Geometry of Brill–Noether Loci on Prym Varieties

ANDREAS HÖRING

1. Introduction

Given a smooth curve X, it is well known that the Brill–Noether loci $W_d^r X$ contain much interesting information about the curve X and its polarized Jacobian (JX, Θ_X) . Given a smooth curve C and an étale double cover $\pi : \tilde{C} \to C$, one can analogously define Brill-Noether loci V^r for the Prym variety (P, Θ) (see Section 2). Several fundamental results on these loci have been known for some time: the expected dimension is $g(C) - 1 - {\binom{r+1}{2}}$, the loci are nonempty if the expected dimension is nonnegative [Ber, Thm. 1.4], and they are connected if the expected dimension is positive [D3, Exm. 6.2]. If C is general in the moduli space of curves, then all the Brill-Noether loci are smooth and have the expected dimension [W2, Thm. 1.11]. Whereas the Brill–Noether locus $V^1 \subset P^+$ is the canonically defined theta-divisor and has received the attention of many authors, the study of higher Brill-Noether loci (and the information they contain about the étale cover $\pi: \tilde{C} \to C$) is a more recent development. Casalaina-Martin, Lahoz, and Viviani [CaLV] show that V^2 is set-theoretically the theta-dual (cf. Definition 2.1) of the Abel-Prym curve. Lahoz and Naranjo [LN] refine this statement and prove a Torelli theorem: the Brill–Noether locus V^2 determines the covering $\tilde{C} \rightarrow C$. That finding motivates a more detailed study of the geometry of V^2 . Our first result is as follows.

1.1. THEOREM. Let C be a smooth curve of genus $g(C) \ge 6$, and let $\pi : \tilde{C} \to C$ be an étale double cover such that the Prym variety (P, Θ) is an irreducible principally polarized abelian variety.

- (a) Suppose that C is hyperelliptic. Then V^2 is irreducible of dimension g(C) 3.
- (b) Suppose that C is not hyperelliptic. Then V^2 is a reduced Cohen–Macaulay scheme of dimension g(C) 4. If the singular locus V_{sing}^2 has an irreducible component of dimension at least g(C) 5, then C is a plane quintic, trigonal, or bielliptic.

The condition on the irreducibility is always satisfied unless *C* is hyperelliptic and \tilde{C} is not. In that case, (P, Θ) is isomorphic to a product of Jacobians [M2].

Received June 11, 2011. Revision received October 3, 2011.

Partially supported by the A.N.R. project "CLASS".

In the hyperelliptic case (cf. Proposition 4.2), the statement is a straightforward extension of [CaLV]. In the non-hyperelliptic case, it is based on the following observation: if the singular locus of V^2 is large, then the singularities are exceptional in the sense of [B3]. This provides a link with certain Brill–Noether loci on *JC*.

An immediate consequence of the theorem is that V^2 is irreducible unless *C* is a plane quintic, trigonal, or bielliptic (Corollary 3.6). The case of trigonal curves is very simple: (P, Θ) is isomorphic to a Jacobian *JX* and V^2 splits into two copies of $W_{g(C)-4}^0 X$. For a plane quintic, V^2 is reducible if and only if (P, Θ) is isomorphic to the intermediate Jacobian of a cubic threefold; in this case, V^2 splits into two copies of the Fano surface *F*. Note that the Fano surface *F* and the Brill–Noether loci $W_d^0 X$ are expected to be the only subvarieties of principally polarized abelian varieties having the minimal cohomology class $\left[\frac{\Theta^k}{k!}\right]$ [D2]. By [dCPr], the cohomology class of V^2 is $\left[2\frac{\Theta^{g(C)-4}}{(g(C)-4)!}\right]$; therefore, a reducible V^2 provides an important test for this conjecture. Our second result is the following theorem.

1.2. THEOREM. Let C be a smooth non-hyperelliptic curve of genus $g(C) \ge 6$, and let $\pi : \tilde{C} \to C$ be an étale double cover. Denote by (P, Θ) the polarized Prym variety. The Brill–Noether locus V^2 is reducible if and only if at least one of the following statements holds:

- (a) C is trigonal;
- (b) *C* is a plane quintic and (P, Θ) an intermediate Jacobian of a cubic threefold;
- (c) *C* is bielliptic and the covering $\pi : \tilde{C} \to C$ belongs to the family $\mathcal{R}_{\mathcal{B}_{g(C),g(C_1)}}$ with $g(C_1) \ge 2$ (cf. Remark 5.11). Then V^2 has two or three irreducible components, but none of them has minimal cohomology class.

If *C* is bielliptic of genus $g(C) \ge 8$, then the Prym variety is not a Jacobian of a curve [S]. Moreover, these Prym varieties form $\lfloor \frac{g(C)-1}{2} \rfloor$ distinct subvarieties of $\mathcal{A}_{g(C)-1}$ [D1]. For exactly one of these families, the general member has the property that the cohomology class of *any* subvariety is a multiple of the minimal class $\frac{\Theta^k}{k!}$. The proof of Theorem 1.2 shows that the Brill–Noether locus V^2 is irreducible if and only if the Prym variety belongs to this family! This is the first evidence for Debarre's conjecture that is not derived from low-dimensional cases or considerations on Jacobians and intermediate Jacobians (cf. [D2, Hö2, R]).

ACKNOWLEDGMENTS. The work of O. Debarre, M. Lahoz, and J.-C. Naranjo plays an important rôle in this paper. I want to thank them for patiently answering my numerous questions. The author acknowledges the support of the Albert-Ludwigs-Universität Freiburg, where the main part of this work was done.

2. Notation

Most of our arguments are valid for an arbitrary algebraically closed field of characteristic $\neq 2$. However, we work over \mathbb{C} so that we can apply [ACGH] and [D3], which are crucial for Theorem 1.1 and its consequences. For standard definitions in algebraic geometry we refer to [Ha] and for Brill–Noether theory to [ACGH].

Given a smooth curve C, we denote by Pic C its Picard scheme and by

$$\operatorname{Pic} C = \bigcup_{d \in \mathbb{Z}} \operatorname{Pic}^d C$$

the decomposition into its irreducible components. We will identify the Jacobian *JC* and the degree-0 component $\operatorname{Pic}^0 C$ of the Picard scheme. In order to simplify the notation we denote by $L \in \operatorname{Pic} C$ the point corresponding to a given line bundle *L* on *C*. We will abuse terminology somewhat and say that a line bundle is *effective* if it has a global section.

For $\varphi: X \to Y$ a finite cover between smooth curves and *D* a divisor on *X*, we denote the norm by $\operatorname{Nm} \varphi(D)$. In the same way, $\operatorname{Nm} \varphi$: Pic $X \to \operatorname{Pic} Y$ denotes the norm map. If \mathcal{F} is a coherent sheaf on *X* (in general, \mathcal{F} will be the locally free sheaf corresponding to some divisor), then we denote by $\varphi_* \mathcal{F}$ the push-forward as a sheaf.

Let *C* be a smooth curve of genus g(C) and let $\pi : \tilde{C} \to C$ be an étale double cover. We have $(\operatorname{Nm} \pi)^{-1}(K_C) = P^+ \cup P^-$, where $P^- \simeq P^+ \simeq P$ are defined by

$$P^{-} := \{ L \in (\operatorname{Nm} \pi)^{-1}(K_{C}) \mid \dim |L| \equiv 0 \mod 2 \},\$$
$$P^{+} := \{ L \in (\operatorname{Nm} \pi)^{-1}(K_{C}) \mid \dim |L| \equiv 1 \mod 2 \}.$$

For $r \ge 0$ we set

$$W_{2g(C)-2}^r \tilde{C} := \{ L \in \operatorname{Pic}^{2g(C)-2} \tilde{C} \mid \dim|L| \ge r \}.$$

The Brill-Noether loci of the Prym variety [W2] are defined as the scheme-theoretical intersections

$$V^r := \begin{cases} W^r_{2g(C)-2}\tilde{C} \cap P^- & \text{if } r \text{ is even,} \\ W^r_{2g(C)-2}\tilde{C} \cap P^+ & \text{if } r \text{ is odd.} \end{cases}$$

The notion of theta-dual was introduced by Pareschi and Popa in their work on Fourier–Mukai transforms (see [PPo2] for a survey).

2.1. DEFINITION. Let (A, Θ) be a principally polarized abelian variety, and let $X \subset A$ be any closed subset. Then the *theta-dual* T(X) of X is the maximal subset $Z \subset A$ such that $A - Z \subset \Theta$.

Note that T(X) has a natural scheme structure [PPo2].

3. The Singular Locus of V^2

Throughout this section we denote by *C* a smooth non-hyperelliptic curve of genus g(C) and by $\pi : \tilde{C} \to C$ an étale double cover. The following lemma will be used repeatedly.

3.1. LEMMA. Let $L \in V^r$ be a line bundle such that dim|L| = r. If the Zariski tangent space $T_L V^r$ satisfies

$$\dim T_L V^r > g(C) - 2r,$$

then there exist

(a) a line bundle M on C such that $\dim |M| \ge 1$ and

(b) an effective line bundle F on \tilde{C} such that

 $L \simeq \pi^* M \otimes F.$

3.2. REMARK. For r = 1, the scheme $V^1 = W^1_{2g(C)-2}\tilde{C} \cap P^+$ identifies with the canonical polarization Θ . The theta-divisor has dimension g(C) - 2, so the condition

$$\dim T_L V^1 > g(C) - 2$$

is equivalent to V^1 being singular in L. Thus, for r = 1 we obtain the well-known statement that if a point $L \in \Theta$ with dim|L| = 1 is in Θ_{sing} then the singularity is exceptional (in the sense of Beauville [B3]).

Proof of Lemma 3.1. We consider the Prym–Petri map introduced by Welters [W2, 1.8]:

$$\beta \colon \wedge^2 H^0(\tilde{C}, L) \to H^0(\tilde{C}, K_{\tilde{C}})^-, \quad s_i \wedge s_j \mapsto s_i \sigma^* s_j - s_j \sigma^* s_i$$

here $\sigma: \tilde{C} \to \tilde{C}$ is the involution induced by the double cover. Note that $H^0(\tilde{C}, K_{\tilde{C}})^-$ is identified with the tangent space of the Prym variety; in particular, it has dimension g(C) - 1. By [W2, Prop. 1.9], the Zariski tangent space of V^r at the point *L* is equal to the orthogonal of the image of β . Thus, if dim $T_L V^r > g(C) - 2r$ then rk $\beta < 2r - 1$. Because $\wedge^2 H^0(\tilde{C}, L)$ has dimension $\frac{r(r+1)}{2}$, that statement is equivalent to

$$\dim \ker \beta > \frac{r(r+1)}{2} - 2r - 1.$$
 (1)

The locus of decomposable 2-forms in $\wedge^2 H^0(\tilde{C}, L)$ is the affine cone over the Plücker embedding of $G(2, H^0(\tilde{C}, L))$ in $\mathbb{P}(\wedge^2 H^0(\tilde{C}, L))$, so it has dimension 2r - 1. Thus, by (1) there is a nonzero decomposable vector $s_i \wedge s_j$ in ker β . This means that $s_i \sigma^* s_j - s_j \sigma^* s_i = 0$ and so s_j/s_i defines a rational function h on C. We conclude by taking $M = \mathcal{O}_C((h)_0)$ and F the maximal common divisor between $(s_i)_0$ and $(s_j)_0$. By construction, F is effective and dim $|M| \ge 1$.

By [CaLV, Thm. 2.2; IPau, Lemma 2.1], every irreducible component of the Brill– Noether locus V^2 has dimension at most g(C) - 4 provided *C* is not hyperelliptic. The following estimate is a generalization of their statement to arbitrary *r*.

3.3. LEMMA. We have

$$\dim V^r \le g(C) - 2 - r \quad \forall r \ge 2.$$

Proof. Denote by $|K_C| \subset C^{(2g(C)-2)}$ the set of effective canonical divisors and by Nm π : $\tilde{C}^{(2g(C)-2)} \to C^{(2g(C)-2)}$ the norm map. Since the canonical linear system $|K_C|$ defines an embedding, it follows from [B3, Sec. 2, Cor.] that Nm $\pi^{-1}(|K_C|)$

788

has exactly two irreducible components, Λ_0 and Λ_1 , and that both are normal varieties of dimension g(C) - 1. Let

$$i: \tilde{C}^{(2g(C)-2)} \to \operatorname{Pic}^{2g(C)-2} \tilde{C}, \quad D \mapsto \mathcal{O}_{\tilde{C}}(D)$$

be the Abel-Jacobi map; then, up to renumbering,

 $\varphi(\Lambda_0) = P^-$ and $\varphi(\Lambda_1) = \Theta \subset P^+$.

Recall that for all $L \in \text{Pic } \tilde{C}$ we have the set-theoretic equality $i^{-1}(L) = |L|$. In particular, we see that

$$\dim i^{-1}(V^r) \ge \dim V^r + r \tag{2}$$

for every $r \ge 0$.

Suppose now that *r* is even (the odd case is analogous and is left to the reader). For a general point $L \in P^-$ one has dim|L| = 0. Thus, for $r \ge 2$,

$$i^{-1}(V^r) \subsetneq \Lambda_1$$

hence $i^{-1}(V^r)$ has dimension at most g(C) - 2. We conclude by using (2).

3.4. REMARK. In the proof we used non-hyperelliptic *C* only to show that Λ_0 and Λ_1 are irreducible. Since inequality (2) is valid without this property, we obtain

$$\dim V^r \le g(C) - 1 - r \quad \forall r \ge 2.$$

We will see in Section 4.A that this estimate is optimal.

We can now use Marten's theorem to give an estimate of the dimension of the singular locus V_{sing}^2 .

3.5. PROPOSITION. Suppose that $g(C) \ge 6$ and V_{sing}^2 has an irreducible component *S* of dimension at least g(C) - 5. Then there exist (a) $a \ d \in \{3, 4\}$ such that

$$\dim W_d^1 C = d - 3$$

and

(b) an irreducible component $W \subset W_d^1 C$ of maximal dimension such that, for every $M \in W$,

$$\dim |K_C \otimes M^{\otimes -2}| = g - d - 2.$$

For every L in S we have

$$L \simeq \pi^* M \otimes F$$

for some $M \in W$ and some effective line bundle F on \tilde{C} . In particular, S is of dimension g(C) - 5.

Proof. Let $L \in S$ be a generic point; then, by Lemma 3.3, dim|L| = 2. Since V^2 is singular in L, it follows that

$$\dim T_L V^2 > g(C) - 4.$$

Hence by Lemma 3.1 there exist a line bundle $M \in W_d^1 C$ for some $d \le g(C) - 1$ and an effective line bundle *F* on \tilde{C} such that

$$L \simeq \pi^* M \otimes F.$$

The family of such pairs (M, F) is a finite cover of the set of pairs (M, B) for which $M \in W_d^1 C$ for some $d \le g(C) - 1$ and B is an effective divisor of degree $2g(C) - 2 - 2d \ge 0$ on C such that $B \in |K_C \otimes M^{\otimes -2}|$.

By hypothesis, the parameter space *T* of the pairs (M, B) has dimension at least g(C) - 5. Note that if deg M = g(C) - 1 then $K_C \otimes M^{\otimes -2} \simeq \mathcal{O}_C$. Thus *M* is a theta-characteristic and the space of pairs (M, B) is finite—a contradiction to g(C) - 5 > 0. Because *C* is not hyperelliptic, $3 \le \deg M < g(C) - 1$. Moreover, by Clifford's theorem we have

$$\dim |H^0(C, K_C \otimes M^{\otimes -2})| \le g(C) - 1 - d - 1.$$
(3)

Thus the variety *W* parameterizing the line bundles *M* has dimension at least d-3. By construction we have $W \subset W_d^1$; by Marten's theorem [ACGH, IV, Thm. 5.1],

$$\dim W \le \dim W_d^1 C \le d - 3. \tag{4}$$

Therefore, *T* and *S* each have dimension at most g(C) - 5. Since (by hypothesis) *S* has dimension at least g(C) - 5, it follows that (3) and (4) are equalities—at least for $M \in W$ generic. By upper semicontinuity and Clifford's theorem, we obtain equality for every $M \in W$.

The last remaining point is to show that this situation can occur only for $d \in \{3, 4\}$. We have already established the existence of a finite map

$$W \to W^{g-d-2}_{2g(C)-2-2d}C, \quad M \mapsto K_C \otimes M^{\otimes -2}.$$

If $2g(C) - 2 - 2d \le g(C) - 1$ then, by Marten's theorem, dim $W_{2g(C)-2-2d}^{g(C)-d-2}C \le 1$. Because dim W = d - 3, we see that $d \le 4$. Now if $2g(C) - 2 - 2d \ge g(C)$, we use the isomorphism

$$W_{2g(C)-2-2d}^{g(C)-d-2}C \to W_{2d}^{d-1}C, \quad K_C \otimes M^{\otimes -2} \mapsto M^{\otimes 2d}$$

together with Marten's theorem to show that dim $W_{2g(C)-2-2d}^{g(C)-d-2}C \le 1$; hence, again we obtain $d \le 4$.

Proof of Theorem 1.1. The hyperelliptic case is settled in Proposition 4.2, so we suppose that *C* is not hyperelliptic.

By [D3, Exm. 6.2.1], the Brill–Noether-locus V^2 is a determinantal variety. Since for non-hyperelliptic *C* it has the expected dimension, V^2 is Cohen–Macaulay. Since dim $V_{sing}^2 \le g(C) - 5$ by Proposition 3.5, it follows that all the irreducible components of V^2 are generically reduced. Recall that a generically reduced Cohen–Macaulay scheme is itself reduced. If dim $V_{sing}^2 \ge g(C) - 5$ then, by Proposition 3.5, dim $W_d^1C = d - 3$ for d = 3 or 4. Thus the second statement follows from Mumford's refinement of Marten's theorem [ACGH, IV, Thm. 5.2].

REMARK. Lahoz and Naranjo [LN] use completely different methods to show that V^2 is reduced and Cohen–Macaulay.

3.6. COROLLARY. Let C be a smooth non-hyperelliptic curve of genus $g(C) \ge 6$, and let $\pi : \tilde{C} \to C$ be an étale double cover. If V^2 is reducible, then C is a plane quintic, trigonal, or bielliptic.

REMARK. Teixidor i Bigas [T] uses the Martens–Mumford theorem to determine when the singular locus of a Jacobian of a curve is reducible.

Proof of Corollary 3.6. By a theorem of Debarre [D3, Exm. 6.2.1], the locus V^2 is (g(C) - 5)-connected. In other words, if V^2 is not irreducible then there exist two irreducible components $Z_1, Z_2 \subset V^2$ such that $Z_1 \cap Z_2$ has dimension at least g(C) - 5 in one point [D3, p. 287]. So if V^2 is reducible, its singular locus has dimension at least g(C) - 5. Now conclude using Theorem 1.1.

4. Examples

4.A. Hyperelliptic Curves

Let *C* be a smooth hyperelliptic curve of genus g(C). Let $\pi : \tilde{C} \to C$ be an étale double cover such that the Prym variety (P, Θ) is an irreducible principally polarized abelian variety (i.e., \tilde{C} is also a hyperelliptic curve). Let $\sigma : \tilde{C} \to \tilde{C}$ be the involution induced by π .

Recall from [BiLa, Chap. 12, Sec. 5] that in this case, for a fixed $p_0 \in C$, the Abel–Prym map

$$\alpha \colon C \to P, \quad p \mapsto \sigma(p) - p + \sigma(p_0) - p_0$$

is two-to-one onto its image C' (which is a smooth curve) and the Prym variety (P, Θ) is isomorphic to $(J(C'), \Theta_{C'})$.

In [CaLV, Lemma 2.1] the authors show that, for *C* not hyperelliptic, V^2 is a translate of the theta-dual of the Abel–Prym embedded curve $\tilde{C} \subset P$. In fact, their argument works also for *C* hyperelliptic if one replaces $\tilde{C} \subset P$ by $\alpha(\tilde{C}) = C' \subset P$. Thus we have the following statement.

4.1. LEMMA. The Brill–Noether locus V^2 is a translate of the theta-dual T(C').

Since the Prym variety (P, Θ) is isomorphic to $(J(C'), \Theta_{C'})$, it follows that the theta-dual of C' is a translate of $W^0_{g(C)-3}C'$. In particular, V^2 is irreducible of dimension g(C) - 3.

4.2. PROPOSITION. Let C be a smooth hyperelliptic curve of genus $g(C) \ge 6$, and let $\pi : \tilde{C} \to C$ be an étale double cover such that the Prym variety (P, Θ) is an irreducible principally polarized abelian variety. Then V^2 is irreducible of dimension g(C) - 3 and, set-theoretically, it is a translate $W_{g(C)-3}^0C'$.

For any point $L \in V^2$ we have

$$L \simeq \pi^* H \otimes F$$
,

where *H* is the unique g_2^1 on *C* and *F* is an effective line bundle on \tilde{C} .

Proof. By Remark 3.4 we have a proper inclusion $V^4 \subsetneq V^2$, so a general $L \in V^2$ satisfies dim|L| = 2. By Lemma 3.1 there exists a line bundle $M \in W_d^1 C$ for some $d \le g(C) - 1$ and an effective line bundle F on \tilde{C} such that

$$L \simeq \pi^* M \otimes F.$$

We can now argue as in the proof of Proposition 3.5 to obtain the statement. We need only observe that the inequality

$$\dim |H^0(C, K_C \otimes M^{\otimes -2})| \le g(C) - 1 - d - 1$$

is also valid on a hyperelliptic curve unless M is a multiple of the g_2^1 .

4.B. Plane Quintics

Let $C \subset \mathbb{P}^2$ be a smooth plane quintic and let $\pi : \tilde{C} \to C$ be an étale double cover. We denote by *H* the restriction of the hyperplane divisor to *C* and by $\eta \in \operatorname{Pic}^0 C$ the 2-torsion line bundle inducing π . Let $\sigma : \tilde{C} \to \tilde{C}$ be the involution induced by π .

4.3. EXAMPLE. Suppose that $h^0(C, \mathcal{O}_C(H) \otimes \eta)$ is odd—that is, suppose the Prym variety P^- is isomorphic to the intermediate Jacobian J(X) of a cubic three-fold X [CIG]. Let us fix such an isomorphism of principally polarized abelian varieties $J(X) \xrightarrow{\sim} P^-$. The Fano variety F parameterizing lines on the threefold X is a smooth surface that has a natural embedding in the intermediate Jacobian J(X). By [CIG], the surface $F \subset P$ has minimal cohomology class $\left[\frac{\Theta^3}{3!}\right]$. Moreover, it follows from [Hö1] and [PPo1] that the theta-dual satisfies T(F) = -F. It is well known that $\tilde{C} \subset F$ (up to translation), so

$$-F = T(F) \subset V^2 = T(\tilde{C}).$$

Since the condition dim $|L| \ge 2$ is invariant under isomorphism, the Brill–Noether locus V^2 is stable under the map $x \mapsto -x$. Thus $-F \subset V^2$ implies that $F \subset V^2$. Since the cohomology class of V^2 is $\left[2\frac{\Theta^3}{3!}\right]$, we see that (up to translation) V^2 is a union of F and -F. In particular, V^2 is reducible and its singular locus is the intersection of the two irreducible components. Since V^2 is Cohen–Macaulay, the singular locus has pure dimension 1.

We will now prove the converse of this example.

4.4. PROPOSITION. The Brill–Noether locus V^2 is reducible if and only if $h^0(C, \mathcal{O}_C(H) \otimes \eta)$ is odd—in other words, iff the Prym variety is isomorphic to the intermediate Jacobian of a cubic threefold. In this case, the singular locus V_{sing}^2 is a translate of \tilde{C} .

Proof. Suppose that V_{sing}^2 has a component *S* of dimension 1. Since *C* is not trigonal, we know from Proposition 3.5 that *S* corresponds to a 1-dimensional component $W \subset W_4^1 C$ such that, for every $[M] \in W$,

$$|K_C \otimes M^{\otimes -2}| \neq \emptyset.$$

By adjunction we have $K_C \simeq \mathcal{O}_C(2H)$, and from [B2, Sec. 2, (iii)] it follows that $M \simeq \mathcal{O}_C(H-p)$, where $p \in C$ is a point. Hence $K_C \otimes M^{\otimes -2} \simeq \mathcal{O}_C(2p)$ and a general point $L \in S$ is of the form

$$L \simeq \pi^* \mathcal{O}_C(H-p) \otimes \mathcal{O}_{\tilde{C}}(q_1+q_2),$$

where q_1, q_2 are points in \tilde{C} . Since Nm $\pi(L) \simeq \mathcal{O}_C(2H)$ and *C* is not hyperelliptic, we obtain that $q_i \in \pi^{-1}(p)$. Then we can write

$$L \simeq \pi^* H$$
 or $L \simeq \pi^* \mathcal{O}_C(H) \otimes \mathcal{O}_{\tilde{C}}(q - \sigma(q))$ for some $q \in C$.

Because *L* varies in a 1-dimensional family, we can exclude the first case. By Mumford's description of a Prym variety whose theta-divisor has a singular locus of dimension g(C) - 5, we know that $h^0(C, \mathcal{O}_C(H) \otimes \eta)$ is even if and only if $h^0(\tilde{C}, \pi^*\mathcal{O}_C(H) \otimes \mathcal{O}_{\tilde{C}}(q - \sigma(q)))$ is even [M2, p. 347]. Since $V^2 \subset P^-$, this shows the statement.

The description of the general points $L \in S$ shows that V_{sing}^2 has a unique 1dimensional component and that V_{sing}^2 is the translate by $\pi^* \mathcal{O}_C(H)$ of the Abel– Prym embedded $\tilde{C} \subset P$.

4.C. Trigonal Curves

Let *C* be a trigonal curve of genus $g(C) \ge 6$. Let $\pi : \tilde{C} \to C$ be an étale double cover and (P, Θ) the corresponding Prym variety. By a theorem of Recillas [Re], the Prym variety is isomorphic as a principally polarized abelian variety to the polarized Jacobian (JX, Θ_X) of a tetragonal curve *X* of genus g(C) - 1. By Recillas's construction [BiLa, Chap. 12.7] we also know how to recover the double cover $\pi : \tilde{C} \to C$ from the curve *X*. Namely, let $s : X^{(2)} \times X^{(2)} \to X^{(4)}$ be the sum map; then

$$\tilde{C}\simeq p_1(s^{-1}(\mathbb{P}^1)),$$

where $\mathbb{P}^1 \subset X^{(4)}$ is the linear system giving the tetragonal structure and p_1 is the projection onto the first factor. In particular, we see that

$$\tilde{C} \subset X^{(2)} \simeq W_2^0 X.$$

Therefore, up to choosing an isomorphism $(P, \Theta) \simeq (JX, \Theta_X)$ (and appropriate translates),

$$T(W_2^0 X) \subset T(\tilde{C}) \simeq V^2.$$

By [PPo1, Exm. 4.5], the theta-dual of $W_2^0 X$ is $-W_{g(C)-4}^0 X$. As in the case of the intermediate Jacobian described in Example 4.3, we see that (up to translation)

$$V^{2} = -W^{0}_{g(C)-4}X \cup W^{0}_{g(C)-4}X;$$

moreover, the singular locus of V^2 is the union of $\pm (W^0_{g(C)-4}X)_{sing}$, which has dimension at most g(C) - 6, and the intersection of the two irreducible components, which has dimension g(C) - 5.

5. Prym Varieties of Bielliptic Curves, I

5.A. Special Subvarieties

We recall some well-known facts about special subvarieties that we will use in the next section.

Let $\varphi: X \to Y$ be a double cover (which may be étale or ramified) of smooth curves. We suppose that g(Y) is at least 1 and denote by Nm φ : Pic $X \to$ Pic Y the norm morphism. Let M be a globally generated line bundle of degree $d \ge 2$ on Y. Denote by $\mathbb{P}^r \subset Y^{(d)}$, where $r := \dim |M|$, the set of effective divisors in the linear system |M|. If Nm $\varphi: X^{(d)} \to Y^{(d)}$ is the norm map, then $\Lambda := \text{Nm } \varphi^{-1}(\mathbb{P}^r)$ is a reduced Cohen–Macaulay scheme of pure dimension r and the map $\Lambda \to |M|$ is étale of degree 2^d over the locus of smooth divisors in |M| that do not meet the branch locus of φ .

If φ is étale then Λ has exactly two connected components, Λ_0 and Λ_1 [W1]. If φ is ramified, the scheme Λ is connected [N, Prop. 14.1]. Let

$$i_Y \colon Y^{(d)} \to \operatorname{Pic}^d Y, \quad D \mapsto \mathcal{O}_Y(D)$$

and

$$i_X \colon X^{(d)} \to \operatorname{Pic}^d X, \quad D \mapsto \mathcal{O}_X(D)$$

be the Abel-Jacobi maps; then we have the commutative diagram

The fibre of $i_X(X^{(d)}) \to i_Y(Y^{(d)})$ over the point *M*—and thus the intersection of $i_X(X^{(d)})$ with Nm $\varphi^{-1}(M)$ —is equal (at least set-theoretically) to $i_X(\Lambda)$.

Fix now a connected component $S \subset \Lambda$. Then we call $V := i_X(S)$ a special subvariety associated to M. (In general it is not true that S is irreducible; in particular, the special subvariety may not be a variety. Note also that in general it should be obvious which covering we consider, and otherwise we say that V is a φ -special subvariety associated to M.) It is clear that

$$\dim V = r - \dim |\mathcal{O}_X(D)|,\tag{5}$$

where $D \in S$ is a general point.

The following technical definition will be crucial in the next section.

5.1. DEFINITION. Let $\varphi \colon X \to Y$ be a double cover of smooth curves. An effective divisor $D \subset X$ is *not simple* if there exists a point $y \in Y$ such that $\varphi^* y \subset D$, and it is *simple* if this is not the case.

Note that if an effective divisor $D \subset X$ is not simple then Nm $\varphi(D)$ is not reduced. Hence, if *Y* is an elliptic curve and *M* a line bundle of degree $d \ge 2$ on *Y*, then a general divisor $D \in X^{(d)}$ such that $\operatorname{Nm} \varphi(D) \in |M|$ is simple: the linear system |M| is base point free, so a general element is reduced.

5.2. LEMMA. Let $\varphi: X \to Y$ be a ramified double cover of smooth curves such that Y is an elliptic curve. Denote by δ_{φ} the line bundle of degree g(X) - 1 defining the cyclic cover φ . Let $M \not\simeq \delta_{\varphi}$ be a line bundle of degree $2 \le d \le g(X) - 1$ on Y. Then the following statements hold:

(a) Λ is smooth and irreducible;

(b) a general divisor $D \in \Lambda$ is simple and satisfies dim $|\mathcal{O}_X(D)| = 0$.

In particular, there exists a unique special subvariety associated to M and it is irreducible of dimension d - 1.

Proof. We start by showing part (b). By the foregoing, D is simple and so, according to [M1, p. 338], we have an exact sequence

$$0 \to \mathcal{O}_Y \to \varphi_* \mathcal{O}_X(D) \to \mathcal{O}_Y(\operatorname{Nm} \varphi(D)) \otimes \delta_{\omega}^* \to 0$$

Since deg $D \leq \deg \delta_{\varphi}$ and $\mathcal{O}_Y(\operatorname{Nm} \varphi(D)) \simeq M \not\simeq \delta_{\varphi}$, we have

$$h^0(Y, \mathcal{O}_Y(\operatorname{Nm}\varphi(D)) \otimes \delta^*_{\omega}) = 0.$$

Therefore, $1 = h^0(Y, \mathcal{O}_Y) = h^0(Y, \varphi_*\mathcal{O}_X(D)).$

For the proof of part (a) we note first that, since Λ is connected, it is sufficient to show the smoothness. Let $D \in \Lambda$ be any divisor. Then we have a unique decomposition

$$D = \varphi^* A + R + B,$$

where A is an effective divisor on Y; the divisor R is effective, with support contained in the ramification locus of φ ; and B is effective, simple, and has support disjoint from the ramification locus of φ . Since Y is an elliptic curve, we have

$$h^0(Y, M \otimes \mathcal{O}_Y(-A - \operatorname{Nm} \varphi(R))) = h^0(Y, M) - \deg(A + \operatorname{Nm} \varphi(R))$$

unless deg $M = \deg(A + \varphi_* R)$ and $M \otimes \mathcal{O}_Y(-A - \operatorname{Nm} \varphi(R))$ is not trivial. Because deg $M = \deg D$, this last case could occur only when A = 0 and B = 0; hence D = R. Yet by construction we have $M \simeq \mathcal{O}_Y(\operatorname{Nm} \varphi(D)) = \mathcal{O}_Y(\operatorname{Nm} \varphi(R))$, so $M \otimes \mathcal{O}_Y(-A - \operatorname{Nm} \varphi(R))$ is trivial. By [N, Prop. 14.3] this shows the smoothness of Λ . The statement on the dimension follows by part (b) and equation (5).

5.B. The Irreducible Components of V^2

In this section *C* will be a smooth curve of genus $g(C) \ge 6$ that is bielliptic; in other words, we have a double cover $p: C \to E$ onto an elliptic curve *E*. As usual, $\pi: \tilde{C} \to C$ will be an étale double cover. In this section we suppose that the covering $p \circ \pi: \tilde{C} \to E$ is Galois. Then one sees easily that the Galois group is $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Using the Galois action on \tilde{C} yields the commutative diagram

(The presentation here follows [D1, Chap. 5], to which we refer for details.) It is straightforward to see that

$$g(C_1) + g(C_2) = g(C) + 1,$$

and we will assume without loss of generality that $1 \le g(C_1) \le g(C_2) \le g(C)$. Denote by Δ the branch locus of p and by δ the line bundle inducing the cyclic cover p. Then $2\delta \simeq \Delta$ and, by the Hurwitz formula, deg $K_C = \text{deg } \Delta$; hence

$$\deg \delta = g(C) - 1$$

The cyclic covers p_1 and p_2 are analogously given by line bundles δ_1 and δ_2 such that deg $\delta_1 = g(C_1) - 1$ and deg $\delta_2 = g(C_2) - 1$.

For any $a \in \mathbb{Z}$ we define closed subsets $Z_a \subset \operatorname{Pic} C_1 \times \operatorname{Pic} C_2$ by

$$\{(L_1, L_2) \mid L_1 \in W^0_{g(C_1)-1+a} C_1, L_2 \in W^0_{g(C_2)-1-a} C_2, \operatorname{Nm} p_1(L_1) \otimes \operatorname{Nm} p_2(L_2) \simeq \delta\}.$$

We note that the sets Z_a are empty unless $1 - g(C_1) \le a \le g(C_2) - 1$. Pulling back to \tilde{C} we obtain natural maps

$$(\pi_1^*, \pi_2^*)$$
: $Z_a \to \operatorname{Pic} C$, $(L_1, L_2) \mapsto \pi_1^* L_1 \otimes \pi_2^* L_2$,

and by [D1, p. 230] the image $(\pi_1^*, \pi_2^*)(Z_a)$ is in P^- if and only if *a* is odd. Moreover, we can argue as in [D1, Prop. 5.2.1] to show that

$$V^{2} \subset (\pi_{1}^{*}, \pi_{2}^{*}) \bigg(\bigcup_{a \text{ odd}} Z_{a}\bigg).$$
(6)

5.3. LEMMA. For a odd, the sets Z_a are empty or

$$\dim Z_a = g(C) - 1 - a.$$
(7)

Furthermore, Z_a is irreducible unless $g(C_1) = 1$ and $a \ge g(C_2) - 2$.

Proof. We divide the proof into two cases as follows.

Case 1: $g(C_1) > 1$. We prove the statement for positive *a* (the argument is analogous for negative *a*). The projection onto the second factor gives a surjective

796

map $Z_a \to W_{g(C_2)-1-a}^0 C_2$, and the fibres of this map are parameterized by effective line bundles L_1 with fixed norm. Because $a \ge 1$, the line bundles L_1 are of degree at least $g(C_1)$ and so are automatically effective. Thus the fibres identify to fibres of the norm map Nm p_1 : Pic $C_1 \to$ Pic E. Since the double covering p_1 is ramified, it follows that the (Nm p_1)-fibres are irreducible of dimension $g(C_1) - 1$; hence Z_a is irreducible of the expected dimension.

Case 2: $g(C_1) = 1$. The sets Z_a are empty for *a* negative, so suppose that *a* is positive. Arguing as in the first case, we obtain the statement on the dimension. In order to see that Z_a is irreducible for $a \le g(C_2) - 3$, we consider the surjective map induced by the projection onto the first factor $Z_a \rightarrow \text{Pic}^{g(C_1)-1+a} C_1$. The fibre over a line bundle L_1 is the union of the p_2 -special subvarieties associated to $\delta \otimes \text{Nm } p_1L_1^*$. Since $2 \le \text{deg } \delta \otimes \text{Nm } p_1(L_1^*) \le g(C_2) - 2$, it follows from Lemma 5.2 that the unique special subvariety is irreducible and so the fibres are irreducible.

Since all the irreducible components of V^2 have dimension g(C) - 4, by (6) and (7) we have

$$V^{2} \subset (\pi_{1}^{*}, \pi_{2}^{*}) \bigg(\bigcup_{a \text{ odd}, |a| \leq 3} Z_{a} \bigg).$$

$$\tag{8}$$

If $(L_1, L_2) \in Z_{\pm 3}$ then, by the Riemann–Roch theorem, it follows that dim $|L_1| \ge 2$ and dim $|L_2| \ge 2$; therefore,

$$(\pi_1^*, \pi_2^*)(Z_{\pm 3}) \subset V^2.$$

For the sets $Z_{\pm 1}$ this cannot be true, since equation (7) shows that they have dimension g(C) - 2. We introduce the following smaller loci:

$$W_1 := \{ (L_1, L_2) \in Z_1 \mid L_1 \in W^1_{g(C_1)} C_1 \};$$

$$W_{-1} := \{ (L_1, L_2) \in Z_{-1} \mid L_2 \in W^1_{g(C_2)} C_2 \}.$$

Note that if $g(C_1) = 1$ then $W_1 = \emptyset$: there is no g_1^1 on a nonrational curve. Because dim $W_{g(C_1)}^1 C_1 = g(C_1) - 2$ (resp., dim $W_{g(C_2)}^1 C_1 = g(C_2) - 2$), one may easily deduce (from the proof of Lemma 5.2) that the sets $W_{\pm 1}$ are either empty or irreducible of dimension g(C) - 4.

By the same lemma we see that, for fixed L_1 (resp. L_2) and general L_2 (resp. L_1) such that $(L_1, L_2) \in W_1$ (resp. $(L_1, L_2) \in W_{-1}$), the linear system $|L_1|$ (resp. $|L_2|$) contains a unique effective divisor and this divisor is simple.

Observe that if $(L_1, L_2) \in W_{\pm 1}$ then dim $|(\pi_1^*, \pi_2^*)(L_1, L_2)| \ge 1$. Since these sets map into the component P^- , we obtain

$$(\pi_1^*, \pi_2^*)(W_{\pm 1}) \subset V^2.$$

5.4. PROPOSITION. We have

$$V^{2} = (\pi_{1}^{*}, \pi_{2}^{*})(Z_{-3} \cup W_{-1} \cup W_{1} \cup Z_{3}).$$

The proof requires some technical preparation.

5.5. DEFINITION. Let $\varphi: X \to Y$ be a double cover of smooth curves, and let *L* be a line bundle on *X* such that dim $|L| \ge 1$. Then the line bundle *L* is simple if every divisor in $D \in |L|$ is simple in the sense of Definition 5.1.

5.6. LEMMA [D1, Cor. 5.2.8]. In our situation, let $L_1 \in \text{Pic } C_1$ and $L_2 \in \text{Pic } C_2$ be effective line bundles such that $L \simeq \pi_1^* L_1 \otimes \pi_2^* L_2$. If L_1 is p_1 -simple, then

$$h^{0}(\tilde{C},L) \leq 2h^{0}(C_{2},L_{2}) + g(C_{2}) - 1 - \deg L_{2}.$$

Analogously, if L_2 is p_2 -simple then

$$h^{0}(C, L) \leq 2h^{0}(C_{1}, L_{1}) + g(C_{1}) - 1 - \deg L_{1}.$$

Proof of Proposition 5.4. Let $L \in V^2$ be an arbitrary line bundle. By the inclusion (8) we need only show that if $L \in (\pi_1^*, \pi_2^*)(Z_{\pm 1})$ and $L \notin (\pi_1^*, \pi_2^*)(Z_{-3} \cup Z_3)$ then $L \in (\pi_1^*, \pi_2^*)(W_{\pm 1})$. We will suppose that $L \in (\pi_1^*, \pi_2^*)(Z_1)$; the other case is analogous and is left to the reader. Because $L \in (\pi_1^*, \pi_2^*)(Z_1)$, we can write

$$L\simeq \pi_1^*L_1\otimes \pi_2^*L_2$$

with L_1 effective of degree $g(C_1)$ and L_2 effective of degree $g(C_1) - 2$. If L_2 is not simple then L is in $(\pi_1^*, \pi_2^*)(Z_3)$, which we have already excluded. Hence L_2 is simple and so, by Lemma 5.6,

$$3 \le h^0(\tilde{C}, L) \le 2h^0(C_1, L_1) + g(C_1) - 1 - g(C_1).$$

Therefore, dim $|L_1| \ge 1$ and $L \in (\pi_1^*, \pi_2^*)(W_1)$.

5.7. COROLLARY. If $g(C_1) = 1$ then

$$V^2 = (\pi_1^*, \pi_2^*)(Z_3).$$

In particular, V^2 is irreducible.

Proof. Since the sets Z_{-3} , W_{-1} , and W_1 are empty for $g(C_1) = 1$, the first statement is immediate from Proposition 5.4. Since $g(C_1) = 1$ implies that $g(C_2) = g(C)$ and $g(C) \ge 6$ by hypothesis, it follows from Lemma 5.3 that Z_3 is irreducible. \Box

We now focus on the case $g(C_1) \ge 2$. Proposition 5.4 reduces the study of V^2 to understanding the sets $W_{\pm 1}$, $Z_{\pm 3}$ and their images in P^- . We start with the following observation.

5.8. LEMMA. For $g(C_1) \ge 2$,

$$(\pi_1^*, \pi_2^*)(W_1) = (\pi_1^*, \pi_2^*)(W_{-1}).$$

Proof. We claim that the following holds: If $L_1 \in W^1_{\mathcal{P}(C_1)} C_1$ is a general point then

- (a) L_1 is not simple and
- (b) there exists a point $x \in E$ such that

$$L_1 \simeq p_1^* \mathcal{O}_E(x) \otimes \mathcal{O}_{C_1}(D_1),$$

with D_1 an effective divisor such that $\mathcal{O}_E(\operatorname{Nm} p_1(D_1) + x) \simeq \delta_1$.

Assuming this for the time being, let us show how to conclude. If $L \in (\pi_1^*, \pi_2^*)(W_1)$ is a general point, then $L \simeq \pi_1^* L_1 \otimes \pi_2^* L_2$ with $L_1 \in W_{g(C_1)}^1 C_1$ a general point and L_2 a p_2 -simple line bundle. Thus, by the claim we can write

$$L \simeq \pi_1^* \mathcal{O}_{C_1}(D_1) \otimes \pi_2^* (L_2 \otimes p_2^* \mathcal{O}_E(x)).$$

Since $\mathcal{O}_E(\operatorname{Nm} p_1(D_1) + x) \simeq \delta_1$ and $\delta \simeq \delta_1 \otimes \delta_2$, a short computation shows that $\operatorname{Nm} p_2(L_2) \otimes \mathcal{O}_E(x) \simeq \delta_2$. Moreover L_2 is p_2 -simple and so, by [D1, Prop. 5.2.7], $\dim |L_2 \otimes p_2^* \mathcal{O}_E(x)| \ge 1$. Hence L is in $(\pi_1^*, \pi_2^*)(W_{-1})$. This shows one inclusion; the proof of the other is analogous.

Proof of the claim. Set

$$S := \{ (x, D_1) \in E \times C_1^{(g(C_1) - 2)} \mid x + \operatorname{Nm} p_1(D_1) \in |\delta_1| \}.$$

(For $g(C_1) = 2$, the symmetric product $C_1^{(g(C_1)-2)}$ is a point; it corresponds to the zero divisor on C_1 .) Observe that the projection $p_2: S \to C_1^{(g(C_1)-2)}$ on the second factor is an isomorphism, so *S* is not uniruled. For $(x, D_1) \in S$ general, the divisor D_1 is p_1 -simple by Lemma 5.2 and so, by [M1, p. 338], we have the exact sequence

$$0 \to \mathcal{O}_E(x) \to (p_1)_* \mathcal{O}_{C_1}(p_1^* x + D_1) \to \mathcal{O}_E(x + \operatorname{Nm} p_1(D_1)) \otimes \delta_1^* \to 0.$$

By construction we have $\mathcal{O}_E(x + \operatorname{Nm} p_1(D_1)) \otimes \delta_1^* \simeq \mathcal{O}_E$. Thus $H^1(E, \mathcal{O}_E(x)) = 0$ implies that $h^0(C_1, \mathcal{O}_{C_1}(p_1^*x + D_1)) = 2$. Hence the image of

$$\tau: S \to \operatorname{Pic} C_1, \quad (x, D_1) \mapsto \mathcal{O}_{C_1}(p_1^* x + D_1)$$

is contained in $W_{g(C_1)}^1 C_1$. Because *S* is not uniruled, the general fibre of $S \to \tau(S)$ has dimension 0. By Riemann–Roch, the residual map $W_{g(C_1)}^1 C_1 \to W_{g(C_1)-2}^0 C_1$ is an isomorphism and so $W_{g(C_1)}^1 C_1$ is irreducible of dimension $g(C_1) - 2$. Hence τ is surjective on $W_{g(C_1)}^1 (C_1)$.

Suppose that $g(C_1) \ge 2$. Let (JC_1, Θ_{C_1}) and (JC_2, Θ_{C_2}) be the Jacobians of the curves C_1 and C_2 with their natural principal polarizations. Since p_1 and p_2 are ramified, the pull-backs $\pi_1^*: JE \to JC_1$ and $\pi_2^*: JE \to JC_2$ are injective and the restricted polarizations $B_1 := \Theta_{C_1}|_{JE}$ and $B_2 := \Theta_{C_2}|_{JE}$ are of type (2) [M1, Chap. 3]. We define

$$P_1 := \ker(\operatorname{Nm} p_1: JC_1 \to JE), \quad P_2 := \ker(\operatorname{Nm} p_2: JC_2 \to JE).$$

We set $A_1 := \Theta_{C_1}|_{P_1}$ and $A_2 := \Theta_{C_2}|_{P_2}$; then the polarizations A_1 and A_2 are of type $(1, \ldots, 1, 2)$ [BiLa, Cor. 12.1.5].

If $p_j^* \times i_{P_j}$: $JE \times P_j \to JC_j$ denotes the natural isogeny, then $(p_j^* \times i_{P_j})^* \Theta_{C_j} \equiv B_j \boxtimes A_j$. Thus if α_j : $JC_j \to JE \times \widehat{P_j}$ is the dual map then

$$\Theta_{C_j}^{\otimes 2} \equiv \alpha_j^*(\widehat{B_j} \boxtimes \widehat{A_j}) \tag{9}$$

[BiLa, Prop. 14.4.4], where \widehat{B}_i and \widehat{A}_j are the dual polarizations. We remark that \widehat{A}_j has type (1, 2, ..., 2).

By [D1, Prop. 5.5.1], the pull-back maps P_1 and P_2 into the Prym variety P and we obtain an isogeny $(\pi_1^*, \pi_2^*)|_{P_1 \times P_2} \colon P_1 \times P_2 \to P$ such that

$$(\pi_1^*, \pi_2^*)|_{P_1 \times P_2}^* \Theta \equiv A_1 \boxtimes A_2.$$

In particular, if $g: P \to \widehat{P_1 \times P_2}$ denotes the dual map then

$$\Theta^{\otimes 2} \equiv g^*(\widehat{A_1} \boxtimes \widehat{A_2}). \tag{10}$$

5.9. PROPOSITION. If $g(C_1) \ge 3$ then the cohomology classes of $(\pi_1^*, \pi_2^*)(Z_{-3})$, $(\pi_1^*, \pi_2^*)(W_1)$, and $(\pi_1^*, \pi_2^*)(Z_3)$ are not minimal. Moreover, their cohomology classes are distinct and so they are distinct irreducible components of V^2 .

If $g(C_1) = 2$ then the same holds for $(\pi_1^*, \pi_2^*)(W_1)$ and $(\pi_1^*, \pi_2^*)(Z_3)$.

Proof. In order to simplify the notation, we denote the pull-back of the polarizations $\widehat{A_1}$ and $\widehat{A_2}$ to $\widehat{P_1 \times P_2}$ by the same letter.

We start by observing that is sufficient to show that $[(\pi_1^*, \pi_2^*)(Z_{-3})]$ (resp. $[(\pi_1^*, \pi_2^*)(Z_{-3})]$) is a nonnegative multiple of $g^*\widehat{A_1}^3$ ($g^*\widehat{A_2}^3$). Indeed, once we have shown this property, we can use that

$$[(\pi_1^*, \pi_2^*)(Z_{-3})] + [(\pi_1^*, \pi_2^*)(Z_3)] + [(\pi_1^*, \pi_2^*)(W_1)] = [V^2] = \frac{\Theta^3}{3!}$$

and the identity (10) to compute that

$$[(\pi_1^*, \pi_2^*)(W_1)] = \frac{1}{3!2^3} [(1-a_1)g^*\widehat{A_1}^3 + 3g^*\widehat{A_1}^2\widehat{A_2} + 3g^*\widehat{A_1}\widehat{A_2}^2 + (1-a_2)g^*\widehat{A_2}^3],$$

where $a_1, a_2 \ge 0$ correspond to the cohomology class of $Z_{\pm 3}$. It is clear that none of these classes is (a multiple of) a minimal cohomology class. If $g(C_1) \ge 4$ then all the classes are nonzero and distinct, in which case the images of $Z_{\pm 3}$ and W_1 are distinct irreducible components of V^2 . If $2 \le g(C_1) \le 3$ then the set Z_{-3} is empty (and the corresponding class zero), so we obtain only two irreducible components.

Computation of the cohomology class of $(\pi_1^*, \pi_2^*)(Z_{\pm 3})$. We will prove the claim for Z_3 ; the proof for Z_{-3} is analogous. We have the commutative diagram

$$P \xrightarrow{i_P} J\tilde{C} \xrightarrow{\simeq} J\tilde{C} \xrightarrow{\widehat{i_P}} \tilde{P} \simeq P$$

$$(\pi_1^*, \pi_2^*) \uparrow \qquad (\pi_1^*, \pi_2^*) \downarrow \qquad g \downarrow$$

$$JC_1 \times JC_2 \xrightarrow{\simeq} JC_1 \times JC_2 \xrightarrow{q} P_1 \times P_2$$

therefore, if $X \subset JC_1 \times JC_2$ is a subvariety such that $(\pi_1^*, \pi_2^*)(X) \subset P$, then its cohomology class is determined (up to a multiple) by the class of q(X) in $P_1 \times P_2$.

We choose a translate of Z_3 that is in $JC_1 \times JC_2$ and denote it by the same letter. We want to understand the geometry of $q(Z_3)$. Since the norm maps Nm p_i

are dual to the pull-backs p_j^* [M1, Chap. 1], the map q fits into an exact sequence of abelian varieties

$$0 \to JE \times JE \xrightarrow{p_1^* \times p_2^*} JC_1 \times JC_2 \xrightarrow{q} \widehat{P_1 \times P_2} \to 0.$$
(11)

Recall from the proof of Lemma 5.3 that Z_3 is a fibre space over $W_{g(C_1)-4}^0$ such that, for given $L_2 \in W_{g(C_2)-4}^0$, the fibre identifies to the fibre of Nm p_1 : $\operatorname{Pic}^{g(C_1)+2} C_1 \rightarrow \operatorname{Pic}^{g(C_1)+2} E$ over $\delta \otimes \operatorname{Nm} p_2(L_2^*)$. Thus Z_3 identifies to a fibre product

$$\operatorname{Pic}^{g(C_1)+2} C_1 \times_{JE} W^0_{g(C_2)-4}$$

Together with the exact sequence (11) this shows that

$$q(Z_3) = \widehat{P}_1 \times q_2(W^0_{g(C_2)-4}),$$

where $q_2: JC_2 \rightarrow P_2$ is the restriction of q to JC_2 .

Thus we are left to compute the cohomology class of $q_2(W_{g(C_2)-4}^0)$. Note first that q_2 is the composition of the isogeny $\alpha_2: JC_2 \rightarrow JE \times \widehat{P_2}$ with the projection on $\widehat{P_2}$. Since the polarization $\widehat{B_2}$ is numerically equivalent to a multiple of $e \times \widehat{P_2} \subset JE \times \widehat{P_2}$ and since the cohomology class of $W_{g(C_2)-4}^0$ is $\frac{\Theta_{C_2}^4}{4!}$, it follows from the identity (9) that the cohomology class of $q_2(W_{g(C_2)-4}^0)$ is a multiple of $\widehat{A_2^3}$.

5.10. REMARK. With some additional effort one can prove the following statement. If $g(C_1) \ge 2$, then the following equalities in $H^6(P, \mathbb{Z})$ hold:

$$[(\pi_1^*, \pi_2^*)(Z_{-3})] = \frac{1}{4!} g^* p_{\widehat{P}_1}^* \widehat{A}_1^{-3};$$
(12)

$$[(\pi_1^*, \pi_2^*)(Z_3)] = \frac{1}{4!} g^* p_{\widehat{P_2}}^* \widehat{A_2}^3;$$
(13)

$$[(\pi_1^*, \pi_2^*)(W_1)] = \frac{1}{8}g^*(p_{\widehat{P}_1}^* \widehat{A}_1^2 p_{\widehat{P}_2}^* \widehat{A}_2 + p_{\widehat{P}_1}^* \widehat{A}_1 p_{\widehat{P}_2}^* \widehat{A}_2^2).$$
(14)

The polarization $\widehat{A_j}$ is of type (1, 2, ..., 2) and so, by [BiLa, Thm. 4.10.4], $\frac{1}{4!}\widehat{A_j}^3$ is a "minimal" cohomology class for $(P_j, \widehat{A_j})$; in other words, it is in $H^6(P_j, \mathbb{Z})$ and is not divisible.

5.11. REMARK. Let $\mathcal{R}_{g(C)}$ be the moduli space of pairs (C, π) , where C is a smooth projective curve of genus g(C) and $\pi : \tilde{C} \to C$ is an étale double cover. We denote by

$$\Pr: \mathcal{R}_{g(C)} \to \mathcal{A}_{g(C)-1}$$

the Prym map associating to (C, π) the principally polarized Prym variety (P, Θ) .

Let $\mathcal{B}_{g(C)}$ be the moduli space of bielliptic curves of genus $g(C) \geq 6$, and let $\mathcal{R}_{\mathcal{B}_{g(C)}} \subset \mathcal{R}_{g(C)}$ be the moduli space of étale double covers over them. Let $\mathcal{R}_{\mathcal{B}_{g(C),g(C_1)}}$ be those étale double covers such that $\tilde{C} \to C \to E$ has Galois group $\mathbb{Z}_2 \times \mathbb{Z}_2$ and the curve C_1 has genus $g(C_1)$. By [D1, Thm. 4.1(i)], the closure of $Pr(\mathcal{R}_{\mathcal{B}_{g(C),1}})$ in $\mathcal{A}_{g(C)-1}$ contains the locus of Jacobians of hyperelliptic curves of genus g(C) - 1. A general hyperelliptic Jacobian has the property that the cohomology class of every subvariety is an integral multiple of the minimal class [Bis]. Hence the same property holds for a general element in $Pr(\mathcal{R}_{\mathcal{B}_{g(C),1}})$. So if V^2 were reducible then the irreducible components would have minimal cohomology class.

6. Prym Varieties of Bielliptic Curves, II

6.A. Tetragonal Construction and V^2

Denote by *C* an irreducible nodal curve of arithmetic genus $p_a(C) \ge 6$ and by $\pi: \tilde{C} \to C$ a Beauville admissible cover. By [B1], the corresponding Prym variety (P, Θ) is a principally polarized abelian variety. Suppose that *C* is a tetragonal curve—that is, suppose there exists a finite morphism $f: C \to \mathbb{P}^1$ of degree 4. We set $H := f^* \mathcal{O}_{\mathbb{P}^1}(1)$. By Donagi's tetragonal construction ([Do]; see also [BiLa, Chap. 12.8]), the corresponding special subvarieties give Beauville admissible covers $\tilde{C}' \to C'$ and $\tilde{C}'' \to C''$ such that C' and C'' are tetragonal and the Prym varieties are isomorphic to (P, Θ) .

Consider now the residual line bundle $K_C \otimes H^*$. By Riemann–Roch, the linear series $|K_C \otimes H^*|$ is a $g_{2p_a(C)-6}^{p_a(C)-4}$ to which we can apply the construction of special subvarieties (cf. Section 5.A). If $S \subset \Lambda$ is a connected component then, by [B3, Thm. 1 and Rem. 4], the cohomology class of $V := i_{\tilde{C}}(S)$ is $\left[2\frac{\Theta^3}{3!}\right]$. Denote by (P^+, Θ^+) the canonically polarized Prym variety; thus,

$$\Theta^+ = \{L \in (\operatorname{Nm} \pi)^{-1}(K_C) \mid |L| \neq \emptyset, \dim |L| \equiv 0 \mod 2\}.$$

Up to exchanging \tilde{C}' and \tilde{C}'' , we can suppose that the image of the natural map

$$V \times \tilde{C}' \to J \tilde{C}$$

is contained in P^+ . By construction, the image is then contained in Θ^+ ; hence a translate of -V is contained in the theta-dual $T(\tilde{C}')$. Since $T(\tilde{C}')$ equals the Brill–Noether locus $(V^2)'$ of the covering $\tilde{C}' \to C'$, it has cohomology class $\left[2\frac{\Theta^3}{3!}\right]$ and the inclusion is a (set-theoretical) equality.

The preceding argument shows that the special subvariety V is isomorphic to the Brill–Noether locus $(V_2)'$ of a tetragonally related covering. The following technical lemma shows that this special subvariety is irreducible unless we are in a very special situation.

6.1. LEMMA. Let C be an irreducible nodal curve of arithmetic genus $p_a(C) \ge 6$, and let $\pi : \tilde{C} \to C$ be a Beauville admissible cover. Suppose that C is a tetragonal curve but is not hyperelliptic, trigonal, or a plane quintic. Assume that the normalization $v: T \to C$ is a hyperelliptic curve, and denote by $h: T \to \mathbb{P}^1$ the hyperelliptic covering.

Denote by $f: C \to \mathbb{P}^1$ the morphism of degree 4 and set $H := f^* \mathcal{O}_{\mathbb{P}^1}(1)$. Suppose that the base locus of the linear system $|K_C \otimes H^*|$ does not contain any points of C_{sing} , and suppose that the special subvariety S corresponding to $|K_C \otimes H^*|$ is reducible. Then the following claims hold. (a) There exist points p, q in the smooth locus $C_{\rm sm}$ such that we have a two-to-one cover

$$\varphi_{|H\otimes\mathcal{O}_C(p+q)|}\colon C\to C\subset\mathbb{P}^2$$

onto a singular plane cubic \overline{C} . This morphism factors through the hyperelliptic covering; that is, we have a commutative diagram

(b) If $x_1, x_2 \in T$ such that $v(x_1) = v(x_2)$, then $h(x_1) = h(x_2)$ unless \overline{C} is nodal and $h(x_1)$ and $h(x_2)$ are mapped onto the unique node.

Proof. Since *C* is not a plane quintic, the linear system $|K_C \otimes H^*|$ is base point free. By [B3, Sec. 2, Cor.] applied to the pull-back of the linear system to *T*, we know that *S* is irreducible if the linear system $|K_C \otimes H^*|$ induces a map $f : C \rightarrow \mathbb{P}^{p_a(C)-4}$ that is birational onto its image f(C). Suppose now that this is not the case; then, for every generic point $p \in C$, there exists another generic point $q \in C$ such that

$$h^0(C, K_C \otimes H^* \otimes \mathcal{O}_C(-p-q)) = h^0(C, K_C \otimes H^* \otimes \mathcal{O}_C(-p)).$$

By Riemann–Roch, this equality implies that the linear system $|H \otimes \mathcal{O}_C(p+q)|$ is a base point free g_6^2 . Because *C* is not hyperelliptic, we obtain in this way a 1-dimensional subset $W \subset W_6^2 C$. Consider now the morphism $\varphi_{|H \otimes \mathcal{O}_C(p+q)|} \colon C \to \overline{C} \subset \mathbb{P}^2$. Because *C* is irreducible and not trigonal, the curve \overline{C} is an irreducible cubic or sextic curve.

Since *H* and $H \otimes \mathcal{O}_C(p+q)$ are base point free, it is easy to see that $|\nu^*(H \otimes \mathcal{O}_C(p+q))|$ is a g_6^3 . Thus we have $\nu^*(H \otimes \mathcal{O}_C(p+q)) \simeq h^*\mathcal{O}_{\mathbb{P}^1}(3)$ and a factorization $\bar{\nu} \colon \mathbb{P}^1 \to \bar{C}$ such that $\bar{\nu} \circ h = \varphi_{|H \otimes \mathcal{O}_C(p+q)|} \circ \nu$.

In particular, $\varphi_{|H \otimes \mathcal{O}_C(p+q)|}$ is not birational onto its image and \overline{C} is a singular cubic. A look at the lemma's commutative diagram shows that if $x_1, x_2 \in T$ such that $\nu(x_1) = \nu(x_2)$, then $h(x_1) = h(x_2)$ unless \overline{C} is nodal and $h(x_1)$ and $h(x_2)$ are mapped onto the unique node.

REMARK. For the sake of completeness we also consider the case where, in Lemma 6.1, the normalization T is not hyperelliptic. In this case the pull-backs $\nu^*(H \otimes \mathcal{O}_C(p+q))$ define a 1-dimensional subset $\tilde{W} \subset W_6^2 T$. It follows from [ACGH, p. 198] that T is bielliptic, and if $h: T \to E$ is a two-to-one map onto an elliptic curve E then $\nu^*(H \otimes \mathcal{O}_C(p+q)) \simeq h^*L$, where $L \in \text{Pic}^3 E$. As before, we have a factorization $\bar{\nu}: E \to C'$, which is easily seen to be an isomorphism. In particular, C is obtained from T by identifying points that are in a h-fibre.

6.B. The Irreducible Components of V^2

Let *C'* be a smooth curve of genus $g(C) \ge 6$ that is bielliptic; in other words, we have a double cover $p': C' \to E$ onto an elliptic curve *E*. As usual, $\pi': \tilde{C}' \to C'$

will be an étale double cover. We suppose that the morphism $p' \circ \pi' \colon \tilde{C}' \to E$ is not Galois (in the terminology of [D1; N], the covering belongs to the family $\mathcal{R}'_{\mathcal{B}_{g(C)}} \subset \mathcal{R}_{g(C)}$; cf. Remark 5.11).

If we apply the tetragonal construction to a general g_4^1 on *C*, the result is a Beauville admissible cover $\pi : \tilde{C} \to C$ such that the normalization $\nu : T \to C$ is a smooth hyperelliptic curve *T* of genus g(C) - 2. Denote by $h: T \to \mathbb{P}^1$ the hyperelliptic structure. Then ν identifies two pairs of points, x_1, x_2 and y_1, y_2 , such that $h(x_1), h(x_2), h(y_1), h(y_2)$ are four distinct points in \mathbb{P}^1 (this follows from the "figure locale" in [D1, 7.2.4]).

By [N, Chap. 15], a tetragonal structure on *C* can be constructed as follows. There exists a unique double cover $j: \mathbb{P}^1 \to \mathbb{P}^1$ sending each pair $h(x_1), h(x_2)$ and $h(y_1), h(y_2)$ onto a single point. The four-to-one covering $j \circ h: T \to \mathbb{P}^1$ factors through the normalization ν , so we have a four-to-one cover $f: C \to \mathbb{P}^1$. After applying the tetragonal construction to $H := f^* \mathcal{O}_{\mathbb{P}^1}(1)$, we recover the original étale double cover $\pi': \tilde{C}' \to C'$. We have already seen in Section 6.A that the Brill–Noether locus V^2 associated to π' is isomorphic to a special subvariety associated to $|K_C \otimes H^*|$.

Now, by considering the exact sequence

$$0 \to \nu_*(K_T \otimes \nu^* H^*) \to K_C \otimes H^* \to \mathbb{C}_{\nu(x_1)} \oplus \mathbb{C}_{\nu(y_1)} \to 0,$$

one sees easily that the linear system $|K_C \otimes H^*|$ is base point free yet does not separate the singular points $v(x_1)$ and $v(y_1)$. Since the points $h(x_1), h(x_2)$, $h(y_1), h(y_2)$ are distinct, it follows from Lemma 6.1 that the special subvarieties are irreducible. Our final proposition summarizes these considerations.

6.2. PROPOSITION. Let C' be a smooth curve of genus $g(C') \ge 6$ that is bielliptic (i.e., we have a double cover $p': C' \to E$ onto an elliptic curve E). Let $\pi': \tilde{C}' \to C'$ be an étale double cover such that the cover $\tilde{C}' \to E$ is not Galois. Then V^2 is irreducible.

7. Proof of Theorem 1.2

If V^2 is reducible then, by Corollary 3.6, *C* is trigonal, a plane quintic, or bielliptic. The first two cases are settled in Sections 4.B and 4.C, respectively. If *C* is bielliptic, we distinguish two cases depending on whether or not the four-to-one cover $\tilde{C} \rightarrow C \rightarrow E$ is Galois. In the Galois case we conclude by Corollary 5.7 and Proposition 5.9; otherwise, we use Proposition 6.2.

References

- [ACGH] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, *Geometry of algebraic curves*, vol. I, Grundlehren Math. Wiss., 267, Springer-Verlag, New York, 1985.
 - [B1] A. Beauville, *Prym varieties and the Schottky problem*, Invent. Math. 41 (1997), 149–196.

- [B3] ——, Sous-variétés spéciales des variétés de Prym, Compositio Math. 45 (1982), 357–383.
- [Ber] A. Bertram, *An existence theorem for Prym special divisors*, Invent. Math. 90 (1987), 669–671.
- [Bis] I. Biswas, Hodge cycles on moduli spaces of parabolic bundles over the general hyperelliptic curve, J. Algebraic Geom. 6 (1997), 717–720.
- [BiLa] C. Birkenhake and H. Lange, *Complex abelian varieties*, Grundlehren Math. Wiss., 302, Springer-Verlag, Berlin, 2004.
- [CaLV] S. Casalaina Martin, M. Lahoz, and F. Viviani, Cohomological support loci for Abel–Prym curves, Matematiche (Catania) 63 (2008), 205–222.
 - [CIG] C. H. Clemens and P. A. Griffiths, *The intermediate Jacobian of the cubic threefold*, Ann. of Math. (2) 95 (1972), 281–356.
 - [D1] O. Debarre, Sur les variétés abéliennes dont le diviseur theta est singulier en codimension 3, Duke Math. J. 57 (1988), 221–273.
 - [D2] —, Minimal cohomology classes and Jacobians, J. Algebraic Geom. 4 (1995), 321–335.
 - [D3] —, Théorèmes de Lefschetz pour les lieux de dégénérescence, Bull. Soc. Math. France 128 (2000), 283–308.
- [dCPr] C. De Concini and P. Pragacz, On the class of Brill–Noether loci for Prym varieties, Math. Ann. 302 (1995), 687–697.
 - [Do] R. Donagi, *The tetragonal construction*, Bull. Amer. Math. Soc. (N.S.) 4 (1981), 181–185.
 - [Ha] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York, 1977.
- [Hö1] A. Höring, *M-regularity of the Fano surface*, C. R. Math. Acad. Sci. Paris 344 (2007), 691–696.
- [Hö2] ———, *Minimal classes on the intermediate Jacobian of a generic cubic threefold*, Commun. Contemp. Math. 12 (2010), 55–70.
- [IPau] E. Izadi and C. Pauly, Some properties of second order theta functions on Prym varieties, Math. Nachr. 230 (2001), 73–91.
- [LN] M. Lahoz and J.-C. Naranjo, *Theta-duality on Prym varieties and a Torelli theorem*, Trans. Amer. Math. Soc. (to appear).
- [M1] D. Mumford, *Theta characteristics of an algebraic curve*, Ann. Sci. École Norm. Sup. (4) 4 (1971), 181–192.
- [M2] ——, Prym varieties. I, Contributions to analysis, pp. 325–350, Academic Press, New York, 1974.
- [N] J.-C. Naranjo, Prym varieties of bi-elliptic curves, J. Reine Angew. Math. 424 (1992), 47–106.
- [PP01] G. Pareschi and M. Popa, Generic vanishing and minimal cohomology classes on abelian varieties, Math. Ann. 340 (2008), 209–222.
- [PPo2] —, *M-regularity and the Fourier–Mukai transform*, Pure Appl. Math. Q. 4 (2008), 587–611.
 - [R] Z. Ran, On subvarieties of Abelian varieties, Invent. Math. 62 (1980), 459–479.
 - [Re] S. Recillas, Jacobians of curves with g₁⁴'s are the Prym's of trigonal curves, Bol. Soc. Mat. Mexicana (2) 19 (1974), 9–13.

- [S] V. V. Shokurov, Distinguishing Prymians from Jacobians, Invent. Math. 65 (1981/82), 209–219.
- [T] M. Teixidor i Bigas, For which Jacobi varieties is Sing Θ reducible? J. Reine Angew. Math. 354 (1984), 141–149.
- [W1] G. E. Welters, *Abel–Jacobi isogenies for certain types of Fano threefolds*, Math. Centre Tracts, 141, Mathematisch Centrum, Amsterdam, 1981.
- [W2] ——, A theorem of Gieseker–Petri type for Prym varieties, Ann. Sci. École Norm. Sup. (4) 18 (1985), 671–683.

Université Pierre et Marie Curie 4 place Jussieu, Case 247 75252 Paris cedes 05 France

hoering@math.jussieu.fr