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Geodesic Continued Fractions

A. F. Beardon, M. Hockman, & I . Short

1. Introduction

Every rational number can be expressed uniquely in the form p/q, where p and
q are coprime integers and q is positive; we describe such rationals as reduced.
Two reduced rationals p/q and r/s are Farey neighbors if |ps−qr| = 1. As usual,
we adjoin the point ∞ to the set Q of rationals to form Q∞. We then define 1/0
to be the reduced form of ∞, and p/q to be a Farey neighbor of ∞ if and only if
|p.0 − q.1| = 1 (i.e., if and only if p/q is an integer). The Farey graph F is the
graph whose set of vertices is Q∞ and whose edges join each pair of Farey neigh-
bors (and only these). We denote the path in F that passes through the vertices
v1, . . . , vn in this order by 〈v1, . . . , vn〉. A concrete realization of F is obtained by
joining each pair of Farey neighbors by a hyperbolic line in the upper half-plane
model H of the hyperbolic plane. It is well known that any two such hyperbolic
lines have at most an endpoint in common, and this set of hyperbolic lines induces
the Farey tessellation of H into mutually disjoint, nonoverlapping, ideal hyper-
bolic triangles (see e.g. [7; 8; 15]). Henceforth F refers to this model of the Farey
graph, which is illustrated in Figure 1.

Figure 1 The Farey graph
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Let

[b1, . . . , bn] = b1 + 1

b2 + 1

b3 + 1

. . . + 1

bn

. (1.1)

An integer continued fraction expansion (or, for brevity, an ICF expansion) of a
rational number x is an expansion x = [b1, . . . , bn] in which all bi are integers
(but not necessarily positive). The convergents of an ICF-expansion of x, namely
[b1, . . . , bi] for i = 1, . . . , n, form a finite sequence C1, . . . ,Cn of vertices of F,
where C1 is an integer and Cn = x. We shall see that if we express Ci as an irre-
ducible rational Ai/Bi then |AiBi+1 − BiAi+1| = 1, so that Ci and Ci+1 are Farey
neighbors, and this implies that 〈∞,C1, . . . ,Cn〉 is a path from ∞ to x in F. The
converse is also true; that is, any path in F from ∞ to x is the sequence of conver-
gents of some ICF expansion of x (see Theorem 3.1). Since the usual continued
fraction expansion (with b2, b3, . . . positive) of a rational x provides a path from
∞ to x, we see that F is connected. Thus there is a “natural” distance ρ on Q∞,
where ρ(u, v) is the least number of edges that must be traversed to move from
one vertex u to another vertex v. In particular, the shortest ICF expansion of x has
length ρ(∞, x). These remarks allow us to discuss ICF expansions of x as paths
in F from ∞ to x and also the shortest ICF expansions of x as geodesic paths in
F from ∞ to x; we shall call these shortest expansions the geodesic expansions
of x.

Our first result gives an explicit algorithm for constructing a geodesic path in
F from a rational x to ∞. To describe this, we construct the first parent map
α : Q → Q∞, where (with a few exceptions) α(x) is the Farey neighbor of x with
the smallest denominator. This denominator is less than the denominator of x, so
if we iterate α then we obtain a path, which we call the ancestral path, in F that
joins x to ∞.

Theorem 1.1. The ancestral path from x to ∞ is a geodesic path in F.

In terms of continued fractions, this gives an algorithm for providing a geodesic
expansion of a given rational x. However, in general there is more than one geo-
desic path from ∞ to x; for example,

〈∞, 0, 1
2

〉
and

〈∞,1, 1
2

〉
are different geodesic

paths joining ∞ to 1
2 (and these correspond to the continued fractions [0, 2] and

[1, −2], respectively). Our next result bounds the number of geodesic paths from
∞ to x (equivalently, the number of geodesic expansions of x). As usual, Fn de-
notes the nth Fibonacci number; thus F1 = 1, F2 = 2, F3 = 3, and so on.

Theorem 1.2. Suppose that x is rational and that ρ(∞, x) = n. Then there are
at most Fn geodesics from ∞ to x and, for each n, this bound is best possible.

Finally, we characterize those ICF expansions that are geodesic expansions, and
those rationals that have a unique geodesic expansion, and for this we need
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some terminology. A finite sequence is said to be inefficient if it is of the form
2ε1, 3ε2, 3ε3, . . . , 3εm−1, 2εm, where m ≥ 2 and ε1, ε2, . . . is an alternating se-
quence in {−1,1} (i.e., ε1 = ±1 and εi+1 = −εi). For example, the sequences
2, −2 and 2, −3, 2 and −2, 3, −3, 3, −3, 2 are inefficient; later we give a geomet-
ric interpretation of inefficient sequences.

Theorem 1.3. The ICF expansion [b1, . . . , bn] is a geodesic expansion if and
only if :

(i) |bi | ≥ 2 for i = 2, . . . , n and
(ii) b2, . . . , bn does not contain an inefficient subsequence of consecutive bi.

Furthermore, a geodesic expansion [b1, . . . , bn] of a rational x is the only geodesic
expansion of x if and only if |bi | ≥ 3 for i = 2, . . . , n.

We discuss infinite ICF expansions in Section 10.
In [4], Ford constructed a bijection between Q∞ and the collection of what are

now known as Ford circles. In a certain sense, the Farey graph F is the dual of the
collection of Ford circles. Ford showed that there is a bijective correspondence
between the ICF expansions of a rational x and particular finite chains of Ford
circles, where each circle in the chain is tangent to its neighbors. This is equiva-
lent to our Theorem 3.1, but it is easier to prove from the Farey graph than from
Ford circles. Some of the other ideas we use also occur in the literature but not,
as far as we know, to study geodesic expansions; see, for example, [6; 8; 9; 10;
11; 15]. In [10; 11] the authors construct a Farey tree, but we do not discuss this
tree here because paths in it do not generally correspond to geodesic expansions.
From a more algebraic perspective, the usual continued fraction expansion of x
is obtained from the division algorithm. We can also obtain ICF expansions from
the nearest integer algorithm, and some authors study semi-regular continued frac-
tions (in which the numerators are ±1 and the coefficients are subject to certain
inequalities); see, for example, [5; 13; 16]. In particular, Srinivasan studies short-
est semi-regular continued fractions in [16] and uses algebraic means to obtain a
result similar to the first part of Theorem 1.3. Our main objective is to give a co-
herent account of all ICF expansions, especially the geodesic expansions, from the
perspective of graph theory and without imposing any of the constraints that are
sometimes found in the literature.

2. Basic Ideas

Because the coefficients bi in (1.1) can be negative, it is not always possible to
evaluate [b1, . . . , bn] via the usual rules of arithmetic (since division by zero may
be required). For this reason, we redefine [b1, . . . , bn] by

[b1, . . . , bn] = Sb1 · · · Sbn(∞),

where Sw is the Möbius transformation defined by Sw(z) = w+1/z for each com-
plex number w. This definition is consistent with (1.1), and it is used throughout
the theory of complex continued fractions (see [1; 12]).



136 A. F. Beardon, M. Hockman, & I . Short

The convergents of [b1, . . . , bn] are C1, . . . ,Cn, where Ck = [b1, . . . , bk]; since

Ck = Sb1 · · · Sbk (∞) = Sb1 · · · Sbk−1(bk),

they determine the bi inductively by b1 = C1 and bk = (Sb1 · · · Sbk−1)
−1(Ck). The

usual numerical evaluation of [b1, . . . , bn] requires us first to evaluate z1 = bn,
then z2 = bn−1 + 1/z1, then z3 = bn−2 + 1/z2, and so on. In other words, we
calculate Sbn(∞), then Sbn−1Sbn(∞), then Sbn−2Sbn−1Sbn(∞), and so forth, and nu-
merical evaluation will fail (because of division by zero) precisely when for some k
we have Sbk · · · Sbn(∞) = ∞ or, equivalently, Sb1 · · · Sbn(∞) = Sb1 · · · Sbk−1(∞).

Thus numerical evaluation fails if and only if some intermediate convergent is the
value of the continued fraction or, equivalently, if the corresponding path in F
passes through the final vertex before the path ends.

Given an ICF expansion [b1, . . . , bn], we define sequences A0,A1, . . . ,An and
B0,B1, . . . ,Bn of integers by A0 = 1, B0 = 0, and(

Ai Ai−1

Bi Bi−1

)
=

(
b1 1
1 0

)(
b2 1
1 0

)
· · ·

(
bi 1
1 0

)
, i = 1, . . . , n.

These matrices correspond to the Möbius maps Sbi , so we see that Sb1 · · · Sbi(∞) =
Ai/Bi. Moreover, taking determinants of both sides of this equation yields
|AiBi−1 − Ai−1Bi | = 1. This means that Ai and Bi are coprime and that Ai/Bi

and Ai−1/Bi−1 are Farey neighbors.
Finally, we shall write u ∼ v if and only if vertices u and v of F are Farey

neighbors. One can easily check that if u ∼ v then Sb(u) ∼ Sb(v) and S−1
b (u) ∼

S−1
b (v). The underlying fact here is that the Sb, b ∈ Z , lie in (and, in fact, generate)

the extended Modular group, which is the automorphism group of F.

3. Paths and Continued Fractions

We shall now establish the promised correspondence between paths from ∞ and
continued fractions. (This result is proved in [4, Sec. 6] using Ford circles.)

Theorem 3.1. Let x be any rational number. Then C1, . . . ,Cn, with Cn =
x, are the consecutive convergents of some ICF expansion of x if and only if
〈∞,C1, . . . ,Cn〉 is a path in F from ∞ to x.

Proof. Suppose first that C1, . . . ,Cn are the consecutive convergents of the ICF
expansion [b1, . . . , bn] of x; thus Ck = Sb1 · · · Sbk (∞) and Cn = x. Now C1 =
Sb1(∞) = b1 (an integer), so 〈∞,C1〉 is an edge in F. Next,

Ck = Sb1 · · · Sbk (∞) and Ck+1 = Sb1 · · · SbkSbk+1(∞) = Sb1 · · · Sbk (bk+1),

and since ∞ and bk+1 are Farey neighbors, so are Ck and Ck+1. Hence there is an
edge in F fromCk toCk+1, which means that 〈∞,C1, . . . ,Cn〉 is a path from ∞ to x.

Now suppose that 〈∞, v1, . . . , vn〉 is a path in F from ∞ to x (so that vn = x). We
need to construct a sequence b1, . . . , bn of integers such that vk = Sb1 · · · Sbk (∞)

for k = 1, . . . , n, for then the vk are the convergents of [b1, . . . , bn], which equals x.
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First, as v1 ∼ ∞, we see that v1 is an integer. Thus we put b1 = v1, so that v1 =
Sb1(∞). Now suppose that integers b1, . . . , bk have been defined such that vk =
Sb1 · · · Sbk (∞). Define the real number bk+1 by bk+1 = S−1

bk
· · · S−1

b1
(vk+1). This

certainly guarantees that vk+1 = Sb1 · · · Sbk+1(∞), so it only remains to show that
bk+1 is an integer. Now vk ∼ vk+1, so that Sb1 · · · Sbk (∞) ∼ Sb1 · · · Sbk (bk+1).

Since each S−1
bi

preserves the relation ∼, we see that ∞ ∼ bk+1 and so bk+1 is an
integer. This induction argument completes the proof.

4. Farey Parents

To facilitate our study of geodesics in F, we introduce a lexicographic order ≺ on
Q∞ that orders the reduced rationals first by their nonnegative denominator and
then by their numerator. Formally, we define ≺ on Q∞ (regarded as the set of re-
duced rationals) by p/q ≺ r/s if either (i) q < s or (ii) q = s and p < r. For x
in Q∞, let N(x) be the set of Farey neighbors of x. By definition, N(∞) = Z.

Each finite rational x has at most two reduced rational Farey neighbors of a given
denominator; therefore the set N(x) is well-ordered by ≺ in the sense that

N(x) = {y1, y2, y3, . . . }, where y1 ≺ y2 ≺ y3 ≺ · · · . (4.1)

We call y1 the first parent, and y2 the second parent, of x (these are the Farey par-
ents of x), and we define maps α and β by α(x) = y1 and β(x) = y2. Note that
∞ has no parents and that α(x) = ∞ if and only if x ∈ Z. In the more geometric
setting of [4], x is replaced by its Ford circle Cx , and y is a Farey parent of x if and
only if Cy is tangent to, and has larger radius than, Cx. The idea of parents also ap-
pears in [11], where the phrases old parent and young parent are used instead of
first parent and second parent.

In order to state our main result about Farey parents, we recall the Farey sum of
two reduced rationals a/c and b/d:

a

c
⊕ b

d
= a + b

c + d
.

Observe that a/c ⊕ b/d lies between a/c and b/d and that the Farey sum of two
reduced Farey neighbors is also reduced. Our next theorem is the key result about
Farey parents (recall that u ∼ v means that u and v are Farey neighbors).

Theorem 4.1. Suppose that x ∈ Q. Then:

(i) x = α(x) ⊕ β(x);
(ii) α(x) ∼ β(x);

(iii) α(x) ≺ β(x) ≺ x ≺ y for every y in N(x) other than α(x) and β(x);
(iv) α(x) is a parent of β(x).

We can illustrate Theorem 4.1 with the Fibonacci sequence Fn, where Fn+2 =
Fn+1 + Fn, F1 = 1, and F2 = 2. The identity FnFn+2 − F 2

n+1 = (−1)n+1 shows
that Fn/Fn+1 and Fn+1/Fn+2 are reduced rationals and Farey neighbors. Since
(Fn/Fn+1) ⊕ (Fn+1/Fn+2) = Fn+2/Fn+3, we see that Fn/Fn+1 and Fn+1/Fn+2 are,
respectively, the first and second parents of Fn+2/Fn+3.
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Proof of Theorem 4.1. It is easy to check that (i)–(iv) hold when x is an integer,
say x = m, since in that case α(x) = ∞, β(x) = m − 1, and, in the notation of
(4.1), y3 = m + 1. Now suppose that x is the reduced rational a/c, where c ≥ 2.
Choose another reduced rational b/d such that |ad −bc| = 1, and let f be the ele-
ment of the extended Modular group defined by f(z) = (az+ b)/(cz+ d). Then,
since f is an automorphism of F,

N
(
a

c

)
= N(f(∞)) = f(N(∞)) = f(Z) =

{
ak + b

ck + d
: k ∈ Z

}
.

It is clear from this description of N(a/c) that we may now assume b/d to be
chosen such that 0 < d < c. Then

{α(x),β(x)} =
{
b

d
,
a − b

c − d

}
, α(x) �= β(x),

and it is a straightforward exercise to show that (i)–(iv) follow from this.

5. Farey Parents and Geodesics

Our first result in this section connects Farey parents and geodesics.

Theorem 5.1. If x ∈ Q, then each path from ∞ to x passes through a parent of
x. If 〈x0, x1, . . . , xn〉 (where x0 = ∞) is a geodesic, then each xk−1 is a parent
of xk.

Proof. The first assertion is trivially true if x is an integer, for then ∞ is a parent of
x. So suppose that x is a nonintegral rational, and take a path 〈x0, x1, . . . , xn〉 from
∞ to x; thus n ≥ 2, x0 = ∞, and xn = x. Let u and v be the rational parents of x,
where u < v. Then x = u⊕ v and hence x ∈ (u, v). Since ∞ /∈ [u, v], there must
be an integer i such that xi /∈ (u, v) but xi+1 ∈ (u, v). Suppose xi �= u, v. Then, in
the concrete model of F in H , the geodesic edge joining xi to xi+1 intersects the
geodesic edge joining u to v. This is impossible; therefore xi is equal to either u or
v, as required. The second assertion follows from the first because, for each ver-
tex xk , one of x1, . . . , xk−1, say xt , is a parent of xk and 〈∞, x1, . . . , xt , xk , . . . , xn〉 is
a path from ∞ to x. Because this cannot be shorter than the given geodesic path,
we see that t = k − 1.

We have created the first parent map α : Q → Q∞, which takes x to its first parent
α(x). In particular, α(x) = ∞ if and only if x ∈ Z. If x is a nonintegral rational
then, as α(x)⊕β(x) = x, and α(x) and β(x) have strictly positive denominators,
we see that α(x) has a strictly smaller denominator than x. Thus if we start with
a nonintegral rational x and iterate the map α, we will eventually reach an integer
and then reach ∞. Therefore, iteration of the map α creates a finite path from ∞
to x.

Definition 5.2. Let x be a rational, and let m be the smallest integer with
αm(x) = ∞. We call 〈αm(x),αm−1(x), . . . ,α(x), x〉 the ancestral path of x.

Theorem 1.1 asserts that an ancestral path is a geodesic, and we now prove this.
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Proof of Theorem 1.1. For each rational x, let m(x) be the smallest integer m such
that αm(x) = ∞. Note that m(α(x)) = m(x) − 1. Also, since the ancestral path
joins x to ∞, we have m(x) ≥ ρ(∞, x). Theorem 1.1 is clearly equivalent to the
assertion that m(x) = ρ(∞, x), which we shall now prove by induction on m(x).

First, m(x) = 1 if and only if x ∈ Z or, equivalently, if and only if ρ(∞, x) =
1. Our induction hypothesis is that ρ(∞, y) = m(y) whenever m(y) ≤ k, and we
now consider any x with m(x) = k + 1. Let 〈xr+1, xr , . . . , x1, x〉, where xr+1 =
∞ and r ≥ 1, be a geodesic path from ∞ to x. We need to show that r = k. By
Theorem 5.1, x1 is either α(x) or β(x), and we consider each case in turn.

Suppose that x1 = α(x). Because the given path is a geodesic, we see that
ρ(∞,α(x)) = r. On the other hand, since m(α(x)) = m(x) − 1 = k, the induc-
tion hypothesis implies that ρ(∞,α(x)) = m(α(x)) = k and so r = k in this
case. Now suppose that x1 = β(x). By Theorem 5.1, x2 is a parent of β(x) and
x2 �= α(x) (else 〈∞, xr , . . . , x2, x〉 would be a shorter path from ∞ to x). Hence
x2 and α(x) are the two parents of x1 and, by Theorem 4.1, x2 ∼ α(x). Thus
〈∞, xr , . . . , x2,α(x), x〉 is also a geodesic path and so, by the x1 = α(x) case,
r = k.

We prove one more result about paths and parents.

Theorem 5.3. Suppose that the continued fraction [b1, . . . , bn] corresponds to
the path 〈v0, v1, . . . , vn〉 in F, where v0 = ∞.

(i) If |bi | ≥ 2 for i = 2, . . . , n, then vi−1 is a parent of vi for i = 1, . . . , n.
(ii) If |bi | ≥ 3 for i = 2, . . . , n, then 〈v0, v1, . . . , vn〉 is the ancestral path of vn.

(iii) If |bi | ≥ 3 for some i ≥ 2, then α(vi) = vi−1 and β(vi) = [b1, . . . , bi−1,
bi − bi/|bi |].

Proof. Suppose first that |bi | ≥ 2 for i = 2, . . . , n. Recall the sequencesA0,A1, . . .
and B0,B1, . . . from Section 2. We prove by induction that |B0| < |B1| < |B2| <
· · · < |Bn|. First, |B0| = 0 < 1 = |B1|. Now suppose that |Bm−1| < |Bm| for
some m ≥ 1. Since Bm+1 = Bmbm+1 + Bm−1 we have

|Bm+1| ≥ |Bm||bm+1| − |Bm−1| ≥ 2|Bm| − |Bm−1| > |Bm|,
which completes the inductive step. Since vi is the irreducible rational Ai/Bi and
since |Bi−1| < |Bi |, it follows that vi−1 is a parent of vi for i = 1, . . . , n; therefore
(i) holds.

Clearly, (ii) follows from (iii), so we only have to prove (iii). Suppose then that
|bi | ≥ 3 for some i ≥ 2. Define b ′

i = bi − bi/|bi |, A′
i = b ′

iAi−1 + Ai−2, B ′
i =

b ′
iBi−1 + Bi−2, and v ′

i = A′
i/B

′
i . Since |b ′

i | ≥ 2, it follows from (i) that vi−1 is
a parent of v ′

i . Also, one can check that vi−1 ⊕ v ′
i = vi. Hence, by Theorem 4.1,

vi−1 and v ′
i are, respectively, the first and second parents of vi.

6. Proof of Theorem 1.2

Theorem 1.2 asserts that (i) if ρ(∞, x) = n, then there are at most Fn geodesics
joining ∞ to x and (ii) for each n, there is some x with ρ(∞, x) = n and with ex-
actly Fn geodesics from ∞ to x. We shall now prove this. For each rational x, let
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M(x) denote the number of geodesics from ∞ to x. We shall prove, by induction
on n, that if ρ(∞, x) = n then M(x) ≤ Fn.

If n = 1 then there is exactly one edge that joins x and ∞, so M(x) = 1 =
F1. Next, suppose that n = 2 and let 〈∞, u, x〉 be a geodesic. By Theorem 5.1,
u is either α(x) or β(x); hence M(x) ≤ 2 = F2. Now suppose that for all ver-
tices y with ρ(∞, y) = k, where k ≤ n, we have M(y) ≤ Fk , and consider a
vertex x with ρ(∞, x) = n + 1 (n ≥ 2). By Theorem 5.1, each geodesic from
∞ to x, say 〈∞, xn, . . . , x1, x〉, must satisfy either x1 = α(x) or x1 = β(x). Let
Mα(x) be the number of geodesics from ∞ to x with x1 = α(x) and let Mβ(x)

be the number of geodesics from ∞ to x with x1 = β(x). Obviously, M(x) =
Mα(x) + Mβ(x).

Suppose there is a geodesic with x1 = α(x); then ρ(∞,α(x)) = n. It follows
from the induction hypothesis that M(α(x)) ≤ Fn. Since Mα(x) ≤ M(α(x)), we
see that Mα(x) ≤ Fn. Suppose next there is a geodesic 〈∞, xn, . . . , x2, x1, x〉 with
x1 = β(x), and let γ (x) denote the parent of β(x) other than α(x). Because the
geodesic does not pass through α(x), we must have x2 = γ (x). Since this is true
of all geodesics with x1 = β(x) it follows that Mβ(x) ≤ M(γ (x)). Furthermore,
since ρ(∞, γ (x)) = n − 1, the induction hypothesis gives M(γ (x)) ≤ Fn−1.

Hence M(x) = Mα(x)+Mβ(x) ≤ Fn +Fn−1 = Fn+1, and the proof by induction
is complete.

It remains to show that, for each n, there is a rational xn with ρ(∞, xn) = n

and M(xn) = Fn. Let x0 = ∞ and x1 = 0, and define rationals y1, x2, y2, x3, . . .
inductively, in this order, by

yn+1 = xn ⊕ xn+1, xn+1 = xn ⊕ yn.

It is clear that xn = α(xn+1), yn = β(xn+1), and xn = α(yn+1). This shows that
〈x0, . . . , xn−1, xn〉 and 〈x0, . . . , xn−1, yn〉 are both ancestral paths, so ρ(∞, xn) =
ρ(∞, yn) = n. Let Xn and Yn be the number of geodesics from ∞ to xn and
yn, respectively. Since xn and yn are the parents of xn+1, we see that Xn+1 =
Xn + Yn. Next, since xn−1 is a parent of yn, we have Yn ≥ Xn−1. This gives
Xn+1 ≥ Xn + Xn−1, and since X1 = 1 and X2 = 2 it follows that Xn ≥ Fn.

However, we know that Xn ≤ Fn, so Xn = Fn.

Next we show that two geodesics with the same endpoints are uniformly close.

Theorem 6.1. Suppose that 〈∞, x1, . . . , xn, v〉 and 〈∞, y1, . . . , yn, v〉, where
n ≥ 1, are geodesics. Then, for each i, either xi = yi, or xi is parent of yi,
or yi is a parent of xi.

Proof. Let P(x, y) be the assertion “x = y or x is a parent of y or y is a parent of
x”. The key observation is that if x and y are both parents of some rational z, then
either x = y or {x, y} = {α(z),β(z)}; in the latter case, by Theorem 4.1, x is a
parent of y or y is a parent of x. Thus, if x and y are both parents of some z, then
P(x, y) is true. Since xn and yn are parents of v, it follows that P(xn, yn) is true.
We shall now show, without any reference to v, that the truth of P(xn, yn) implies
the truth of P(xn−1, yn−1). This will then imply (by induction) that P(xi, yi) is
true for each i.
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We assume, then, only that P(xn, yn) is true. If xn = yn then xn−1 and yn−1

are parents of w, where w = xn = yn, in which case P(xn−1, yn−1) is true. So
from now on we may suppose that xn �= yn, and then without loss of generality we
may also suppose that xn is a parent of yn. Since ρ(∞, yn) = n and since the an-
cestral path of yn is a geodesic, it follows that ρ(∞,α(yn)) = n − 1. Therefore,
since ρ(∞, xn) = n, we have xn �= α(yn) and so can deduce that xn = β(yn).

Next, since yn−1 is a parent of yn and since ρ(∞, yn−1) = n − 1, we must have
yn−1 = α(yn). It now follows from Theorem 4.1(iv) that yn−1 is a parent of xn.
Finally, because xn−1 is also a parent of xn, we see that P(xn−1, yn−1) is true in
this case too.

7. Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3, which we break into five parts.

Part 1. If [b1, . . . , bn] is a geodesic expansion, then |bi | ≥ 2 for each i ≥ 2.

Proof. The result is trivial if n = 1, so we assume that n ≥ 2. Let x = [b1, . . . , bn].
It is sufficient to show that if |bi | ≤ 1 for some i ≥ 2, then there are integers
c1, . . . , cm with x = [c1, . . . , cm] for m < n. We recall that Sa(z) = a + 1/z and
[b1, . . . , bn] = Sb1 · · · Sbn(∞). The proof is divided into four cases.

Case 1: bn = 0. In this case, n ≥ 3 (since n = 2 would imply that x =
[b1, 0] = ∞ �= x) and x = [b1, . . . , bn−1, 0] = [b1, . . . , bn−2 ].

Case 2: bn = ±1. In this case, x = [b1, . . . , bn−1 ± 1].

Case 3: bk = 0, where 2 ≤ k ≤ n − 1 (so n ≥ 3). Here we use the
relation SaS0Sb = Sa+b, which gives x = [b1, . . . , bn] = [b1, b2, . . . , bk−2,
bk−1 + bk+1, bk+2, . . . , bn].

Case 4: bk = ±1, where 2 ≤ k ≤ n − 1. Here we use the relation
SaStSb = Sa+t S−b−tV, where V(z) = −z, which holds when t = ±1. Note
that VSa = S−aV and V(∞) = ∞. Thus, for example, S2S1S3 = S3S−4V

so that [2,1, 3] = [3, −4], and S2S1S3S5 = S3S−4VS5 = S3S−4S−5V so that
[2,1, 3, 5] = [3, −4, −5]. We leave the reader to handle the general case, and this
completes the proof of Part 1.

Part 2. If [b1, . . . , bn] is a geodesic expansion, then b2, . . . , bn does not contain
an inefficient subsequence of consecutive bi.

Proof. Again the proof uses relations among the Sa , and this time we need the
following relations:

SaS2(S−3S3)
mS−2Sb = Sa+1(S−3S3)

mS−3S−b+1V,

SaS2(S−3S3)
mS−3S2Sb = Sa+1(S−3S3)

m+1S−b−1V,

SaS−2(S3S−3)
mS2Sb = Sa−1(S3S−3)

mS3S−b−1V, (7.1)

SaS−2(S3S−3)
mS3S−2Sb = Sa−1(S3S−3)

m+1S−b+1V.
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The first of these relations shows that if b1, . . . , bn contains a subsequence of con-
secutive terms a, 2, −3, 3, . . . , −3, 3, −2, b then this can be replaced by the shorter
sequence of coefficients a+1, −3, 3, . . . , −3, 3, −b+1; therefore, [b1, . . . , bn] can-
not be a geodesic expansion. The remaining cases are dealt with in a similar way
using the other identities, and we omit the details. It only remains to prove the four
identities, and to do this we let U = S−3S3. The first identity reduces to fUm =
Umf , where f(z) = −(2z+1)/(z+1), and this holds because f 4 = U. We leave
the other proofs (which are similar) to the reader.

Part 3. If |bi | ≥ 2 for i = 2, . . . , n and if b2, . . . , bn does not contain an ineffi-
cient subsequence, then [b1, . . . , bn] is a geodesic expansion.

Proof. Again assume that n ≥ 2. Let Ax denote the class of those finite continued
fraction expansions [b1, . . . , bn] of a rational x such that |bi | ≥ 2 for i = 2, . . . , n
and b2, . . . , bn does not contain an inefficient subsequence of consecutive bi. By
Parts 1 and 2, Ax contains the continued fraction of the ancestral path. We shall
define a map + : Ax → Ax that fixes the continued fraction of the ancestral path
and also preserves the length of elements of Ax.

Let 〈v0, v1, . . . , vn〉, where v0 = ∞ and vn = x, be the path in the Farey graph
corresponding to a member [b1, . . . , bn] of Ax , and suppose that this path is not the
ancestral path. By Theorem 5.3(i), vi−1 is a parent of vi for each i. Let m ≥ 2 be
the largest integer such that vm−1 is the second parent of vm. By Theorem 5.3(iii),
this means that |bm| = 2. Let ε = bm/|bm|. We define the image of [b1, . . . , bn]
under + to be [b ′

1, . . . , b ′
n], where b ′

i = bi for all i except b ′
m−1 = bm−1 + ε, b ′

m =
−bm, and, if m < n, b ′

m+1 = bm+1 + ε. We shall later prove that [b ′
1, . . . , b ′

n] is an
element of Ax.

Let 〈v ′
0, v ′

1, . . . , v ′
n〉 (where v ′

0 = ∞ and v ′
n = x) be the path corresponding to

[b ′
1, . . . , b ′

n] in F. Observe that either this is the ancestral path or we can choose
m′ ≥ 2 to be the largest integer such that v ′

m′−1 is the second parent of v ′
m′ . We

prove that m′ < m. Thus, given c in Ax , there is an integer s ≥ 0 such that +s(c) is
the continued fraction corresponding to the ancestral path. Since + preserves con-
tinued fraction length, we see that every member of Ax is a geodesic expansion.
In graph-theoretic terms, the transformation + corresponds to switching between
the solid and dashed paths in Figure 2.

Figure 2 Two paths of equal length
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It remains to prove that m′ < m and [b ′
1, . . . , b ′

n] ∈ Ax. Recall that |bm| = 2.
For simplicity, suppose that bm = 2; the case bm = −2 is similar. Thus b ′

m−1 =
bm−1 + 1, b ′

m = −2, and, if m < n, b ′
m+1 = bm+1 + 1. For all other i we have

b ′
i = bi.

First we show that m′ < m. Using the identity SaS2Sb = Sa+1S−2Sb+1 and the
equation SaS2(∞) = Sa+1S−2(∞), one can check that v ′

i = vi for i �= m − 1
whereas v ′

m−1 �= vm−1. Since v ′
m−1 is a parent of vm distinct from vm−1, it must be

the first parent of vm. Hence m′ < m.

Next we check that |b ′
i | ≥ 2 for i = 2, . . . , n. This inequality certainly holds

for i �= m − 1 and i �= m + 1. For i = m − 1, observe that b ′
m−1 ∈ {−1, 0,1} if

and only if bm−1 ∈ {−2, −1, 0}. However, |bm−1| ≥ 2 by assumption and, since
−2, 2 is an inefficient sequence, we cannot have bm−1 = −2. Hence |b ′

m−1| ≥ 2.
Reasoning similarly allows us to deduce also that |b ′

m+1| ≥ 2.
Finally, in order to reach a contradiction, suppose that b ′

p, b ′
p+1, . . . , b

′
q is an in-

efficient sequence of consecutive b ′
i (where 2 ≤ p < q ≤ n). This sequence must

contain at least one of the terms b ′
m−1, b

′
m, and b ′

m+1 (because b ′
i = bi for i �=

m − 1,m,m + 1). Since b ′
m = 2, only four possible cases arise: (a) 2 ≤ p <

q = m − 1; (b) 2 ≤ p < q = m; (c) m = p < q ≤ n; and (d) m + 1 = p <

q ≤ n. Each of these cases leads to a contradiction, and the necessary argument
in each case is similar, so we only provide the details for (a). Suppose then that
q = m − 1. Hence |b ′

m−1| = 2. If b ′
m−1 = 2 then bm−1 = 1, which is a contradic-

tion. If b ′
m−1 = −2 then one can check that bp, bp+1, . . . , bm−1, bm is an inefficient

sequence of consecutive bi, which is also a contradiction.
We conclude that b ′

2, . . . , b ′
n does not contain an inefficient subsequence of con-

secutive b ′
i . Since v ′

n = vn we see that [b ′
1, . . . , b ′

n] ∈ Ax , so the proof is complete.

We have now proved the first assertion of Theorem 1.3.

Part 4. If [b1, . . . , bn] is the unique geodesic expansion of x, then |bi | ≥ 3 for
i = 2, . . . , n.

Proof. Of course, it is sufficient to show that, if |bk| = 2 for some k with 2 ≤
k ≤ n, then x has an alternative expansion of the same length. When bn = 2 we
have the alternative expansion [b1, . . . , bn−2, bn−1 + 1, −2], and when bn = −2
we have the alternative [b1, . . . , bn−2, bn−1 − 1, 2]. If bk = ±2 (where 2 ≤ k ≤
n − 1) then the identity SaS2Sb = Sa+1S−2Sb+1 shows that, again, x has an alter-
native expansion of the same length.

Part 5. If x = [b1, . . . , bn], and |bi | ≥ 3 for i = 2, . . . , n, then this is the unique
geodesic expansion of x.

Proof. We therefore suppose that |bi | ≥ 3 for each i ≥ 2 and let 〈v0, v1, . . . , vn〉,
where v0 = ∞ and vn = x, be the path in F corresponding to [b1, . . . , bn].
Recall that M(y) denotes the number of geodesics from ∞ to y. According to
Theorem 5.3(iii), α(vi) = vi−1 and β(vi) = [b1, . . . , bi−1, bi − bi/|bi |] for i ≥
2. Since |bi − bi/|bi || ≥ 2, it follows from Part 3 that [b1, . . . , bi−1, bi − bi/|bi |]
is a geodesic expansion. Hence ρ(∞,β(vi)) = i. Since also ρ(∞, vi) = i, no
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geodesic path from ∞ to vi can pass through β(vi), which means that every geo-
desic path from ∞ to vi must pass through α(vi) = vi−1. It follows that M(vi) =
M(vi−1). Therefore M(vn) = M(v1) = 1, so there is only one geodesic from ∞
to vn.

The graph-theoretic significance of conditions (i) and (ii) in Theorem 1.3 is exhib-
ited in Figure 3. A coefficient bi = 0 if and only if the corresponding path in F
retraces itself along an edge. A coefficient bi = ±1 if and only if the path in F tra-
verses two sides of a triangle. Likewise, an inefficient subsequence of consecutive
bi corresponds to a nongeodesic path in F.

Figure 3 Paths that are not geodesics

8. Farey Subdivision

In this section we illustrate our earlier work by studying a single example in de-
tail. First, the repeated bisection of an interval is commonplace in real analysis,
but as an alternative we can subdivide a rational interval by the Farey sum (instead
of the arithmetic mean) of the endpoints. We shall call this process the Farey sub-
division of an interval. We take a positive rational x, start with the interval [0, ∞],
and then repeatedly perform the Farey subdivision where, at each stage, we choose
the interval that contains x. The process terminates when x appears as the point
of subdivision (see [5; 14]). If x is negative then we begin the procedure with
[−∞, 0], where −∞ is the same vertex as ∞ in F but has the reduced form −1/0
rather than 1/0. Suppose now that [p/q, r/s] is one interval in the Farey subdivi-
sion process. Then p/q and r/s are Farey neighbors and are also the Farey parents
of the next division point p/q ⊕ r/s. Thus the two parents of a division point are
also division points, and given Theorem 5.1 this implies that all geodesic paths
from ∞ to x are contained within the subgraph of F whose vertices are the end-
points arising from the Farey subdivision of [0, ∞] that ends at x. We illustrate
this process by an example.

The Farey subdivision of [0, ∞] that leads to 22/39 yields the decreasing
sequence

[0, ∞], [0,1],
[

1
2 ,1

]
,
[

1
2 , 2

3

]
,
[

1
2 , 3

5

]
,
[

1
2 , 4

7

]
,
[

5
9 , 4

7

]
,
[

9
16 , 4

7

]
,
[

9
16 , 13

23

]
(8.1)
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of nested intervals, and the next division point is 22/39. Our preceding remarks
show that the corresponding subgraph of F (illustrated in Figure 4) contains all
geodesics from ∞ to 22/39, and it is easy to see from this that there are exactly six
such geodesic paths. One of them is the ancestral path

〈∞, 0, 1
2 , 4

7 , 9
16 , 22

39

〉; another
is the path

〈∞,1, 1
2 , 4

7 , 9
16 , 22

39

〉
resulting from an application of the nearest integer

division algorithm. The usual expansion of 22/39 (with positive integer coeffi-
cients) corresponds to the path

〈∞, 0,1, 1
2 , 4

7 , 9
16 , 22

39

〉
, but this is not a geodesic.

Figure 4 Farey subdivision of [0, ∞] for the rational 22/39

Sometimes one continued fraction expansion is obtained from another by (in
the language of other authors) “removing the coefficient 1” or “singularisation”,
and this simply amounts to replacing the path on two sides of a triangle by the
third side. In fact, this, and also the process of “insertion” (see [2]), is about the
“homology” of F, and these processes are valid precisely because of the existence
of certain relations in the Modular group (of Möbius maps).

9. The Nearest Integer Division Algorithm

There are algorithms other than the ancestral path algorithm for constructing
geodesics between ∞ and a rational x. For example, the nearest integer divi-
sion algorithm yields a geodesic ICF expansion of x and, as we saw in Section 8,
this is not always the same as the geodesic expansion derived from the ancestral
path (see [13, p. 168], where Perron proves that the nearest integer division algo-
rithm generates one of the shortest possible semi-regular continued fractions of a
rational). However, both the ancestral path and nearest integer division algorithms
are special cases of a more general algorithm for constructing geodesics, which
we now explain (without proof ).

Given a vertex q of F, we define a map αq : F \ {q} → F as follows. Let x ∈
F \ {q}. If x and q are adjacent then we define αq(x) = q. Otherwise, there is a
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unique pair of Farey neighbors u and v that are both adjacent to x and that sepa-
rate x from q in the sense that any path from x to q must pass through one of u or
v. The vertices x, u, and v form a Farey triangle. (If q is ∞ then u and v are the
Farey parents of x.) There is also a uniquely defined vertex w that is distinct from
x but is also adjacent to both u and v. On the ideal boundary R∞ of H (which is
topologically equivalent to a circle), the vertex q lies between u and w, or it lies
between v and w, or it is equal to w. In the first case we define αq(x) = u, in
the second case we define αq(x) = v, and in the third case we define αq(x) to be
either one of u or v. The first case is illustrated in Figure 5, where we use the unit
disc model of the hyperbolic plane.

Figure 5 The vertex q lies between u and w, so αq(x) = u

The first parent map α coincides with α∞ (provided that α∞ is defined appro-
priately on Z + 1

2 ; the vertices in Z + 1
2 correspond to the points just discussed for

the third case, in which an arbitrary choice was made). Moreover, if h is an ele-
ment of the extended Modular group that satisfies h(∞) = q, then αq = hαh−1.

It follows that the iterates x,αq(x),α2
q (x), . . . , q form a geodesic path from x to q,

which is mapped by h−1 to the ancestral path from h−1(x) to ∞.

Next, observe that αx(∞) is the nearest integer to the rational x. Applying αx

repeatedly shows that the geodesic 〈∞,αx(∞),α2
x (∞), . . . , x〉 is the path obtained

by applying the nearest integer division algorithm to x.
(
Again, we must make a

judicious choice of the nearest integer when working with elements of Z + 1
2 .

)
In

short, the ancestral path iterates x,α∞(x),α2∞(x), . . . form a geodesic from x to
∞, and the nearest integer division algorithm iterates ∞,αx(∞),α2

x (∞), . . . form
a geodesic from ∞ to x.

10. Infinite Continued Fractions

In this final section we briefly discuss the theory of infinite geodesic continued
fractions. To keep the discussion short, we omit some of the straightforward de-
tails of our arguments.
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An infinite integer continued fraction is a formal expression

[b1, b2, . . . ] = b1 + 1

b2 + 1

b3 + · · ·
, (10.1)

where each coefficient bi is an integer. The convergents of [b1, b2, . . . ] are the ver-
tices Sb1 · · · Sbk (∞) of F, and they form an infinite path in F with one fixed end
at ∞. Every infinite path with one fixed end at ∞ corresponds, in this fashion, to
a unique infinite integer continued fraction. The sequence of convergents may or
may not converge in R∞. We say that an element x of R∞ has an integer contin-
ued fraction expansion [b1, b2, . . . ] if Sb1 · · · Sbk (∞) → x as k → ∞. It is well
known that each irrational has a unique continued fraction expansion [b1, b2, . . . ]
with b2, b3, . . . positive integers. In general, however, both irrational and rational
numbers have infinitely many infinite integer continued fraction expansions.

There is an alternative and ultimately equivalent way of assigning values to
convergent infinite integer continued fractions that employs the theory of ends of
infinite graphs (see [3]). We avoid this theory by working with the concrete model
of the Farey graph in the hyperbolic plane with ideal boundary R∞.

An infinite path 〈∞, v1, v2, . . . 〉 in F is a geodesic provided that 〈∞, v1, . . . , vn〉
is a geodesic for each n. A real number is said to have an infinite geodesic expan-
sion if it has an infinite continued fraction expansion that corresponds to a geodesic.
Notice that, by Theorem 1.3, a continued fraction [b1, b2, . . . ] that corresponds to
an infinite geodesic must satisfy |bi | ≥ 2 for i = 2, 3, . . . . It then follows from the
Śleszyński–Pringsheim theorem (see [12, Thm. I.1]) that [b1, b2, . . . ] converges to
a finite real number.

We finish with two theorems about infinite geodesics. In proving these theorems
we use the following fundamental lemma, which is a stronger version of the first
part of Theorem 5.1. It is a simple consequence of the fact that Farey geodesics in
the concrete model F of the Farey graph do not intersect in H.

Lemma 10.1. Let [a, b] be a real Farey interval, and suppose that 〈v0, v1, v2, . . .〉
is a path in F such that v0 lies outside [a, b] but vn, for some integer n, lies inside
(a, b). Then there is an integer i such that either vi = a or vi = b.

In other words, removing from F a pair of neighboring Farey vertices (and all
edges connected to these vertices) disconnects F into two components. Consider,
for example, removing 0 and ∞ from F.

Theorem 10.2. A real number x has an infinite geodesic expansion if and only
if x is irrational.

Proof. Suppose first that x is irrational. Let 〈∞,C1,C2, . . . 〉 be the path from ∞
to x generated by the nearest integer division algorithm. Given any positive inte-
ger n, choose a rational q sufficiently close to x that the nearest integer division
algorithm applied to q yields a path that also begins with 〈∞,C1, . . . ,Cn〉. As we
saw in Section 9, this path is a geodesic. Hence 〈∞,C1,C2, . . . 〉 is a geodesic.
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Suppose now that x is rational, and consider an infinite continued fraction ex-
pansion of x. After applying an element of the Modular group we can assume
that x = 0, and our continued fraction expansion gives rise to an infinite path
〈v0, v1, v2, . . . 〉 in F that converges to 0. Choose a positive integer m such that
1/m < |v0|. The path converges to 0 and so, by Lemma 10.1, for every integer
n > m the path passes through one endpoint of one of the Farey intervals [−1/n, 0]
or [0,1/n]. It follows that the path cannot be a geodesic because the distance in F
between any two rationals of the form ±1/n is at most 2.

The next theorem is analogous to Theorem 1.3.

Theorem 10.3. The infinite integer continued fraction [b1, b2, . . .] is an infinite
geodesic expansion if and only if

(i) |bi | ≥ 2 for i = 2, 3, . . . and
(ii) b2, b3, . . . does not contain a ( finite) inefficient subsequence of consecutive bi.

Furthermore, the infinite geodesic expansion [b1, b2, . . .] of an irrational x is the
only geodesic expansion of x if and only if (a) |bi | ≥ 3 for i = 2, 3, . . . and
(b) b1, b2, . . . does not eventually coincide with one of the periodic sequences
3, −3, 3, −3, . . . or −3, 3, −3, 3, . . . .

Proof. The first assertion of equivalence follows immediately from the first as-
sertion of equivalence in Theorem 1.3. We focus on the second assertion, which
concerns the necessary and sufficient conditions for an infinite geodesic expan-
sion to be unique. Suppose |bi | < 3 for some integer i. It then follows from
Theorem 1.3 that there is more than one infinite geodesic expansion of x. Next,
suppose that bn+1, bn+2, bn+3, . . . = 3, −3, 3, . . . and that |bi | ≥ 3 for i = 2, 3, . . . .
From (7.1) we see that [a, −2, 3, −3, 3, −3, . . . ] = [a − 1, 3, −3, 3, −3, . . . ], so
[b1, . . . , bn + 1, −2, 3, −3, 3, −3, . . . ] = [b1, . . . , bn, 3, −3, 3, −3, . . . ]. By the first
part of the theorem, these are both infinite geodesic expansions, so again there is
more than one infinite geodesic expansion of x.

Finally, suppose that |bi | ≥ 3 for i = 2, 3, . . . and that [b1, b2, . . . ] and
[b ′

1, b ′
2, . . . ] are distinct infinite geodesic expansions of x. We will prove that

b1, b2, . . . is eventually periodic with period 3, −3.
After using an element of the extended Modular group to remove a finite num-

ber of terms from both continued fractions, we can assume that b1 �= b ′
1 (and since

both expansions are geodesic expansions, b1 and b ′
1 differ by 1). Letm be the lower

integer part of x, and let I1 = [m,m + 1]. The Farey subdivision process applied
to x yields an infinite nested sequence of Farey intervals I1 ⊃ I2 ⊃ · · · , where⋂

k Ik = {x} and where Ik and Ik+1 share a common endpoint. Let Ik = [pk , qk].
Let γ = 〈∞,C1,C2, . . . 〉 be the infinite path in F corresponding to [b1, b2, . . . ],
and let γ = 〈∞,C ′

1,C ′
2, . . . 〉 be the infinite path corresponding to [b ′

1, b ′
2, . . . ].

Since x lies inside Ik and since ∞ lies outside Ik , it follows from Lemma 10.1
that both γ and γ ′ must pass through one of the endpoints of each interval Ik.
Moreover, because |bi | ≥ 3, the uniqueness assertion of Theorem 1.3 implies that
γ and γ ′ intersect only at ∞. A short induction argument now shows that one of
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γ or γ ′ consists of all the points ∞,p1,p2, . . . and that the other consists of all the
points ∞, q1, q2, . . . (after removing repetitions).

Suppose that |bn| ≥ 4 for some n ≥ 2. By Theorem 5.3(iii), the parents of Cn

are Cn−1 and w = [b1, . . . , bn−1, bn −bn/|bn|]. Now Cn−1 and w are the endpoints
of one of the Farey intervals Ik , and since Cn−1 belongs to γ it follows that w be-
longs to γ ′. However, |bn−bn/|bn|| ≥ 3 and so, by Theorem 1.3, there is a unique
geodesic from ∞ to w, namely, the ancestral path. Using Theorem 5.3(iii) again
reveals that the first parent of w is Cn−1, which yields a contradiction because Cn−1

does not lie in γ ′. Therefore, |bn| = 3 for n = 2, 3, . . . .
Recall that the convergents C1,C2, . . . are strictly monotonic; let us suppose

that they are increasing. We will prove by induction that bn = (−1)n3 for n =
2, 3, . . . . (Likewise, it can be shown that if C1,C2, . . . is decreasing then bn =
(−1)n−13 for n = 2, 3, . . . .) Since b1 + 1/b2 = C2 > C1 = b1, we see that b2 =
3. Suppose bn = (−1)n3 for n = 2, . . . , 2k + 1 (the even case can be dealt with
similarly). When restricted to the topological circle R∞, each map Sbi reverses
the usual orientation of R∞. It follows that the composite map f = Sb1 · · · Sb2k

preserves the usual orientation of R∞. Hence C2k , C2k+1, and C2k+2 occur in the
same, counterclockwise order in R∞ as f −1(C2k) = ∞, f −1(C2k+1) = b2k+1, and
f −1(C2k+2) = b2k+1 + 1/b2k+2. Thus b2k+1 + 1/b2k+2 > b2k+1, which means
that b2k+2 > 0. Therefore b2k+2 = 3, and the inductive step is complete.

We finish by commenting on the relationship between paths in F and the cut-
ting sequences studied in [15] (see also [6; 8; 9]). Cutting sequences involve the
sequence of Farey triangles crossed consecutively by a curve in H that has one
endpoint ζ in H and the other endpoint x in R. This sequence of triangles can be
identified with a path in the dual graph F ′ of F. The vertices of F ′ are Farey tri-
angles, and two vertices are joined by an edge if and only if the corresponding
Farey triangles are adjacent. In graph-theoretic terms, F ′ is the unique connected
tree in which each vertex has valency 3. Cutting sequences are often described by
formal sequences of symbols L and R (L for “left” and R for “right”); these se-
quences may be considered to encode instructions for navigating a path in F ′. Let
γ denote the hyperbolic line connecting ζ and x. The sequence of Farey triangles
corresponding to the cutting sequence of γ coincides with the sequence of Farey
triangles arising from an application of the Farey subdivision process to x. All
geodesics from ∞ to x in F lie within the subgraph generated by this subdivision
(we saw this for rational values of x in Section 8).
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