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Boundary Behavior of the Kobayashi–Royden
Metric in Smooth Pseudoconvex Domains

Peter Pflug & Włodzimierz Zwonek

1. Introduction and Main Results

In this paper we discuss the problem of the boundary behavior of the Kobayashi–
Royden metric (mainly) in the normal direction in smooth bounded pseudoconvex
domains. We show two main results. One of the results states in particular that
the Kobayashi–Royden metric in the normal direction in some class of smooth
bounded pseudoconvex domains is estimated from below by such expressions
as 1/d 7/8

D (z) (where dD(z) denotes the distance of z from the boundary of D).

This improves the result of [Fu], where the author obtained the lower estimate
with the exponent 5/6. On the other hand, we demonstrate that a careful study
of an example in [FL] shows that the optimal exponent in the lower estimate of
the Kobayashi–Royden metric in the normal direction is smaller than 1 (for Ck-
smoothness, k < ∞). We also specify some obstacles for the rate of the increase
in the C∞ case.

Recall that the Kobayashi–Royden metric has a localization property (see e.g.
[G; R]); therefore, we lose no generality in concentrating on domains that are de-
fined globally. Recall also that one of reasons to study the boundary behavior of
the Kobayashi–Royden metric is the problem of deciding whether any bounded
smooth pseudoconvex domain is Kobayashi complete (see e.g. [JP]). The hope was
that the Kobayashi–Royden metric in the normal direction would explode near the
boundary as 1/dD(z); it was one of the ideas that were used to show that smooth
bounded pseudoconvex domains are Kobayashi complete. However, after many
years of uncertainty, an example of Fornæss and Lee [FL] showed that such a
lower bound is not valid. More precisely, the example is the following.

Theorem 1 (see [FL]). For any given increasing sequence (aν)ν , aν → ∞, of
positive numbers, there exist a bounded smooth pseudoconvex domain D ⊂ C

3

and a decreasing sequence (δν)ν with δν → 0 such that

κD(Pδν ; n) ≤ 1

(aν δν)
,

where P is a suitable point from ∂D, Pδν = P − δν n, and n is the unit outward
normal vector to ∂D at P.
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In the other direction, Fu showed that smooth bounded pseudoconvex domains
have the following lower estimate (our formulation is weaker than the one in the
original paper).

Theorem 2 (see [Fu]). Let D be a bounded C 3-smooth pseudoconvex domain
given by the formula D = {r < 0}, where r is a C 3-smooth defining function
(meaning that its Levi form is semipositive definite on the complex tangent space
of any boundary point). Then there is a constant c > 0 such that

κD(z;X) ≥ c
|〈∂r(z),X〉|
|r(z)|2/3

, z∈D, X ∈ C
n.

Moreover, it follows from [Fu] that if we make some additional assumption on
the vector X and on the points z (e.g., that X is the unit outward normal vector to
some boundary point P and that z lies on the line passing through P in the direc-
tionX), then in the preceding estimate we may replace the exponent 2/3 with 5/6.
We shall see in Theorem 4 that in many cases the exponent 5/6 may be replaced
by 7/8.

Fu also conjectured that, in the class of smooth domains, the lower estimate of
the Kobayashi–Royden metric as in Theorem 2 may be taken to be of the form
1/d1−ε

D (z) with ε > 0 arbitrarily small. Note that the example of Fornæss and Lee
shows that the exponent cannot be taken to be equal to 1 (equivalently, ε cannot be
equal to 0).

However, a careful study of the Fornæss–Lee example shows that, in the case
of Ck-smooth domains, an estimate as conjectured by Fu does not hold. In partic-
ular, we have the following result.

Theorem 3. (1) For any positive integer k, there exist a Ck-smooth bounded
pseudoconvex domain D in C

3, a positive number ε, and a decreasing sequence
(δν)ν with δν → 0 such that

κD(Pδν ; n) ≤ 1

δ1−ε
ν

.

Here P is a suitable point from ∂D, Pδν = P − δν n, and n is the unit outward
normal vector to ∂D at P.

(2) For any α > 0, there exist a C∞-smooth bounded pseudoconvex domain D

in C
3 and a decreasing sequence (δν)ν with δν → 0 such that

κD(Pδν ; n) ≤ 1

δν(−log δν)α
;

here P is a suitable point from ∂D, Pδν = P − δν n, and n is the unit outward
normal vector to ∂D at P.

Note that Theorem 3 shows that, even in the C∞ case, the proof of the Kobayashi
completeness of the smooth bounded pseudoconvex domain cannot proceed by
showing that the Kobayashi–Royden metric (in the normal direction) behaves like
a “regular” integrable function of dD(z). Therefore, when all smooth bounded
pseudoconvex domains are Kobayashi complete, the proof would require a more
subtle reasoning.
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We can, however, also say something in the positive direction. Namely, we
may slightly improve the estimate given in Theorem 2. Unfortunately, the better
estimate holds for smooth domains defined as sublevel sets of smooth plurisubhar-
monic defining function. (Recall that not all smooth bounded pseudoconvex do-
mains are locally sublevel sets of smooth plurisubharmonic functions; see [B; F].)

Theorem 4. Let D = {r < 0} be a bounded domain in C
n, where r : U �→ R is

a C 4-smooth plurisubharmonic defining function for D. Then there is a constant
C > 0 such that

κD(z;X) ≥ C|〈n(z),X〉|
d

7/8
D (z)

as z tends to ∂D. The vectors X are taken so that ‖X‖ = o(1/dD(z))|〈n(z),X〉|,
where n(z) denotes the unit outward normal vector to ∂D at the point of ∂D of
the smallest distance from z.

Before we start the proofs, recall the definition of the Kobayashi–Royden (pseudo)-
metric of a domainD ⊂ C

n (for basic properties of the Kobayashi–Royden metric,
see [JP]). For z∈D and X ∈ C

n,

κD(z;X) := inf{α > 0 : there is an f ∈ O(D,D) with f(0) = z, αf ′(0) = X}.

2. Proofs

We start with some preliminary considerations.
Let D = {r < 0} be a domain in C

n, where r : U �→ R is a Ck+1-smooth
plurisubharmonic defining function with r(0) = 0. Then (up to a linear isomor-
phism) the Taylor expansion at 0 of order k of r is of the form

r(z) = Re zn +
k∑

j=2

Qj(z) + Rk(z),

where Qj(z) = ∑
|α|+|β|=j a

j

α,βz
αz̄β (note that then a

j

α,β = ā
j

β,α). We may also

write Qj(z) = Q̃j(z) + Q̂j(z), where

Q̃j(z) =
∑

|α|+|β|=j,|α|,|β|>0

a
j

α,βz
αz̄β, Q̂j(z) = 2 Re

∑
|α|=j

ajα,αz
α =: 2 ReHj(z).

It follows from Taylor’s formula that LRk(z)|S 2n−1 = O(‖z‖k−1), where
Lr̃(z)(X) is the Levi form of r̃ at the point z in the direction of X; here S 2n−1 de-
notes the (2n − 1)-dimensional sphere. Consequently, LRk(z)(z) = O(‖z‖k+1).

An easy calculation then gives the following formula:

LQj(z)(z) =
j∑

ν=0

ν(j − ν)
∑

|α|=ν,|β|=j−ν

a
j

α,βz
αz̄β

=
j−1∑
ν=1

ν(j − ν)
∑

|α|=ν,|β|=j−ν

a
j

α,βz
αz̄β.

In particular, LQ2(z)(z) = Q̃2(z) and LQ3(z)(z) = 2Q̃3(z).
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In the sequel we shall denote by Cj different constants that depend only on the
domain D.

Proof of Theorem 4. We leave the notation as before and make use of the preced-
ing considerations.

First we prove the desired estimate but with the exponent equal to 3/4 (instead
of 7/8). The assumptions of the theorem imply that, for z ∈ U, we have the fol-
lowing estimate:

Q̃2(z) + 2Q̃3(z) + C1‖z‖4 ≥ 0;
when combined with the property

min{Q̃2(z) + Q̃3(z), Q̃2(−z) + Q̃3(−z)}
≥ min{Q̃2(z) + 2Q̃3(z), Q̃2(−z) + 2Q̃3(−z)},

this gives, for z close to 0, the inequality

r(z) ≥ Re zn + Q2(z) + Q3(z) − C2‖z‖4

≥ Re zn + 2 Re(H2(z) + H3(z)) − C3‖z‖4.

Therefore, shrinking U if necessary, we have the inclusion

D ⊂ {Re zn + 2 Re(H2(z) + H3(z)) − C3‖z‖4 < 0}.
Now, for δ > 0 small enough and forX ∈ C

n andX �= 0, take ϕ ∈ O(D,D) such
that ϕ(0) = (0, . . . , 0, −δ) and κϕ ′(0) = X for κ > 0. Note that ‖ϕ(λ)−ϕ(0)‖ ≤
C4|λ|. For r ∈ (0, 1) define ψr(λ) := ϕ(rλ). Then ‖ψr(λ)‖ ≤ δ + C4 r, λ∈ D.

Define %(z) := zn + 2H2(z)+ 2H3(z), and put ϕr := % � ψr. Then ϕr(D) ⊂
{λ∈ C : Re λ < C5(δ + r)4} =: Sr,δ for δ small enough. Therefore,

r

κ

∣∣∣∣Xn(1 + O(δ)) +
n−1∑
j=1

O(δ)Xj

∣∣∣∣ = r

κ
|% ′(0, . . . , 0, −δ)X|

= |ϕ ′
r (0)| ≤ C6(δ + (δ + r)4),

where the last inequality follows easily from the formula for the Kobayashi–
Royden metric for Sr,δ.

Substitute r = δ1/4 for δ small enough. Then we get the lower estimate

κ ≥ C7δ
1/4 |Xn|(1 + α(δ))

δ + (δ + δ1/4)4
,

where α(δ) → 0 as δ → 0 (here we use that X was chosen such that ‖X‖ =
o(1/δ)|Xn|). Consequently, we get the lower estimate

κD((0, . . . , 0, −δ);X) ≥ C6|Xn|/δ3/4

as δ tends 0, where the vectors are taken such that o(1/δ)|Xn| ≥ ‖X‖.
Our aim is to show that we may replace the exponent 3/4 with 7/8. Keeping in

mind the previous estimate and retaining our previous notation, we have the fol-
lowing inequality:
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∥∥∥∥ϕ(λ) − ϕ(0) − λ

κ
X

∥∥∥∥ ≤ C7|λ|2.
Proceeding as before we obtain that, for |λ| ≤ r and δ small enough,

‖ϕ(λ)‖ ≤ δ + rC8

κ
‖X‖ + C7r

2

or ‖ψr(λ)‖ ≤ δ + rC8
κ

‖X‖ + C7r
2, λ∈ D.

We may assume without loss of generality that ‖X‖ is bounded from above (or
even equal to 1); hence, proceeding exactly as before, we get the inequality

κ ≥ C9r|Xn|(1 + α(δ))

δ + (δ + r/κ + r 2)4
.

Because we already know that κ ≥ C10/(δ
3/4) (here we need the first part of the

proof ), putting r = δ1/8 yields the following estimate:

κD((0, . . . , 0, −δ);X) ≥ C11|Xn|
δ7/8

as δ tends to 0. Since X satisfies the inequality ‖X‖ ≤ o(1/δ)|Xn|, this finishes
the proof of the theorem.

Remark 5. Consider r to be defined near 0 as r(z) := Re z2 + p(z1), where

p(z1) := 2m2zm+l
1 z̄m−l

1 + 4(m2 − l2)|z1|2m + 2m2zm−l
1 z̄m+l

1

= |z1|2m(Re 4m2ei2 lθ + 4(m2 − l2))

for m/2 ≤ l < m (here z1 = eiθ|z1|). Because p is a subharmonic function such
that, for some values of θ, the last factor in the formula is negative (the exam-
ple is taken from [La]), it is clear that we cannot hope to repeat the reasoning
from the proof of Theorem 4 for general k—even the case k = 2m = 4 (m = 2,
l = 1) encounters an obstacle. In other words, using that method does not give a
better lower estimate. Nevertheless, we think that the lower estimate in the normal
direction of the Kobayashi–Royden metric near the boundary of a Ck+2-smooth
pseudoconvex domain may be of the form 1/d1−1/(2k)

D (z); this would mean that, in
the case of an infinitely smooth bounded pseudoconvex domain, the estimate with
the exponent arbitrarily close to 1 (as suggested by Fu) may hold.

Remark 6. In the proof of Theorem 4, one needs to use the same reasoning
twice. However, instead of repeating it one may use a result of Fu (to get the lower
estimate of κ of the form 1/δ2/3; in fact, it is sufficient to have the estimate of the
form 1/δ1/8). However, in its present form the proof is more self-contained.

Proof of Theorem 3. As mentioned previously, the domain that satisfies the prop-
erties claimed in the theorem was constructed in [FL]. Hence we recall the con-
struction from there (keeping the notation from there, too). For the proof of the
theorem we must add some estimates (mostly for derivatives) of the defined func-
tions; also, for simplicity of calculations, at some places we make a special choice
of certain sequences.
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First let us make some comments. Note that the procedure works not only for
rn+1 = r 2

n/an but also under the assumption that rn+1 ≤ r 2
n/an; moreover, the

choice of Ak may be done with the equality replaced by the inequality. Conse-
quently, the series that we shall choose can be replaced by any subseries.

In what follows we shall write some inequalities for norms. With these inequal-
ities, by (for instance) ln ≤ mn we mean that lim sup(ln/mn) < ∞. The meaning
of the equality is analogous (inequalities in both directions hold). The norms of
functions are meant to be the supremum norms of functions (on some sets).

At the first stage we repeat the definition of a sequence of subharmonic func-
tions, which is then adopted to the construction of a sequence of subharmonic
functions of two variables defining a three-dimensional example. As mentioned
earlier, the construction follows entirely from [FL].

At first we assume the existence of sequences (an)n, (rn)n such that the sequence
(an)n is increasing to infinity and rn+1 ≤ r 2

n/an. We shall fix the sequences later.
We define

un(z) := 1

8
− Re z + log|z|

4 log an
, z∈ C,

and then define

Rn(z) :=
{

max{un(z), 0}, Re z ≤ bn,

un(z), Re z > bn;
here 0 < bn ≤ 1 is the smallest positive number such that

1

8
− bn + log bn

4 log an
= 0.

At first we are interested in the norm of Rn on a closed disc of radius Man/rn (for
some fixed M > 1). It is estimated from above by an/rn.

We define
R̃n(z) :=

∫
C

Rn(z − εnw)χ(w) dµ(w)

for some 0 < εn < rn/2, where µ = dx dy/m. Here m = ∫
C
χ(z) dx dy and

χ : C �→ [0, ∞) is a nonconstant C∞ radial function such that 0 ≤ χ ≤ 1 and
χ(z) = 0 for |z| ≥ 1. Then ‖R̃(k)

n ‖B(0,M) ≤ (1/rn)k · an/rn. Now we put ρn(z) :=
R̃n(anz/rn). Therefore,

‖ρ(k)
n ‖B(0,M) ≤

(
an

r 2
n

)k
an

rn
.

At this place we fix the sequences. We put rn = 1/an. We also want to have
rn+1 := r 2

n/an = r 3
n . In other words, we may choose rn := r 3n

1 . Now fix for a
while ε ∈ (0,1/3), and put an = δ−ε

n . So our choice of the numbers is an = aε3n

(where a > 1 is fixed), rn = (1/a)ε3n , and δn = (1/a)3n . But the construction
needs also an additional number An = 1/2 + an/rn + log(1/rn)/4 log an such that

δn ≤ δn−1

An(1/2n)
.

Given our choice of numbers, it follows that An = a2ε3n (in the asymptotic
sense). The construction needs also that δn ≤ δn−1/An2n. This inequality must
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hold asymptotically (it follows from the reasoning) and so it is sufficient to see
that, for large n

a−3n ≤ 1

a3n−1+2ε3n2n
;

this holds for ε as fixed previously.
The one-dimensional function ρ is now defined as

ρ(z) :=
∞∑
n=1

δnρn(z),

which defines a Ck-smooth function under the assumption∑
n

δn‖ρ(k)
n ‖B(0,M) < ∞.

In other words, this gives the condition
∑

n δn(a
k+1
n /r 2k+1

n ) < ∞. But the last
series is

∑
a((3k+2)ε−1)3n , which is finite when ε < 1/(3k + 2).

Next we move to the construction of the proper function ρ̃. We define V :=
{(s, t)∈ C

2 : s2 − t 3 = 0}. We want to have ρ̃n(s, t) = ρn(s/t) = ρn(ζ) if (s, t) =
(ζ 3, ζ2)∈V.

Let r̃n := r 3
n+1 and put Bn := B(0, r̃n) ⊂ C

2; we also put B ′
n := B(0, 3/4r̃n).

Then one may choose a small neighborhood Un of V such that the projection
π : Un �→ V is well-defined on Un \ B ′

n (the formula is π(s, t) := (s, s2/3) with a
properly chosen branch of the power). We putUn := {p ∈ C

2 : ‖p−π(p)‖ < d 2
n},

where one may choose dn = r 3
n+1 = r9

n (asymptotically in the aforementioned
sense). Then

‖π(k)‖Un\B ′
n

= r−k
n+1 = 1

r 3k
n

.

We define ρ̃n := ρn � π on Un \ Bn, and we may extend ρ̃n to a C∞-smooth
function on Bn ∪ Un by letting it equal 0 on Bn. Now we note the next estimate,

‖ρ̃(k)
n ‖(Un\Bn)∩B(0,M) ≤ 1

r6k+2
n

.

Let χ : R �→ [0,1] be a C∞-smooth function that is equal to 1 on [0,1/2] and
equal to 0 on [1, ∞). Then we define another smooth extension of ρ̃n on C

2 by
the formula

pn(z) :=




0, z∈Bn,

ρ̃n(z), z∈Un \ Bn, ‖z − π(z)‖ ≤ d 2
n

2

ρ̃n(z)χ

(‖z − π(z)‖2

d 2
n

)
, z∈Un \ Bn,

d 2
n

2
≤ ‖z − π(z)‖2 ≤ d 2

n ,

0, z /∈Un ∪ Bn.

Then one may verify that ‖p(k)
n ‖B(0,M) ≤ 1/r9k+2

n . Now take Cn ≥ 0 such that
Lpn(z)(X) ≥ −Cn‖X‖2. It follows that we may take (asymptotically)
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Cn = 1

r 20
n

(use the estimate for the norm of p ′′
n ).

Put

An :=
{
z∈Un \ Bn :

d 2
n

2
≤ ‖z − π(z)‖2 ≤ d 2

n

}

and
q(s, t) := e‖(s,t)‖2 |s2 − t 3|2, (s, t)∈ C

2.

Note that Lq(s, t)(X) ≥ |s2 − t 3|2‖X‖2. Therefore, if we take (asymptotically)
cn = d 2

n = r18
n , then

Lq(z)(X) ≥ cn‖X‖2.

Put Kn = 1/r 38
n (asymptotically). Then −Cn +Kncn ≥ 0. Consequently, r̃n =

pn + Knq is plurisubharmonic on C
2. Certainly,

‖r̃ (k)n ‖B(0,M) ≤ max

{
1

r9k+2
n

,
1

r 38
n

}
=:

1

r
mk
n

(note that mk = 38 for k = 1, . . . , 4 and that mk = 9k + 2 for k ≥ 4). Now
the condition on Ck-smoothness of the example from [FL] follows from the Ck-
smoothness of

ρ̃ :=
∑
n

δnr̃n,

which is satisfied if
∞ >

∑
n

δn
1

r
mk
n

=
∑
n

amkε−1. (∗)

The last inequality completes the proof for arbitrary ε ∈ (0,1/mk).

To complete the construction, recall that Fornæss and Lee defined the domain
as follows:

D := {(s, t,w)∈ C
3 : Rew + ρ̃(s, t) < 0} ∩ B(0, 2).

Let us now move to the second part of the theorem.
We leave all the relations among the numbers an, δn, rn with one exception.

Namely, put an = (−log δn)α for α > 0. Explicitly, we have δn = (1/a)3n and
rn = 1/an. Then the convergence of the final sequence (∗) (with the δn and rn just
introduced) is easily satisfied. And even though the relation rn+1 ≤ r 2

n/an is not
satisfied now, it is easy to see that, instead of taking the whole sequence, while
defining the function ρ̃ we may also choose an arbitrary subsequence which easily
guarantees that the desired inequality is satisfied. One may then prove that, after
we choose these relations, the number An satisfies the desired inequality as well.

The considerations so far lead us to conclude that the following relation is suffi-
cient for the construction of a C∞-smooth domain with the boundary behavior of
the Kobayashi–Royden metric in the normal direction equal to 1/(δn(−log δn)α):∑

δna
k
n < ∞ for any positive integer k.

The last condition is, as one may verify, satisfied.
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