type $(1, \ldots, 1,2)$ [BiLa, Cor. 12.1.5].

If $p_{j}^{*} \times i_{P_{j}}: J E \times P_{j} \rightarrow J C_{j}$ denotes the natural isogeny, then $\left(p_{j}^{*} \times i_{P_{j}}\right)^{*} \Theta_{C_{j}} \equiv$ $B_{j} \boxtimes A_{j}$. Thus if $\alpha_{j}: J C_{j} \rightarrow J E \times \widehat{P_{j}}$ is the dual map then

$$
\begin{equation*}
\Theta_{C_{j}}^{\otimes 2} \equiv \alpha_{j}^{*}\left(\widehat{B_{j}} \boxtimes \widehat{A_{j}}\right) \tag{9}
\end{equation*}
$$

[BiLa, Prop. 14.4.4], where $\widehat{B_{j}}$ and $\widehat{A_{j}}$ are the dual polarizations. We remark that $\widehat{A_{j}}$ has type $(1,2, \ldots, 2)$.

By [D1, Prop. 5.5.1], the pull-back maps P_{1} and P_{2} into the Prym variety P and we obtain an isogeny $\left.\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\right|_{P_{1} \times P_{2}}: P_{1} \times P_{2} \rightarrow P$ such that

$$
\left.\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\right|_{P_{1} \times P_{2}} ^{*} \Theta \equiv A_{1} \boxtimes A_{2} .
$$

In particular, if $g: P \rightarrow \widehat{P_{1} \times P_{2}}$ denotes the dual map then

$$
\begin{equation*}
\Theta^{\otimes 2} \equiv g^{*}\left(\widehat{A_{1}} \boxtimes \widehat{A_{2}}\right) . \tag{10}
\end{equation*}
$$

5.9. Proposition. If $g\left(C_{1}\right) \geq 3$ then the cohomology classes of $\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(Z_{-3}\right)$, $\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(W_{1}\right)$, and $\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(Z_{3}\right)$ are not minimal. Moreover, their cohomology classes are distinct and so they are distinct irreducible components of V^{2}.

If $g\left(C_{1}\right)=2$ then the same holds for $\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(W_{1}\right)$ and $\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(Z_{3}\right)$.
Proof. In order to simplify the notation, we denote the pull-back of the polarizations $\widehat{A_{1}}$ and $\widehat{A_{2}}$ to $\widehat{P_{1} \times P_{2}}$ by the same letter.

We start by observing that is sufficient to show that $\left[\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(Z_{-3}\right)\right]$ (resp. $\left.\left[\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(Z_{-3}\right)\right]\right)$ is a nonnegative multiple of $g^{*}{\widehat{A_{1}}}^{3}\left(g^{*}{\widehat{A_{2}}}^{3}\right)$. Indeed, once we have shown this property, we can use that

$$
\left[\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(Z_{-3}\right)\right]+\left[\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(Z_{3}\right)\right]+\left[\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(W_{1}\right)\right]=\left[V^{2}\right]=\frac{\Theta^{3}}{3!}
$$

and the identity (10) to compute that

$$
\begin{aligned}
& {\left[\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(W_{1}\right)\right]} \\
& \quad=\frac{1}{3!2^{3}}\left[\left(1-a_{1}\right) g^{*}{\widehat{A_{1}}}^{3}+3 g^{*}{\widehat{A_{1}}}^{2} \widehat{A_{2}}+3 g^{*} \widehat{A_{1}}{\widehat{A_{2}}}^{2}+\left(1-a_{2}\right) g^{*}{\widehat{A_{2}}}^{3}\right]
\end{aligned}
$$

where $a_{1}, a_{2} \geq 0$ correspond to the cohomology class of $Z_{ \pm 3}$. It is clear that none of these classes is (a multiple of) a minimal cohomology class. If $g\left(C_{1}\right) \geq 4$ then all the classes are nonzero and distinct, in which case the images of $Z_{ \pm 3}$ and W_{1} are distinct irreducible components of V^{2}. If $2 \leq g\left(C_{1}\right) \leq 3$ then the set Z_{-3} is empty (and the corresponding class zero), so we obtain only two irreducible components.

Computation of the cohomology class of $\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(Z_{ \pm 3}\right)$. We will prove the claim for Z_{3}; the proof for Z_{-3} is analogous. We have the commutative diagram

therefore, if $X \subset J C_{1} \times J C_{2}$ is a subvariety such that $\left(\pi_{1}^{*}, \pi_{2}^{*}\right)(X) \subset P$, then its cohomology class is determined (up to a multiple) by the class of $q(X)$ in $\widehat{P_{1} \times P_{2}}$.

We choose a translate of Z_{3} that is in $J C_{1} \times J C_{2}$ and denote it by the same letter. We want to understand the geometry of $q\left(Z_{3}\right)$. Since the norm maps Nm p_{j}
are dual to the pull-backs p_{j}^{*} [M1, Chap. 1], the map q fits into an exact sequence of abelian varieties

$$
\begin{equation*}
0 \rightarrow J E \times J E \xrightarrow{p_{1}^{*} \times p_{2}^{*}} J C_{1} \times J C_{2} \xrightarrow{q} \widehat{P_{1} \times P_{2}} \rightarrow 0 \tag{11}
\end{equation*}
$$

Recall from the proof of Lemma 5.3 that Z_{3} is a fibre space over $W_{g\left(C_{1}\right)-4}^{0}$ such that, for given $L_{2} \in W_{g\left(C_{2}\right)-4}^{0}$, the fibre identifies to the fibre of $\mathrm{Nm} p_{1}: \mathrm{Pic}^{g\left(C_{1}\right)+2} C_{1} \rightarrow$ $\operatorname{Pic}^{g\left(C_{1}\right)+2} E$ over $\delta \otimes \operatorname{Nm} p_{2}\left(L_{2}^{*}\right)$. Thus Z_{3} identifies to a fibre product

$$
\operatorname{Pic}^{g\left(C_{1}\right)+2} C_{1} \times{ }_{J E} W_{g\left(C_{2}\right)-4}^{0} .
$$

Together with the exact sequence (11) this shows that

$$
q\left(Z_{3}\right)=\widehat{P_{1}} \times q_{2}\left(W_{g\left(C_{2}\right)-4}^{0}\right)
$$

where $q_{2}: J C_{2} \rightarrow P_{2}$ is the restriction of q to $J C_{2}$.
Thus we are left to compute the cohomology class of $q_{2}\left(W_{g\left(C_{2}\right)-4}^{0}\right)$. Note first that q_{2} is the composition of the isogeny $\alpha_{2}: J C_{2} \rightarrow J E \times \widehat{P_{2}}$ with the projection on $\widehat{P_{2}}$. Since the polarization $\widehat{B_{2}}$ is numerically equivalent to a multiple of $e \times \widehat{P_{2}} \subset J E \times \widehat{P_{2}}$ and since the cohomology class of $W_{g\left(C_{2}\right)-4}^{0}$ is $\frac{\Theta_{C_{2}}^{4}}{4!}$, it follows from the identity (9) that the cohomology class of $q_{2}\left(W_{g\left(C_{2}\right)-4}^{0}\right)$ is a multiple of ${\widehat{A_{2}}}^{3}$.
5.10. Remark. With some additional effort one can prove the following statement. If $g\left(C_{1}\right) \geq 2$, then the following equalities in $H^{6}(P, \mathbb{Z})$ hold:

$$
\begin{align*}
{\left[\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(Z_{-3}\right)\right] } & =\frac{1}{4!} g^{*} p_{\widehat{P_{1}}}^{*}{\widehat{A_{1}}}^{3} \tag{12}\\
{\left[\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(Z_{3}\right)\right] } & =\frac{1}{4!} g^{*} p_{\widehat{P_{2}}}^{*}{\widehat{A_{2}}}^{3} \tag{13}\\
{\left[\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\left(W_{1}\right)\right] } & =\frac{1}{8} g^{*}\left(p_{\widehat{P_{1}}}^{*}{\widehat{A_{1}}}^{2} p_{\widehat{P_{2}}}^{*} \widehat{A_{2}}+p_{\widehat{P_{1}}}^{*} \widehat{A_{1}} p_{\widehat{P_{2}}}^{*}{\widehat{A_{2}}}^{2}\right) \tag{14}
\end{align*}
$$

The polarization $\widehat{A_{j}}$ is of type $(1,2, \ldots, 2)$ and so, by [BiLa, Thm. 4.10.4], $\frac{1}{4!}{\widehat{A_{j}}}^{3}$ is a "minimal" cohomology class for $\left(P_{j}, \widehat{A_{j}}\right)$; in other words, it is in $H^{6}\left(P_{j}, \mathbb{Z}\right)$ and is not divisible.
5.11. Remark. Let $\mathcal{R}_{g(C)}$ be the moduli space of pairs (C, π), where C is a smooth projective curve of genus $g(C)$ and $\pi: \tilde{C} \rightarrow C$ is an étale double cover. We denote by

$$
\operatorname{Pr}: \mathcal{R}_{g(C)} \rightarrow \mathcal{A}_{g(C)-1}
$$

the Prym map associating to (C, π) the principally polarized Prym variety (P, Θ).
Let $\mathcal{B}_{g(C)}$ be the moduli space of bielliptic curves of genus $g(C) \geq 6$, and let $\mathcal{R}_{\mathcal{B}_{g(C)}} \subset \mathcal{R}_{g(C)}$ be the moduli space of étale double covers over them. Let $\mathcal{R}_{\mathcal{B}_{g(C), g\left(C_{1}\right)}}$ be those étale double covers such that $\tilde{C} \rightarrow C \rightarrow E$ has Galois group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and the curve C_{1} has genus $g\left(C_{1}\right)$.

By [D1, Thm. 4.1(i)], the closure of $\operatorname{Pr}\left(\mathcal{R}_{\mathcal{B}_{g(C), 1}}\right)$ in $\mathcal{A}_{g(C)-1}$ contains the locus of Jacobians of hyperelliptic curves of genus $g(C)-1$. A general hyperelliptic Jacobian has the property that the cohomology class of every subvariety is an integral multiple of the minimal class [Bis]. Hence the same property holds for a general element in $\operatorname{Pr}\left(\mathcal{R}_{\mathcal{B}_{g(C), 1}}\right)$. So if V^{2} were reducible then the irreducible components would have minimal cohomology class.

6. Prym Varieties of Bielliptic Curves, II

6.A. Tetragonal Construction and V^{2}

Denote by C an irreducible nodal curve of arithmetic genus $p_{a}(C) \geq 6$ and by $\pi: \tilde{C} \rightarrow C$ a Beauville admissible cover. By [B1], the corresponding Prym variety (P, Θ) is a principally polarized abelian variety. Suppose that C is a tetragonal curve-that is, suppose there exists a finite morphism $f: C \rightarrow \mathbb{P}^{1}$ of degree 4 . We set $H:=f^{*} \mathcal{O}_{\mathbb{P}^{1}}(1)$. By Donagi's tetragonal construction ([Do]; see also [BiLa, Chap. 12.8]), the corresponding special subvarieties give Beauville admissible covers $\tilde{C}^{\prime} \rightarrow C^{\prime}$ and $\tilde{C}^{\prime \prime} \rightarrow C^{\prime \prime}$ such that C^{\prime} and $C^{\prime \prime}$ are tetragonal and the Prym varieties are isomorphic to (P, Θ).

Consider now the residual line bundle $K_{C} \otimes H^{*}$. By Riemann-Roch, the linear series $\left|K_{C} \otimes H^{*}\right|$ is a $g_{2 p_{a}(C)-6}^{p_{a}(C)-4}$ to which we can apply the construction of special subvarieties (cf. Section 5.A). If $S \subset \Lambda$ is a connected component then, by [B3, Thm. 1 and Rem. 4], the cohomology class of $V:=i_{\tilde{C}}(S)$ is $\left[2 \frac{\Theta^{3}}{3!}\right]$. Denote by $\left(P^{+}, \Theta^{+}\right)$the canonically polarized Prym variety; thus,

$$
\Theta^{+}=\left\{L \in(\operatorname{Nm} \pi)^{-1}\left(K_{C}\right)| | L|\neq \emptyset, \operatorname{dim}| L \mid \equiv 0 \bmod 2\right\} .
$$

Up to exchanging \tilde{C}^{\prime} and $\tilde{C}^{\prime \prime}$, we can suppose that the image of the natural map

$$
V \times \tilde{C}^{\prime} \rightarrow J \tilde{C}
$$

is contained in P^{+}. By construction, the image is then contained in Θ^{+}; hence a translate of $-V$ is contained in the theta-dual $T\left(\tilde{C}^{\prime}\right)$. Since $T\left(\tilde{C}^{\prime}\right)$ equals the Brill-Noether locus $\left(V^{2}\right)^{\prime}$ of the covering $\tilde{C}^{\prime} \rightarrow C^{\prime}$, it has cohomology class $\left[2 \frac{\Theta^{3}}{3!}\right]$ and the inclusion is a (set-theoretical) equality.

The preceding argument shows that the special subvariety V is isomorphic to the Brill-Noether locus $\left(V_{2}\right)^{\prime}$ of a tetragonally related covering. The following technical lemma shows that this special subvariety is irreducible unless we are in a very special situation.
6.1. Lemma. Let C be an irreducible nodal curve of arithmetic genus $p_{a}(C) \geq 6$, and let $\pi: \tilde{C} \rightarrow C$ be a Beauville admissible cover. Suppose that C is a tetragonal curve but is not hyperelliptic, trigonal, or a plane quintic. Assume that the normalization v: $T \rightarrow C$ is a hyperelliptic curve, and denote by $h: T \rightarrow \mathbb{P}^{1}$ the hyperelliptic covering.

Denote by $f: C \rightarrow \mathbb{P}^{1}$ the morphism of degree 4 and set $H:=f^{*} \mathcal{O}_{\mathbb{P}^{1}}(1)$. Suppose that the base locus of the linear system $\left|K_{C} \otimes H^{*}\right|$ does not contain any points of $C_{\text {sing }}$, and suppose that the special subvariety S corresponding to $\left|K_{C} \otimes H^{*}\right|$ is reducible. Then the following claims hold.
(a) There exist points p, q in the smooth locus C_{sm} such that we have a two-to-one cover

$$
\varphi_{\left|H \otimes \mathcal{O}_{C}(p+q)\right|}: C \rightarrow \bar{C} \subset \mathbb{P}^{2}
$$

onto a singular plane cubic \bar{C}. This morphism factors through the hyperelliptic covering; that is, we have a commutative diagram

(b) If $x_{1}, x_{2} \in T$ such that $v\left(x_{1}\right)=v\left(x_{2}\right)$, then $h\left(x_{1}\right)=h\left(x_{2}\right)$ unless \bar{C} is nodal and $h\left(x_{1}\right)$ and $h\left(x_{2}\right)$ are mapped onto the unique node.

Proof. Since C is not a plane quintic, the linear system $\left|K_{C} \otimes H^{*}\right|$ is base point free. By [B3, Sec. 2, Cor.] applied to the pull-back of the linear system to T, we know that S is irreducible if the linear system $\left|K_{C} \otimes H^{*}\right|$ induces a map $f: C \rightarrow$ $\mathbb{P}^{p_{a}(C)-4}$ that is birational onto its image $f(C)$. Suppose now that this is not the case; then, for every generic point $p \in C$, there exists another generic point $q \in C$ such that

$$
h^{0}\left(C, K_{C} \otimes H^{*} \otimes \mathcal{O}_{C}(-p-q)\right)=h^{0}\left(C, K_{C} \otimes H^{*} \otimes \mathcal{O}_{C}(-p)\right)
$$

By Riemann-Roch, this equality implies that the linear system $\left|H \otimes \mathcal{O}_{C}(p+q)\right|$ is a base point free g_{6}^{2}. Because C is not hyperelliptic, we obtain in this way a 1-dimensional subset $W \subset W_{6}^{2} C$. Consider now the morphism $\varphi_{\left|\underline{H} \otimes \mathcal{O}_{C}(p+q)\right|}: C \rightarrow$ $\bar{C} \subset \mathbb{P}^{2}$. Because C is irreducible and not trigonal, the curve \bar{C} is an irreducible cubic or sextic curve.

Since H and $H \otimes \mathcal{O}_{C}(p+q)$ are base point free, it is easy to see that $\left|\nu^{*}\left(H \otimes \mathcal{O}_{C}(p+q)\right)\right|$ is a g_{6}^{3}. Thus we have $\nu^{*}\left(H \otimes \mathcal{O}_{C}(p+q)\right) \simeq h^{*} \mathcal{O}_{\mathbb{P}^{1}}(3)$ and a factorization $\bar{v}: \mathbb{P}^{1} \rightarrow \bar{C}$ such that $\bar{v} \circ h=\varphi_{\left|H \otimes \mathcal{O}_{C}(p+q)\right|} \circ \nu$.

In particular, $\varphi_{\left|H \otimes \mathcal{O}_{C}(p+q)\right|}$ is not birational onto its image and \bar{C} is a singular cubic. A look at the lemma's commutative diagram shows that if $x_{1}, x_{2} \in T$ such that $v\left(x_{1}\right)=v\left(x_{2}\right)$, then $h\left(x_{1}\right)=h\left(x_{2}\right)$ unless \bar{C} is nodal and $h\left(x_{1}\right)$ and $h\left(x_{2}\right)$ are mapped onto the unique node.

Remark. For the sake of completeness we also consider the case where, in Lemma 6.1, the normalization T is not hyperelliptic. In this case the pull-backs $v^{*}\left(H \otimes \mathcal{O}_{C}(p+q)\right)$ define a 1-dimensional subset $\tilde{W} \subset W_{6}^{2} T$. It follows from [ACGH, p. 198] that T is bielliptic, and if $h: T \rightarrow E$ is a two-to-one map onto an elliptic curve E then $\nu^{*}\left(H \otimes \mathcal{O}_{C}(p+q)\right) \simeq h^{*} L$, where $L \in \mathrm{Pic}^{3} E$. As before, we have a factorization $\bar{v}: E \rightarrow C^{\prime}$, which is easily seen to be an isomorphism. In particular, C is obtained from T by identifying points that are in a h-fibre.

6.B. The Irreducible Components of V^{2}

Let C^{\prime} be a smooth curve of genus $g(C) \geq 6$ that is bielliptic; in other words, we have a double cover $p^{\prime}: C^{\prime} \rightarrow E$ onto an elliptic curve E. As usual, $\pi^{\prime}: \tilde{C}^{\prime} \rightarrow C^{\prime}$
will be an étale double cover. We suppose that the morphism $p^{\prime} \circ \pi^{\prime}: \tilde{C}^{\prime} \rightarrow E$ is not Galois (in the terminology of [D1; N], the covering belongs to the family $\mathcal{R}_{\mathcal{B}_{g(C)}}^{\prime} \subset \mathcal{R}_{g(C)} ;$ cf. Remark 5.11).

If we apply the tetragonal construction to a general g_{4}^{1} on C, the result is a Beauville admissible cover $\pi: \tilde{C} \rightarrow C$ such that the normalization $v: T \rightarrow C$ is a smooth hyperelliptic curve T of genus $g(C)-2$. Denote by $h: T \rightarrow \mathbb{P}^{1}$ the hyperelliptic structure. Then v identifies two pairs of points, x_{1}, x_{2} and y_{1}, y_{2}, such that $h\left(x_{1}\right), h\left(x_{2}\right), h\left(y_{1}\right), h\left(y_{2}\right)$ are four distinct points in \mathbb{P}^{1} (this follows from the "figure locale" in [D1, 7.2.4]).

By [N, Chap. 15], a tetragonal structure on C can be constructed as follows. There exists a unique double cover $j: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ sending each pair $h\left(x_{1}\right), h\left(x_{2}\right)$ and $h\left(y_{1}\right), h\left(y_{2}\right)$ onto a single point. The four-to-one covering $j \circ h: T \rightarrow \mathbb{P}^{1}$ factors through the normalization ν, so we have a four-to-one cover $f: C \rightarrow \mathbb{P}^{1}$. After applying the tetragonal construction to $H:=f^{*} \mathcal{O}_{\mathbb{P}^{1}}(1)$, we recover the original étale double cover $\pi^{\prime}: \tilde{C}^{\prime} \rightarrow C^{\prime}$. We have already seen in Section 6.A that the Brill-Noether locus V^{2} associated to π^{\prime} is isomorphic to a special subvariety associated to $\left|K_{C} \otimes H^{*}\right|$.

Now, by considering the exact sequence

$$
0 \rightarrow v_{*}\left(K_{T} \otimes v^{*} H^{*}\right) \rightarrow K_{C} \otimes H^{*} \rightarrow \mathbb{C}_{v\left(x_{1}\right)} \oplus \mathbb{C}_{v\left(y_{1}\right)} \rightarrow 0
$$

one sees easily that the linear system $\left|K_{C} \otimes H^{*}\right|$ is base point free yet does not separate the singular points $\nu\left(x_{1}\right)$ and $\nu\left(y_{1}\right)$. Since the points $h\left(x_{1}\right), h\left(x_{2}\right)$, $h\left(y_{1}\right), h\left(y_{2}\right)$ are distinct, it follows from Lemma 6.1 that the special subvarieties are irreducible. Our final proposition summarizes these considerations.
6.2. Proposition. Let C^{\prime} be a smooth curve of genus $g\left(C^{\prime}\right) \geq 6$ that is bielliptic (i.e., we have a double cover $p^{\prime}: C^{\prime} \rightarrow$ E onto an elliptic curve E). Let $\pi^{\prime}: \tilde{C}^{\prime} \rightarrow$ C^{\prime} be an étale double cover such that the cover $\tilde{C}^{\prime} \rightarrow E$ is not Galois. Then V^{2} is irreducible.

7. Proof of Theorem 1.2

If V^{2} is reducible then, by Corollary $3.6, C$ is trigonal, a plane quintic, or bielliptic. The first two cases are settled in Sections 4.B and 4.C, respectively. If C is bielliptic, we distinguish two cases depending on whether or not the four-to-one cover $\tilde{C} \rightarrow C \rightarrow E$ is Galois. In the Galois case we conclude by Corollary 5.7 and Proposition 5.9; otherwise, we use Proposition 6.2.

References

[ACGH] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves, vol. I, Grundlehren Math. Wiss., 267, Springer-Verlag, New York, 1985.
[B1] A. Beauville, Prym varieties and the Schottky problem, Invent. Math. 41 (1997), 149-196.
[B2] ——, Les singularités du diviseur Θ de la jacobienne intermédiaire de l'hypersurface cubique dans \mathbf{P}^{4}, Algebraic threefolds (Varenna, 1981), Lecture Notes in Math., 947, pp. 190-208, Springer-Verlag, Berlin, 1982.
[B3] -, Sous-variétés spéciales des variétés de Prym, Compositio Math. 45 (1982), 357-383.
[Ber] A. Bertram, An existence theorem for Prym special divisors, Invent. Math. 90 (1987), 669-671.
[Bis] I. Biswas, Hodge cycles on moduli spaces of parabolic bundles over the general hyperelliptic curve, J. Algebraic Geom. 6 (1997), 717-720.
[BiLa] C. Birkenhake and H. Lange, Complex abelian varieties, Grundlehren Math. Wiss., 302, Springer-Verlag, Berlin, 2004.
[CaLV] S. Casalaina Martin, M. Lahoz, and F. Viviani, Cohomological support loci for Abel-Prym curves, Matematiche (Catania) 63 (2008), 205-222.
[ClG] C. H. Clemens and P. A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281-356.
[D1] O. Debarre, Sur les variétés abéliennes dont le diviseur theta est singulier en codimension 3, Duke Math. J. 57 (1988), 221-273.
[D2] -, Minimal cohomology classes and Jacobians, J. Algebraic Geom. 4 (1995), 321-335.
[D3] ——, Théorèmes de Lefschetz pour les lieux de dégénérescence, Bull. Soc. Math. France 128 (2000), 283-308.
[dCPr] C. De Concini and P. Pragacz, On the class of Brill-Noether loci for Prym varieties, Math. Ann. 302 (1995), 687-697.
[Do] R. Donagi, The tetragonal construction, Bull. Amer. Math. Soc. (N.S.) 4 (1981), 181-185.
[Ha] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York, 1977.
[Höl] A. Höring, M-regularity of the Fano surface, C. R. Math. Acad. Sci. Paris 344 (2007), 691-696.
[Hö2] -, Minimal classes on the intermediate Jacobian of a generic cubic threefold, Commun. Contemp. Math. 12 (2010), 55-70.
[IPau] E. Izadi and C. Pauly, Some properties of second order theta functions on Prym varieties, Math. Nachr. 230 (2001), 73-91.
[LN] M. Lahoz and J.-C. Naranjo, Theta-duality on Prym varieties and a Torelli theorem, Trans. Amer. Math. Soc. (to appear).
[M1] D. Mumford, Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup. (4) 4 (1971), 181-192.
[M2] -, Prym varieties. I, Contributions to analysis, pp. 325-350, Academic Press, New York, 1974.
[N] J.-C. Naranjo, Prym varieties of bi-elliptic curves, J. Reine Angew. Math. 424 (1992), 47-106.
[PPo1] G. Pareschi and M. Popa, Generic vanishing and minimal cohomology classes on abelian varieties, Math. Ann. 340 (2008), 209-222.
[PPo2] \quad, M-regularity and the Fourier-Mukai transform, Pure Appl. Math. Q. 4 (2008), 587-611.
[R] Z. Ran, On subvarieties of Abelian varieties, Invent. Math. 62 (1980), 459-479.
[Re] S. Recillas, Jacobians of curves with g_{4}^{1} 's are the Prym's of trigonal curves, Bol. Soc. Mat. Mexicana (2) 19 (1974), 9-13.
[S] V. V. Shokurov, Distinguishing Prymians from Jacobians, Invent. Math. 65 (1981/82), 209-219.
[T] M. Teixidor i Bigas, For which Jacobi varieties is Sing Θ reducible? J. Reine Angew. Math. 354 (1984), 141-149.
[W1] G. E. Welters, Abel-Jacobi isogenies for certain types of Fano threefolds, Math. Centre Tracts, 141, Mathematisch Centrum, Amsterdam, 1981.
[W2] ——, A theorem of Gieseker-Petri type for Prym varieties, Ann. Sci. École Norm. Sup. (4) 18 (1985), 671-683.

Université Pierre et Marie Curie
4 place Jussieu, Case 247
75252 Paris cedes 05
France
hoering@math.jussieu.fr

[^0]: Received June 11, 2011. Revision received October 3, 2011.
 Partially supported by the A.N.R. project "CLASS".

