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Boundary Behavior of the Kobayashi Distance
in Pseudoconvex Reinhardt Domains

Tomasz Warszawski

1. Introduction and Results

The problem of boundary behavior of the Kobayashi (pseudo)distance in pseudo-
convex Reinhardt domains is connected with the study of their Kobayashi com-
pleteness. The qualitative condition for the k-completeness of a bounded domain
D is

kD(z0, z)→ ∞ as z→ ∂D.

The main fact is that, if a pseudoconvex Reinhardt domainD is hyperbolic, then it
is k-complete. At first Pflug [7] proved this for bounded complete domains. A sec-
ond step was done by Fu [2] for bounded domains. The general case was finally
solved by Zwonek [8].

Hence it is natural to ask about quantitative behavior of the function kD(z0, ·).
Forstnerič and Rosay estimated it from below on bounded strongly pseudoconvex
domains. Namely, it was proved in [1] that

kD(z1, z2) ≥ −1

2
log dD(z1)− 1

2
log dD(z2)+ C

for zj near two distinct points ζj ∈ ∂D, j = 1, 2. In the same paper, the authors
showed the opposite estimate for C1+ε-smooth domains with z1, z2 near ζ0 ∈ ∂D.
This estimate in the bounded case follows from the inequality for the Lempert func-
tion of bounded C1+ε-smooth domains obtained by Nikolov, Pflug, and Thomas [6]:

k̃D(z1, z2) ≤ −1

2
log dD(z1)− 1

2
log dD(z2)+ C, z1, z2 ∈D.

It was also proved that this estimate fails in the C1-smooth case. The other gen-
eral version of an upper estimate, for C 2-smooth domains, can be found in [3].
The case of bounded convex domains was investigated by Mercer [5]. For such
domains we have

−1

2
log dD(z)+ C ′ ≤ kD(z0, z) ≤ −α log dD(z)+ C

with α > 1
2 and z close to ζ0 ∈ ∂D (

the constant α cannot be replaced with 1
2

)
.

The example

Dβ := {(z,w)∈C2 : |z|β + |w|β < 1}, 0 < β < 1,
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shows that the lower estimate by −α log dD(z)+C, where α > 0 (a constant inde-
pendent on a domain), is not true for complete pseudoconvex Reinhardt domains.
Easy calculations lead to

kDβ ((0, 0), (z, 0)) ≤ −β
2

log dDβ (z, 0)+ C
if 0 < z < 1 and (z, 0) tends to (1, 0).

In this paper we prove the following theorems.

Theorem 1. LetD ⊂ Cn be a pseudoconvex Reinhardt domain. Fix z0 ∈D and
ζ0 ∈ ∂D. Then, for some constant C, the inequality

kD(z0, z) ≤ −log dD(z)+ C
holds if z∈D tends to ζ0. Additionally, for ζ0 ∈Cn∗ the estimate can be improved to

kD(z0, z) ≤ −1

2
log dD(z)+ C ′,

where C ′ is a constant.

Theorem 2. LetD ⊂ Cn be a pseudoconvex Reinhardt domain. Fix z0 ∈D and
ζ0 ∈ ∂D ∩ int D̄. Then, for some constant C, the inequality

kD(z0, z) ≤ 1

2
log(−log dD(z))+ C

holds if z∈D tends to ζ0.

Theorem 3. Let D ⊂ Cn be a C1-smooth pseudoconvex Reinhardt domain. Fix
z0 ∈D and ζ0 ∈ ∂D. Then, for some constant C, the inequality

kD(z0, z) ≥ −1

2
log dD(z)+ C

holds if z∈D tends nontangentially to ζ0.

2. Notation and Definitions

By D we denote a domain in Cn. The Kobayashi ( pseudo)distance is defined as

kD(w, z) := sup{dD(w, z) : (dD) is a family of holomorphically invariant

pseudodistances ≤ k̃D},
where

k̃D(w, z) := inf{p(λ,µ) : λ,µ∈D and ∃f ∈O(D,D) : f(λ) = w, f(µ) = z}
is the Lempert function ofD, D is the unit disc in C, and p is the Poincaré distance
on D. For general properties of functions kD , one may refer to [3].

Let zj denote the j th coordinate of point z ∈Cn. A domain D is called a Rein-
hardt domain if (λ1z1, . . . , λnzn) ∈D for all numbers λ1, . . . , λn ∈ ∂D and points
z∈D. A Reinhardt domain D is complete in the j th direction if
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({1}j−1 × D̄ × {1}n−j ) ·D ⊂ D,

where A · B := {(a1b1, . . . , anbn) : a ∈ A, b ∈ B}. Define subspaces V n
j :=

{z ∈ Cn : zj = 0} for j = 1, . . . , n. If a Reinhardt domain D is complete in the
j th direction for all j such thatD ∩V n

j �= ∅, thenD is called relatively complete.
Let A∗ := A\ {0} for a set A ⊂ C and let Cn∗ := (C∗)n. By dD(z) we denote a

distance of a point z ∈D to ∂D (here, exceptionally, D can be a domain in Rn),
and by ζD(z) we denote one of the points admitting the distance of a point z ∈D
to ∂D.

We will use the following main branch of the power zα := eα log z =
eα(log|z|+iArg z), where the main argumentArg z∈ (−π,π]. Define zα := z

α1
1 · · · zαnn

with |z|α := |z1|α1 · · · |zn|αn for z ∈ Cn∗ and α ∈ Rn. Moreover, let |z| :=
(|z1|, . . . , |zn|) for z∈Cn, log|z| := (log|z1|, . . . , log|zn|) for z∈Cn∗ , and logD :=
{log|z| : z ∈D ∩ Cn∗}—a logarithmic image of D. We use C to denote constants
that need not be the same in different places. We write f � g if there exists a
C > 0 such that f ≤ Cg; also, f ≈ g if f � g and g � f.

We call D a C k-smooth domain if, for any point ζ0 ∈ ∂D, there exist its open
neighborhood U ⊂ Cn and a C k-smooth function ρ : U → R such that:

(i) U ∩D = {z∈U : ρ(z) < 0};
(ii) U \ D̄ = {z∈U : ρ(z) > 0}; and

(iii) ∇ρ := (
∂ρ

∂z̄1
, . . . , ∂ρ

∂z̄n

) �= 0 on U.

The function ρ is called a local defining function for D at the point ζ0.

For a C1-smooth domain D we define a normal vector to ∂D at a point ζ0 ∈
∂D as

νD(ζ0) := ∇ρ(ζ0)

‖∇ρ(ζ0)‖ ,

where ρ is a local defining function for D at ζ0. Clearly,

z = ζD(z)− dD(z)νD(ζD(z))
for z∈D and

lim
D�z→ζ0

νD(ζD(z)) = νD(ζ0)

for every choice of ζD(z). To ease the notation we shorten the symbol νD(ζD(z))
to νD(z).

Defining a nontangential convergence requires the concept of a cone with a ver-
tex x0 ∈ Rn, a semi-axis ν ∈ (Rn)∗ and an angle α ∈ (

0, π2
)
. This cone is a set of

x ∈ Rn \ {x0} such that an angle between vectors ν and x − x0 does not exceed
α. Let D be a C1-smooth domain and let ζ0 ∈ ∂D. We say that z ∈D tends non-
tangentially to ζ0 if there exist a cone A ⊂ Cn ∼= R2n with a vertex ζ0, a semi-axis
−νD(ζ0), and an angle α ∈ (

0, π2
)

as well as an open neighborhood U ⊂ Cn of ζ0

such that U ∩ A ⊂ D and z tends to ζ0 in U ∩ A.
We say that a Reinhardt domain D satisfies the Fu condition if, for any j ∈

{1, . . . , n}, the following implication holds:

∂D ∩ V n
j �= ∅ �⇒ D ∩ V n

j �= ∅.
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The following well-known properties of pseudoconvex Reinhardt domains will be
used in the paper (see e.g. [4]).

Fact 1. A Reinhardt domain D is pseudoconvex if and only if logD is convex
and D is relatively complete.

Fact 2. A C1-smooth Reinhardt domain satisfies the Fu condition.

3. Proofs

Proof of Theorem 1. We proceed as follows. The first step is to simplify the gen-
eral case to “real” coordinates, after which we consider some parallelepipeds con-
tained in the given domain and use the decreasing property of the Kobayashi dis-
tance. Finally, we explicitly calculate and estimate that distance in other domains:
Cartesian products of a strip and annuli in C. To improve the estimate for a bound-
ary point with all nonzero coordinates, we use similar methods but with intervals
instead of parallelepipeds.

Using some biholomorphism of the form

w �Cn  → (a1w1, . . . , anwn)∈Cn, a ∈Cn
∗ ,

and the triangle inequality for kD , we can assume that z0 = (1, . . . ,1) and |ζ0j | �=
1 for j = 1, . . . , n. Notice that the proof can be reduced to the case z ∈ D ∩ Cn∗
near ζ0, and this case amounts to the situation

z∈D ∩ (0,∞)n near ζ0 ∈ ∂D ∩ ([0,∞) \ {1})n.
Indeed, the first reduction follows from the continuity of kD and the triangle
inequality for kD. Now, if z→ ζ0 then |z| → |ζ0| ∈ ∂D and

kD(z0, z) = kD(z̃0, |z|),
where

z̃0 :=
( |z1|
z1
z01, . . . ,

|zn|
zn
z0n

)
∈ T := {(λ1z01, . . . , λnz0n) : λ1, . . . , λn ∈ ∂D}.

The continuity of kD gives

max
T×T kD =: C <∞

and therefore

kD(z̃0, |z|) ≤ kD(z̃0, z0)+ kD(z0, |z|) ≤ kD(z0, |z|)+ C.
The property dD(|z|) = dD(z) finishes this reduction. In what follows, we assume
that points z∈D ∩ (0,∞)n are sufficiently close to ζ0 ∈ ∂D ∩ ([0,∞) \ {1})n.

Observe that
dlogD(log z) ≥ εdD(z)

for some ε > 0. Indeed, for u∈Rn such that ‖u‖ < 1 and 0 ≤ t ≤ εdD(z), where

ε := 1

3(‖ζ0‖ + 1)
,
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we also have

log z+ tu∈ logD ⇐⇒ (z1e
tu1, . . . , zne

tun)∈D,

but (z1e
tu1, . . . , zne tun)∈D follows from

‖(zj e tuj )nj=1 − z‖ ≤
√√√√ n∑

j=1

z2
j (2t)

2 ≤ 2t(‖ζ0‖ + 1) < dD(z).

Moreover, for ζ0 = 0, a similar consideration leads to

dlogD(log z) ≥ ε ′
dD(z)

‖z‖
for sufficiently small ε ′ > 0. Indeed, there exists an ε ′ ∈ (

0, 1
2

)
such that the

inequalities
|e tuj − 1| ≤ 2t, j = 1, . . . , n,

hold for 0 ≤ t ≤ ε ′. Hence, for 0 ≤ t ≤ ε ′ dD(z)‖z‖ we have

‖(zj e tuj )nj=1 − z‖ ≤
√√√√ n∑

j=1

z2
j (2t)

2 ≤ 2ε ′
dD(z)

‖z‖ ‖z‖ < dD(z).

Now let

d̃D(z) :=
{
εdD(z) if ζ0 �= 0,

ε ′′ dD(z)‖z‖ if ζ0 = 0;
here ε ′′ := ε ′dlogD(0). We define

mz := min{0, log z1}, Mz := max{0, log z1}
and consider the domain

Dz :=
{
w ∈Cn : mz − d̃D(z) < log|w1| < Mz + d̃D(z),

log zj
log z1

log|w1| − d̃D(z) < log|wj |

<
log zj
log z1

log|w1| + d̃D(z), j = 2, . . . , n

}
.

Then logDz is a domain in Rn containing points 0 and log z but contained in a
convex domain logD. Define also

Gz := {v ∈Cn : mz − d̃D(z) < Re v1 < Mz + d̃D(z),
−d̃D(z) < log|vj | < d̃D(z), j = 2, . . . , n}.

Then the holomorphic map

fz(v) := (ev1 , v2e
v1(log z2/log z1), . . . , vne

v1(log zn/log z1)), v ∈Gz,
has values in Dz. Moreover,
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w = fz

(
logw1,

w2

w
log z2/log z1
1

, . . . ,
wn

w
log zn/log z1
1

)
for w ∈Dz.

Therefore,

kD(z0, z) ≤ kDz(z0, z)

= kDz

(
fz(0,1, . . . ,1), fz

(
log z1,

z2

z
log z2/log z1
1

, . . . ,
zn

z
log zn/log z1
1

))

= kDz(fz(0,1, . . . ,1), fz(log z1,1, . . . ,1))

≤ kGz((0,1, . . . ,1), (log z1,1, . . . ,1))

= max{kSz(0, log z1), kAz(1, 1), . . . , kAz(1, 1)} = kSz(0, log z1),

where
Sz := {λ∈C : mz − d̃D(z) < Re λ < Mz + d̃D(z)}

and
Az := {λ∈C : −d̃D(z) < log|λ| < d̃D(z)}.

Using suitable biholomorphisms allows us to calculate

kSz(0, log z1) = p

(
i − expπiP(z)

i + expπiP(z)
,
i − expπiQ(z)

i + expπiQ(z)

)
,

where

P(z) := d̃D(z)−mz
2d̃D(z)+Mz −mz

, Q(z) := log z1 + d̃D(z)−mz
2d̃D(z)+Mz −mz

.

Analogously, changing the index 1 to any of 2, . . . , n yields

kD(z0, z) ≤ min
j=1,...,n

k
S
(j)
z
(0, log zj ),

where

k
S
(j)
z
(0, log zj ) = p

(
i − expπiP (j)(z)

i + expπiP (j)(z)
,
i − expπiQ(j)(z)

i + expπiQ(j)(z)

)

and

S(j)z := {λ∈C : m(j)z − d̃D(z) < Re λ < M(j)
z + d̃D(z)};

m(j)z := min{0, log zj}, M(j)
z := max{0, log zj}, j = 1, . . . , n;

P (j)(z) := d̃D(z)−m(j)z
2d̃D(z)+M(j)

z −m(j)z
, Q(j)(z) := log z1 + d̃D(z)−m(j)z

2d̃D(z)+M(j)
z −m(j)z

.

Consider two cases, ζ0 �= 0 and ζ0 = 0. If ζ0 �= 0 then choose j ∈ {1, . . . , n}
such that ζ0j �= 0 (recall that ζ0j = |ζ0j | �= 1). In the case of ζ0j > 1 we obtain

k
S
(j)
z
(0, log zj ) = p

(
i − expπiT (j)(z)

i + expπiT (j)(z)
,
i − expπiU(j)(z)

i + expπiU(j)(z)

)

≤ p

(
0,
i − expπiT (j)(z)

i + expπiT (j)(z)

)
+ p

(
0,
i − expπiU(j)(z)

i + expπiU(j)(z)

)
, (1)
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where

T (j)(z) := εdD(z)

2εdD(z)+ log zj
, U(j)(z) := log zj + εdD(z)

2εdD(z)+ log zj
.

By Taylor expansion, we have

i − expπiT (j)(z)

i + expπiT (j)(z)
= i − πiT (j)(z)+O(dD(z)2).

Hence

p

(
0,
i − expπiT (j)(z)

i + expπiT (j)(z)

)
= p

(
0, i − πiT (j)(z)+O(dD(z)2)

)

≤ log 2

2
− 1

2
log

(
1 − |i − πiT (j)(z)+O(dD(z)2)|

)

≤ log 2

2
− 1

2
log

(
1 − |i − πiT (j)(z)| − |O(dD(z)2)|

)

= log 2

2
− 1

2
log

(
π

εdD(z)

2εdD(z)+ log zj
−O(dD(z)2)

)

≤ −1

2
log dD(z)+ C.

Similarly,

i − expπiU(j)(z)

i + expπiU(j)(z)
= −i + πiT (j)(z)+O(dD(z)2),

which gives the same estimation for the second summand.
Otherwise, if ζ0j < 1 then

k
S
(j)
z
(0, log zj ) = p

(
i − expπiV (j)(z)

i + expπiV (j)(z)
,
i − expπiW (j)(z)

i + expπiW (j)(z)

)
, (2)

where

V (j)(z) := εdD(z)− log zj
2εdD(z)− log zj

, W(j)(z) := εdD(z)

2εdD(z)− log zj
.

We see that the expression in (2) is the same as in (1) after substituting log zj �
−log zj , and the estimates stay true.

Now assume that ζ0 = 0. Then, for j = 1, . . . , n,

k
S
(j)
z
(0, log zj ) = p

(
i − expπiX(j)(z)

i + expπiX(j)(z)
,
i − expπiY (j)(z)

i + expπiY (j)(z)

)

≤ p

(
0,
i − expπiX(j)(z)

i + expπiX(j)(z)

)
+ p

(
0,
i − expπiY (j)(z)

i + expπiY (j)(z)

)
,

where

X(j)(z) := ε ′′dD(z)‖z‖−1 − log zj
2ε ′′dD(z)‖z‖−1 − log zj

, Y (j)(z) := ε ′′dD(z)‖z‖−1

2ε ′′dD(z)‖z‖−1 − log zj
.

Putting

δ(j)(z) := ε ′′dD(z)
‖z‖ log zj

,
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we have

X(j)(z) = δ(j)(z)− 1

2δ(j)(z)− 1
, Y (j)(z) = δ(j)(z)

2δ(j)(z)− 1
,

and δ(j)(z) → 0 as z → 0. Calculations analogous to those in the ζ0 �= 0 case
give

i − expπiX(j)(z)

i + expπiX(j)(z)
= −i + πiY (j)(z)+O(δ(j)(z)2)

and
i − expπiY (j)(z)

i + expπiY (j)(z)
= i − πiY (j)(z)+O(δ(j)(z)2).

Therefore,

p

(
0,
i − expπiX(j)(z)

i + expπiX(j)(z)

)
≤ log 2

2
− 1

2
log

(
π

δ(j)(z)

2δ(j)(z)− 1
−O(δ(j)(z)2)

)

≤ −1

2
log(−δ(j)(z))+ C

and similarly

p

(
0,
i − expπiY (j)(z)

i + expπiY (j)(z)

)
≤ −1

2
log(−δ(j)(z))+ C.

Finally,

min
j=1,...,n

k
S
(j)
z
(0, log zj ) ≤ min

j=1,...,n
−log(−δ(j)(z))+ C

= −log dD(z)+ log‖z‖ + min
j=1,...,n

log(−log zj )+ C

= −log dD(z)+ log‖z‖ + log
(
−log max

j=1,...,n
zj

)
+ C

≤ −log dD(z)+ log‖z‖ + log(−log‖z‖)+ C
≤ −log dD(z)+ C.

For improving the estimate in the case of ζ0 ∈ ∂D ∩ Cn∗ , we may assume that
z0 ∈ Cn∗ and |z0j |, |ζ0j | �= 1 for j = 1, . . . , n. Since logD is a convex domain, it
follows that the interval

Iz := {t log|z| + (1 − t) log|z0| : t ∈ (−ε(z),1+ δ(z))}
is contained in logD for some positive numbers δ(z) and ε(z). The number ε(z)
can be chosen as a sufficiently small positive constant ε independent of z. Indeed,

t log|z| + (1 − t) log|z0| = log|z0| + t(log|z| − log|z0|)
and ‖log|z| − log|z0|‖ is bounded—say, by M. Hence

ε := dlogD(log|z0|)
2M

is good. Analogously,
dlogD(log|z|)

2M
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is a candidate for δ(z). We have

dlogD(log|z|)
2M

≥ δdD(z)

for some δ > 0 (in fact, “≥” can be replaced with “≈”). Thus we can choose
δ(z) := δdD(z).

From the inclusion Iz ⊂ logD it follows that

exp Iz ⊂ D;
that is, (∣∣∣∣ z1

z01

∣∣∣∣
t

|z01|, . . . ,
∣∣∣∣ znz0n

∣∣∣∣
t

|z0n|
)
∈D

for t ∈ (−ε,1+ δdD(z)). Hence the holomorphic map

fz(λ) :=
(
eiArg z1

∣∣∣∣ z1

z01

∣∣∣∣
λ

|z01|, . . . , eiArg zn

∣∣∣∣ znz0n

∣∣∣∣
λ

|z0n|
)

leading from the strip

Sz := {λ∈C : −ε < Re λ < 1+ δdD(z)}
has values in D. Moreover fz(1) = z and fz(0) lies on the torus

T := {(λ1z01, . . . , λnz0n) : λ1, . . . , λn ∈ ∂D}.
Therefore,

kD(z0, z) ≤ kD(z0, fz(0))+ kD(fz(0), z)
≤ kD(fz(0), fz(1))+ max

T×T kD ≤ kSz(0, 1)+ max
T×T kD.

Calculating kSz(0, 1) now yields

kSz(0, 1) = p

(
i − expπiP (j)(z)

i + expπiP (j)(z)
,
i − expπiQ(j)(z)

i + expπiQ(j)(z)

)
,

where

P (j)(z) := ε

1+ ε + δdD(z) , Q(j)(z) := 1+ ε
1+ ε + δdD(z) .

Certainly, the first of the preceding arguments of the function p tends to some
point from the unit disc; for the second argument, we have

i − expπiQ(j)(z)

i + expπiQ(j)(z)
= −i + πi δdD(z)

1+ ε + δdD(z) +O(dD(z)
2).

As a result,

p

(
0,
i − expπiQ(j)(z)

i + expπiQ(j)(z)

)
≤ log 2

2
− 1

2
log

(
π

δdD(z)

1+ ε + δdD(z) −O(dD(z)
2)

)

≤ −1

2
log dD(z)+ C.

The triangle inequality for p finishes the proof.
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Proof of Theorem 2. This proof is based on the decreasing and product proper-
ties of the Kobayashi distance. We must consider some cases that will lead to an
induction.

Note that if E ⊂ Rn is a convex domain then E = int Ē. The condition ζ0 ∈
∂D∩ int D̄ implies ζ0 /∈Cn∗ . To see this, assume that ζ0 ∈Cn∗ . An easy topological
argument shows that

log|ζ0| ∈ (∂ logD) ∩ int logD = (∂ logD) ∩ logD = ∅.
Assume without loss of generality that

ζ0 = (ζ01, . . . , ζ0k , 0, . . . , 0),

where 0 ≤ k ≤ n − 1 and ζ0j �= 0 for j ≤ k. Let r > 0 be such that an open
polydisc P(ζ0, r) is contained in D̄. Then logP(ζ0, r) ⊂ log D̄. Taking interiors
of both sides, we obtain

logP(ζ0, r) ⊂ int log D̄ = int logD = logD.

Therefore,
P(ζ0, r) ∩ Cn

∗ ⊂ D. (3)

Clearly, for fixed small r we have

P(ζ0, r) ∩ Cn
∗ = D(ζ01, r)× · · · × D(ζ0k , r)× (rD∗)n−k,

where D(ζ0j , r) is a disc in C centered at ζ0j and with radius r. Hence, choosing
any z0 ∈P(ζ0, r) ∩ Cn∗ , we have

kD(z0, z) ≤ max
{

max
j=1,...,k

kD(ζ0j,r)(z0j , zj ), max
j=k+1,...,n

krD∗(z0j , zj )
}

for z∈D ∩ Cn∗ near ζ0. For j = 1, . . . , k the numbers zj tend to ζ0j , so the first of
these maxima is bounded by a constant. The well-known estimate for the punc-
tured disc gives us

krD∗(z0j , zj ) ≤ 1

2
log(−log drD∗(zj ))+ C = 1

2
log(−log|zj |)+ C

for j = k + 1, . . . , n. Therefore,

kD(z0, z) ≤ 1

2
log

(
−log min

j=k+1,...,n
|zj |

)
+ C. (4)

We can improve on the estimate (4). Let z ′ := (z1, . . . , zk) and note that

(z ′, 0, . . . , 0)∈ ∂D. (5)

Indeed, (z ′, 0, . . . , 0)∈ D̄. If (z ′, 0, . . . , 0)∈D thenD is complete in the directions
k+1, . . . , n (by Fact 1). Moreover, (ζ01, . . . , ζ0k , r/2, . . . , r/2)∈D, which implies
(ζ01, . . . , ζ0k , 0, . . . , 0)∈D—a contradiction.

We claim that, for all k + 1 ≤ p < q ≤ n,

(z ′, 0, . . . , 0, zp, 0, . . . , 0)∈ ∂D or (z ′, 0, . . . , 0, zq , 0, . . . , 0)∈ ∂D; (6)
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here zj denotes that zj is on the j th place. If (6) does not hold then both points
belong to D (recall that P(ζ0, r) ⊂ D̄). Hence D is complete in the directions
k + 1, . . . , n and (z ′, 0, . . . , 0)∈D, which contradicts (5).

Therefore all points

(z ′, 0, . . . , 0, zp, 0, . . . , 0), p = k + 1, . . . , n,

except possibly one, belong to ∂D. Consider the following cases.

Case 1.1: One of these points (say, (z ′, 0, . . . , 0, zn)) does not belong to ∂D.
Then it belongs to D and hence D is complete in the directions k + 1, . . . , n − 1.
Now the inclusion (3) can be improved to

P(ζ0, r) ∩ (Cn−1 × C∗) ⊂ D

and

P(ζ0, r) ∩ (Cn−1 × C∗) = D(ζ01, r)× · · · × D(ζ0k , r)× (rD)n−k−1 × rD∗.

The estimate for kD(z0, z) is improved to

max
{

max
j=1,...,k

kD(ζ0j,r)(z0j , zj ), max
j=k+1,...,n−1

krD(z0j , zj ), krD∗(z0n, zn)
}

= krD∗(z0n, zn) ≤ 1

2
log(−log|zn|)+ C.

It remains to observe that

(z ′, zk+1, . . . , zn−1, 0)∈ ∂D,

for otherwise the domain D would be complete in the nth direction and the prop-
erty (z ′, 0, . . . , 0, zn)∈D would imply (z ′, 0, . . . , 0)∈D, in contradiction with (5).
Thus

dD(z) ≤ ‖z− (z ′, zk+1, . . . , zn−1, 0)‖ = |zn|,
which allows us to estimate

1

2
log(−log|zn|)+ C ≤ 1

2
log(−log dD(z))+ C.

Case 1.2: All the points

(z ′, 0, . . . , 0, zp, 0, . . . , 0), p = k + 1, . . . , n,

belong to ∂D. We claim that, for all k + 1 ≤ p < q ≤ n and k + 1 ≤ p ′ < q ′ ≤
n with {p, q} �= {p ′, q ′},

(z ′, 0, . . . , 0, zp, 0, . . . , 0, zq , 0, . . . , 0)∈ ∂D or

(z ′, 0, . . . , 0, zp ′ , 0, . . . , 0, zq ′ , 0, . . . , 0)∈ ∂D.
Analogously as before we use an argument of completeness in the suitable direc-
tions to get

(z ′, 0, . . . , 0, zj , 0, . . . , 0)∈D
for some j ∈ {p, q,p ′, q ′}—a contradiction with the assumption of this case.
Therefore, all points
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(z ′, 0, . . . , 0, zp, 0, . . . , 0, zq , 0, . . . , 0), k + 1 ≤ p < q ≤ n,

except possibly one, belong to ∂D. Again we consider two cases.

Case 2.1: One of these points (say, (z ′, 0, . . . , 0, zn−1, zn)) does not belong to
∂D. Then it belongs to D. We see, much as in Case 1.1, that

P(ζ0, r) ∩ (Cn−2 × C2
∗) ⊂ D,

kD(z0, z) ≤ 1

2
log

(
−log min

j=n−1,n
|zj |

)
+ C,

(z ′, zk+1, . . . , zn−2, zn−1, 0), (z ′, zk+1, . . . , zn−2, 0, zn)∈ ∂D,

dD(z) ≤ min
j=n−1,n

|zj |.

Case 2.2: All the points

(z ′, 0, . . . , 0, zp, 0, . . . , 0, zq , 0, . . . , 0), k + 1 ≤ p < q ≤ n,

belong to ∂D. We see, by induction, that in the sth step (s = 3, . . . , n− k−1) all
points

(z ′, 0, . . . , 0, zp1 , 0, . . . , 0, zps , 0, . . . , 0), k + 1 ≤ p1 < · · · < ps ≤ n,

except possibly one, belong to ∂D.
If one of these points (say, (z ′, 0, . . . , 0, zn−s+1, . . . , zn)) does not belong to ∂D,

then it belongs to D and

P(ζ0, r) ∩ (Cn−s × C s
∗) ⊂ D,

kD(z0, z) ≤ 1

2
log

(
−log min

j=n−s+1,...,n
|zj |

)
+ C,

(z ′, zk+1, . . . , zn−s , zn−s+1, . . . , zj−1, 0, zj+1, . . . , zn)∈ ∂D, j = n− s + 1, . . . , n,

dD(z) ≤ min
j=n−s+1,...,n

|zj |,
which finishes the proof in the case s.1.

If all the points

(z ′, 0, . . . , 0, zp1 , 0, . . . , 0, zps , 0, . . . , 0), k + 1 ≤ p1 < · · · < ps ≤ n,

belong to ∂D, then we “jump” from the case s.2 to the case (s + 1).1 and finally
obtain

(z ′, 0, zk+2, . . . , zn)∈D,

P(ζ0, r) ∩ (Ck+1 × Cn−k−1
∗ ) ⊂ D,

kD(z0, z) ≤ 1

2
log

(
−log min

j=k+2,...,n
|zj |

)
+ C,

(z ′, zk+1, zk+2, . . . , zj−1, 0, zj+1, . . . , zn)∈ ∂D, j = k + 2, . . . , n,

dD(z) ≤ min
j=k+2,...,n

|zj |
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in the case (n− k − 1).1 or

(z ′, zk+1, . . . , zj−1, 0, zj+1, . . . , zn)∈ ∂D, j = k + 1, . . . , n,

in the case (n − k − 1).2. This property allows us to estimate dD(z) from above
by minj=k+1,...,n|zj | and then use (4) to finish the proof.

Proof of Theorem 3. The proof has two main parts. We first prove the claim for
ζ0 ∈ ∂D ∩ Cn∗ thanks to the effective formulas for the Kobayashi distance in spe-
cial domains. The second part amounts to the lower-dimensional situation with a
boundary point having all nonzero coordinates.

Let ζ0 ∈ ∂D ∩ Cn∗ and consider z ∈D ∩ Cn∗ close to ζ0. From the convexity of
the set logD there exist α ∈Rn and c > 0 such that the hyperplane

{x ∈Rn : 〈α, x〉Rn = log c}
contains the point log|ζ0| and, moreover, logD lies on the one side of this hyper-
plane. Assume without loss of generality that this side is {x ∈ Rn : 〈α, x〉Rn <
log c}, since in the case of logD ⊂ {x ∈ Rn : 〈α ′, x〉Rn > log c ′} it suffices to
define

α := −α ′ and c := 1/c ′.
Therefore,

{(ex1 , . . . , exn) : x ∈ logD} ⊂ {w ∈Cn : |w|α < c} =: Dα,c

(these sets are called elementary Reinhardt domains), where by a point satisfying
the condition |w|α < c we mean such a point w whose coordinate wj is nonzero
when αj < 0 (and satisfies |w|α < c in the usual sense). To affirm thatD ⊂ Dα,c,
we must check that this restriction for points w does not remove from D points
with some zero coordinates. Indeed, if there is no such inclusion, we can assume
that the order of zero coordinates of point w ∈ D and negative terms of the se-
quence α is as follows:

w1, . . . ,wk �= 0, wk+1, . . . ,wn = 0,

αk+1, . . . ,αl ≥ 0, αl+1, . . . ,αn < 0;
here 1 ≤ k ≤ l < n. In some neighborhood of the point w contained in D, there
exist points v ∈Cn∗ with coordinates vj such that

|v1|, . . . , |vl| > ε > 0

and |vl+1|, . . . , |vn| arbitrarily close to zero (i.e., moved from w in the direction
of subspace {0}l × Cn−l and then moved by a constant vector in the direction
C l × {0}n−l). Hence there exist points u∈ logD whose coordinates uj satisfy

u1, . . . , ul > log ε > −∞,

although ul+1, . . . , un are arbitrarily close to −∞. However, this contradicts the
fact that values of the expression

n∑
j=l+1

αjuj

are, for these points u, bounded from above by a constant log c − ∑ l
j=1 αj log ε.
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We will use effective formulas for the Kobayashi distance in domains Dα,c [9].
Define

l := #{j = 1, . . . , n : αj < 0}
and

α̃ := min{αj : αj > 0} if l < n.

We first consider when l < n. The formula in this case gives

kD(z0, z) ≥ kDα,c(z0, z) ≥ p

(
0,

|z|α/α̃
c1/α̃

)
+ C.

Yet
z = ζDα,c(z)− dDα,c(z)νDα,c(z)

and hence

|z|α/α̃ =
n∏
j=1

|ζDα,c(z)j − dDα,c (z)νDα,c(z)j |αj/α̃ = c1/α̃ − ρ(z)dDα,c(z)

for some bounded positive function ρ. Thus

p

(
0,

|z|α/α̃
c1/α̃

)
= p

(
0,1− ρ(z)

c1/α̃
dDα,c(z)

)
≥ −1

2
log

(
ρ(z)

c1/α̃
dDα,c(z)

)

≥ −1

2
log dDα,c(z)+ C.

We will show that

dDα,c(z) ≈ dD(z) as z→ ζ0 nontangentially.

By definition there exists a cone A with vertex ζ0 and semi-axis −νDα,c(ζ0) that
contains considered points z. By the C1-smoothness of D we have a cone B, with
vertex ζ0 and semi-axis −νDα,c(ζ0), whose intersection with some neighborhood
of the point ζ0 is contained inD and contains in its interior the cone A. Therefore,

1 ≥ dD(z)

dDα,c(z)
= ‖z− ζD(z)‖

‖z− ζDα,c(z)‖
≥ ‖z− ζD(z)‖

‖z− ζ0‖ ≥ ‖z− ζB(z)‖
‖z− ζ0‖

= sin∠(z, ζ0, ζB(z)) ≥ sin θ;
here ∠(X,Y,Z) is an angle with vertex Y and with arms that contain points X
and Z, and θ is the angle between these generatrices of cones A and B that lie in
one plane with the axis of both cones. (In other words, θ is a difference of angles
appearing in the definitions of the cones B and A.)

In the second case, l = n, we have

kD(z0, z) ≥ kDα,c(z0, z) ≥ p

(
0,

|z|α
c

)
+ C.

Similarly as before,

|z|α =
n∏
j=1

|ζDα,c(z)j − dDα,c (z)νDα,c(z)j |αj = c − σ(z)dDα,c(z)
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with a bounded positive function σ. Hence

p

(
0,

|z|α
c

)
≥ −1

2
log dDα,c(z)+ C ≥ −1

2
log dD(z)+ C.

Now take ζ0 ∈ ∂D \ Cn∗ . We may assume that the first k coordinates of ζ0 are
nonzero and that the last n − k are zero, where 0 ≤ k ≤ n − 1. Notice that k �=
0; indeed, the assumption k = 0 is equivalent to 0 ∈ ∂D. Using Facts 1 and 2, we
see that the C1-smoothness of D implies (by the Fu condition) D ∩ V n

j �= ∅ for
j = 1, . . . , n. Hence D is complete and so 0 ∈D—a contradiction. Finally, point
ζ0 has the form

ζ0 = (ζ01, . . . , ζ0k , 0, . . . , 0), ζ0j �= 0, 1 ≤ j ≤ k ≤ n− 1.

Consider the projection πk : Cn → Ck; that is,

πk(z) = (z1, . . . , zk).

We will show thatDk := πk(D) is a C1-smooth pseudoconvex Reinhardt domain.
A Reinhardt property is clear forDk. To affirm the pseudoconvexity ofDk , it suf-
fices to show that

Dk × {0}n−k = D ∩ (Ck × {0}n−k ).
Inclusion,

Dk × {0}n−k ⊃ D ∩ (Ck × {0}n−k ),
is obvious. To prove the opposite inclusion, we again use Facts 1 and 2. We have
D ∩ V n

j �= ∅ for j = k + 1, . . . , n, so D is complete in j th direction for j =
k + 1, . . . , n. Take some z ∈ Dk × {0}n−k. Then z = (z1, . . . , zk , 0, . . . , 0) and
(z1, . . . , zk , z̃k+1, . . . , z̃n)∈D for some z̃k+1, . . . , z̃n ∈C. Thus

(z1, . . . , zk , 0, . . . , 0)∈D;
that is, z∈D ∩ (Ck × {0}n−k ).

The local defining function for Dk at point ζ ∈ ∂Dk is

ρ̃(z1, . . . , zk) := ρ(z1, . . . , zk , 0, . . . , 0), (z1, . . . , zk)∈πk(U) ∩Dk ,

where ρ : U → R is the local defining function forD at point (ζ, 0, . . . , 0). Indeed,
∇ρ̃ �= 0 because

• ∇ρ �= 0,
• ∂ρ̃

∂z̄j
= ∂ρ

∂z̄j
for j = 1, . . . , k, and

• ∂ρ

∂z̄j
= 0 for j = k + 1, . . . , n.

However, the two remaining conditions for a defining function follow easy from
the definition of ρ̃.

If z tends to ζ0 nontangentially in a cone A ⊂ Cn, then πk(z) tends to πk(ζ0)∈
Ck∗ nontangentially in a cone πk(A) ⊂ Ck. From the case ζ0 ∈ ∂D ∩ Cn∗ already
shown, we have

kD(z0, z) ≥ kDk(πk(z0),πk(z)) ≥ −1

2
log dDk(πk(z))+ C.
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Hence, to finish the proof it suffices to show that

dDk(πk(z)) � dD(z).

Consider a cone B, with vertex ζ0 and semi-axis −νDα (ζ0), whose intersection
with some neighborhood of the point ζ0 is contained inD and contains in its inte-
rior the cone A. Then

1 ≥ dB(z)

dD(z)
= ‖z− ζB(z)‖

‖z− ζD(z)‖ ≥ ‖z− ζB(z)‖
‖z− ζ0‖ = sin∠(z, ζ0, ζB(z)) ≥ sin θ,

where θ is again the angle between these generatrices of the cones A and B that
lie in one plane with the axis of both cones. Analogously,

1 ≥ dπk(B)(πk(z))

dDk(πk(z))
≥ sin θ ′,

where θ ′ depends only on B. Hence

dDk(πk(z))

dD(z)
≈ dπk(B)(πk(z))

dB(z)
.

However,

dπk(B)(πk(z))

dB(z)
= ‖πk(z)− ζπk(B)(πk(z))‖

‖z− ζB(z)‖
= ‖πk(z)− πk(ζ0)‖ sin∠(πk(z),πk(ζ0), ζπk(B)(πk(z)))

‖z− ζ0‖ sin∠(z, ζ0, ζB(z))

≤ ‖πk(z)− πk(ζ0)‖
‖z− ζ0‖ sin θ

≤ 1

sin θ
.

Proposition. The estimate from below by − 1
2 log dD +C for the Carathéodory

( pseudo)distance cD is not true even for a smooth bounded complete pseudo-
convex Reinhardt domain D and its boundary point ζ0 ∈Cn∗ .

Proof. Consider a domain

D := {(z1, z2)∈C2 : |z1| < R1, |z2| < R2, |z1||z2|α < R3},
where R1,R2,R3 > 0, α ∈ (R \ Q)+ , and R1R

α
2 > R3. Fix ζ0 ∈ ∂D such that

|ζ01| < R1 and |ζ02| < R2. This domain is not smooth. Since

logD = {(x1, x2)∈R2 : x1 < logR1, x2 < logR2, x1 + αx2 < logR3},
it is easy to construct a smooth bounded convex domainE ⊂ R2 such that logD ⊂
E and ∂E contains the skew segment

(∂ logD) ∩ {(x1, x2)∈R2 : x1 + αx2 = logR3}.
Let D̃ ⊂ C2 be a complete Reinhardt domain such that log D̃ = E. Then D̃ is
bounded, smooth, and (thanks to Fact 1) pseudoconvex. Moreover, D ⊂ D̃ and
there is a neighborhood U of their common boundary point ζ0 such thatD ∩U =
D̃ ∩ U.
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From [9, Prop. 4.3.2] it follows that

aλ := gD(λζ0, 0)

log|λ| → ∞ as λ→ ∂D,

where gD is the pluricomplex Green function. (For general properties of the
Carathéodory (pseudo)distance and the pluricomplex Green function, see e.g.
[3; 9].) Certainly,

dD̃(λζ0) = dD(λζ0) ≈ 1− |λ| as |λ| → 1

and
cD(λζ0, 0) ≤ tanh−1 exp gD(λζ0, 0).

So if there exists a constant C > 0 such that

cD̃(λζ0, 0) ≥ −1

2
log dD̃(λζ0)+ C, |λ| → 1

then, for |λ| → 1,

cD(λζ0, 0) ≥ −1

2
log dD(λζ0)+ C,

−1

2
log(1 − |λ|)+ C ≤ tanh−1|λ|aλ,

1

1− |λ| ≤
C ′

1− |λ|aλ
with a constant C ′ > 0. For |λ| sufficiently close to 1 we have aλ ≥ C ′ +1. Hence

1

1− |λ| ≤
C ′

1− |λ|C ′+1

or, equivalently,
1− |λ|C ′+1

1− |λ| ≤ C ′.

The left-hand side tends to C ′ + 1 as |λ| → 1.

4. Open Problems

We conclude by describing three open problems as follows.
1. Can we improve the estimate from Theorem 1 to − 1

2 log dD(z)+ C?
2. Let D ⊂ Cn be a pseudoconvex Reinhardt domain and let ζ0 ∈ ∂D ∩ Cn∗ .

Does it follow that, for some constant C, the inequality

kD(z0, z) ≥ −1

2
log dD(z)+ C

holds if z∈D tends to ζ0?
3. Is it true for pseudoconvex Reinhardt domains D ⊂ Cn that if

#{j : ζ0j = 0 and D ∩V n
j = ∅} = 0

then
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kD(z0, z) ≥ −1

2
log dD(z)+ C

and that otherwise

kD(z0, z) ≥ 1

2
log(−log dD(z))+ C

for z∈D near ζ0 ∈ ∂D?
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