
Michigan Math. J. 60 (2011), 113–148

Moduli Spaces of Rank-2 ACM Bundles
on Prime Fano Threefolds

Maria Chiara Brambilla & Daniele Faenzi

1. Introduction

A vector bundle F on a smooth polarized variety (X,HX) has no intermediate
cohomology if Hk(X,F ⊗ OX(tHX)) = 0 for all t ∈ Z and 0 < k < dim(X).

These bundles are also called arithmetically Cohen–Macaulay (ACM ) because
they correspond to maximal Cohen–Macaulay modules over the coordinate ring
of X. It is known that an ACM bundle must be a direct sum of line bundles if
X = P

n [39] or a direct sum of line bundles and (twisted) spinor bundles if X is
a smooth quadric hypersurface in P

n [53; 72]. On the other hand, there exists a
complete classification of varieties admitting, up to twist, a finite number of iso-
morphism classes of indecomposable ACM bundles [16; 25]. Only five cases exist
besides rational normal curves, projective spaces, and quadrics.

For varieties that are not on this list, the problem of classifying ACM bundles
has been taken up only in some special cases. For instance, on general hyper-
surfaces in P

n of dimension at least 3, a full classification of ACM bundles of
rank 2 is available; see [22; 23; 56; 63; 64]. For dimension 2 and rank 2, a partial
classification can be found in [12; 20; 21; 27]. For higher rank, some results are
given in [7; 19].

The case of smooth Fano threefolds X with Picard number 1 has also been stud-
ied. In this case one has Pic(X) ∼= 〈HX〉, withHX ample, and the canonical divisor
class KX satisfies KX = −iXHX, where the index iX satisfies 1 ≤ iX ≤ 4. Recall
that iX = 4 implies X ∼= P

3 and iX = 3 implies that X is isomorphic to a smooth
quadric. Thus, the class of ACM bundles is completely understood in these two
cases.

In contrast to this, the cases iX = 2,1 are highly nontrivial. First of all, there are
several deformation classes of these varieties [49; 51; 52]. A different approach to
the classification of these varieties was proposed by Mukai [67; 68; 69].

In the second place, it is still unclear how to characterize the invariants of ACM
bundles; in fact, the investigation has been thoroughly carried out only in the case
of rank 2. For iX = 2, the classification was completed in [5]. For iX = 1, a result
of Madonna [57] implies that if a rank-2 ACM bundle F is defined on X, then its
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second Chern class c2 must take values in {1, . . . , g + 3} if c1(F ) = 1 or in {2, 4}
if c1(F ) = 0. Partial existence results are given in [6; 56].

Third, the set of ACM rank-2 bundles can have positive dimension. A nat-
ural point of view is to study them in terms of the moduli space MX(2, c1, c2)

of (Gieseker) semistable rank-2 sheaves F with c1(F ) = c1, c2(F ) = c2, and
c3(F ) = 0. For iX = 2, such moduli space has been mostly studied when X is a
smooth cubic threefold [24; 44; 61]; see [13] for a survey.

If the index iX equals 1 then the threefold X is said to be prime, and one defines
the genus of X as g = 1+ H 3

X/2. The genus satisfies 2 ≤ g ≤ 12, g �= 11, and
there are 10 deformation classes of prime Fano threefolds. In this case, some of
the relevant moduli spaces MX(2,1, c2) are studied in [45] for g = 3, in [15; 46;
47] for g = 7, in [41; 44] for g = 8, in [48] for g = 9, and in [6] for g = 12.

Arithmetic Cohen–Macaulay bundles of rank 2 also appeared in the framework
of determinantal hypersurfaces; indeed, any such bundle provides a pfaffian rep-
resentation of the equation of the hypersurface [12; 45].

The goal of our paper is to provide the classification of rank-2 ACM bundles F
on a smooth prime Fano threefold X—that is, in the case iX = 1. Note that we can
assume c1(F ) ∈ {0,1}. Combining our existence theorems (namely, Theorem 3.1
and Theorem 4.1) with the results of Madonna and others mentioned previously,
we obtain the following classification.

Theorem. Let X be a smooth prime Fano threefold of genus g with −KX very
ample. Then an ACM vector bundle F of rank 2 has the following Chern classes:

(i) if c1(F ) = 1 then c2(F ) = 1 or g

2 + 1 ≤ c2(F ) ≤ g + 3;
(ii) if c1(F ) = 0 then c2(F ) = 2, 4.

If c1(F ) = 1 and c2(F ) ≥ g

2 +2, we assume, in addition, that X contains a line L
with normal bundle OL ⊕OL(−1). Then there exists an ACM vector bundle F for
any case listed above.

Note that the assumption that −KX is very ample (the threefold X is then called
non-hyperelliptic) excludes two families of prime Fano threefolds, one with g = 2
and the other with g = 3. These two cases will be discussed in a forthcoming paper.

The proof is based on deformations of sheaves that are not locally free (hence
neither ACM), such as extensions of ideal sheaves. The idea is to work recursively
by starting with some well-behaved bundles that have minimal c2. In order for the
induction to work in case (i), the only restriction we need on the threefold X is that
it contain a line L with normal bundle OL ⊕OL(−1) (in this case we will say that
X is ordinary). This is always verified if g ≥ 9 unless X is the Mukai–Umemura
threefold of genus 12. This condition is verified by a general prime Fano threefold
of any genus; see Section 2.3 for more details.

The paper is organized as follows. In the next section we give some prelimi-
nary notions. Section 3 is devoted to the proof of the main theorem in the case
c1(F ) = 1, and Section 4 concerns the case c1(F ) = 0. We conclude the paper
with Section 5, giving applications to pfaffian representations of quartic threefolds
in P

4 and cubic hypersurfaces of a smooth quadric in P
5.
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2. Preliminaries

Given a smooth complex projective n-dimensional polarized variety (X,HX) and
a sheaf F on X, we write F(t) for F ⊗OX(tHX). Given a subscheme Z of X, we
write FZ for F ⊗OZ and we denote by IZ,X the ideal sheaf of Z in X and by NZ,X

its normal sheaf. We will frequently drop the second subscript.
Given a pair of sheaves (F,E) on X, we will write ext kX(F,E) for the dimension

of the group Ext kX(F,E), and similarly hk(X,F ) = dim Hk(X,F ). The Euler char-
acteristic of a pair of sheaves (F,E) is defined asχ(F,E) = ∑

k(−1)k ext kX(F,E),
and χ(F ) is defined as χ(OX,F ). We denote by p(F, t) the Hilbert polynomial
χ(F(t)) of the sheaf F. We write eE,F for the natural evaluation map

eE,F : HomX(E,F )⊗ E → F.

2.1. ACM Sheaves

Let (X,HX) be an n-dimensional polarized variety and assume HX very ample, so
that X ⊂ P

m. We denote by IX the saturated ideal of X in P
m and by R(X) the co-

ordinate ring of X. Given a sheaf F on X, we define the following R(X)-modules:

Hk
∗(X,F ) =

⊕
t∈Z

Hk(X,F(t)) for each k = 0, . . . , n.

The variety X is said to be arithmetically Cohen–Macaulay (ACM) if R(X) is
a Cohen–Macaulay ring. This is equivalent to

H1
∗(P

m, IX,Pm) = 0 and Hk
∗(P

m, OX) = 0 for 0 < k < n.

A sheaf F on X is called locally Cohen–Macaulay if for any point x ∈X we have
depth(Fx) = dim(X).

Definition 2.1. A sheaf F on an n-dimensional ACM variety X is called ACM
if F is locally Cohen–Macaulay and has no intermediate cohomology:

Hk
∗(X,F ) = 0 for any 0 < k < n. (2.1)

By [18, Prop. 2.1] there is a one-to-one correspondence, between ACM sheaves
on X and graded maximal Cohen–Macaulay modules on R(X), given by F �→
H0∗(X,F ). If X is smooth then any ACM sheaf is locally free (see e.g. [1, Lemma
3.2]), so F being ACM is equivalent to condition (2.1).

As already mentioned, on a smooth quadric hypersurface of P
m with m ≥ 4

there exist ACM bundles, of rank greater than 1, called spinor bundles. We recall
here some facts and notation regarding these bundles in the case they have rank 2;
for more details see [53; 71]. If Q3 ⊂ P

4 is a smooth quadric, then there exists
one spinor bundle S of rank 2 on Q3. It is µ-stable (see Section 2.2), globally gen-
erated, with first Chern class equal to the hyperplane class HQ3 of Q3, and with
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c2(S ) = [L], where L is a line contained in Q3. Moreover, we have the following
natural exact sequence on Q3:

0 −→ S(−1) −→ O 4
Q3

eO,S−−→ S −→ 0. (2.2)

On the other hand, if Q4 ⊂ P
5 is a smooth quadric, then there exist two noniso-

morphic spinor bundles of rank 2 defined over Q4. We denote them by S1 and S2.

They are both µ-stable (see Section 2.2), globally generated, and satisfy c1(Si ) =
HQ4 and c2(Si ) = �i, where �1 and �2 are the classes of two disjoint projec-
tive planes contained in Q4. These planes are parameterized by global sections of
the bundles Si . These classes generate the cohomology group H2,2(Q4), and one
has the relations H 2

Q4
= �1 +�2 and �2

i = 1. Moreover, we have the following
natural exact sequences on Q4:

0 −→ Si(−1) −→ O 4
Q4

eO,Si+1−−−−→ Si+1 −→ 0, (2.3)

where we take the indices modulo 2.

2.2. Stability and Moduli Spaces

Let us now recall a few well-known facts about semistable sheaves on projective
varieties. We refer to [40] for a more detailed account of these notions.

Let (X,HX) be a smooth complex projective n-dimensional polarized variety.
We recall that a torsion-free coherent sheaf F on X is (Gieseker) semistable if,
for any coherent subsheaf E with rk(E) < rk(F ), one has p(E, t)/rk(E) ≤
p(F, t)/rk(F ) for t � 0. The sheaf F is called stable if this inequality is strict for
all E as above.

IfX has Picard number1, we can view the first Chern class c1(F ) of a sheafF on
X as an integer. Then the slope of a sheaf F of positive rank is defined as µ(F ) =
c1(F )/rk(F ). We say that F is normalized if −1 < µ(F ) ≤ 0. We recall that a
torsion-free coherent sheaf F is µ-semistable if, for any coherent subsheaf E with
rk(E) < rk(F ), one has µ(E) ≤ µ(F ). The sheaf F is called µ-stable if this in-
equality is strict for all E as above. The two notions are related by the following
implications:

µ-stable �⇒ stable �⇒ semistable �⇒ µ-semistable.

Notice that a rank-2 sheafF with odd c1(F ) isµ-stable as soon as it isµ-semistable.
Recall that, by Maruyama’s theorem [62], if dim(X) = n ≥ 2 and F is a µ-

semistable sheaf of rank r < n, then the restriction of F to a general hyperplane
section of X is still µ-semistable.

Let us introduce some notation concerning moduli spaces. We denote by
MX(r, c1, . . . , cn) the moduli space of S-equivalence classes of rank-r torsion-free
semistable sheaves on X with Chern classes c1, . . . , cn, where ck lies in Hk,k(X).

For brevity, sometimes we will writeF instead of the class [F ]. The Chern class ck
will be denoted by an integer as soon as Hk,k(X) has dimension 1. We will drop
the last values of the classes ck when they are zero.
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We will denote by SplX the coarse moduli space of simple sheaves on X. As
proved in [2], it is an algebraic space. We denote by H

g

d (X) the union of com-
ponents of the Hilbert scheme of closed Z subschemes of X, with Hilbert polyno-
mial p(OZ , t) = dt +1− g, containing integral curves of degree d and arithmetic
genus g.

2.3. Prime Fano Threefolds

Let now X be a smooth projective variety of dimension 3. Recall that X is called
Fano if its anticanonical divisor class −KX is ample. A Fano threefold is called
non-hyperelliptic if −KX is very ample.

We say that X is prime if the Picard group is generated by the canonical divisor
class KX. If X is a prime Fano threefold then Pic(X) ∼= Z ∼= 〈HX〉, where HX =
−KX is ample. One defines the genus of a prime Fano threefold X as the integer g
such that deg(X) = H 3

X = 2g − 2.
Smooth prime Fano threefolds are classified up to deformation; see, for in-

stance, [52, Chap. IV]. The number of deformation classes is 10. The genus of a
smooth non-hyperelliptic prime Fano threefold takes values in {3, 4, . . . , 9,10,12},
and there are only two families (one for g = 2, another for g = 3) that consist
of hyperelliptic threefolds. A hyperelliptic prime Fano threefold of genus 3 is a
flat specialization of a quartic hypersurface in P

4 (see e.g. [58] and the references
therein). It is well known that a smooth non-hyperelliptic prime Fano threefold
is ACM.

Any prime Fano threefold X contains lines and conics. The Hilbert scheme
H 0

1 (X) of lines contained in X is a projective curve. It is well known that the sur-
face swept out by the lines of a prime Fano threefold X is linearly equivalent to
the divisor rHX for some r ≥ 2 (see e.g. the table on p. 76 of [52]). Moreover, if
g ≥ 4 then every line meets finitely many other lines (see [51, Thm. 3.4(iii); 58]).
If g = 3, we know by [33, Sec. 7] that there always exist two disjoint lines in X.

A prime Fano threefold X is said to be exotic if the Hilbert scheme H 0
1 (X) has

a component that is nonreduced at any point. By [51, Lemma 3.2], this is equiva-
lent to the fact that, for any line L ⊂ X of this component, the normal bundle NL

splits as OL(1)⊕OL(−2). It is well known that a general prime Fano threefold X

is not exotic. On the other hand, for g ≥ 9, the results of [29] and [73] imply that
X is nonexotic unless g = 12 and X is the Mukai–Umemura threefold (see [70]).
We say that a prime Fano threefold X is ordinary if the Hilbert scheme H 0

1 (X)

has a generically smooth component. This is equivalent to the fact that there exists
a line L ⊂ X whose normal bundle NL splits as OL ⊕ OL(−1).

IfX is a smooth non-hyperelliptic prime Fano threefold, then the Hilbert scheme
H 0

2 (X) of conics contained in X is a projective surface, and a general conic C

in X has trivial normal bundle [51, Prop. 4.3, Thm. 4.4]. Moreover, the threefold
X is covered by conics. In addition, if X is a general prime Fano threefold then
H 0

2 (X) is a smooth surface; see [42] for a survey.
A smooth projective surface S is a K3 surface if it has trivial canonical bundle

and irregularity zero. A general hyperplane section S of a prime Fano threefold X

is a K3 surface polarized by the restriction HS of HX to S. If X has genus g, then
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S has (sectional) genus g and degree H 2
S = 2g−2. If X is non-hyperelliptic then,

by Moı̆šezon’s theorem [65], we have Pic(S) ∼= Z = 〈HS〉.
Note that a general hyperplane section of a hyperelliptic prime Fano threefold

is still a K3 surface of Picard number 1 if g = 2. This is no longer true in the other
hyperelliptic case (i.e., for g = 3). Indeed, let X be a double cover of a smooth
quadric in P

4 ramified on a general octic surface. Then the general hyperplane
section is a K3 surface of Picard number 2.

2.4. Summary of Basic Formulas

From now on, X will be a smooth prime Fano threefold of genus g, polarized by
HX. Let F be a sheaf of (generic) rank r on X with Chern classes c1, c2, c3. Recall
that these classes will be denoted by integers, since Hk,k(X) is generated by the
class of HX for k = 1, by the class of a line contained in X for k = 2, and by
the class of a closed point of X for k = 3. We will say that F is an r-bundle if
it is a vector bundle (i.e. a locally free sheaf ) of rank r. The discriminant of F is
defined as

"(F ) = 2rc2 − (r − 1)(2g − 2)c2
1 . (2.4)

Bogomolov’s inequality (see e.g. [40, Thm. 3.4.1] states that if F is a µ-
semistable sheaf then

"(F ) ≥ 0. (2.5)

Applying Hirzebruch–Riemann–Roch to F we get

χ(F ) = r + 11+ g

6
c1 + g − 1

2
c2

1 −
1

2
c2 + g − 1

3
c3

1 −
1

2
c1c2 + 1

2
c3.

We recall by [66] (see also [40, Part II, Chap. 6]) that, given a simple sheaf F
of rank r on a K3 surface S of genus g, with Chern classes c1, c2, the dimension
at the point [F ] of the moduli space SplS is

"(F )− 2(r 2 − 1), (2.6)

where "(F ) is still defined by (2.4). If the sheaf F is stable, then this value also
equals the dimension at the point [F ] of the moduli space MS(r, c1, c2).

Let us focus on vector bundles F of rank 2. Then we have F ∼= F ∗(c1(F )).

Further, the well-known Hartshorne–Serre correspondence relates vector bundles
of rank 2 over X with subvarieties Z of X of codimension 2. We refer to [34],
[36], and, in particular, [37, Thm. 4.1] (see also [4] for a survey).

Proposition 2.2. Fix the integers c1, c2. Then we have a one-to-one correspon-
dence between the sets

(1) of equivalence classes of pairs (F, s), where F is a rank-2 vector bundle on
X with ci(F ) = ci and s is a global section of F, up to multiplication by a
nonzero scalar, whose zero locus has codimension 2, and

(2) of locally complete intersection curves Z ⊂ X of degree c2, with ωZ
∼=

OZ(c1 − 1).
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Recall that Z has arithmetic genus pa(Z) = 1 − d(1−c1)

2 . The zero locus of a
nonzero global section s of a rank-2 vector bundle F has codimension 2 if F is
globally generated and s is general, or if H0(X,F(−1)) = 0.

Lemma 2.3. Assume that X is not hyperelliptic and let F be a rank-2 bundle on
X. Let s be a global section of F whose zero locus is a curve D ⊂ X. Then we
have

H1
∗(X,F ) ∼= H1

∗(X, ID,X(c1(F ))). (2.7)

In particular, F is ACM if and only if H1∗(X, ID,X) = 0 if and only if
H1∗(X, ID,Pm) = 0. If D is smooth, then F is ACM if and only if D is projec-
tively normal.

Proof. The section s gives the exact sequence

0 −→ OX −→ F −→ ID(c1(F )) −→ 0; (2.8)

and, taking cohomology, we obtain the required isomorphism (2.7). By Serre
duality it follows that, since F is locally free, the condition H1∗(X,F ) = 0
is equivalent to H2∗(X,F ) = 0 and thus to F being ACM. Since by (2.7) the
module H1∗(X, ID) is isomorphic to H1∗(X,F ) = 0 up to the grading, we have
H1∗(X, ID) = 0 if and only if F is ACM.

Take now X ⊂ P
m polarized by HX (which is very ample by assumption) and

consider D ⊂ X. We have the exact sequence

0 −→ IX,Pm −→ ID,Pm −→ ID,X −→ 0.

Recall that X is an ACM variety of dimension 3, so Hk∗(X, ID,Pm) = 0 for k =
1, 2. Therefore, taking cohomology in the preceding sequence, it follows that
H1∗(X, ID,X) = 0 if and only if H1∗(X, ID,Pm) = 0.

Finally, if D ⊂ P
m is smooth then the condition H1∗(X, ID,Pm) = 0 is equiva-

lent to D being projectively normal (see [35, Chap. II, Exer. 5.14]).

2.5. ACM Bundles of Rank 2

In this section, we recall Madonna’s result in the case of bundles of rank 2 on a
smooth prime Fano threefold.

Proposition 2.4 [57]. Let F be a normalized ACM 2-bundle on X. Then the
Chern classes c1 and c2 of F satisfy the following restrictions:

c1 = 0 �⇒ c2 ∈ {2, 4};
c1 = 1 �⇒ c2 ∈ {1, . . . , g + 3}.

Remark 2.5. Let F and c1, c2 be as before, and let t0 be the smallest integer t
such that H0(X,F(t)) �= 0. In [57] the author computes the following values of t0:

(a) if (c1, c2) = (1, 1), then t0 = −1;
(b) if (c1, c2) = (0, 2), then t0 = 0;
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(c) if (c1, c2) = (1, c2) with 2 ≤ c2 ≤ g + 2, then t0 = 0;
(d) if (c1, c2) = (0, 4), then t0 = 1;
(e) if (c1, c2) = (1, g + 3), then t0 = 1.

We observe that F is not semistable in cases (a) and (b) but is strictly µ-semistable
in case (b). In the remaining cases, if F exists then it is a µ-stable sheaf.

The existence of F in cases (a) and (b) is well known. It amounts, in view of
Proposition 2.2, to the existence of lines and conics contained in X.

The following lemma (cf. [15, Lemma 3.1]) gives a sharp lower bound on the
values in Madonna’s list. We set

mg =
⌈
g + 2

2

⌉
. (2.9)

Lemma 2.6. The moduli space MX(2,1, d) is empty for d < mg. In particular,
we get the further restriction c2 ≥ mg in case (c) of Remark 2.5.

Remark 2.7. The non-hyperelliptic assumption cannot be dropped. Indeed, if X
is a hyperelliptic Fano threefold of genus 3 then the moduli space MX(2,1, 2) is
not empty. Let Q∈ P

4 be a smooth quadric and π : X → Q a double cover ram-
ified along a general octic surface. Set F = π∗(S ), where S is the spinor bundle
on Q. Then F is a stable vector bundle on X lying in MX(2,1, 2). Notice that the
restriction FS to any hyperplane section S ⊂ X is decomposable (hence strictly
semistable).

3. Bundles with Odd First Chern Class

Throughout the paper, we denote by X a smooth non-hyperelliptic prime Fano
threefold of genus g. In this section we will prove the existence of the semistable
bundles, appearing in Madonna’s (restricted) list, whose first Chern class is odd.
The main result of this section is the following existence theorem.

Theorem 3.1. Let X be a smooth non-hyperelliptic prime Fano threefold of
genus g, and let g

2 + 1 ≤ d ≤ g + 3. If d ≥ g

2 + 2, we assume, in addition,
that X is ordinary. Then there exists an ACM vector bundle F of rank 2 with
c1(F ) = 1 and c2(F ) = d. Moreover, in the range d ≥ g

2 + 2, such a bun-
dle F can be chosen from a generically smooth component of the moduli space
MX(2,1, d) of dimension 2d − g − 2.

We will study first the case of minimal c2 and then proceed recursively.

3.1. Moduli of ACM 2-bundles with Minimal c2

In this section we study the moduli space of rank-2 semistable sheaves with odd
c1 (we may assume that c1 is 1) and minimal c2. Namely, given a smooth non-
hyperelliptic prime Fano threefold X of genus g, we set mg = ⌈ g+2

2

⌉
according

to (2.9) and study MX(2,1,mg). Our goal is to prove the following statement.
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Theorem 3.2. Let X be a smooth non-hyperelliptic prime Fano threefold of
genus g. Then any sheaf F lying in MX(2,1,mg) is locally free and ACM, and it
is globally generated if g ≥ 4.

Furthermore, there is a line L ⊂ X such that

F ⊗ OL
∼= OL ⊕ OL(1) (3.1)

and MX(2,1,mg) can be described as follows:

(i) the curve H 0
1 (X) parameterizing lines contained in X if g = 3;

(ii) a scheme of length 2 if g = 4, smooth if and only ifX is contained in a smooth
quadric;

(iii) a double cover of the Hesse septic curve if g = 5 (see Section 3.1.5 );
(iv) a single smooth point if g = 6, 8,10,12;
(v) a smooth nontetragonal curve of genus 7 if g = 7;

(vi) a smooth plane quartic if g = 9.

Moreover, if we assume that X is ordinary if g = 3 and that X is contained in
a smooth quadric if g = 4, then there is a sheaf F in MX(2,1,mg) with

Ext2
X(F,F ) = 0. (3.2)

Finally, if X is ordinary, then the line L in (3.1) can be chosen in such a way
that NL

∼= OL ⊕ OL(−1).

The proof of this theorem is presented in Sections 3.1.1–3.1.5.

3.1.1. Nonemptiness
It is well known that, for any non-hyperelliptic smooth prime Fano threefold X of
genus g, the moduli space MX(2,1,mg) is nonempty. To the authors’ knowledge,
there is no proof of this fact other than a case-by-case analysis. We refer, for ex-
ample, to [56] for g = 3, to [57] for g = 4, 5, to [30] for g = 6, to [46; 47; 55] for
g = 7, to [31; 32; 68] for g = 8, to [48] for g = 9, to [68] for g = 10, and to [54]
(see also [26; 74]) for g = 12.

Given a sheaf F in MX(2,1,mg), we note that F is locally free and Hk(X,F ) =
0 for k ≥ 1 by [15, Prop. 3.5]. The Riemann–Roch theorem implies that

h0(X,F ) = g + 3 −mg ,

and any section s �= 0 in H0(X,F ) vanishes along a curve Cs; this gives rise to
the exact sequence

0 −→ OX
s−→ F −→ ICs,X(1) −→ 0, (3.3)

where Cs has degree mg. We immediately have

h0(X, ICs,X(1)) = g + 2 −mg. (3.4)

3.1.2. Cases g ≥ 6
Let F be a sheaf in MX(2,1,mg) (there is such an F by the previous paragraph).
From [15, Prop. 3.5] it follows that F is locally free, ACM, and globally gener-
ated. Given any line L contained in X, the sheaf F satisfies (3.1); indeed, F has
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degree 1 and is globally generated on L. Clearly we can choose L with NL
∼=

OL ⊕ OL(−1) if X is ordinary.
It only remains to study the structure of MX(2,1,mg). We will do this with the

aid of the following two lemmas, which are probably well known to experts but
for which we can find no explicit reference in the literature.

Lemma 3.3. Assume g ≥ 6, and let F and F ′ be sheaves in MX(2,1,mg). Then
we have Ext2

X(F,F ′) = 0. In particular, the space MX(2,1,mg) is smooth. If g
is even then this implies that MX(2,1,mg) consists of a single smooth point.

Proof. We have said that F ′ is globally generated and so we write the natural exact
sequence

0 −→ K −→ H0(X,F ′)⊗ OX

eO,F ′−−→ F ′ −→ 0, (3.5)

where the sheaf K is locally free; then we have

rk(K) = g −mg + 1, c1(K) = −1.

Note that K is a stable bundle by Hoppe’s criterion (see e.g. [3, Thm. 12; 38,
Lemma 2.6]). Indeed, note that H0(X,K)= 0 and that we have−1< µ(∧pK) < 0
for 0 < p < rk(K). By the inclusion

∧pK ↪→ ∧p−1K ⊗ H0(X,F )

we obtain, recursively, H0(X, ∧pK) = 0 for all p ≥ 0.
Now, since F is stable and ACM, we have Hk(X,F ∗) = 0 for all k. Thus, ten-

soring (3.5) by F ∗, we obtain

ext2
X(F,F ′) = h2(X,F ∗ ⊗ F ′) = h3(X,F ∗ ⊗K) = h0(X,K∗ ⊗ F ∗) = 0,

where the last equality holds by stability. Indeed, c1(K
∗⊗F ∗) = mg − g+1 < 0

for g ≥ 6.
Note that, when g is even, we have χ(F,F ′) = 1. This gives HomX(F,F ′) �= 0.

But a nonzero morphism F → F ′ must be an isomorphism. This concludes the
proof.

Lemma 3.4. Assume g ≥ 6 and g odd. Then the space MX(2,1,mg) is fine and
isomorphic to a smooth irreducible curve.

Proof. Let F be a sheaf in MX(2,1,mg). By Lemma 3.3, the moduli space is
smooth and, since χ(F,F ) = 0, we have ext1X(F,F ) = homX(F,F ) = 1. Thus
MX(2,1,mg) is a nonsingular curve.

It is well known (from classical results due to Narasimhan, Ramanan, and
Grothendieck) that the obstruction to the existence of a universal sheaf on X ×
MX(2,1,mg) corresponds to an element of the Brauer group of MX(2,1,mg). But
this group vanishes as soon as the variety MX(2,1,mg) is a nonsingular curve [17;
28]. Hence we have a universal vector bundle on X ×MX(2,1,mg). We consider
a component M of MX(2,1,mg) and let E be the restriction of the universal sheaf
to X × M. We let p and q be the projections of X × M to X and M, respectively.
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To prove the irreducibility of MX(2,1,mg), we denote by Ey the restriction of
E to X × {y}. We have Ey

∼= Ez if and only if y = z for y, z ∈ M. Moreover, for
any sheaf F in MX(2,1,mg), we have

Ext kX(Ey ,F ) = 0 for k = 2, 3 and for all k if F �∼= Ey ,

where the vanishing for k = 2 follows from Lemma 3.3. Hence we have

Rkq∗(E ∗ ⊗ p∗(F )) = 0 for k �= 1;
R1q∗(E ∗ ⊗ p∗(F )) ∼= Oy for F ∼= Ey.

In particular, for any sheaf F in MX(2,1,mg), the sheaf R1q∗(E ∗ ⊗p∗(F )) has
rank 0 and we have χ(R1q∗(E ∗ ⊗ p∗(F ))) = 1, since this value can be computed
by the Grothendieck–Riemann–Roch formula. Thus there must be a point y ∈M
such that Ext1X(Ey ,F ) �= 0; hence HomX(Ey ,F ) �= 0 and so F ∼= Ey. This im-
plies that F belongs to M.

Lemma 3.3 thus proves (3.2) as well as part (iv) of Theorem 3.2. The irreducibil-
ity statement of Lemma 3.4 proves that MX(2,1,mg) is a curve of the desired type
by [46] for g = 7 (in this case irreducibility was already known) and by [48] for
g = 9. Theorem 3.2 is thus proved for g ≥ 6, and it remains to establish it for g =
3, 4, 5; this we do in Sections 3.1.3–3.1.5.

3.1.3. Case g = 3
A smooth non-hyperelliptic prime Fano threefold of genus 3 is a smooth quartic
threefold in P

4. To prove Theorem 3.2, we need the following proposition.

Proposition 3.5. Let X ⊂ P
4 be a smooth quartic threefold. Then any element

F in MX(2,1, 3) is an ACM bundle and fits into an exact sequence of the form

0 −→ OX(−1) −→ H0(X,F )⊗ OX

eO,F−−→ F −→ OL(−2) −→ 0, (3.6)

where L is a line contained in X.

The map F �→ L gives an isomorphism of MX(2,1, 3) to H 0
1 (X).

Proof. We consider a sheaf F in MX(2,1, 3) and a cubic curve Cs associated to a
nonzero global section s by (3.3). By (3.4), the curve Cs spans a projective plane
� ⊂ P

4 that intersects X along D = Cs ∪L, where L is a line. Then we have the
exact sequence

0 −→ ID,X(1) −→ ICs,X(1) −→ ICs,D(1) −→ 0.

Note that ICs,D is a torsion-free sheaf of rank 1 supported on L and hence of the
form OL(t). By calculating Chern classes one can easily show that t = −3, so the
preceding exact sequence now reads

0 −→ ID,X(1) −→ ICs,X(1) −→ OL(−2) −→ 0.

Since D is cut by two hyperplanes, we also have a surjective map O 2
X → ID,X(1)

whose kernel is OX(−1). It is easy to patch these exact sequences together with
(3.3) to obtain a long exact sequence of the form
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0 −→ OX(−1) −→ O 3
X −→ F −→ OL(−2) −→ 0, (3.7)

which amounts to (3.6) because OL(−2) has no nonzero global sections.
A straightforward Hilbert polynomial computation—together with the remark

that all sheaves in MX(2,1, 3) are stable—show that we can apply [40, Cor. 4.6.6]
to get a universal sheaf E onX×MX(2,1, 3). We denote byp and q the projections
from X × MX(2,1, 3) to X and MX(2,1, 3), respectively. We can thus globalize
the exact sequence (3.7) over X × MX(2,1, 3) and write the middle arrow as the
fiber over a point of MX(2,1, 3) of the natural map:

q∗(q∗(E )) −→ E.

Taking the support of the cokernel sheaf of this map yields a family of lines con-
tained in X and parameterized by MX(2,1, 3); hence, by the universal property
of the Hilbert scheme, this family is induced by a morphism α : MX(2,1, 3) →
H 0

1 (X).

We observe that, dualizing and twisting (3.7), we easily obtain an exact se-
quence of the form

0 −→ F −→ O 3
X(1) −→ IL,X(2) −→ 0. (3.8)

Let now L be any line contained in X. Since L is cut by three hyperplanes, we
have a projection O 3

X(1) → IL,X(2). It is easy to see that the kernel of this projec-
tion is a stable bundle lying in MX(2,1, 3). In order to globalize (3.8), we denote
by I the universal ideal sheaf on X×H 0

1 (X) and by f and g the projections from
X × H 0

1 (X) to X and H 0
1 (X), respectively. Thus we have the surjective map

f ∗(OX(1))⊗ g∗
(
g∗(I ⊗ f ∗(OX(1)))

) −→ I ⊗ f ∗(OX(2)).

We therefore have a family of sheaves in MX(2,1, 3) parameterized by H 0
1 (X)

and hence a classifying map β : H 0
1 (X) → MX(2,1, 3). Since α and β are mutu-

ally inverse, the schemes MX(2,1, 3) and H 0
1 (X) are isomorphic.

Let us note that the foregoing analysis implies Theorem 3.2 for X. We know that
F is locally free and ACM. This last fact can be seen directly as follows. The
curve Cs is a complete intersection in P

4. Thus we have H1∗(P 4, ICs,P 4) = 0, so F

is ACM by Lemma 2.3. Condition (3.2) holds for F as soon as F corresponds to
a smooth point of H 0

1 (X), and such points exist as soon as X is ordinary. Finally,
let L′ ⊂ X be a line that does not meet L (it exists for any X by [33, Sec. 7]).
Restricting (3.7) to L′, we see that the splitting required for (3.1) holds on L′.

3.1.4. Case g = 4
A smooth prime Fano threefold X of genus 4 must be the complete intersection of
a quadric Q and a cubic in P

5. Almost all the results we need for the next propo-
sition follow from [57, Sec. 3.2].

Proposition 3.6. Let X be a smooth prime Fano threefold of genus 4, and let
Q ⊂ P

5 be the unique quadric containing X.
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(i) If the quadric Q is smooth, then MX(2,1, 3) consists of two smooth points
given by two globally generated stable ACM bundles F1 and F2. Moreover,
we have the natural exact sequence

0 −→ Fi(−1) −→ O 4
X

eO,Fi+1−−−→ Fi+1 −→ 0, (3.9)

where we take the indices modulo 2.
(ii) If the quadric Q is singular, then MX(2,1, 3) consists of a length-2 scheme

supported at a point that corresponds to a globally generated stable ACM
bundle F with

homX(F,F ) = ext2
X(F,F ) = 1, ext1X(F,F ) = 2, (3.10)

and we have the natural exact sequence

0 −→ F(−1) −→ O 4
X

eO,F−−→ F −→ 0. (3.11)

Proof. Given a sheaf F in MX(2,1, 3), we consider a cubic curve Cs arising as the
zero locus of a global section of F. By (3.4), the curve Cs is contained in three
independent hyperplanes. Therefore, Cs spans a projective plane � that must be
contained in Q by degree reasons. The curve Cs is thus a complete intersection in
P

5, so that H1∗(P 5, ICs,P 5) = 0 and F is ACM by Lemma 2.3. This gives a direct
argument besides [15, Prop. 3.5] to prove that F is ACM.

Assume now that Q is nonsingular. Then one considers the bundles F1 and F2

obtained by restricting to X the two nonisomorphic spinor bundles S1 and S2 on
Q. Note that F1 and F2 are not isomorphic, as Ext kX(Fi,Fi) = 0 for k ≥ 1. One
can check this by computing the vanishing of Hk(Q, Si⊗S ∗

i (−3)) for all k, which
in turn follows from Bott’s theorem. It is easy to deduce that the Fi are stable and
hence provide two smooth points of MX(2,1, 3).

Note that � arises as the zero locus of a section of Si for some i such that F
is the restriction of Si to X. We have thus proved that MX(2,1, 3) consists of two
smooth points. Finally, restricting the exact sequence (2.3) to X, we obtain (3.9).
This finishes the proof in case (i).

We consider now the case when Q is singular—namely, Q is a cone with ver-
tex v over a smooth quadric Q′ contained in P

4 ⊂ P
5. Here we have one spinor

bundle S on Q′ lifting to a rank-2 sheaf F̃ on Q that is locally free away from v. It
is easy to check that, by restricting F̃ to X, we get a stable bundle in MX(2,1, 3).

A plane � ⊂ Q must be the span of v and a line L contained in Q′. Recall that
L arises as the zero locus of a global section of S. This easily implies that � is
the zero locus of a global section of F̃, so that F is the restriction of F̃. Therefore
MX(2,1, 3) is supported at a single point [F ]. By specialization from the case (i),
it follows that MX(2,1, 3) is a scheme structure of length 2 over [F ].

Further, an exact sequence of the form (2.2) takes place on Q′. Lifting this se-
quence to Q and restricting to X, we obtain the exact sequence (3.11). It is now
easy to obtain (3.10) by applying the functor HomX(F, ·) to (3.11), noting that
χ(F,F ) = 0, and using Serre duality.

All the statements of Theorem 3.2 are now proved for X, except the splitting (3.1).
But since F and Fi are globally generated, (3.1) holds for any line L ⊂ X.
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3.1.5. Case g = 5
Let us first recall some basic facts concerning prime Fano threefolds of genus 5,
for which we refer to [11, Sec. 1.5]. The threefold X is defined as the complete in-
tersection of a net 0 of quadrics in P

6; that is, for each point y of the projective
plane 0 we have a quadric Qy ⊂ P

6. This defines a quadric fibration f : X → 0,
where X is the set of pairs of points (x, y) ∈ P

6 × 0 and where the point x lies
in Qy and f is the projection onto the second factor. The plane 0 contains the
Hesse septic curve H of singular quadrics, and H is smooth away from finitely
many ordinary double points. Each quadric Qy in H has rank at least 5 (for X is
smooth) and admits one or two rulings according to whether rk(Qy) equals 5 or
6. The curve parameterizing these rulings is denoted by H̃. It admits an involu-
tion τ whose only fixed points lie over the singularities of H, and we have H ∼=
H̃/τ. This defines H̃ as a double cover of H, and we say that H̃ is associated to X.

Further, we consider the set of projective spaces P
3 ⊂ Qy belonging to the same

ruling of Qy. This defines a P
3-bundle G(f ) → H̃, and we denote by P

3
ỹ

the fiber
over ỹ ∈ H̃.

Proposition 3.7. Let X be a smooth prime Fano threefold of genus 5, and let
H̃ be associated to X. Then the space MX(2,1, 4) is isomorphic to H̃, and any
element F ∈MX(2,1, 4) is globally generated and ACM.

Moreover, there is an involution ρ on MX(2,1, 4) that associates to F the sheaf
Fρ fitting into

0 −→ Fρ(−1) −→ O 4
X

eO,F−−→ F −→ 0, (3.12)

and ρ corresponds to τ under the isomorphism MX(2,1, 4) ∼= H̃.

Proof. We will identify the fiber P
3
ỹ

of the P
3-bundle G(f ) → H̃ with the projec-

tivized space of sections of a rank-2 sheaf on Qy. We distinguish the two cases
rk(Qy) = 5, 6 for y ∈H.

If the quadric Qy has rank 6, then it is a cone whose vertex is a point v over a
smooth quadric Q′

y in a P
5 contained in P

6. The set of projective three-spaces �
contained in Qy is thus parameterized by the set of planes in Q′

y. These planes are
in bijection with the elements of P(H0(Q′

y , Si )) for i = 1, 2 , where S1, S2 are the
spinor bundles on Q′

y. Each of the bundles Si extends to a sheaf F̃i on Qy that is
locally free away from v, and we easily compute h0(Qy , F̃i) = h0(Q′

y , Si ) = 4.
We note, incidentally, that there is a natural exact sequence (we take the indices
modulo 2)

0 −→ F̃i(−1) −→ O 4
Qy

eO,F̃i+1−−−→ F̃i+1 −→ 0 (3.13)

that lifts to Qy the exact sequence (2.3).
Summing up, a subspace � = P

3 contained in Qy corresponds to an element
of P(H0(Qy , F̃ )) with F̃ = F̃1 or F̃ = F̃2. So P

3
ỹ

is canonically identified with
P(H0(Qy , F̃ )). Note also that, given � ⊂ Qy , we have

0 −→ OQy
−→ F̃ −→ I�,Qy

(1) −→ 0. (3.14)
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If rk(Qy) = 5, then Qy is a cone with vertex on a line L ⊂ P
6 over a smooth

quadric Q′′
y ⊂ P

4. In this case the subspaces � = P
3 of Qy are given by lines in

Q′′
y , and any of these lines can be described as the zero locus of a section of S, the

spinor bundle on Q′′
y. One can lift S to a rank-2 sheaf F̃ on Qy that is locally free

away from L. We still have h0(Qy , F̃ ) = 4 and (3.14) still holds, so P
3
ỹ

is again
identified with P(H0(Qy , F̃ )).

In order to prove our statement, we show that the P
3-bundle G(f ) is isomorphic

over the base curve to the P
3-bundle on MX(2,1, 4) consisting of pairs ([s],F ),

where F lies in MX(2,1, 4) and [s] lies in P(H0(X,F )). Recall that s gives rise
to the curve Cs , which has degree 4. By (3.4), the curve Cs is contained in three
independent hyperplanes, so Cs spans a P

3 that must be contained in a singu-
lar quadric Qy. Note that this quadric is unique, for otherwise X would contain
a quadric surface, contradicting Pic(X) ∼= 〈HX〉. Note also that the curve Cs is
a complete intersection in P

6, so H1∗(P6, ICs,P6) = 0 and hence F is ACM by
Lemma 2.3. This confirms [15, Prop. 3.5].

Given this setup, we associate to [s] ∈ P(H0(X,F )) the element [s̃] of
P(H0(Qy , F̃ )) that corresponds to the space spanned by Cs. It is easy to see
that H0(Qy , F̃ ) is naturally isomorphic to H0(X,F ) and that, restricting (3.14)
from Qy to X, we obtain (3.3). Then P

3
ỹ

is identified with P(H0(X,F )) and we
can associate ỹ to F.

Note that this construction is reversible: to a point ỹ of H̃ we associate the bun-
dle F on X such that, for any element � in P

3
ỹ
, the intersection � ∩ X is a curve

of degree 4 obtained as zero locus of a section of F. This proves that MX(2,1, 4)
is isomorphic to H̃. The vanishing (3.2) holds for F as soon as F corresponds to
a smooth point of H̃. We remark that any such F is globally generated because it
is the restriction to X of F̃, which is globally generated (this is clear, for instance,
by (3.14)). We have thus constructed an isomorphism MX(2,1, 4) ∼= H̃.

It remains to check the statement regarding the involutions on MX(2,1, 4) and H̃.

We have to check that ρ is well-defined and (under the isomorphism MX(2,1, 4) ∼=
H̃ constructed previously) agrees with τ, which by definition interchanges the rul-
ings of Qy as soon as rk(Qy) = 6. Recall that any sheaf F in MX(2,1, 4) is the
restriction to X of a sheaf F̃ on Qy , say of F̃1, that corresponds to one ruling of Qy.

We thus have (3.13) (with i = 0), and restricting to X yields an exact sequence of
the form (3.12) for some sheaf Fρ lying in MX(2,1, 4). Note that Fρ is then the
restriction to X of the sheaf F̃2 on Qy. Since F̃2 corresponds to the second ruling
of Qy , we have proved that ρ agrees with τ.

Proposition 3.7 proves Theorem 3.2 for X, once we check (3.1). But this splitting
holds for any line L ⊂ X, since any F ∈MX(2,1, 4) is globally generated.

We have now finished the proof of Theorem 3.2.

3.2. Moduli of ACM 2-bundles with Intermediate c2

This section is devoted to the proof of Theorem 3.1 in the cases mg + 1 ≤ d ≤
g + 2. This will prove in particular the existence of case (c) of Madonna’s list;
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see Remark 2.5. We will need a series of lemmas to prove recursively the existence
of ACM bundles of rank 2. The following lemma is proved in [15, Thm. 3.9], once
we take care of the special case of Fano threefolds of genus 4 contained in a singular
quadric. Note that this is the only case for which no sheaf F in MX(2,1,mg) sat-
isfies (3.15).

Lemma 3.8. Let X be ordinary and let L be a general line in X. Then, for any
integer d ≥mg+1, there exists a rank-2, stable, locally free sheafF with c1(F )= 1
and c2(F ) = d that satisfies

Ext2
X(F,F ) = 0, (3.15)

H1(X,F(−1)) = 0, (3.16)

F ⊗ OL
∼= OL ⊕ OL(1), (3.17)

where L is a line with NL
∼= OL ⊕ OL(−1).

Proof. All statements are proved in [15, Thm. 3.9] by induction on d ≥ mg+1 (ex-
cept when g = 4 andX is contained in a singular quadric). The induction step pro-
ceeds as follows. Given a stable 2-bundle Fd−1 with c1(Fd−1) = 1 and c2(Fd−1) =
d − 1 that satisfies (3.17) for a given line L ⊂ X (with NL

∼= OL ⊕ OL(−1)), we
have the unique exact sequence

0 −→ Sd −→ Fd−1
σ−→ OL −→ 0, (3.18)

where σ is the natural surjection and Sd = ker(σ) is a nonreflexive sheaf in
MX(2,1, d). We have proved in [15, Thm. 3.9] that if (3.15) and (3.16) hold for
Fd−1, then we get a vector bundle of MX(2,1, d) satisfying (3.15), (3.16), and (3.17)
by flatly deforming Sd .

Assume thus g = 4 and that X is contained in a singular quadric. Given a
line L contained in X such that NL

∼= OL ⊕ OL(−1) and the vector bundle F3 ∈
MX(2,1, 3) (see Proposition 3.6), we set S4 = ker(F3 → OL) (where the map is
nonzero). We obtain an exact sequence of the form (3.18) with d = 4.

The sheaf S4 sits in MX(2,1, 4), and we want to prove that Ext2
X(S4, S4) = 0.

Applying HomX(S4, ·) to (3.18) yields

Ext1X(S4, OL) −→ Ext2
X(S4, S4) −→ Ext2

X(S4,F3).

It is easy to check that the first term vanishes by applying HomX(·, OL) to (3.18)
and then using [15, Rem. 2.1] and the fact that (3.17) holds for F3. To prove the
vanishing of the last term, we apply HomX(S4, ·) to (3.11) and note that

ext3
X(S4,F3(−1)) = hom(F3, S4) = 0

by Serre duality and stability.
In this setup, the sheaf S4 admits a smooth neighborhood in MX(2,1,mg + 1),

which has dimension 2 in view of an easy Riemann–Roch computation. On the



Moduli Spaces of Rank-2 ACM Bundles on Prime Fano Threefolds 129

other hand, the sheaves fitting in (3.18) fill in a curve in MX(2,1,mg + 1) by [15,
Lemma 3.8]. Therefore, the remaining part of the argument of [15, Thm. 3.9] goes
through.

Definition 3.9. Let X be ordinary. Let M(mg) be a component of MX(2,1,mg)

containing a stable locally free sheaf F that satisfies the three conditions (3.15),
(3.16), and (3.17). (When g = 4 and X is contained in a singular quadric, we just
set M(3) = {F } with F given by Proposition 3.6.) This component exists by The-
orem 3.2, and it coincides with MX(2,1,mg) for g ≥ 6. For each d ≥ mg + 1,
we recursively define N(d ) as the set of nonreflexive sheaves Sd fitting as kernel
in an exact sequence of the form (3.18), with Fd−1 ∈M(d − 1) (and Fd−1 satisfy-
ing (3.15), (3.16), and (3.17)) and M(d ) as the component of the moduli scheme
MX(2,1, d) containing N(d ). We have

dim(M(d )) = 2d − g − 2.

Lemma 3.10. Let X be ordinary. For each mg ≤ d ≤ g+ 2, the general element
Fd of M(d ) satisfies

h0(X,Fd) = g + 3 − d,

Hk(X,Fd) = 0 for k ≥ 1.

Proof. The proof works by induction on d. The first step of the induction cor-
responds to d = mg and follows from Theorem 3.2. Note that H3(X,Fd) = 0
for all d by Serre duality and stability, and by Riemann–Roch we have χ(Fd) =
g + 3 − d.

Assume now that the statement holds for Fd−1 with d ≤ g+ 2, and let us prove
it for a general element Sd of NX(d ). By semicontinuity the claim will follow for
the general element Fd ∈ M(d ). So let Fd−1 be a locally free sheaf in M(d − 1).
By induction we know that h0(X,Fd−1) = g + 3 − d + 1 ≥ 2. A nonzero global
section s of Fd−1 gives the exact sequence

0 −→ OX
s−→ Fd−1 −→ IC(1) −→ 0, (3.19)

where C is a curve of degree d − 1 and arithmetic genus 1. We want to show that
we can choose a line L ⊂ X and a section s such that C does not meet L, and this
will prove that

OL ⊗ IC(1) ∼= OL(1). (3.20)

To do this, we note that h0(X, IC(1)) = g + 3 − d ≥ 1, so C is contained in
some hyperplane section surface S given by a global section t of IC(1). Let L
be a general line such that Fd−1 ⊗ OL

∼= OL ⊕ OL(1) and L meets S at a single
point x. We may assume the latter condition because there exists a line in X not
contained in S (indeed, the lines contained in X sweep a divisor of degree > 1;
see Section 2.3). Then we write down the exact commutative diagram
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0

��

0

��

OX

t
��

OX

t
��

0 �� OX
s �� Fd−1

s� ��

t�
��

IC(1)

��

�� 0

0 �� OX
s ��

��

ID(1) ��

��

OS(HS − C) ��

��

0

0 0 0

which in turn yields the exact sequence

0 −→ O 2
X

(st)−−→ Fd−1 −→ OS(HS − C) −→ 0;
dualizing, we obtain

0 −→ F ∗
d−1

(s�t�)−−−→ O 2
X −→ OS(C) −→ 0. (3.21)

Thus the curve C moves in a pencil without base points in the surface S, and
each member C ′ of this pencil corresponds to a global section s ′ of Fd−1 that van-
ishes on C ′. Therefore we can choose s such that C does not contain x.

Now let σ be the natural surjection Fd−1 → OL and Sd = ker(σ). We thus
have the exact sequence (3.18). Taking cohomology, from induction hypotheses
we obtain H2(X, Sd) = 0.

By tensoring (3.19) by OL, in view of (3.20) we see that the composition σ � s
must be nonzero (in fact, it is surjective). Thus the section s does not lift to Sd

and so h0(X, Sd) ≤ h0(X,Fd−1)− 1. Therefore,

h0(Sd) ≥ χ(Sd) = χ(Fd−1)− 1 = h0(Fd−1)− 1 ≥ h0(Sd)

and our claim follows.

Using Lemma 2.3, it is straightforward to deduce the following corollary from
Lemma 3.10.

Corollary 3.11. Let X be ordinary. For d ≤ g + 2, let D be the zero locus of
a nonzero global section of a general element F of M(d ). Then we have

h0(X, ID(1)) = g + 2 − d.

We are now in position to prove Theorem 3.1 in the cases when c2 ≤ g + 2.

Proof of Theorem 3.1 for d ≤ g + 2. We work by induction on d ≥ mg. By The-
orem 3.2, the statement holds for d = mg.
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Assume now that mg < d ≤ g + 2. By Lemma 3.8 we can consider a general
sheaf F in M(d ). Recall that F is obtained as a general deformation of a sheaf Sd

fitting into an exact sequence of the form (3.18), where Fd−1 is a vector bundle in
M(d − 1). By induction we assume that Fd−1 is ACM. It remains to prove that F,
too, is ACM.

Since d − 1 ≤ g + 2, we can choose (as in the proof of Lemma 3.10) a line
L ⊂ X, a projection σ : Fd−1 → OL, and a global section s ∈ H0(X,Fd−1) such
that σ � s is surjective. We can assume Sd = ker(σ). Let C be the zero locus of
s. Then we have the following exact diagram.

0

��

0

��

0 �� IL

��

�� OX

s
��

�� OL
�� 0

0 �� Sd
��

��

Fd−1

��

σ �� OL
�� 0

IC(1)

��

IC(1)

��

0 0

(3.22)

Since L is projectively normal, the leftmost column implies that H1∗(X, Sd) ⊂
H1∗(X, IC(1)). By Lemma 2.3 we have H1∗(X, IC(1)) ∼= H1∗(X,Fd−1), and this
module vanishes by the induction hypothesis. So we obtain H1∗(X, Sd) = 0;
hence, by semicontinuity, the module H1∗(X,F ) is zero as well. Then by Serre
duality the vector bundle F is ACM.

The following lemma will be needed later on.

Lemma 3.12. Let D be the zero locus of a global section of a sheaf F lying in
MX(2,1, d), satisfying (3.15) and (3.16), and such that H1(X, ID(1)) = 0. Then
Ext2

X(ID , ID) = 0 and we obtain the exact sequence

0 −→ H0(X, ID(1)) −→ Ext1X(ID , ID) −→ Ext1X(F,F ) −→ 0, (3.23)

so ext1X(ID , ID) = d.

Proof. We apply the functor HomX(F, ·) to the exact sequence (2.8). It is easy
to check that Ext kX(F, OX) = 0 for any k and thus we obtain, for each k, an
isomorphism

Ext kX(F, ID(1)) ∼= Ext kX(F,F ).

Hence, by applying HomX(·, ID(1)) to (2.8) we get the vanishing Ext2
X(ID , ID) =

0 and, since F is a stable (and thus simple) sheaf, we obtain the exact sequence
(3.23). The value of ext1X(ID , ID) can now be computed by Riemann–Roch.
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3.3. Moduli of ACM 2-bundles with Maximal c2

In order to complete the proof of Theorem 3.1 we have to consider the case d =
g + 3. This will give the existence of case (e) of Madonna’s list. We need the
following lemma.

Lemma 3.13. Let F be a rank-2 stable bundle on X with c1(F ) = 1. Then F is
ACM if

Hk(X,F ) = Hk(X,F(−1)) = 0 for any k.

Proof. We would like to prove that H1(X,F(t)) vanishes for any integer t. This
holds for t < 0 in view of [15, Prop. 3.7], so we need only show it for t ≥ 0.

Let S be a general hyperplane section of X. Taking cohomology of the restric-
tion exact sequence

0 −→ F(−1+ t) −→ F(t) −→ FS(t) −→ 0, (3.24)

we obtain that Hk(S,FS) = 0 for any k. By Serre duality, since F ∗ ∼= F(−1) we
also have Hk(S,FS(−1)) = 0 for any k. It follows that Hk(C,FC) = 0 for any k,
where C is the general sectional curve of X. Now, since H0(C,FC(t)) = 0 for any
t ≤ 0, from the restriction exact sequence

0 −→ FS(−1+ t) −→ FS(t) −→ FC(t) −→ 0

we deduce that H1(S,FS(t)) = 0 for any t ≤ 0. By Serre duality this also implies
that H1(S,FS(t)) = 0 for any t ≥ 0. Now from (3.24) we obtain H1(X,F(t)) =
0 for any t ≥ 0, and we have proved H1∗(X,F ) = 0. By Serre duality we imme-
diately obtain the vanishing H2∗(X,F ) = 0, and we are done.

Proof of Theorem 3.1 for d = g + 3. By Lemma 3.8, there exists a sheaf Fg+3 in
M(g + 3) obtained as a general deformation of a sheaf Sg+3 fitting into the exact
sequence

0 −→ Sg+3 −→ Fg+2 −→ OL −→ 0, (3.25)

where Fg+2 ∈M(g + 2) and L is a line contained in X and representing a smooth
point of H0

1(X). We already know that Theorem 3.1 holds for c2 = g + 2; hence
we can assume that Fg+2 is ACM, so h0(X,Fg+2) = 1. It remains to prove that
Fg+3 is ACM, too.

We can assume thatFg+3 satisfies condition (3.16) because Sg+3 does, so by [15,
Prop. 3.7] we have Hk(X,Fg+3(−1)) = 0 for all k. Taking cohomology of (3.25)
yields H2(X, Sg+3) = 0, so by semicontinuity we can assume H2(X,Fg+3) = 0.
On the other hand, H3(X,Fg+3) = 0 by Serre duality and stability.

Note that h0(X,Fg+3) ≤ 1 by semicontinuity and (3.25). If h0(X,Fg+3) = 0
then, by the Riemann–Roch formula, we also have H1(X,Fg+3) = 0. Hence we
can apply Lemma 3.13 and so conclude that Fg+3 is ACM.

In order to complete the proof, we can assume that there is an open dense neigh-
borhood 5 ⊂ MX(2,1, g+3) of the point representing Sg+3 such that all elements
Fg+3 (including Sg+3) satisfy h0(X,Fg+3) = 1 and then show that this leads to a
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contradiction. By Lemma 3.8, we can assume Ext2
X(Fg+3,Fg+3) = 0, which by

Riemann–Roch implies that

dim(5) = ext1X(Fg+3,Fg+3) = g + 4. (3.26)

For any Fg+3 in 5 we consider the curve D, which is the zero locus of the (unique
up to scalar) nonzero global section of Fg+3. This gives a map

β : 5 → H 1
g+3(X).

We observe that the sheaf Fg+3 can be recovered from D in view of Proposi-
tion 2.2, so β is injective. We will prove that H 1

g+3(X) is smooth and locally of
dimension g + 3 around the point representing D, which contradicts β being in-
jective because dim(5) = g + 4. In order to do this, we will prove

Ext2
X(ID , ID) = 0 and ext1X(ID , ID) = g + 3, (3.27)

where the second equality follows from the first vanishing by Riemann–Roch.
Consider now a nonzero global section s of the (nonreflexive) sheaf Sg+3. We

will say that a curve B ⊂ X is the zero locus of s if we have an exact sequence:

0 −→ OX(−1)
s−→ Sg+3(−1) −→ IB −→ 0.

Note that the section s induces a (nonzero) global section ofFg+2 whose zero locus
is a curve C ⊂ X. The exact sequence

0 −→ OX(−1) −→ Fg+2(−1) −→ IC −→ 0 (3.28)

induces, in view of (3.25) twisted by OX(−1), the exact sequences

0 −→ IC∪L −→ IC −→ OL(−1) −→ 0 and (3.29)

0 −→ OX(−1) −→ Sg+3(−1) −→ IC∪L −→ 0, (3.30)

so C ∪ L is the zero locus of s.
Note that our neighborhood 5 gives a flat family of curves in X; that is, at the

point corresponding to a sheaf F we associate the zero locus of its (unique up to
scalar) nonzero global section. The central fiber of this family (the one correspond-
ing to the sheaf Sg+3) is C ∪ L and the general fiber is D, so D is a deformation
of C ∪ L. Then it will suffice to prove (3.27) on C ∪ L. The rest of the proof is
devoted to this task.

Applying the functor HomX(·, OL(−1)) to (3.28), we obtain

0 −→ HomX(Fg+2, OL) −→ HomX(OX, OL)

−→ Ext1X(IC , OL(−1)) −→ Ext1X(Fg+2, OL).

Indeed, we have

HomX(IC , OL(−1)) ∼= H0(X, HomX(IC , OX)⊗ OL(−1)) = 0. (3.31)

We also have homX(OX, OL) = 1, and (3.17) for Fg+2 implies that

homX(Fg+2, OL) = 1 and Ext1X(Fg+2, OL) = 0.
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Then we deduce the vanishing

Ext1X(IC , OL(−1)) = 0. (3.32)

Let us now apply HomX(IC∪L, ·) to (3.29). We obtain

Ext1X(IC∪L, OL(−1)) −→ Ext2
X(IC∪L, IC∪L) −→ Ext2

X(IC∪L, IC).

We want to show that the middle term in this sequence is zero by showing that the
remaining terms vanish. Applying HomX(·, OL(−1)) to (3.29), we get

Ext1X(IC , OL(−1)) −→ Ext2
X(IC∪L, OL(−1)) −→ Ext2

X(OL, OL).

The leftmost term vanishes by (3.32), and the rightmost term vanishes by [15,
Rem. 2.1]. It follows that Ext2

X(IC∪L, OL(−1)) = 0. Now, we apply HomX(·, IC)

to (3.29). We get

Ext2
X(IC , IC) −→ Ext2

X(IC∪L, IC) −→ Ext3
X(OL(−1), IC).

Note that Ext3
X(OL(−1), IC) ∼= HomX(IC , OL(−2))∗ = 0, where the vanish-

ing follows from (3.31). On the other hand, by Lemma 3.12 we can assume
Ext2

X(IC , IC) = 0 and hence Ext2
X(IC∪L, IC) = 0.

Summing up, we conclude that Ext2
X(IC∪L, IC∪L) = 0 and, by applying

Riemann–Roch, we obtain ext1X(IC∪L, IC∪L) = g + 3. By semicontinuity, we
obtain the same vanishing for the curve D as well. We have thus shown (3.27),
and this finishes the proof.

4. Bundles with Even First Chern Class

We let again X be any smooth non-hyperelliptic prime Fano threefold. In this sec-
tion, we study semistable sheaves F with Chern classes c1(F ) = 0, c2(F ) = 4,
and c3(F ) = 0 on X, and we prove the existence of case (d) of Madonna’s list.
The main result of this part is the following.

Theorem 4.1. Let X be a smooth non-hyperelliptic prime Fano threefold. Then
there exists a rank-2, ACM, stable locally free sheafF with c1(F ) = 0 and c2(F ) =
4. The bundleF lies in a generically smooth component of dimension 5 of the space
MX(2, 0, 4).

We start with a review of some facts concerning conics contained in X.

4.1. Conics and Rank-2 Bundles with c2 = 2

Here we study rank-2 sheaves onX with c1 = 0 and c2 = 2 as well as their relation
to the Hilbert scheme H 0

2 (X) of conics contained in X. We rely on well-known
properties of the Hilbert scheme H 0

2 (X) (see Section 2.3).

Lemma 4.2. Any Cohen–Macaulay curve C ⊂ X of degree 2 has pa(C) ≤ 0.
Moreover, if C is nonreduced then it must be a Gorenstein double structure on a
line L defined by the exact sequence
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0 −→ IC −→ IL −→ OL(t) −→ 0, (4.1)

where t ≥ −1 and we have pa(C) = −1− t and ωC
∼= OC(−2 − t).

Proof. If C is reduced, clearly it must be a conic (then pa(C) = 0) or the union
of two skew lines (then pa(C) = −1). So assume that C is nonreduced and hence
is a double structure on a line L. By [59, Lemma 2] we have the exact sequences

0 −→ IC/I 2
L −→ IL/I 2

L −→ OL(t) −→ 0,

0 −→ OL(t) −→ OC −→ OL −→ 0, (4.2)

and C is a Gorenstein structure given by Ferrand’s doubling (see [9; 60]). Re-
call that IL/I 2

L
∼= N ∗

L . By [51, Lemma 3.2] we have either N ∗
L
∼= OL ⊕ OL(1)

or N ∗
L
∼= OL(−1)⊕ OL(2). It follows that t ≥ −1 and we obtain (4.1). We com-

pute that c3(IL) = −1 and c3(OL(t)) = 1 + 2t; hence c3(IC) = −2 − 2t, so
pa(C) = −1− t.

Dualizing (4.1), we can use the fundamental local isomorphism to obtain the
exact sequence

0 −→ OL(−2) −→ ωC −→ OL(−2 − t) −→ 0, (4.3)

which by functoriality is (4.2) twisted by OX(−2 − t). This concludes the proof.

Corollary 4.3. All conics contained in X are reduced if and only if H 1
0 (X) is

smooth. This occurs if X is general.

Proof. By [52, Prop. 4.2.2], the Hilbert scheme H 1
0 (X) is smooth if and only if

we have NL
∼= OL ⊕ OL(−1) for any line L in X. By Lemma 4.2 this is equiva-

lent to the fact that any conic contained in X is reduced. Recall that if X is general
then, by [52, Thm. 4.2.7], H 1

0 (X) is smooth.

Given a conic D, in view of Proposition 2.2 (and by Lemma 4.2) there is a µ-
semistable vector bundle FD, with c1(F

D) = 0 and c1(F
D) = 2, that fits into

0 −→ OX

ϕ−→ FD −→ ID −→ 0. (4.4)

One can easily prove the vanishing Ext2
X(F

D,FD) = 0, since the normal bundle
to D is trivial for generic D.

Lemma 4.4. Let F be a locally free sheaf on X, C ⊂ X a conic with normal
bundle NC

∼= O 2
C , and x a point of C. Assume that F ⊗ OC

∼= O 2
C and that

Ext2
X(F,F ) = 0. Let F be a sheaf fitting into an exact sequence of the form

0 −→ F −→ F −→ OC −→ 0. (4.5)

Then we have H0(C, F(−x)) = 0 and Ext2
X(F, F ) = 0.

Proof. To prove the vanishing of H0(C, F(−x)), we tensor (4.5) by OC and ob-
tain the following exact sequence of sheaves on C:

0 −→ TorX1 (OC , OC) −→ F ⊗ OC −→ F ⊗ OC −→ OC −→ 0. (4.6)
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Recall that TorX1 (OC , OC) is isomorphic to N ∗
C
∼= O 2

C. Now, twisting (4.6) by
OC(−x) and taking global sections, we easily get H0(C, F(−x)) = 0. Next let us
prove the vanishing of Ext2

X(F, F ). Applying the functor HomX(·, F ) to (4.5),
we obtain the exact sequence

Ext2
X(F, F ) −→ Ext2

X(F, F ) −→ Ext3
X(OC , F ).

We will prove that both the first and the last term of this sequence vanish. Con-
sider the first term, and apply HomX(F, ·) to (4.5). We get the exact sequence

Ext1X(F, OC) −→ Ext2
X(F, F ) −→ Ext2

X(F,F ).

By assumption we have Ext2
X(F,F ) = 0 and Ext1X(F, OC) ∼= H1(C,F ) = 0. We

obtain Ext2
X(F, F ) = 0. To show the vanishing of the group Ext3

X(OC , F ), we
apply Serre duality and obtain

Ext3
X(OC , F )∗ ∼= HomX(F, OC(−1)) ∼= H0(X, HomX(F, OC(−1))).

To show that this group is zero, apply the functor HomX(·, OC) to the sequence
(4.5) to get

0 −→ OC −→ F ∗ ⊗ OC −→ HomX(F, OC) −→ NC −→ 0,

which implies HomX(F, OC(−1)) ∼= OC(−1)3, and this sheaf has no nonzero
global sections.

Lemma 4.5. Let C and D be smooth disjoint conics contained in X with trivial
normal bundle. Then a sheaf F fitting into a nontrivial extension of the form

0 −→ IC −→ F −→ ID −→ 0 (4.7)

is simple.

Proof. In order to prove the simplicity, apply HomX(F, ·) to (4.7) and get

HomX(F, IC) −→ HomX(F, F ) −→ HomX(F, ID).

The first term vanishes; indeed, applying HomX(·, IC) to (4.7) and since C∩D =
∅ we get

0 −→ HomX(F, IC) −→ HomX(IC , IC)
δ−→ Ext1X(ID , IC).

Clearly the map δ : C → C is nonzero, so HomX(F, IC) = 0. On the other
hand, applying HomX(·, ID) to (4.7) yields

HomX(F, ID) ∼= HomX(ID , ID) ∼= C,

from which we deduce homX(F, F ) = 1—that is, the sheaf F is simple.

4.2. ACM Bundles of Rank 2 with c1 = 0 and c2 = 4

This section is devoted to the proof of Theorem 4.1. The idea is to produce the
required ACM bundle of rank 2 as a deformation of a simple sheaf obtained as
extension of the ideal sheaves of two sufficiently general conics.
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Step 1. Choose two smooth disjoint conics C and D in X with trivial normal
bundle. It is well known that there are two smooth conics C and D in X with
trivial normal bundle (see Section 2.3). Let us check that we can assume that C
and D are disjoint. Let S be a hyperplane section surface containing C. A general
conic D intersects S at two points. Since X is covered by conics, moving D in
H 0

2 (X), these two points sweep out S. Thus, a general conic D meets C at most
at a single point. This gives a rational map ϕ : H 0

2 (X) → C. Note that, for any
point x ∈C, we have H0(C,NC(−x)) = 0. So there are only finitely many conics
contained in X through x, for this space parameterizes the deformations of C that
pass through x. Thus the general fiber of ϕ is finite, which is a contradiction.

Step 2. Given the conics C and D, define a simple sheaf F with

c1(F ) = 0, c2(F ) = 4, c3(F ) = 0.

Given the conic D, we have the bundle FD fitting in (4.4). Tensoring by OC this
exact sequence, we obtain FD

C
∼= O 2

C. Then we have homX(F
D, OD) = 2, and

for any nonzero morphism FD
C → OC we denote by σ the surjective composition

σ : FD → FD
C → OC. We can choose σ such that the composition σ � ϕ : OX →

OC is nonzero—that is, such that

ker(σ) �⊃ Im(ϕ)⊗ OC. (4.8)

We denote by F the kernel of σ. We have the exact sequence

0 −→ F −→ FD σ−→ OC −→ 0 (4.9)

and, patching this exact sequence together with (4.4), we see that F fits into (4.7).
It is easy to compute the Chern classes of F and to prove that F is stable. By
(4.7) we get Hk(X, F ) = 0 for all k. More than that, since a smooth conic is pro-
jectively normal, again by (4.7) we obtain

H1
∗(X, F ) = 0. (4.10)

Note that the sheaf F is strictly semistable and also simple by Lemma 4.5. This
concludes Step 2.

Step 3. Flatly deform the sheaf F to a simple sheaf G that does not fit into an
exact sequence of the form (4.9). Note that Lemma 4.4 gives Ext2

X(F, F ) =
0. Hence, by [8] we know that there exists a universal deformation of the simple
sheaf F. Since semistability is an open property, by a result of Maruyama, we
may assume that the deformation of F is semistable. In other words, we can de-
form F in the open subset ; of SplX given by simple semistable sheaves of rank 2
and Chern classes c1 = 0, c2 = 4. By Riemann–Roch and by the simplicity of F
we get that ext1(F, F ) = 5. This implies that ; is locally of dimension 5 around
the point [F ].

Now we want to prove that the set of sheaves in ; fitting into an exact sequence
of the form (4.9) forms a subset of codimension 1 in ;.

We have proved that a sheaf F fitting into an exact sequence of the form (4.9),
for some disjoint conics C,D ⊂ X, fits also into (4.7). Therefore, we need only
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prove that the set of sheaves fitting into (4.7) is a closed subset of dimension 4
of ;. Since C and D belong to the surface H 0

2 (X), it is enough to prove that
there is in fact a unique (up to isomorphism) nontrivial such extension; that is,
ext1X(ID , IC) = 1.

Note that HomX(ID , IC) = Ext3
X(ID , IC) = 0; hence, by Riemann–Roch it

suffices to prove Ext2
X(ID , IC) = 0. After applying HomX(·, IC) to the exact se-

quence defining D in X, we need only prove the vanishing of Ext3
X(OD , IC). But

this group is dual to

HomX(IC , OD(−1)) ∼= H0(X, HomX(IC , OD(−1))) ∼= H0(X, OC(−1)) = 0.

So we have proved that ext1X(ID , IC) = 1 and that the set of sheaves in ; fit-
ting into an exact sequence of the form (4.9) has codimension 1 in ;. Then we can
choose a deformation G of F in ; that does not fit into (4.9), thereby concluding
Step 3.

Setting E = G∗∗, we write the double dual sequence

0 −→ G −→ E −→ T −→ 0. (4.11)

Step 4. Compute the Chern classes of T, and prove

c1(T ) = 0, − c2(T )∈ {1, 2}.
By semicontinuity, we may assume homX(G,G) = 1 and H1(X,G(−1)) = 0. We
may also assume that, for any given line L contained in X, we have the vanish-
ing Ext1X(OL(t),G) = 0 for all t ∈ Z. Indeed, applying HomX(OL(t), ·) to (4.9)
yields

HomX(OL(t), OC) −→ Ext1X(OL(t), F ) −→ Ext1X(OL(t),F
D);

observe that the leftmost term vanishes as soon as L is not contained in C (but C
is irreducible) and that the rightmost term vanishes for FD locally free. Clearly E

is a semistable sheaf, so H1(X,G(−1)) = 0 implies H0(X, T(−1)) = 0; hence T
must be a pure sheaf supported on a Cohen–Macaulay curve B ⊂ X. Summing
up, we have c1(T ) = 0 and c2(T ) < 0.

Let us show c2(T ) ≥ −2. We have already proved that H0(X, T(−1)) = 0, and
this implies that χ(T (t)) = −h1(X, T(t)) for any negative integer t. Recall that,
by [37, Rem. 2.5.1], the reflexive sheaf E satisfies H1(X,E(t)) = 0 for all t " 0.
Thus, tensoring by OX(t) the exact sequence (4.11) and taking cohomology, we
obtain h1(X, T(t)) ≤ h2(X,G(t)) for all t " 0. Further, for any integer t we can
easily compute the following Chern classes:

c1(T (t)) = 0, c2(T (t)) = c2(T ) = 4 − c2(E), c3(T (t)) = c3(E)− 2tc2(T );
hence, by the Riemann–Roch formula we have

χ(T (t)) = −tc2(T )+ 1

2
(c3(E)− c2(T )).

Since G is a general deformation of the sheaf F, we also have, by semicontinuity,
h2(X,G(t)) ≤ h2(X, F(t)). On the other hand, by (4.9) we have h2(X, F(t)) =
h1(X, OC(t)) = −χ(OC(t)) = −2t −1. In sum, for all t " 0 we have the follow-
ing inequality:
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−tc2(T )+ 1

2
(c3(E)− c2(T )) ≥ 2t + 1,

which implies c2(T ) ≥ −2.

Step 5. Prove that B must be a smooth conic, and deduce that

T ∼= OB.

Assume the contrary, and note that either T ∼= OL1(a1) for some line L1 ⊂ X and
some a1 ∈ Z if c2(T ) = −1; if c2(T ) = −2 then, in view of Lemma 4.2, there
must be a second line L2 ⊂ X (possibly coincident with L1) and a2 ∈Z such that
T fits into

0 −→ OL1(a1) −→ T −→ OL2(a2) −→ 0. (4.12)

But we have seen that Ext1X(OL(t), F ) = 0 for all t ∈ Z and for any line L ⊂ X.

By semicontinuity we get Ext1X(OL(t),G) = 0 for all t ∈ Z and any line L ⊂ X.

In particular, Ext1X(OLi
(ai),G) = 0 for i = 1, 2, so Ext1X(T,G) = 0 and (4.11)

should split—which is absurd. Therefore, T must be of the form OB(ax) for some
integer a and for some point x of a smooth conic B ⊂ X. By [37, Prop. 2.6] we
have c3(E) = c3(T ) = 2a ≥ 0, and H0(X, T(−1)) = 0 implies a − 2 < 0.

We are left with the cases a = 0 and a = 1, and we want to exclude the latter.
We do this by proving that Ext1X(OB(x),G) is zero for any conic B ⊂ X. This fact
can be checked by semicontinuity if we apply HomX(OB(x), ·) to (4.9), obtaining

HomX(OB(x), OC) −→ Ext1X(OB(x), F ) −→ Ext1X(OB(x),F
D).

The rightmost term in this sequence vanishes because FD is locally free. The left-
most term is isomorphic to H0(X, Hom(OB(x), OC)), and for B �= C the sheaf
Hom(OB(x), OC) is zero. On the other hand, ifB = C then HomX(OC(x), OC) ∼=
H0(C, OC(−x)) = 0.

We have thus obtained T ∼= OB. But then G would fit into an exact sequence of
the form (4.9), a contradiction. Summing up, we have proved that T must be zero,
so G is isomorphic to E and thus locally free. Since H0(X,G) = 0, the sheaf G
must be stable. By (4.10) and semicontinuity we can assume H1∗(X,G(t)) = 0, so
by Serre duality we get that G is ACM. This concludes the proof of Theorem 4.1.

5. Applications

We devote this final section to some applications of the existence results for ACM
bundles of rank 2 to pfaffian hypersurfaces of projective spaces and quadrics.

5.1. Pfaffian Cubics in a 4-dimensional Quadric

Here we show that the equation of a cubic hypersurface in a smooth quadricQ⊂ P
5

can be written as the pfaffian of a skew-symmetric 6× 6 matrix of linear forms on
the coordinate ring R(Q).

Theorem 5.1. Let X be a smooth prime Fano threefold of genus 4 contained in
a nonsingular quadric hypersurface Q ⊂ P

5. Then the equation f of X in the
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coordinate ring of Q is the pfaffian of a skew-symmetric matrix M representing
a map

ψ : OQ(−1)6 → O 6
Q. (5.1)

Recall that we denote by S1 and S2 the two nonisomorphic spinor bundles on Q

(see Section 2.1). We denote by ι the inclusion of X in Q and by HX the hyper-
plane class of X ⊂ P

5.

Lemma 5.2. Let X be as before, and let Fi be the restriction of Si to X. Let C
be a conic contained in X. Then we have

Hk(X,Fi ⊗ IC,X) = 0

for all k = 0, . . . , 3.

Proof. The inclusions C ⊂ X ⊂ Q induce an exact sequence:

0 −→ OQ(−3) −→ IC,Q −→ IC,X −→ 0.

Recall that the bundles Si are ACM, and by stability we have

H0(Q, Si(−1)) = 0. (5.2)

Hence, after twisting the previous sequence by Si, we need only show Hk(Q, Si ⊗
IC,Q) = 0. Now, the conic C is the intersection of the quadric Q and of three
hyperplanes of P

5. Thus we have an exact sequence:

0 −→ OQ(−3) −→ OQ(−2)3 −→ OQ(−1)3 −→ IC,Q −→ 0.

Twisting this exact sequence by Si and taking cohomology, we obtain the result
by using (5.2) and the fact that the bundles Si are ACM.

Lemma 5.3. Let X be as before, and let E be a stable locally free sheaf in
MX(2, 0, 4). Then we have

Ext1Q(ι∗(E(1)), Si(a)) = 0 for a ≤ −3. (5.3)

If the sheaf E is general in the component of MX(2, 0, 4) provided by Theorem 4.1,
then we also have

Ext1Q(ι∗(E(1)), Si(−2)) = 0. (5.4)

Proof. We first prove (5.3). Since HomQ(ι∗(E(1)), Si(a)) = 0, the local-to-
global spectral sequence provides the isomorphism

Ext1Q(ι∗(E(1)), Si(a)) ∼= H0
(
Q, Ext1Q(ι∗(E(1)), OQ)⊗ Si(a)

)
.

By Grothendieck duality, we have

Ext1Q(ι∗(E(1)), OQ) ∼= ι∗(E∗(−1))⊗ OQ(3) ∼= ι∗(E(2)),

where the second isomorphism holds because E is locally free. Hence we are re-
duced to showing that
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H0(Q, ι∗(E(2))⊗ Si(a)) ∼= H0(X,E ⊗ Fi(2 + a)) = 0 (5.5)

for a ≤ −3. Note that the sheaf E⊗Fi(2+ a) is semistable of slope 5/2+ a and
thus has no nonzero global sections if a ≤ −3. Hence (5.3) is proved.

In order to prove (5.4), we let E be general in the component provided by The-
orem 4.1 and then show that (5.5) holds for a = −2. In particular, we assume that
E is a deformation of a simple sheaf F given as the middle term of an extension
of the form (4.7) of two ideal sheaves ID , IC of two conics C,D contained in X.

By semicontinuity, it will thus suffice to show that

H0(X, F ⊗ Fi) = 0

for i = 1, 2. In turn, since F is an extension of ideal sheaves of conics, it will be
enough to prove H0(X, IC ⊗ Fi) = 0 for C a conic contained in X. But we have
shown this in Lemma 5.2.

Proof of Theorem 5.1. Let E be a stable ACM bundle of rank 2 in the component
of MX(2, 0, 4) provided by Theorem 4.1. By Lemma 5.3 we may assume that E
satisfies the cohomology vanishing conditions (5.3) and (5.4).

We consider a sheafified minimal graded free resolution of ι∗(E(1)). In partic-
ular, we have a bundle P on Q of the form

P =
s⊕

i=1

OQ(bi) with b1 ≥ · · · ≥ bs (5.6)

equipped with a projection π : P → ι∗(E(1)) such that π induces a surjec-
tive map:

H0
∗(Q, P) −→ H0

∗(Q, ι∗(E(1))). (5.7)

Let K be the kernel of π. It is clear that, since (5.7) is surjective, we have

H1
∗(Q, K ) = 0.

Moreover, since E is ACM on X and P is ACM on Q, it easily follows that the
sheaf K is ACM on Q. By a well-known theorem of Knörrer [53], this implies
that K splits as a direct sum:

K ∼=
t⊕

j=1

Sij (cj )⊕
u⊕

h=1

OQ(ah) with a1 ≥ · · · ≥ au, (5.8)

where ij ∈ {1, 2}. Note that, since H0(X,E) = 0, we have bi ≤ 0 for all i.
Therefore we also have ai ≤ −1 (by the minimality of the resolution) and cj ≤
−1 (since HomQ(Si(c), OQ) = 0 for c ≥ 0 by (5.2)).

Let us now use Lemma 5.3. The vanishing results (5.3) and (5.4) imply that no
cj ≤ −2 occurs in the expression (5.8). For in that case, it would easily follow
that P contains Sij (cj ) as a direct summand, which is not the case. The remaining
possibility is excluded by the following claim.

Claim 5.4. We have t = 0 and s = 6. Moreover, for all i = 1, . . . , 6, we have
bi = 0 and ai = −1.
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Once this claim is proved, the proof of Theorem 5.1 will be finished. Indeed, the
sheaf K is a direct sum of line bundles. Therefore, the argument of [12, Thm. B]
applies to our setup, and the matrixM representing the morphismψ : K → P can
be chosen skew-symmetric with pfaffian equal to the equation defining X ⊂ Q.

Proof of Claim 5.4. We have the exact sequence

0 −→ K
ψ−→ P −→ ι∗(E(1)) −→ 0.

Recall that, in view of the foregoing analysis, cj can only be −1 whereas ai ≤ −1
and bi ≤ 0 for all i. One easily computes h0(X,E(1)) = 6, so bi = 0 for i =
1, . . . , 6 and bi ≤ −1 for i ≥ 7. Then, recalling that cj = −1 for all j and noting
that Sij (−1) must be mapped by the injective map ψ : K → P to O 6

Q , we deduce
that t ≤ 3. The two equations rk(ι∗(E(1))) = 0 and c1(ι∗(E(1))) = 6HQ imply
(respectively)

2t + u = s and

s∑
j=1

bj −
s−2t∑
i=1

ai + t = 6. (5.9)

To prove our statement, we adapt an argument of Bohnhorst and Spindler [14].
Namely, we write ψ = (ψ ′

r,1, . . . ,ψ
′
r,t ,ψ

′′
r,1, . . . ,ψ

′′
r,u)1≤r≤s and note that ψ ′

r,j = 0
for any r ≥ 7 and 1 ≤ j ≤ t. Now, for each D ≤ s − 2t = u, we let rD be the
maximum integer r such that

(ψ ′
r,1, . . . ,ψ

′
r,t ,ψ

′′
r,1, . . . ,ψ

′′
r,D) �= 0.

Since the map ψ is injective, this easily implies that

2t + D ≤ rD.

Hence there must be j ≤ t such that ψ ′
rD,j

�= 0 or j ≤ D such that ψ ′′
rD,j

�= 0. In
the first case we have rD ≤ 6, so 2t + D ≤ 6 and hence b2t+D = 0. In the second
case, by the minimality of the resolution map ψ we get brD − aj ≥ 1. We deduce,
for each D ≤ s − 2t, the inequality b2t+D − aD ≥ brD − aD ≥ brD − aj ≥ 1. In both
cases we have

b2t+D − aD ≥ 1. (5.10)

From equation (5.9) we get

t +
s−2t∑
D=1

(b2t+D − aD) ≤ 6,

and by (5.10) we obtain

s − t = t + s − 2t ≤ t +
s−2t∑
D=1

(b2t+D − aD) = 6.

One can now easily compute c2(ι∗(E(1))) = 21(�1 + �2). This implies that t
must be even, for otherwise we would have c2(K ) = α1�1+α2�2 with α1 �= α2,
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which easily leads to a contradiction. Since t ≤ 3, s ≥ 6, and bj ≤ −1 for j ≥ 7,
we are left with the following cases:

t = 0, s = 6 �⇒ b = (0, 0, 0, 0, 0, 0), −a = (1,1,1,1,1, 1); (5.11)

t = 2, s = 6 and b = (0, 0, 0, 0, 0, 0), −a = (2, 2); (5.12)

t = 2, s = 6 and b = (0, 0, 0, 0, 0, 0), −a = (1, 3); (5.13)

t = 2, s = 7 and b = (0, 0, 0, 0, 0, 0, b7), −a = (1,1, 2 − b7); (5.14)

t = 2, s = 7 and b = (0, 0, 0, 0, 0, 0, b7), −a = (1, 2,1− b7); (5.15)

t = 2, s = 8 �⇒ b = (0, 0, 0, 0, 0, 0, b7, b8),

−a = (1,1,1− b7,1− b8). (5.16)

Here a and b denote the vectors of Z
s−2t and Z

s representing (respectively) the
sequence of the ai and bj , and we have −1 ≥ b7 ≥ b8. It is now an easy exercise
to check that, in all the displayed cases except (5.1), the difference of the Hilbert
polynomials of P and K does not equal p(ι∗(E(1)), t) = 2t 3 + 9t 2 + 13t + 6.
This is a contradiction, which leaves the desired case as the only possibility.

5.2. Pfaffian Quartic Threefolds in P
4

A theorem of Iliev and Markushevich [45] asserts that a general quartic three-
fold X in P

4 is a linear pfaffian—namely, its equation f is the pfaffian of an 8× 8
skew-symmetric matrix of linear forms on P

4. Similarly, a result of Madonna [56]
says that X is a quadratic pfaffian; that is, f can be written as the pfaffian of a
4×4 skew-symmetric matrix of quadratic forms. Their proofs are carried out with
the aid of the computer algebra package Macaulay2.

Here we prove a result in the same spirit as an application of our existence the-
orems. We show that any ordinary quartic threefold in P

4 is a linear pfaffian, and
that any smooth quartic threefold in P

4 is a quadratic pfaffian, with at most two
more rows and columns of linear forms.

Theorem 5.5. Let X be a smooth quartic threefold in P
4 defined by an equa-

tion f.

(i) There is a skew-symmetric matrix M representing a map of one of the two
forms

OP 4(−2)4 −→ O 4
P 4 or OP 4(−2)4⊕OP 4(−1)2 −→ OP 4(−1)2⊕O 4

P 4 (5.17)

such that Pf(M) = f.

(ii) If X is ordinary, then there is a skew-symmetric matrix N representing a map

OP 4(−1)8 −→ O 8
P 4

such that Pf(N ) = f.

Proof. We work as in Theorem 5.1. Let E be an ACM bundle on X, and consider
the sheafified minimal graded free resolution of ι∗(E(1)). We have a bundle P on
P

4 of the form (5.6) and a projection π : P → ι∗(E(1)) such that π is surjective
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on global sections for each twist. The kernel K of this projection is ACM on P
4,

so we have

K ∼=
s⊕

h=1

OP 4(ah) with a1 ≥ · · · ≥ as.

The matrix representing the map K → P can be chosen skew-symmetric by
[12, Thm. B], and its pfaffian is f. In particular, the integer s must be even. As-
suming H0(X,E) = 0, we have bi ≤ 0 for all i and so, by the minimality of the
resolution, ai ≤ −1. We further have

s∑
D=1

(bD − aD) = 8, (5.18)

and, by the argument of Bohnhorst and Spindler, we can assume

bD − aD ≥ 1 for all 1 ≤ D ≤ s. (5.19)

Now, to prove (ii) we choose asE a general bundle with c1(E) = 1and c2(E) =
6 given by Theorem 3.1. It is straightforward to compute H0(X,E) = 0 and
h0(X,E(1)) = 8. Therefore we have s = 8 and bi = 0 for all i. Thus, by (5.18)
and (5.19), we have ai = −1 for all i and we are done.

Let us now show (i). This time we pick a general bundle E with c1(E) =
0 and c2(E) = 4 provided by Theorem 4.1. One computes H0(X,E) = 0 and
h0(X,E(1)) = 4, so that bi = 0 for i = 1, 2, 3, 4 and bi ≤ −1 for i ≥ 5 and s ∈
{4, 6, 8}. The Hilbert polynomial p(ι∗(E(1)), t) reads

4

3
t 3 + 6t 2 + 26

3
t + 4. (5.20)

To finish the proof, we divide it into different cases according to the value of s.
We want to show that E can be chosen so that s = 4 with ai = −2 for all i or
s = 6 and ai = bi = −1 for i = 5, 6.

Case 1: s = 8. In this case, in view of (5.18) and (5.19) we must have
bi − ai = 1 for all i; hence ai = −1 for i = 1, 2, 3, 4 (and recall that bi ≤
−1). Looking at the quadratic term of the Hilbert polynomial, one sees that (5.20)
forces bi = −1 for all i = 5, 6, 7, 8. Therefore the pfaffian of the matrix N is the
square of the determinant of a 4 × 4 matrix of linear forms, which is impossible
because f is not a square.

Case 2: s = 6. In this case b6 ≤ b5 ≤ −1, and we have the possibilities

−a = (1,1, 2, 2,1− b5,1− b6),

−a = (1,1,1, 2, 2 − b5,1− b6),

−a = (1,1,1, 2,1− b5, 2 − b6),

−a = (1,1,1,1, 2 − b5, 2 − b6).

Looking again at the quadratic term of the Hilbert polynomial, it is easy to see that
the only case left by (5.20) is the first one, with b7 = b8 = −1. This gives rise to
the second alternative in (5.17).
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Case 3: s = 4. If s = 4, then there are finitely many choices for the ai accord-
ing to (5.18) and (5.19). These are:

−a ∈ {(1,1,1, 5), (1,1, 2, 4), (1,1, 3, 3), (1, 2, 2, 3), (2, 2, 2, 2)}.
A straightforward computation shows that only in the last case does the Hilbert
polynomial agree with (5.20). Since that case corresponds to the first alternative
in (5.17), this finishes the proof.
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