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Boundary Behavior of the Kobayashi Distance
in Pseudoconvex Reinhardt Domains

ToMASZ WARSZAWSKI

1. Introduction and Results

The problem of boundary behavior of the Kobayashi (pseudo)distance in pseudo-
convex Reinhardt domains is connected with the study of their Kobayashi com-
pleteness. The qualitative condition for the k-completeness of a bounded domain
Dis
kp(z9,z) — o0 as z — dD.

The main fact is that, if a pseudoconvex Reinhardt domain D is hyperbolic, then it
is k-complete. At first Pflug [ 7] proved this for bounded complete domains. A sec-
ond step was done by Fu [2] for bounded domains. The general case was finally
solved by Zwonek [8].

Hence it is natural to ask about quantitative behavior of the function kp(zg, -).
Forstneri¢ and Rosay estimated it from below on bounded strongly pseudoconvex
domains. Namely, it was proved in [ 1] that

1 1
kp(z1,22) = _Elong(Zl) —3 logdp(z2) +C

for z; near two distinct points {; € 9D, j = 1,2. In the same paper, the authors
showed the opposite estimate for C +¢_smooth domains with z;, z» near ¢y € dD.
This estimate in the bounded case follows from the inequality for the Lempert func-
tion of bounded C'*¢-smooth domains obtained by Nikolov, Pflug, and Thomas [6]:

- 1 1
kp(z1,22) < _EIOng(Zl) - EIOng(Zz) +C, z1,22€D.

It was also proved that this estimate fails in the C!-smooth case. The other gen-
eral version of an upper estimate, for C 2_smooth domains, can be found in [3].
The case of bounded convex domains was investigated by Mercer [5]. For such
domains we have

1
—3 logdp(z) + C' < kp(zp,z) < —alogdp(z) + C

with ¢ > % and z close to ¢y € 0D (the constant o cannot be replaced with %)
The example

Dg:={(z,w)eC?: |zl +wlf <1}, 0<p <1,
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shows that the lower estimate by —« log dp(z) + C, where o > 0 (a constant inde-
pendent on a domain), is not true for complete pseudoconvex Reinhardt domains.
Easy calculations lead to

kp, ((0,0), (2,0)) < —g log dp, (z,0) + C

if 0 < z < 1and (z,0) tends to (1,0).
In this paper we prove the following theorems.

THEOREM 1. Let D C C" be a pseudoconvex Reinhardt domain. Fix zo € D and
Lo € 0D. Then, for some constant C, the inequality

kp(zo,z) < —logdp(z) + C

holds if z € D tends to {y. Additionally, for ¢y € C! the estimate can be improved to

1
kp(zo,2) < ~3 logdp(z) + C/,

where C' is a constant.

THEOREM 2. Let D C C" be a pseudoconvex Reinhardt domain. Fix zg € D and
Co € 0D Nint D. Then, for some constant C, the inequality
1
kp(zo,2) < 3 log(—logdp(z)) + C
holds if z € D tends to &y.

THEOREM 3. Let D C C" be a C'-smooth pseudoconvex Reinhardt domain. Fix
zo € D and ¢y € 0D. Then, for some constant C, the inequality

1
kp(zo,2) > _Elong(Z) +C

holds if z € D tends nontangentially to {.

2. Notation and Definitions

By D we denote a domain in C". The Kobayashi ( pseudo)distance is defined as

kp(w, z) := sup{dp(w, z) : (dp) is a family of holomorphically invariant
pseudodistances < iD},

where
lgD(w,z) =inf{p(A,pn): A,ueDand 3f e O(D, D) : f(A) = w, f(n) =z}

is the Lempert function of D, D is the unit disc in C, and p is the Poincaré distance
on D. For general properties of functions kp, one may refer to [3].

Let z; denote the jth coordinate of point z € C". A domain D is called a Rein-
hardt domain if (Mz1,...,A,2,) € D for all numbers Ay, ..., A, € 0D and points
z € D. A Reinhardt domain D is complete in the jth direction if
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{1V 'xDx {1}"/)-D c D,

where A - B := {(a1by,...,a,b,) : a € A, b € B}. Define subspaces Vj” =
{zeC":z; =0} for j =1,...,n. If a Reinhardt domain D is complete in the
Jth direction for all j such that D N'V/* # ¢, then D is called relatively complete.

Let A, := A\ {0} foraset A C Candlet C? := (C,)". By dp(z) we denote a
distance of a point z € D to dD (here, exceptionally, D can be a domain in R"),
and by ¢p(z) we denote one of the points admitting the distance of a point z € D
to aD.

We will use the following main branch of the power z% := e*l¢? =
e Uloglzl+iAre2) yhere the main argument Arg z € (—m, r]. Define z¢ = z{" -+ - z%
with [z|% = |z4|*" -+ |z,|% for z € C} and @ € R". Moreover, let |z] =
(Iz1l,---,1zn]) forz € C", log|z| := (log|zil,...,log|z,|) forz € C},andlog D :=
{log|z| : z € D N C!}—a logarithmic image of D. We use C to denote constants
that need not be the same in different places. We write f < g if there exists a
C > Osuchthat f < Cg;also, f ~gif f <gandg < f.

We call D a C¥-smooth domain if, for any point o € dD, there exist its open
neighborhood U € C" and a C*-smooth function p: U — R such that:

) UND={zeU:p(z) <0}
(ii) U\ D ={z €U : p(z) > 0}; and
(iii) Vp := (j% 3%) #0on U.
The function p is called a local defining function for D at the point .
For a C'-smooth domain D we define a normal vector to 3D at a point ¢ €
aD as
Vp(&o)

VoG ll”
where p is a local defining function for D at ¢y. Clearly,

2 =¢p(2) —dp()vp(¢p(2))

vp(&o) :=

for z € D and
lim vp(¢p(2)) = vp(&o)
D>z—¢o

for every choice of {p(z). To ease the notation we shorten the symbol vy (¢p(2))
to vp(z2).

Defining a nontangential convergence requires the concept of a cone with a ver-
tex xo € R", a semi-axis v € (R"), and an angle « € (0, %) This cone is a set of
x € R" \ {xo} such that an angle between vectors v and x — xo does not exceed
. Let D be a C'-smooth domain and let &y € dD. We say that z € D tends non-
tangentially to ¢y if there exist a cone A C C" = R?" with a vertex ¢y, a semi-axis
—vp(&o), and an angle o € (O, %) as well as an open neighborhood U C C” of ¢y
such that U N A C D and z tends to o in U N A.

We say that a Reinhardt domain D satisfies the Fu condition if, for any j €
{1,...,n}, the following implication holds:

DNV £ = DNV 0.
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The following well-known properties of pseudoconvex Reinhardt domains will be
used in the paper (see e.g. [4]).

Fact 1. A Reinhardt domain D is pseudoconvex if and only if log D is convex
and D is relatively complete.

FacT 2. A C'-smooth Reinhardt domain satisfies the Fu condition.

3. Proofs

Proof of Theorem 1. We proceed as follows. The first step is to simplify the gen-
eral case to “real” coordinates, after which we consider some parallelepipeds con-
tained in the given domain and use the decreasing property of the Kobayashi dis-
tance. Finally, we explicitly calculate and estimate that distance in other domains:
Cartesian products of a strip and annuli in C. To improve the estimate for a bound-
ary point with all nonzero coordinates, we use similar methods but with intervals
instead of parallelepipeds.
Using some biholomorphism of the form

w>C" — (aqwy,...,a,w,) €C", aeCl,

and the triangle inequality for kp, we can assume that zg = (1,...,1) and |{o;| #
1for j =1,...,n. Notice that the proof can be reduced to the case z € D N C]
near ¢y, and this case amounts to the situation

z€ DN (0,00)" near ¢y € dD N ([0,00) \ {1}D".

Indeed, the first reduction follows from the continuity of kp and the triangle
inequality for kp. Now, if z — ¢ then |z| — |{o| € D and

kp(zo,2) = kp(Zo, |z]),
where

- |1l 2]
70 = (—ZOI,___, . Zon | €T = {()»1Z()1,...,)\,1Z()n) ALy ey Ap EBD}.

4| Zn

The continuity of kp gives

maxkp =: C < o0
TxT

and therefore
kp(Zo,1z) < kp(Zo.z0) +kp(z0,12]) < kp(zo,z]) + C.

The property dp(|z]) = dp(z) finishes this reduction. In what follows, we assume
that points z € D N (0, 00)" are sufficiently close to ¢y € 3D N ([0, 00) \ {1})".
Observe that
diog p(logz) > edp(z)
for some ¢ > 0. Indeed, for u € R” such that ||u|| < 1and 0 <t < edp(z), where
1

E=——
3(lIgoll + 1D
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we also have
logz+tuelogD < (zie™,...,z,e"") €D,

but (zie™, ..., z,e™") e D follows from

ZZ}(ZOZ < 21(I%oll + 1) < dp(2).
j=1

Gz, — 2]l <

Moreover, for £y = 0, a similar consideration leads to

,dp(2)

diogp(logz) > ¢
¢ Izl

for sufficiently small ¢’ > 0. Indeed, there exists an ¢’ € (0, %) such that the
inequalities
le™ —1|<2t, j=1,...,n,

1dp(2)

hold for 0 <t < ¢’. Hence, for0 <t < ¢ e we have
, - dp(z2)
tui\n 2 2 [ il
zie"H) —z| < 75(21)* < 2¢ z|| < dp(2).
Iz, —zl < | > z2@n il < dv@

Jj=1

Now let .
edp(z) if & #0,

dp(z) = { PR IC TS Zo=0;

[H]

here &” := &'djog p(0). We define
m; := min{0, log z;}, M, := max{0,log z;}
and consider the domain
D, := {w eC" :m, — JD(z) < loglwy| < M, —i—JD(z),

log z;
log z;

log|wi| — dp(z) < log|w]|

0g2Z; ~ .
8% Joglun| +dp(2). j =2,...,n}.
1

logz

Then log D, is a domain in R” containing points 0 and log z but contained in a
convex domain log D. Define also

G, :={veC":m, — dp(z) <Rev; < M, +dp(2),
—dp(2) < loglvj| < dp(2), j =2,...,n}.
Then the holomorphic map
fo(v) 1= (e, vpev1ogz2/logzn oy, pvillogza/logziy =gy e G

has values in D,. Moreover,



580 ToMAasz WARSZAWSKI

w» Wy

., ) for we D,.

w= fz<log wi,

wiogzz/logm > ingzn/logm
Therefore,

kp(z0,2) < kp,(z0,2)

22 Zn
= sz(fz(Ovl’---vl)v fz<10g21, Zlogzz/logm Y ZlOan/long ))
1 1

= sz(fZ(Os 19 sy 1)9 fz(logzls 19 ey 1))
<k ((0.1,....1),(logzy, 1,.... 1))
= max{ks,(0,logz1),ka (1,1),...,ka (1, 1)} = ks,(0,log z1),

where } }
S, :={LeC:m; —dp(z) <Rel < M, +dp(2)}

and
A, :={reC: —dp(z) <log|r| < dp(z)}.
Using suitable biholomorphisms allows us to calculate
i —expmiP(z) i —expmiQ(2)
i +expmiP(z)" i +expmiQ(z) )’

ks.(0,logz1) = p(
where
d —m lo +d —m
P(2) = — p(2) —m; L o) = 2gu p(2) —m:
2dp(z) + M; —m, 2dp(z) + M; —m;
Analogously, changing the index 1 to any of 2, ..., n yields

.....

where
i —expriPY(z) i —expmiQY(z)
kg (0,logz;) = p| - eV —
z i +expmiPU(z) i+ expmiQV)(z)
and
S i=reC:m —dp(z) <Rer < MY +dp(2));
mij) := min{0, log z;}, Mz(j) :=max{0,logz;}, j=1,...,m;
j () 3 )
PU(z) = dp(z) —m; Q(j)(z) o logzy +dp(z) — m;

2dp(z) + M —m” 2dp(2) + M —mi
Consider two cases, {y # 0 and ¢y = 0. If ¢y # 0 then choose j € {1,...,n}
such that £o; # O (recall that £o; = |Zoj| # 1). In the case of {p; > 1 we obtain
i —expmiTW(z) i —expmiUY(z)
k¢ (0,1ogz;) = p| - —, - —
z i +expmiT U(z) i +expriUY(z)

i —expriTY(z i —expmiUY(z
i +expmiT U(z) i +expmilU)(z)
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where

edp(2) ’ UO(z) = logz; + edp(z) .
2edp(z) +logz; 2edp(z) +logz;
By Taylor expansion, we have

T(j)(z) =

i —expmiTV(z) . Ny ,
i +expmiT V(z) L= (z) + 0(dp(2)7)

Hence
i —expmiTY(z)
)4 _

_ - () 2
i+ eXpniTU)(Z)) = (0,0 = miT'(2) + 0(dp(2)")

log2 1 j
= == — Slog(1 — li = T V() + O(dp())])
log2 1 i
= 0§ a Elog(l — i = 7iTY(2)| — |0(dp(2)*)])
log2 1 edp(2) 2
e — 0
2 2 og(n 2edp(z) + log z; (@) )>

IA

—% logdp(z) + C.
Similarly,
i —expmiUY(z)
i +expriUi(z)
which gives the same estimation for the second summand.
Otherwise, if £o; < 1 then

—i +7iTY(z) + 0(dp(2)?),

i —expmiVUN(z) i— expniW(j)(Z)) @

kg (0,1ogz;) = (z)° '
s (0,10gz)) p(i+expﬂiv(1)(z) i +expmiW ((z)
where

edp(2)

edp(z) —logz;
2edp(z) —logz;’

V(g = ,
(@) 2edp(z) —logz;

W(2) =

We see that the expression in (2) is the same as in (1) after substituting log z; ~
—log z;, and the estimates stay true.
Now assume that ¢y = 0. Then, for j = 1,...,n,
i —expmiXW(z) i —expmi¥Y(z)
ks (0,logz;) = p| - T —
: i +expmiX ()" i +expmi¥ U)(z)

(o i —expmiXY(z) + oo i —expmi¥Y Y(z)
=P\ +expiX U)(z) PAR T expwiY )(z) )’

where
X0(g) e"dp(2)||z|| " — log z; oy eldp@lz|”
2&"dp(z)||z)| 7! — log z; 2e"dp(2)|1z]I 7! — log z;
Putting
5U(z) = ¢"dp(z)

Izl log z;”
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we have _
8V —1

280)(z) — 1

3('7)(2)
2605 — 1’
and §“(z) — 0 as z — 0. Calculations analogous to those in the ¢y # 0 case
give

X(,i)(z) — Y(j)(z) —

i—expriXW(z) ‘
T o v N y W 05DV (2)?
i +expmiX ()(z) i +miY V() + 06 (2)7)

and "
i —expmiYY(z) . G ‘
— = — 7YY 08D ()2).
i +expmi¥ )(z) L= (2) + 08V (2)°)
Therefore,

I W R P (I
i +expmiX¥(z) 2 2 28(U(z) —1

_ 0(8(*i)(z)2))

< L og(—sth C
= —5 log(=8(2)) +
and similarly

<0 i —expmi¥ V(z)

1 |
TP 0 ) < log(—89(2) + C.
i—l—expm’Y(-l)(z)) = Ty loe=ae)

Finally,

_min kg (0,logz;) < min —log(—8(z)) + C
J=hL..,n z J=L... n

= —logdp(z) + logllz|l + I}lin log(—logz;) +C
J=he n
= —logdp(z) + log||z|l + log(—log ‘ rrllax Zj) +C
j=L,..., n
< —logdp(z) + log|z|| + log(—log|iz|}) + C
< —logdp(z) + C.

For improving the estimate in the case of ¢y € 0D N C!, we may assume that
20 € C} and |zo;l, [¢0j| # 1for j =1,...,n. Since log D is a convex domain, it
follows that the interval

I, .= {tlog|z| + (1 — 1) log|zo| : t € (—e(2),1 4+ 8(2))}

is contained in log D for some positive numbers §(z) and €(z). The number &(z)
can be chosen as a sufficiently small positive constant ¢ independent of z. Indeed,

tlog|z| + (1 — 1) log|zo| = log|zol + #(log|z| — log|zo])
and ||log|z| — log|zo]| is bounded—say, by M. Hence

e = dlogD(10g|Z0|)
2M
is good. Analogously,
dlogD(10g|Z|)
2M
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is a candidate for §(z). We have

dyog p(log|z[)
2M
for some § > O (in fact, “>" can be replaced with “~”"). Thus we can choose
8(z) 1= 8dp(z).
From the inclusion I, C log D it follows that

> ddp(z)

expl, C D;
that is,
Z] ! Zn !
( — |Z()1|,---,' |20n|)€D
201 On

fort € (—e,1+ 8dp(z)). Hence the holomorphic map

Zn

Z0n

21

201

Py
1Zotl, ..., e A&

= (s

A
|Z0n |)
leading from the strip
S, :={,eC:—e <Rei <1468dp(2)}
has values in D. Moreover f;(1) = z and f;(0) lies on the torus
T :={(*Mzots---> nZ0n) * M,-.., Ay € 0D}
Therefore,
kp(zo,2) = kp(zo, f2(0)) + kp(f2(0),2)
< kp(fz(0), fz(1)) + max kp < kg,(0,1) +maxkp.
TxT TxT

Calculating ks_(0, 1) now yields

i —expmiPY(z) i —expmiQY(z)
ks.(0,1) = p| - — . —— ,
i +expmiPU(z) i +expriQ(z)
where
. e ; 1+¢
PY(z) = , () := )
(2) 1+ &4 3dp(z) 2-12) 1+ &4 3dp(z)

Certainly, the first of the preceding arguments of the function p tends to some
point from the unit disc; for the second argument, we have

i —expmiQY(z) ddp(z)

S =i i ———— + 0(dp(2)?).
Crepmio) T ket adpin T O
As a result,
- Q) log2 1 sd
(0’ l exp le - (Z)> < 0og ——1lo (ﬂ& _ O(dD(Z)2)>
i +expriQ(z) 2 2 I+ +0dp(2)

IA

1
_EIOng(Z) + C.

The triangle inequality for p finishes the proof. U
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Proof of Theorem 2. This proof is based on the decreasing and product proper-
ties of the Kobayashi distance. We must consider some cases that will lead to an
induction.

Note that if E C R” is a convex domain then E = int E. The condition $o €
8D Nint D implies ¢, ¢ C1. To see this, assume that {y € C}. An easy topological
argument shows that

log|¢o| € (0 log D) Nintlog D = (d log D) Nlog D = #.
Assume without loss of generality that

¢o = (%ot ---»¢0k,0,...,0),

where 0 < k < n —1and ¢y # O for j < k. Let r > 0 be such that an open
polydisc P(&o,r) is contained in D. Then log P(&y,r) C log D. Taking interiors
of both sides, we obtain

log P(¢o,r) C intlog D = intlog D = log D.

Therefore,
P(¢o,r)NCL C D. 3)

Clearly, for fixed small » we have
P(50,r) NCL =D(Co1,7) x -+ x D(Gox, 1) x (rDy)" K,

where D(&y;,r) is a disc in C centered at ¢o; and with radius r. Hence, choosing
any zo € P(¢o,r) NC%, we have

,,,,,

for z € D NCY near . For j =1, ...,k the numbers z; tend to ¢}, so the first of
these maxima is bounded by a constant. The well-known estimate for the punc-
tured disc gives us

1 1
kp,(20j,2j) < zlog(—logdrm*(z,-)) +C= 3 log(—log|z;|) + C

for j =k +1,...,n. Therefore,

1 .
kp(z0,2) < —log<—log, min |Zj|) +C. 4
2 j=k+1,..., n
We can improve on the estimate (4). Let 7’ := (zy,...,2x) and note that
(z,0,...,0)€9D. 3)

Indeed, (7/,0,...,0) € D.If (z,0,...,0) € D then D is complete in the directions
k+1,...,n (by Fact 1). Moreover, (o1, ---,Coks /2, ...,r/2) € D, which implies
(ot - -5 Cok> 0, ...,0) € D—a contradiction.

We claim that, forallk +1 < p < g <n,

(z’,O,...,O,z_p,O,...,O)EBD or (z’,O,...,O,z_,,,O,...,O)eBD; (6)
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here z; denotes that z; is on the jth place. If (6) does not hold then both points
belonE to D (recall that P(¢o,r) C D). Hence D is complete in the directions
k+1,...,nand (z/,0,...,0) € D, which contradicts (5).

Therefore all points

(,0,...,0,2,,0,...,0), p=k+1,....n,
except possibly one, belong to dD. Consider the following cases.

Case 1.1: One of these points (say, (z,0,...,0,z,)) does not belong to dD.
Then it belongs to D and hence D is complete in the directions k +1,...,n — 1.
Now the inclusion (3) can be improved to

P, N(EC"'xCHcCD
and
P(Zo,r) N (C" ' x C,) = Do, r) X - - X D(Cox, r) X (rD)* %1 x rD,.

The estimate for kp(zg, z) is improved to

maX{ max kp,,;,n(20j>2;),  max kr]D)(ZOij),krD*(ZOn’Zn)}
j=L,..., k j=k+1,..., n—1

1
= kr]D)*(ZOn, Zn) < z log(_10g|zn|) +C.
It remains to observe that
(2, 241 - -1 2n-1,0) € 0D,

for otherwise the domain D would be complete in the nth direction and the prop-
erty (z/,0,...,0,z,) € D would imply (z/,0,...,0) € D, in contradiction with (5).
Thus

dp(2) < llz = 2\ zkt15 -5 201, 0) | = |24l

which allows us to estimate
1 1
3 log(—log|z,|) + C < 3 log(—logdp(z)) + C.

Case 1.2: All the points
(z,0,...,0,2,0,...,0), p=k+1,....n,
belong to 0D. We claim that, forallk+1<p <g <nandk+1<p' ' <q’' <
n with {p,q} # {p'.q'},
(z,0,...,0,2,,0,...,0,2,4,0,...,0) €dD or
(z/,O,...,O,ZP/,O,...,O,zq/,O,...,O)EBD.

Analogously as before we use an argument of completeness in the suitable direc-

tions to get
(z,0,...,0,2;,0,...,0) € D

for some j € {p,q, p’,q'}—a contradiction with the assumption of this case.
Therefore, all points
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(z,0,...,0,2,,0,...,0,24,0,...,0), k+1<p<gq=n,
except possibly one, belong to dD. Again we consider two cases.

Case 2.1: One of these points (say, (z',0,...,0,2,_1,2,)) does not belong to
oD. Then it belongs to D. We see, much as in Case 1.1, that

P(¢0,r) N (C"*x C3) C D,

1
kp(zo,2) < —log<—log _min |z,-|> +C,
2 j=n—1n

! /
(Z s Zk41s+++53n=2> ZI‘L*lsO)’ (Z s Sk41s -+« ~aZn7270’ ZI‘L) € 8D9

dp(z) < min |z;].
j=n—1,n

Case 2.2: All the points
(,0,...,0,2,,0,...,0,2,4,0,...,0), k+1<p<gq=<n,

belong to dD. We see, by induction, that in the sthstep (s = 3,...,n —k — 1) all
points

(,0,...,0,2p,,0,...,0,2,,,0,...,0), k+1<p <---<ps<n,

except possibly one, belong to dD.
If one of these points (say, (z/,0,...,0,2,—s+1,---,2,)) does not belong to dD,
then it belongs to D and

P(go,r) N(C"* xC) C D,

.....

(Z/’ZlH—l’ o5 Zn—ss3n—s+1s ~~~9Zj—1’0’ Zj41s ~~~’Zn) S 8D’ ] =n—-—s5+ 1’ B (N
dp(z) < min |z;],
j=n—s+ n

which finishes the proof in the case s.1.
If all the points

(,0,...,0,2p,,0,...,0,2,,,0,...,0), k+1<p <---<ps;<n,

belong to dD, then we “jump” from the case 5.2 to the case (s + 1).1 and finally
obtain
(Z/, 07 Lk425+445 Zn) € D7

P(Zo,r) N (CH x c*1y ¢ D,

1
> <=1 -1 i ) 5
kp(zo,2) < > og( Ogj:kIJIrIZI?,.,JZj' +C
(Z,,Zk+1,Zk+2,--.,Zj_l,O,Zj_;,_],...,Z”)GaD, j=k+2,...,n,

dp(z) < min |zj]
j=k+2,...,n
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in the case (n —k — 1).1 or
(Z/7Zk+15"'9Zj713o>zj+ls""zn)eaD, j=k+1"”,n7

in the case (n — k — 1).2. This property allows us to estimate dp(z) from above
by minj—x1,....»12;| and then use (4) to finish the proof. O

Proof of Theorem 3. The proof has two main parts. We first prove the claim for
¢o € 0D N C7 thanks to the effective formulas for the Kobayashi distance in spe-
cial domains. The second part amounts to the lower-dimensional situation with a
boundary point having all nonzero coordinates.

Let ¢y € 9D N C? and consider z € D N C close to ¢y. From the convexity of
the set log D there exist « € R"” and ¢ > 0 such that the hyperplane

{x eR" : (o, x)gn = logc}
contains the point log|y| and, moreover, log D lies on the one side of this hyper-
plane. Assume without loss of generality that this side is {x € R" : (o, x)pr <
log ¢}, since in the case of log D C {x € R" : {a/,x)r» > logc’} it suffices to
define
a:=-—a and c:=1/c.
Therefore,
{te™,...,e™) :xelogD} C{weC": |w|* <c}=: Dy,
(these sets are called elementary Reinhardt domains), where by a point satisfying
the condition |w|* < ¢ we mean such a point w whose coordinate w; is nonzero
when «; < 0 (and satisfies |w|® < c in the usual sense). To affirm that D C Dy,
we must check that this restriction for points w does not remove from D points
with some zero coordinates. Indeed, if there is no such inclusion, we can assume
that the order of zero coordinates of point w € D and negative terms of the se-
quence « is as follows:
wla"'9wk#0’ wk+1,'--7wn=0’
ak+19"'3a1209 al+19---3an<0;

here 1 < k <[ < n. In some neighborhood of the point w contained in D, there
exist points v € C}} with coordinates v; such that

[vil, ..., vl > e >0

and |v;41l, ..., |v,| arbitrarily close to zero (i.e., moved from w in the direction
of subspace {0}/ x C"~' and then moved by a constant vector in the direction
C! x {0}"~!). Hence there exist points u € log D whose coordinates u; satisfy

up,...,u; >loge > —o0o,

although w4y, ...,u, are arbitrarily close to —oo. However, this contradicts the
fact that values of the expression

n
E : ojlj
j=l+1

are, for these points u, bounded from above by a constant log ¢ — Z§'=1 ajloge.
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We will use effective formulas for the Kobayashi distance in domains D, . [9].
Define
l'=#{j=1,...,n:a; <0}
and
a:=minfo; 1 a; > 0} if [ <n.

We first consider when / < n. The formula in this case gives

a/d
kp(zo,z) = kp, (z0,2) = p(O |C| ) +C.
Yet

z ={p,.(z) —dp, (2)vp,.(2)
and hence

|2]*/% = 1"[|;Dw<z>, dp, . (2)vp, (2);|"* = c"* = p(2)dp, (2)
j=l

for some bounded positive function p. Thus

aja
p(O,%) = p(O,l 'O(Z)dDa((Z)> > —ll g(p( ~)dDa((Z))
cl/a 2

1
= 3 logdp, .(z) + C.
We will show that
dp,.(z) = dp(z) as z — o nontangentially.

By definition there exists a cone A with vertex ¢y and semi-axis —vp, (¢o) that
contains considered points z. By the C'-smoothness of D we have a cone B, with
vertex ¢ and semi-axis —vp, (o), whose intersection with some neighborhood
of the point ¢ is contained in D and contains in its interior the cone .A. Therefore,

A li=o@I _ lz= @l _ =)l

T dp, (D) Nz—¢p, (DI T Nz=%l T llz— ol
=sin Z(z, &y, {5(2)) > sinb;

here Z(X,Y,Z) is an angle with vertex ¥ and with arms that contain points X
and Z, and 6 is the angle between these generatrices of cones .4 and /5 that lie in
one plane with the axis of both cones. (In other words, 6 is a difference of angles
appearing in the definitions of the cones B and A.)

In the second case, | = n, we have

kp(zo0,2) = kp, .(20,2) = P(O %) +C.

Similarly as before,

|z|* = Hléua,f(z)j —dp, .(2)vp, (2);| = ¢ —o(2)dp, (2)

j=1



Boundary Behavior of the Kobayashi Distance 589

with a bounded positive function o. Hence

« 1 1
p<0, |Zc| > > —zlongw(z) +C > —Elong(z) + C.

Now take ¢p € dD \ C?. We may assume that the first k coordinates of ¢ are
nonzero and that the last n — k are zero, where 0 < k < n — 1. Notice that k #
0; indeed, the assumption k = 0 is equivalent to 0 € dD. Using Facts 1 and 2, we
see that the C'-smoothness of D implies (by the Fu condition) D N V" # ¢ for
j =1,...,n. Hence D is complete and so 0 € D—a contradiction. Finally, point
Lo has the form

¢o = Got>--+>%0k,0,...,0), &o; #0, 1<j<k=<n-1
Consider the projection 73 : C" — C*; that s,

e (2) = (2155 2k)-

We will show that D := m; (D) is a C'-smooth pseudoconvex Reinhardt domain.
A Reinhardt property is clear for Dy. To affirm the pseudoconvexity of Dy, it suf-
fices to show that

Dy x {0} F = DN (C* x {0}"75).
Inclusion,

Dy x {0}"% > DN (CF x {0} ),
is obvious. To prove the opposite inclusion, we again use Facts 1 and 2. We have
DN VJ” # W for j = k+1,...,n, so D is complete in jth direction for j =
k+1,...,n. Take some z € D; x {0}”"‘. Then z = (zy,...,2%,0,...,0) and
(Z1y--»ZhsZktls---»2n) € D for some Zg1y,...,2, € C. Thus

(z1,...,2£,0,...,0) € D;

that is, z € D N (C* x {0}"%).
The local defining function for Dy at point ¢ € 0Dy is

ﬁ(zl’“-,zk) = p(Zl,---’Zk’O"",O)’ (Z]a-"7zk)€nk(U)ka5

where p: U — Ris the local defining function for D at point (£, 0, ..., 0). Indeed,
Vp # 0 because

* Vp #0,

p __ Op . __
. %, _ﬁfor]_l,...,k,and

o a7'0=0forj=k—i—1,...,n.

az;

However, the two remaining conditions for a defining function follow easy from
the definition of p.

If z tends to ¢y nontangentially in a cone A C C", then 7, (z) tends to 7 (¢o) €
C¥ nontangentially in a cone 73 (.A) C C*. From the case ¢ € 9D N C" already
shown, we have

1
kp(z0.2) 2 kp,(m(20), 1(2)) = =3 logdp, (m(2)) + C.
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Hence, to finish the proof it suffices to show that
dp, (1(2)) < dp(2).

Consider a cone B, with vertex ¢y and semi-axis —vp, (o), whose intersection
with some neighborhood of the point ¢y is contained in D and contains in its inte-
rior the cone A. Then

_ds() _ 2= @l _ llz— @)

T dp(2)  Nz—=tp@I T llz— ol
where 0 is again the angle between these generatrices of the cones .4 and B that
lie in one plane with the axis of both cones. Analogously,

dy,
- L3 (T (2)) > sind,
dp, (7 (2))
where 6’ depends only on . Hence
dp,(1(2)) _ dmy () (i (2))
dp(z) dg(z)

= sin Z(z, {0, {B(2)) > sind,

However,
A 3) (T (2))  N171(2) = L) (7 (2)) |
dg(z) lz = ¢
(@) — (o) |l sin Z(mi (2), 71 (80)s Sy () (1 (2)))
B llz = oll sin Z(z, &0, £5(2))

<||7Tk(Z)—7Tk(§0)|| - 1 .
lz —¢ollsin® ~ siné

O

PROPOSITION.  The estimate from below by —% logdp + C for the Carathéodory
(pseudo)distance cp is not true even for a smooth bounded complete pseudo-
convex Reinhardt domain D and its boundary point {y € C}.

Proof. Consider a domain
D :={(z1,22) €C* : |zil < Ry, |22] < Ro, |zillz2]* < R},

where R, Ry, R3 > 0, € (R\ Q)4, and R{R] > Rj3. Fix ¢p € dD such that
[Z01] < Ry and |¢p2| < R». This domain is not smooth. Since

log D = {(x1,x3) € R?:x < log Ry, x5 < log R;, x| + ax; < log R3},

itis easy to construct a smooth bounded convex domain E C R? such thatlog D C
E and 0F contains the skew segment

(@log D) N {(x1,x2) € R? : x; 4+ ax, = log R3}.

Let D C C? be a complete Reinhardt domain such that log D = E. Then D is
bounded, smooth, and (thanks to Fact 1) pseudoconvex. Moreover, D C D and
there is a neighborhood U of their common boundary point ¢y such that DN U =
DNU.
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From [9, Prop. 4.3.2] it follows that
_ 80050.0)

log|2|
where gp is the pluricomplex Green function. (For general properties of the

Carathéodory (pseudo)distance and the pluricomplex Green function, see e.g.
[3; 9].) Certainly,

— 00 as A — dD,

dp(Ao) =dp(Ago) =1 —|A| as |A] — 1
and
cp (8o, 0) < tanh™'exp gp(1&o,0).

So if there exists a constant C > 0 such that
1
¢ (Ao, 0) > —zlogd[)()»{o) +C, A =1

then, for |A| — 1,
1
cp(A&o,0) > —> logdp(Ago) + C,

1
-5 log(1 — |A]) + C < tanh™!|A|%*,
1 c’
<
1— A = 1—|A|®
with a constant C’ > 0. For |A| sufficiently close to 1 we have a; > C’+ 1. Hence
1 C’
= ;
L—|A] = 1= |aC+!

or, equivalently,

1— |)\,|C/+1 ,
——=<C
1— A
The left-hand side tends to C' + 1 as [A| — 1. O

4. Open Problems

We conclude by describing three open problems as follows.

1. Can we improve the estimate from Theorem 1 to —% logdp(z) + C?

2. Let D C C" be a pseudoconvex Reinhardt domain and let ¢y € 9D N C7.
Does it follow that, for some constant C, the inequality

1
kp(zp,2) = —Elong(Z) +C
holds if z € D tends to {o?

3. Is it true for pseudoconvex Reinhardt domains D C C” that if

#{j: 5, =0and DNV =0} =0
then
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1
kp(zo,2) > —Elong(Z) +C

and that otherwise
1
kp(zo,z) > 3 log(—logdp(z)) + C
for z € D near ¢y € 0D?
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