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Properties of Meromorphic ϕ-normal Functions

Rauno Aulaskari & Jouni Rättyä

1. Introduction

Let M(D) denote the set of all meromorphic functions in the unit disc D := {z :
|z| < 1} of the complex plane C, and let T stand for the set of all conformal self
maps of D. The class N of normal functions consists of those f ∈ M(D) for
which the family {f � τ : τ ∈ T } is normal in D in the sense of Montel (i.e., ∞ is
a permitted limit). By Marty’s theorem, f ∈ N if and only if supτ∈T (f � τ)#(z)
is bounded on each compact subset of D. Moreover, Lehto and Virtanen [27]
showed that f ∈ M(D) is normal if and only if its spherical derivative f #(z) :=
|f ′(z)|/(1 + |f(z)|2) satisfies supz∈D f

#(z)(1 − |z|2) < ∞.
There is a substantial body of literature on normal functions. Apart from the cited

paper by Lehto and Virtanen [27], we mention the earlier work by Noshiro [30],
the survey paper by Cambell and Wickes [9], and the papers by Anderson, Clunie,
and Pommerenke [1], Lohwater and Pommerenke [28], and Zalcman [41] as well
as the series of papers by Gavrilov [17; 18; 19], Lappan [23; 24; 25; 26], and
Yamashita [38; 39; 40]. For more recent developments, see [5; 7; 11; 13; 20] and
the references therein.

The purpose of this paper is to study subsets of M(D) that are defined by the
condition f #(z) = O(ϕ(|z|)), as |z| → 1−, where the function ϕ(r) admits a suffi-
cient regularity near 1 and exceeds 1/(1− r 2) in growth. These sets are larger than
the class N of normal functions, and their members will be called ϕ-normal func-
tions. These concepts are made precise in Definition 1. After that we give several
examples of admissible functions ϕ. At the end of this section we illustrate what it
means to change the growth restriction of spherical derivatives from 1/(1 − |z|2)
of normal functions to ϕ(|z|) of ϕ-normal functions. Statements of the main re-
sults and their connections to existing literature are given in Section 2. Proofs are
presented in Sections 3–9.

Definition 1. An increasing function ϕ : [0, 1) → (0, ∞) is called smoothly
increasing if

ϕ(r)(1 − r) → ∞ as r → 1− (1.1)

and
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Ra(z) := ϕ(|a + z/ϕ(|a|)|)
ϕ(|a|) → 1 as |a| → 1− (1.2)

uniformly on compact subsets of C. For a given such ϕ, a function f ∈ M(D) is
called ϕ-normal if

‖f ‖N ϕ := sup
z∈D

f #(z)

ϕ(|z|) < ∞. (1.3)

The class of allϕ-normal functions is denoted by N ϕ.Moreover, a functionf ∈ N ϕ

is said to be strongly ϕ-normal, denoted by f ∈ N ϕ
0 , if

f #(z) = o(ϕ(|z|)) as |z| → 1−. (1.4)

If ϕ is smoothly increasing then we will always further assume, without loss
of generality, that ϕ(r)(1 − r) ≥ 1 for all r ∈ [0, 1). This because ϕ∗(r) :=
ϕ(r) + (1 − r)−1 satisfies N ϕ∗ = N ϕ and ϕ∗(r)(1 − r) ≥ 1 for all r ∈ [0, 1).
Moreover, to shorten the notation, we set φa(z) := a + z/ϕ(|a|). Note that now
Ra(z) = ϕ(|φa(z)|)/ϕ(|a|) is well-defined for all a, z ∈ D since φa(z) ∈ D as
ϕ(|a|)(1 − |a|) ≥ 1.

We give two examples regarding smoothly increasing functions.

Example 1. Assume ϕ : [0, 1) → (0, ∞) is increasing such that (1.1) is satisfied.
If ψ := 1/ϕ is differentiable and convex on [r0, 1) for some r0 ∈ (0, 1), then ϕ is
smoothly increasing. To see this, let K ⊂ C be compact and choose R > 0 such
that K ⊂ D(0,R). Then, by (1.1), there exists an rR ∈ (0, 1) such that φa(z) ∈ D

for all z ∈ D(0,R) if |a| ∈ (rR , 1), and thus Ra(z) is well-defined in this case.
Since ψ is decreasing, differentiable, and convex on [r0, 1) for some r0 ∈ (0, 1),
we have

sup
z∈K

Ra(z) ≤ ψ(|a|)
ψ(|a| + Rψ(|a|)) ≤ 1

1 + Rψ ′(|a|)
for all a such that |a| > max{rR , r0}. Since (1.1) is satisfied, we also have that
ψ ′(|a|) → 0 as |a| → 1− by the convexity. Therefore,

lim sup
|a|→1−

sup
z∈K

Ra(z) ≤ 1.

In a similar manner we can show that

lim inf
|a|→1− sup

z∈K
Ra(z) ≥ 1,

and hence (1.2) is satisfied.

The functions (1 − r)−α, α ∈ (1, ∞), and exp(1/(1 − r)) are smoothly increasing
by Example 1. These functions are differentiable, but of course this is not neces-
sary for (1.2) to be satisfied.

Example 2. Assume ϕ : [0, 1) → (0, ∞) is increasing such that (1.1) is satis-
fied. If ψ = 1/ϕ satisfies the Lipschitz condition
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γr := sup
r≤s<t<1

∣∣∣∣ψ(s)− ψ(t)s − t
∣∣∣∣ ≤ γ < ∞

for all r ∈ (0, 1) and if γr → 0+ as r → 1−, then (1.2) is satisfied. This follows
by the inequality∣∣∣∣1 − ϕ(|a|)

ϕ(|φa(z)|)
∣∣∣∣ ≤ ψ(|a|)− ψ(|a| + ψ(|a|)|z|)

ψ(|a|) ≤ γ |a|R,

which is valid for all z∈D(0,R).

In view of Definition 1, every (strongly) normal function must be (strongly) ϕ-
normal. Moreover, if ϕα(r) := (1 − r 2)−α, 1 < α < ∞, then N ϕα coincides
with the class N α of α-normal functions, and N ϕα

0 equals to N α
0 , the class of little

(or strongly) α-normal functions. For results on these classes, see [29; 33; 34;
35; 36; 37].

We will now compare (1.3) to the growth condition supz∈D f
#(z)(1 − |z|2) <

∞, which is satisfied by normal functions. To do this, we recall that the chordal
distance between the points Z andW in the extended complex plane is

χ(Z,W) :=




|Z −W |√
1 + |Z|2√1 + |W |2 if Z,W ∈ C,

1√
1 + |Z|2 if Z ∈ C and W = ∞.

For any normal function f , a direct calculation gives

χ(f(z), f(w)) ≤ ‖f ‖N sup
ζ∈[z,w]

|z− w|
1 − |ζ|2 , z,w ∈ D. (1.5)

If now the pseudohyperbolic distance ρ(z,w) := |z − w|/|1 − z̄w| from z to w
is less than or equal to a fixed r ∈ (0, 1), and so w = (z − u)/(1 − z̄u) for some
|u| < r, then (1.5) yields

χ(f(z), f(w)) ≤ C1(r)‖f ‖N
|z− w|
1 − |z|2 ,

where C1(r) = (1 + r)/(1 − r 2). In a similar manner, if f is ϕ-normal then

χ(f(z), f(w)) ≤ ‖f ‖N ϕ |z− w| sup
ζ∈[z,w]

ϕ(|ζ|)
≤ C2(r)‖f ‖N ϕ |z− w|ϕ(|z|), (1.6)

where the second inequality follows by (1.2) and is valid ifw belongs to the ϕ-disc
�ϕ(z, r) := {φz(u) : |u| < r}, where r ∈ (0, 1). This shows that the change of
growth restriction of f #(z) from 1/(1 − |z|2) to ϕ(|z|) affects in a natural man-
ner the right-hand side of (1.5) and of (1.6). This “change of scale” will appear
repeatedly in several places in the reminder of the paper, in statements of results
and also in the proofs.
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2. Results and Background

We begin with considering the zero distribution of ϕ-normal functions. One way to
state the results is by means of the terminology of Nevanlinna theory. The Nevan-
linna counting function of f ∈ M(D) is defined as N(r, f ) := ∑

|zn|<r log r
|zn| ,

where {zn}∞n=1 is the sequence of zeros of f listed according to multiplicities and
ordered by increasing moduli. Lehto and Virtanen [27] (see also a related result
by Nowak [31]) showed that if f is a normal function, then its counting function
N(r, f ) is of logarithmic growth. The first result of this study establishes an ana-
logue for ϕ-normal functions.

Theorem 1. Let ϕ : [0, 1) → (0, ∞) be smoothly increasing and let f ∈ M(D).

If f ∈ N ϕ and f(0) �= 0, then

N(r, f ) = O
(∫ r

0
(ϕ(s))2 log

r

s
ds

)
, r → 1−. (2.1)

Similarly, if f ∈ N ϕ
0 and f(0) �= 0, then

N(r, f ) = o

(∫ r

0
(ϕ(s))2 log

r

s
ds

)
, r → 1−. (2.2)

The first statement in Theorem1remains true also whenϕ : [0, 1) → (0, ∞) is arbi-
trary. This is also the case with the latter statement provided

∫ r
0(ϕ(s))

2 log r
s
ds →

∞ as r → 1−.
Theorem 1 is a consequence of the Ahlfors–Shimizu theorem, which says that

N(r, f ) ≤ T0(r, f ) + log
(√

1 + |f(0)|2/|f(0)|), f(0) �= 0. Here T0(r, f ) is the
Ahlfors–Shimizu characteristic, defined as

T0(r, f ) :=
∫ r

0

A(t, f )

t
dt, 0 < r ≤ 1, (2.3)

where

A(t, f ) := 1

π

∫
D(0,t)

(f #(z))2 dA(z), 0 < t < 1,

and D(0, t) := {z : |z| < t}.
The right-hand side of (2.1) and of (2.2) can be simplified when ϕ is given. For

example, if

ϕα,β(r) := 1

(1 − r)α
(

log
1

1 − r
)β

, 0 ≤ α,β < ∞,

and if f ∈ N ϕα,β , then as r → 1− we have

N(r, f ) =




O(1) if 0 ≤ α < 1,

O
((

log
1

1 − r
)1+β)

if α = 1,

O
( 1

(1 − r)2α−2

(
log

1

1 − r
)β)

if α > 1.
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Recall that Yamashita [40] characterized normal functions by means of the
Ahlfors–Shimizu characteristic. An analogue for ϕ-normal functions is given in
the following result.

Theorem 2. Let ϕ : [0, 1) → (0, ∞) be smoothly increasing and let f ∈ M(D).

Then the following statements are equivalent :

(1) f ∈ N ϕ;
(2) for each λ∈ (0, 1) we have supλ≤|a|<1T0(1, f � φa) < ∞;
(3) there exist δ, λ∈ (0, 1) such that supλ≤|a|<1T0(δ, f � φa) < ∞.
Moreover, the following statements are equivalent :

(1′) f ∈ N ϕ
0 ;

(2′) lim|a|→1− T0(1, f � φa) = 0;
(3′) there exists a δ ∈ (0, 1) such that lim|a|→1− T0(δ, f � φa) = 0.

Theorem 2 says that f ∈ M(D) is ϕ-normal if and only if it is of bounded char-
acteristic “uniformly” in each ϕ-disc �ϕ(a, r) = {φa(w) : |w| < r}, 0 < r ≤ 1,
when a is near the boundary. Another characterization of functions in N ϕ involv-
ing these discs can be found in [2]; see also Lemma13 in Section 4. We further note
that the first part of Theorem 2 should be compared with a result by Wulan [35,
Cor. 4.3.1].

The following characterization of ϕ-normal functions in terms of normal fam-
ilies appears to be useful in our study. The first assertion has been essentially
proved in [3], but it is included here for the convenience of the reader.

Theorem 3. Let ϕ : [0, 1) → (0, ∞) be smoothly increasing and let f ∈ M(D).

Then f ∈ N ϕ if and only if the family {f � φa : a ∈ D} is normal in D. Moreover,
f ∈ N ϕ

0 if and only if (f � φa)# converges uniformly to zero on compact subsets
of C as |a| → 1−.

The proof of Theorem 3 shows that in the first assertion we may consider the nor-
mality also in the whole complex plane. In this case the assertion reads as follows:
f ∈ N ϕ if and only if the family {f �φan} is normal in C for any sequence {an} ⊂ D

such that |an| → 1− as n → ∞.
Colonna [14] used the Arzelà–Ascoli theorem to show that the preimages of two

distinct points in the image set of a normal function are of bounded hyperbolic
distance from each other. Recall that, for z,w ∈ D, the hyperbolic distance from
z to w is

d(z,w) := 1

2
log

1 + ρ(z,w)
1 − ρ(z,w).

The cited result by Colonna can also be verified directly by using the inequality

χ(f(z), f(w)) ≤ ‖f ‖N log
1

1 − ρ(z,w) , z,w ∈ D,

which is slightly sharper than (1.5). In a similar manner one can show that, if
f ∈ N0, then the hyperbolic distance of the preimages of two distinct points in the
image set cannot remain bounded when the preimages approach the boundary.
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The next result establishes an analogue for (strongly) ϕ-normal functions.

Theorem 4. Let ϕ : [0, 1) → (0, ∞) be smoothly increasing and let f ∈ M(D).

If f ∈ N ϕ, then there exists a δ > 0 such that

ρ(z,w)ϕ(|z|)(1 − |z|) ≥ δ (2.4)

for all z,w ∈ D such that f(z) = Z �= W = f(w).

If f ∈ N ϕ
0 , then

lim sup
z∈Z∗, |z|→1−

min
w∈W ∗ ρ(z,w)ϕ(|z|)(1 − |z|) = ∞ (2.5)

for any distinct points Z,W ∈ f(D) such that the sets Z∗ = {z ∈ D : f(z) = Z}
and W ∗ = {z∈ D : f(z) =W } satisfy #Z∗ = ∞ = #W ∗.

Theorem 4 says that the preimages of two distinct points in the image set of a
ϕ-normal function are distributed according to the growth of ϕ(r) as r → 1−. The
faster the ϕ grows, the closer to each other the preimages of different points can
be. For example, if all preimages of Z ∈ f(D), f ∈ N ϕ, lie on the positive real
axis and have an accumulation point in z = 1, then the preimages ofW �= Z can-
not be essentially closer than on the curves {r ± i/ϕ(r) : r ∈ (0, 1)}. We will see
at the end of this section that the assertions in Theorem 4 are fairly sharp.

Lappan [23] (see also Campbell [8]) showed that the class of normal functions is
closed neither under summation nor multiplication. Theorem 4 allows us to deduce
that the same is true for N ϕ. Before stating this as Corollary 5, we set necessary
definitions. For a given sequence {zn}∞n=1 of points in D for which

∑∞
n=1(1−|zn|2)

converges (with the convention |zn|/zn = 1 for zn = 0), the Blaschke product as-
sociated with the sequence {zn}∞n=1 is defined as

B(z) :=
∞∏
n=1

|zn|
zn

zn − z
1 − z̄nz .

It is well known that such a product is analytic in D, its modulus is bounded by 1, it
is an inner function, and {zn}∞n=1 are precisely its zeros counting multiplicities [15].

Corollary 5. Let ϕ : [0, 1) → (0, ∞) be smoothly increasing, and let f ∈ N ϕ

with infinitely many poles. Then there exist a Blaschke product B and a ϕ-normal
function g such that neither fB nor f + g is ϕ-normal.

Choose an infinite sequence {zn}∞n=1 of poles of f that satisfies the Blaschke con-
dition

∑∞
n=1(1 − |zn|2) < ∞. For each zn, take wn ∈ D, not a pole of f , such that

ρ(zn,wn)ϕ(|zn|)(1 − |zn|) → 0 as n → ∞. Since ϕ is smoothly increasing, this
implies ρ(zn,wn) → 0 as n → ∞, and so the sum

∑∞
n=1(1 − |wn|2) converges.

Then the Blaschke product B associated with the sequence {wn}∞n=1 satisfies fB /∈
N ϕ by Theorem 4, since {zn}∞n=1 are poles and {wn}∞n=1 are zeros of fB. This also
shows that the ϕ-normal function g := f(B/2 − 1) satisfies f + g /∈ N ϕ.

Theorem 6 contains Lohwater–Pommerenke [28] theorems for (strongly) ϕ-
normal functions (see also a related result by Zalcman [41]). The first assertion
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was recently proved in [2], but the statement is included here for the sake of com-
pleteness. From the first assertion, one can easily obtain the second assertion by
modifying the reasoning in [4], where an analogous result for little (or strongly)
normal functions is established.

Theorem 6. Let ϕ : [0, 1) → (0, ∞) be smoothly increasing, −1 < β < 1, and
let f ∈ M(D). Then f /∈ N ϕ if and only if there exist

(1) a sequence {zn} of points in D,
(2) a sequence {ρn} of positive real numbers,
(3) a sequence {σn} of positive real numbers satisfying σn → 0 as n → ∞, and
(4) a constant c > 0 satisfying ϕ(|zn|)ρn ≤ cσn for all n∈ N := {1, 2, . . .}
such that the sequence {σ−β

n f(zn + ρnξ)} of functions converges spherically uni-
formly on each compact subset of C to a nonconstant meromorphic function.

Moreover, f /∈ N ϕ
0 if and only if there exist

(1′) a positive constant R,
(2′) a sequence {zn} of points in D satisfying |zn| → 1− as n → ∞, and
(3′) a sequence {ρn} of positive real numbers satisfying ρnϕ(|zn|) < 1/R

such that the sequence {f(zn+ρnξ)} of functions converges spherically uniformly
on each compact subset of D(0,R) to a nonconstant meromorphic function.

Lappan [24] (see also the earlier result by Bagemihl and Seidel [6]) showed thatf ∈
M(D) is normal if and only if limn→∞ f(zn) = limn→∞ f(wn) for all sequences
{zn}∞n=1 and {wn}∞n=1 of points in D such that ρ(zn,wn) → 0 as n → ∞. Further,
it is well known that f ∈ M(D) is strongly normal if and only if limn→∞ f(zn) =
limn→∞ f(wn) for all sequences {zn}∞n=1 and {wn}∞n=1 of points in D such that
limn→∞ ρ(zn,wn) < 1. These results have natural analogues for (strongly) ϕ-
normal functions.

Theorem 7. Let ϕ : [0, 1) → (0, ∞) be smoothly increasing and let f ∈ M(D).

Then f ∈ N ϕ if and only if limn→∞ f(zn) = limn→∞ f(wn) for all sequences
{zn}∞n=1 and {wn}∞n=1 of points in D tending to the boundary such that

ρ(zn,wn)ϕ(|zn|)(1 − |zn|) → 0, n → ∞. (2.6)

Moreover, f ∈ N ϕ
0 if and only if limn→∞ f(zn) = limn→∞ f(wn) for all se-

quences {zn}∞n=1 and {wn}∞n=1 of points in D tending to the boundary such that

lim sup
n→∞

ρ(zn,wn)ϕ(|zn|)(1 − |zn|) < ∞. (2.7)

It is worth noticing that if (2.6) is satisfied then ρ(zn,wn) → 0 as n → ∞.
Therefore, ρ(zn,wn)(1 −|zn|) is comparable to |wn− zn| for all sufficiently large
n and thus (2.6) is equivalent to

|wn − zn|ϕ(|zn|) → 0, n → ∞.
In the sequel, we ignore this observation and adhere to the use of pseudohyperbolic
distance in order to preserve the complete analogue with the classical case of nor-
mal functions.
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If f ∈ N ϕ
0 and if limr→1− f(rζ) = α for ζ ∈ ∂D, then Theorem 7 implies

limz→ζ f(z) = α when z approaches ζ inside any ϕ-angular domain 0(ζ, c) :=
{z : |�(z/ζ)| ≤ c/ϕ(|z|)}, where c > 0.

In the case of unbounded analytic functions, there is a sense in which the first as-
sertion in Theorem 7 can be improved. Toward this end, let H∞ denote the space
of bounded functions in the algebra H(D) of all analytic functions in D.

Theorem 8. Let ϕ : [0, 1) → (0, ∞) be smoothly increasing and let f ∈
H(D) \ H∞. Let f ∈ N ϕ, and let {zn}∞n=1 be a sequence of points in D such
that limn→∞ f(zn) = ∞. Then limn→∞ f(wn) = ∞ for any sequence {wn}∞n=1
of points in D satisfying

sup
n∈N

ρ(zn,wn)ϕ(|zn|)(1 − |zn|) < ∞.

Theorem 8 can be used to show that the assertion in Corollary 5 remains valid
when f ∈ N ϕ is assumed to be an unbounded analytic function. The reasoning is
similar to that yielding Corollary 5, and therefore we omit it.

Lappan’s [25] five-point theorem says that if sup{f #(z)(1−|z|2) : z∈ f −1(E)}
is bounded for some five-point subset E of the image set f(D), then f is a nor-
mal function. The next result is a version of this theorem for (strongly) ϕ-normal
functions. Its proof uses Theorem 6 and imitates Lappan’s original proof, so we
omit the details in order to avoid unnecessary repetition.

Theorem 9. Let ϕ : [0, 1) → (0, ∞) be smoothly increasing and let f ∈ M(D).

Then f ∈ N ϕ if and only if there exists a set E of five distinct values in Ĉ :=
C ∪ {∞} such that

sup{f #(z)/ϕ(|z|) : z∈ D, f(z)∈E} < ∞.
Moreover, f ∈ N ϕ

0 if and only if there exists a set E of five distinct values in Ĉ

with infinitely many preimages such that

lim
|z|→1−, f(z)∈E

f #(z)/ϕ(|z|) = 0.

Let f ∈ M(D) and R > 0. If now sup{|f ′(z)|/ϕ(|z|) : |f(z)| < R} is finite, then
Theorem 9 implies f ∈ N ϕ. Conversely, if f ∈ N ϕ then clearly

sup
|f(z)|<R

|f ′(z)|
ϕ(|z|) = sup

|f(z)|<R
(1 + |f(z)|2)f

#(z)

ϕ(|z|) ≤ (1 + R2)‖f ‖N ϕ .

A similar reasoning applies for N ϕ
0 . Hence we obtain the following corollary,

which (in view of Example 1) contains a result by Wulan [35, Thm. 4.5.1] as a
special case. See also earlier results by Lappan [26].

Corollary 10. Let ϕ : [0, 1) → (0, ∞) be smoothly increasing and let f ∈
M(D). Then f ∈ N ϕ if and only if there exist R > 0 andMR > 0 such that

sup{|f ′(z)|/ϕ(|z|) : |f(z)| < R} < MR.
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Moreover, f ∈ N ϕ
0 if and only if there exist R > 0 such that

lim
|z|→1−, |f(z)|<R

|f ′(z)|/ϕ(|z|) = 0.

As the last topic we consider ϕ-normal Blaschke quotients. In view of (2.4), the
following definitions appear natural. An infinite sequence {zn}∞n=1 of points in D

is called ϕ-separated if there exists a δ > 0 such that

ρ(zk , zn)ϕ(|zn|)(1 − |zn|) ≥ δ

for all distinct natural numbers k and n. Further, if there exists a δ > 0 such that

ϕ(|zn|)(1 − |zn|)
∏
k �=n

ρ(zk , zn) ≥ δ

for all n ∈ N, then {zn}∞n=1 is called uniformly ϕ-separated. Recall that {zn}∞n=1 is
separated if infk �=n ρ(zk , zn) > 0 and uniformly separated if

inf
n

∏
k �=n

ρ(zk , zn) > 0.

Thus every (uniformly) separated sequence is (uniformly) ϕ-separated, but of
course the converse is not true in general. A result by Carleson [10] states that
{zn}∞n=1 is an interpolating sequence for H∞ if and only if it is uniformly sepa-
rated. Therefore Blaschke products associated with uniformly separated sequences
are often called interpolating Blaschke products.

An infinite sequence {zn}∞n=1 of points in D is called strongly ϕ-separated if

lim sup
n→∞

min
k∈N

ρ(zk , zn)ϕ(|zn|)(1 − |zn|) = ∞.
Further, if

lim sup
n→∞

ϕ(|zn|)(1 − |zn|)
∏
k �=n

ρ(zk , zn) = ∞,

then {zn}∞n=1 is called strongly uniformly ϕ-separated.
Cima and Colwell [12] (see also a related result by Colonna [14]) showed that the

quotient of two interpolating Blaschke products with disjoint zeros is normal if and
only if its zeros and poles form a uniformly separated sequence. Theorem 11 gen-
eralizes this result for (strongly) ϕ-normal functions via (uniformly) ϕ-separated
sequences. It is worth noticing that if B1/B2 ∈ N ϕ then {zn}∞n=1 ∪ {wn}∞n=1 is
ϕ-separated by Theorem 4, so Theorem 11 shows that the assertions in Theorems 4
and 7 are fairly sharp.

Theorem 11. Let B1 and B2 be interpolating Blaschke products associated
with the disjoint sequences {zn}∞n=1 and {wn}∞n=1, and let ϕ : [0, 1) → (0, ∞)
be smoothly increasing. Then the following assertions are equivalent :

(1) B1/B2 ∈ N ϕ;
(2) {zn}∞n=1 ∪ {wn}∞n=1 is ϕ-separated ;
(3) {zn}∞n=1 ∪ {wn}∞n=1 is uniformly ϕ-separated.

Moreover, the following assertions are equivalent :
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(1′) B1/B2 ∈ N ϕ
0 ;

(2′) {zn}∞n=1 ∪ {wn}∞n=1 is strongly ϕ-separated ;
(3′) {zn}∞n=1 ∪ {wn}∞n=1 is strongly uniformly ϕ-separated.

The first assertion in Theorem 11 can be considered as a refinement of the fact
that, for any increasing function ϕ : [0, 1) → (0, ∞), there exist non-ϕ-normal
Blaschke quotients [3; 39]. It also reveals that the union of two uniformly sepa-
rated sequences is ϕ-separated if and only if it is uniformly ϕ-separated.

The proof of Theorem 11 combined with Theorem 4 shows two things. First, if
B1 and B2 are Blaschke products associated with the disjoint sequences {zn}∞n=1
and {wn}∞n=1 such that B1/B2 /∈ N ϕ, then there exists a sequence {ak}∞k=1 for which

|Bi(ak)|ϕ(|ak|)(1 − |ak|2) → 0, k → ∞, (2.8)

for both i = 1, 2 (note that (2.8) implies Bi(ak) → 0 as k → ∞). Second, if B1

and B2 are Blaschke products associated with the disjoint interpolating sequences
and if there exists a sequence {ak}∞k=1 for which (2.8) is satisfied for both i =
1, 2, then B1/B2 /∈ N ϕ. Since a similar reasoning can be applied for nonstrongly
ϕ-normal Blaschke quotients, we obtain the following result.

Corollary 12. Let B1 and B2 be interpolating Blaschke products associated
with the disjoint sequences {zn}∞n=1 and {wn}∞n=1. Let ϕ : [0, 1) → (0, ∞) be
smoothly increasing. Then B1/B2 /∈ N ϕ if and only if there exists a sequence
{ak}∞k=1 for which (2.8) is satisfied for both i = 1, 2. Moreover, B1/B2 /∈ N ϕ

0 if
and only if there exists a sequence {ak}∞k=1 for which

lim
k→∞|Bi(ak)|ϕ(|ak|)(1 − |ak|2) < ∞

for i = 1, 2.

Acknowledgments. The authors are indebted to the referee for valuable sug-
gestions that significantly improved and clarified the exposition of the paper.

3. Proof of Theorem 1

Fubini’s theorem shows that the Ahlfors–Shimizu characteristic of f ∈ M(D) can
be represented as

T0(r, f ) = 1

π

∫
D(0,r)

(f #(z))2 log
r

|z| dA(z). (3.1)

If f ∈ N ϕ, then

T0(r, f ) ≤ 2‖f ‖2
N ϕ

∫ r

0
(ϕ(s))2 log

r

s
ds,

and since

N(r, f ) ≤ T0(r, f )+ log

√
1 + |f(0)|2
|f(0)| (3.2)

by theAhlfors–Shimizu theorem [21, Thm.1.4, p.12], the assertion in (2.1) follows.
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If f ∈ N ϕ
0 then, for a given ε > 0, there exists an rε ∈ (0, 1) such that f #(z) ≤

εϕ(|z|) whenever |z| ≥ rε. It follows that

T0(r, f ) ≤ 2‖f ‖2
N ϕ

∫ rε

0
(ϕ(s))2 log

r

s
ds + 2ε2

∫ r

0
(ϕ(s))2 log

r

s
ds.

Since
∫ 1

0 (ϕ(s))
2 log r

s
ds diverges for any smoothly increasing function ϕ, (2.2)

follows by (3.2).

4. Proof of Theorem 2

First assume that f ∈ N ϕ. Then (3.1) and (1.2) yield

T0(1, f � φa) = 1

π

∫
D

((f � φa)#(z))2 log
1

|z| dA(z)

≤ ‖f ‖2
N ϕ

π

∫
D

(Ra(z))
2 log

1

|z| dA(z) ≤ C < ∞
for all a ∈ D, and therefore (2) follows. Since (2) clearly implies (3), it remains to
show that (3) implies f ∈ N ϕ. To do this, we need the following lemma. Recall
that �ϕ(a, r) = {φa(w) : |w| < r}.
Lemma 13. Let ϕ : [0, 1) → (0, ∞) be smoothly increasing and let f ∈ M(D).

Then f ∈ N ϕ if and only if there exist r, λ∈ (0, 1) such that

sup
λ≤|a|<1

∫
�ϕ(a,r)

(f #(z))2 dA(z) < π. (4.1)

Moreover, f ∈ N ϕ
0 if and only if

lim
|a|→1−

∫
�ϕ(a,r)

(f #(z))2 dA(z) = 0 (4.2)

for all r ∈ (0, 1).

Proof. If f ∈ N ϕ, then (1.2) implies that there existC > 0 and λ∈ (0, 1) such that∫
�ϕ(a,r)

(f #(z))2 dA(z) ≤ ‖f ‖2
N ϕ

∫
�ϕ(a,r)

(ϕ(|z|))2 dA(z)

≤ C‖f ‖2
N ϕ

∫
�ϕ(a,r)

(ϕ(|a|))2 dA(z)

= C‖f ‖2
N ϕπr

2

for all |a| ≥ λ. The assertion (4.1) follows by choosing r sufficiently small.
If (4.1) is satisfied, then

sup
λ≤|a|<1

1

π

∫
D(0,r)

((f � φa)#(z))2 dA(z) < 1

and hence
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sup
λ≤|a|<1

(f � φa)#(0) = sup
λ≤|a|<1

f #(a)/ϕ(|a|) < ∞

by Dufresnoy’s theorem [16] (or [32, p. 83]). It follows that f ∈ N ϕ.

If f ∈ N ϕ
0 then, for a given ε > 0, there exists a λε ∈ (0, 1) such that f #(z) ≤

εϕ(|z|) for all z∈�ϕ(a, 1) whenever λε ≤ |a| < 1. It follows that∫
�ϕ(a,r)

(f #(z))2 dA(z) ≤ ε2
∫
�ϕ(a,1)

(ϕ(|z|))2 dA(z) ≤ Cε2

for all r ∈ (0, 1) and for all a sufficiently close to the boundary. Thus (4.2) is sat-
isfied. The converse follows easily by Dufresnoy’s theorem.

To complete the proof of Theorem 2, assume that there exist δ, λ∈ (0, 1) such that

C := sup
λ≤|a|<1

T0(δ, f � φa) < ∞.

Then, for all |a| ∈ (λ, 1) and γ ∈ (0, 1),

C ≥ 1

π

∫
�ϕ(a,γδ)

(f #(z))2 log
δ

ϕ(|a|)|z− a| dA(z)

≥ 1

π
log

1

γ

∫
�ϕ(a,γδ)

(f #(z))2 dA(z).

By choosing γ sufficiently small, we obtain

sup
λ≤|a|<1

∫
�ϕ(a,γδ)

(f #(z))2 dA(z) < π,

and therefore f ∈ N ϕ by Lemma 13. The second assertion concerning (1′), (2′),
and (3′) can be proved by an argument similar to that used here.

5. Proof of Theorem 3

To prove the first assertion, let first f ∈ N ϕ and let z∈D(0, r), where r ∈ (0, 1) is
fixed. Then

(f � φa)#(z) = f #(φa(z))

ϕ(|a|) ≤ ‖f ‖N ϕRa(z)

for all a ∈ D and z∈D(0, r). It follows that (f � φa)#(z) is uniformly bounded in
D(0, r) for all a ∈ D. Therefore, Marty’s theorem implies that the family {f �φa :
a ∈ D} is normal in D.

Conversely, let the family {f � φa : a ∈ D} be normal in D, and assume to the
contrary of the assertion that f /∈ N ϕ. Then there exists a sequence {zn}∞n=1 of
points in D such that limn→∞|zn| = 1 and f #(zn)/ϕ(|zn|) → ∞ as n → ∞.
However, Marty’s theorem implies that there exists a C > 0 such that

f #(zn)

ϕ(|zn|) = (f � φzn)#(0) ≤ C

for all n∈ N. This establishes a contradiction, and so f ∈ N ϕ as desired.
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To prove the second assertion, let first f ∈ N ϕ
0 and assume that z ∈ K, where

K ⊂ C is compact. Then, by (1.2),

(f � φa)#(z) = f #(φa(z))

ϕ(|a|) = o(|φa(z)|)Ra(z), |a| → 1−,

= o(|φa(z)|), |a| → 1−,

for all z∈K. Since (1.1) implies that |φa(z)|/|a| → 1uniformly onK as |a| → 1−,
it follows that (f � φa)# converges to zero uniformly on compact subsets of C as
|a| → 1−.

Conversely, let (f � φa)# converge uniformly to zero on compact subsets of
C as |a| → 1−, and assume to the contrary of the assertion that f /∈ N ϕ

0 . Then
there exists a sequence {zn}∞n=1 of points in D such that limn→∞|zn| = 1 and
f #(zn)/ϕ(|zn|) → c > 0 as n → ∞. However, by the assumption we have
f #(zn)/ϕ(|zn|) = (f � φzn)#(0) → 0 as n → ∞. This is clearly a contradiction,
and so f ∈ N ϕ

0 as desired.

6. Proof of Theorem 4

Let first f ∈ N ϕ, and assume to the contrary of the assertion that there exist dis-
tinct points Z,W ∈ f(D) such that (2.4) fails. Denote by {zn}∞n=1 and {wn}∞n=1
the infinite sequences of preimages of Z andW, respectively. Then, by passing to
subsequences if necessary, we may assume that {zn}∞n=1 and {wn}∞n=1 satisfy

ρ(zn,wn)ϕ(|zn|)(1 − |zn|) → 0, n → ∞. (6.1)

Put fn := f �φzn and un := (wn−zn)ϕ(|zn|), so that fn(0) = Z and fn(un)=W
for all n ∈ N. Now (1.1) and (6.1) imply that ρ(zn,wn) → 0 as n → ∞, so
every point on the arc joining zn and wn tends to the boundary as n → ∞.
Further, ρ(zn,wn) ≤ 1/2 for all sufficiently large n. It follows that |1 − z̄nwn| ≤
4(1 − |zn|) for any such n. Therefore,

|un| ≤ 4ρ(zn,wn)ϕ(|zn|)(1 − |zn|) → 0, n → ∞. (6.2)

Then, by (1.2),

χ(Z,W) = χ(fn(0), fn(un)) ≤ |un|
∫ 1

0
f #
n (tun) dt

= |un|
∫ 1

0
f #(φzn(tun))|φ ′

zn
(tun)| dt

= |wn − zn|
∫ 1

0
f #(φzn(tun)) dt ≤ 2‖f ‖N ϕ |wn − zn|ϕ(|zn|)

for all sufficiently large n. Because |wn − zn|ϕ(|zn|) = |un| → 0 as n → ∞, this
together with (6.2) yields the contradiction Z = W.

A proof of the assertion for strongly ϕ-normal functions can be constructed by
slightly modifying these arguments. We omit the details.
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7. Proof of Theorem 7

Let first f ∈ N ϕ. Assume to the contrary of the assertion that there are sequences
{zn}∞n=1 and {wn}∞n=1 of points in D tending to the boundary such that (2.6) is satis-
fied but α := limn→∞ f(zn) �= limn→∞ f(wn) =: β. By following the reasoning
in the proof of Theorem 4 with appropriate modifications, we obtain |un| → 0,
fn(0) → α, and fn(un) → β as n → ∞ and further thatχ(α,β) ≤ limn→∞|un| =
0, which is the desired contradiction. Note that this part of the proof does not re-
quire the assumptions (1.1) and (1.2).

To prove the converse, assume to the contrary that f /∈ N ϕ. Then, by Theorem 6
with β = 0, there exist a sequence {an}∞n=1 of points in D tending to the boundary
and a sequence {ρn}∞n=1 of positive real numbers such that ϕ(|an|)ρn → 0 and the
sequence {fn(ξ)}∞n=1 := {f(an + ρnξ)}∞n=1 of functions converges spherically uni-
formly on each compact subset of C to a nonconstant meromorphic function g as
n → ∞. Then, in particular, fn(0) → g(0) =: Z as n → ∞. Take w ∈D(0, r)
such that g(w) =W �= Z. From Hurwitz’s theorem it follows that, for any given
r ∈ (0, 1), all but a finite number of the functions fn assume the valueW inD(0, r).
Hence there exists a sequence {wn}∞n=1 of points in D such thatwn → w as n → ∞
and fn(wn) =W for all sufficiently large n. Putting bn := an + ρnwn, we obtain

ρ(an, bn)ϕ(|bn|)(1 − |bn|) ≤ ρn|wn|
1 − |bn|ϕ(|bn|)(1 − |bn|)

= ϕ(|an|)ρn|wn|ϕ(|an + ρnwn|)
ϕ(|an|)

for all sufficiently large n. Since ϕ(|an|)ρn → 0, |wn| → |w| ∈ (0, 1), and
ϕ(|an + ρnwn|)/ϕ(|an|) → 1 as n → ∞, it follows that

ρ(an, bn)ϕ(|bn|)(1 − |bn|) → 0, n → ∞,

but Z = limn→∞ f(an) �= limn→∞ f(bn) = W. This proves the “if” part of the
assertion.

That f ∈ N ϕ
0 implies (2.7) can be proved in the same way that we proved the

second assertion of Theorem 4. Once again we omit the details.
To prove the converse, assume to the contrary that f /∈ N ϕ

0 . Then by Theorem 6
there existR > 0, a sequence {an}∞n=1 of points in D tending to the boundary, and a
sequence {ρn}∞n=1 of positive real numbers such that ϕ(|an|)ρn < 1/R for all n and
the sequence {fn(ξ)} := {f(an + ρnξ)} of functions converges on each compact
subset of D(0,R) to a nonconstant meromorphic function g. Then, in particular,
fn(0) → g(0) := Z as n → ∞. Take w ∈ D(0, r) such that g(w) = W �= Z.

As in the proof of the first assertion for N ϕ, we obtain a sequence {wn} of points
in D such that wn → w as n → ∞ and fn(wn) = W for all sufficiently large n.
Putting bn := an + ρnwn, we have

ρ(an, bn)ϕ(|bn|)(1 − |bn|) ≤ |wn|
R

ϕ(|an + ρnwn|)
ϕ(|an|)
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for all sufficiently large n. Since

|wn| → |w| ∈ (0, 1) and ϕ(|an + ρnwn|)/ϕ(|an|) → 1 as n → ∞,

it follows that (2.7) is satisfied but Z = limn→∞ f(an) �= limn→∞ f(bn) = W.

This proves the “if” part of the second assertion.

8. Proof of Theorem 8

Let f ∈ N ϕ, and suppose to the contrary that there exist sequences {zn}∞n=1 and
{wn}∞n=1 such that limn→∞ f(zn)∈ C and limn→∞ f(wn) = ∞ but

ρ(zn,wn)ϕ(|zn|)(1 − |zn|) ≤ C < ∞
for all n ∈ N. Define un := (wn − zn)ϕ(|zn|), and assume for a moment that
C ≤ 1/4. Then limn→∞|un| ≤ 2C ≤ 1/2. By Theorem 3, the family {fn(z) :=
f �φzn : n∈ N} is normal in D. By passing to a subsequence if necessary, we may
assume that fn converges uniformly on compact subsets of D either to an analytic
function in D or to the constant ∞. However, the latter case can be excluded be-
cause, by assumption, f(zn) → c ∈ C as n → ∞. Therefore, also g(0) = c for
the limit function g by the uniform convergence. It follows that, for a given r ∈
(1/2, 1), there exist Cr ∈ (0, ∞) and Nr ∈ N such that |fn(z)| ≤ Cr for all z ∈
D(0, r) and n ≥ Nr. Since f(wn) = fn(un) → ∞ as n → ∞ and since |un| ≤ r

for all sufficiently large n, we obtain a contradiction.
If C > 1/4 then limn→∞|un|/(4C) ≤ 1/2. By (1.1) we can find an NC ∈ N

such that zn + 4Cz/ϕ(|zn|) ∈ D for all n ≥ NC. Since clearly N ϕ = N ϕ/(4C),
the family {f(zn + 4Cz/ϕ(|zn|)) : n ≥ NC} is normal in D. Proceeding as be-
fore and using the sequence {un/(4C)}∞n=NC instead of {un}∞n=1, we again obtain a
contradiction.

9. Proof of Theorem 11

If B1/B2 ∈ N ϕ, then there exists an C > 0 such that
(
B1

B2

)#

(z) = |B ′
1(z)B2(z)− B1(z)B

′
2(z)|

|B1(z)|2 + |B2(z)|2 ≤ Cϕ(|z|) (9.1)

for all z∈ D. Choose z = zn to obtain |B ′
1(zn)| ≤ C|B2(zn)|ϕ(|zn|). Since

B ′
1(z) =

∞∑
j=1

|zj |
zj

( |zj |2 − 1

(1 − z̄j z)2
∏
k �=j

|zk|
zk

zk − z
1 − z̄k z

)
,

|B ′
1(zn)| = 1

1 − |zn|2
∏
k �=n

ρ(zk , zn),

(9.2)

and {zn}∞n=1 is uniformly separated, there exists a δ > 0 such that
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∞∏
k=1

ρ(wk , zn)
∏
k �=n

ρ(zk , zn) = |B2(zn)|
∏
k �=n

ρ(zk , zn)

≥
(∏

k �=n ρ(zk , zn)
)2

Cϕ(|zn|)(1 − |zn|2) ≥ δ2/C

ϕ(|zn|)(1 − |zn|2)
for all n ∈ N. Because of symmetric reasons this ensures that {zn}∞n=1 ∪ {wn}∞n=1
is uniformly ϕ-separated and hence ϕ-separated. Thus (1) implies (3) and (3) im-
plies (2).

To prove that (2) implies (1), assume to the contrary of the assertion thatB1/B2 /∈
N ϕ. Let {ak}∞k=1 be a sequence of points in D for which (1.3) fails. The equality
in (9.1) and the Schwarz–Pick lemma give(

B1

B2

)#

(z) ≤ 1

|B1(z)|(1 − |z|2) + 1

|B2(z)|(1 − |z|2)
for all z∈ D. Therefore, by passing to a subsequence if necessary, we have

|Bi(ak)|ϕ(|ak|)(1 − |ak|2) → 0, k → ∞, (9.3)

for either i = 1 or i = 2. In fact, (9.3) holds for both indexes. Namely, if it
is satisfied for i = 1 and if the limit inferior equals γ > 0 for i = 2, then
|B1(ak)|/|B2(ak)| = o(1) as k → ∞. It follows that(

B1

B2

)#

(ak) ≤ 1

|B2(ak)|(1 − |ak|2)
(

1 +
∣∣∣∣B1(ak)

B2(ak)

∣∣∣∣
)

= ϕ(|ak|)
γ

(1 + o(1)), k → ∞.
This clearly contradicts the original assumption on {ak}∞k=1, so (9.3) must be satis-
fied for both indexes. Passing to subsequences if necessary, we may assume that
both ρ(zn, an) and ρ(wn, an) tend to zero as n → ∞. This follows by (9.3) and
[12, Thm. 1]. Since {zn}∞n=1 is uniformly separated, the triangular inequality and
the Schwarz–Pick lemma yield

δ ≤
∏
k �=n

ρ(zk , zn) = ρ

( ∏
k �=n

zk − zn
1 − z̄k zn , 0

)

≤ ρ

( ∏
k �=n

zk − zn
1 − z̄k zn ,

∏
k �=n

zk − z
1 − z̄k z

)
+

∏
k �=n

ρ(zk , z) ≤ ρ(zn, z)+
∏
k �=n

ρ(zk , z)

for all z∈ D; in particular,

|B1(an)| ≥ ρ(zn, an)(δ − ρ(zn, an)).
Hence |B1(an)| ≥ ρ(zn, an)δ/2 for all n large enough. This combined with (9.3)
gives

ρ(zn, an)ϕ(|an|)(1 − |an|2) → 0, n → ∞. (9.4)

Analogous reasoning for B2 shows that (9.4) with zn replaced by wn holds. The
triangular inequality then yields
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ρ(zn,wn)ϕ(|an|)(1 − |an|2) → 0, n → ∞. (9.5)

Since ρ(an, zn) → 0 as n → ∞, we have

1 − |an|2
1 − |zn|2 → 1, n → ∞. (9.6)

If |zn| ≤ |an|, then ϕ(|an|) ≥ ϕ(|zn|) by the monotonicity. If |zn| > |an|, then
(9.4) implies |zn − an| ≤ 1/ϕ(|an|) for all sufficiently large n, and hence (1.2)
yields

ϕ(|an|)/ϕ(|zn|) → 1 (9.7)

as n → ∞. Combining (9.5)–(9.7), it follows that

ρ(zn,wn)ϕ(|zn|)(1 − |zn|2) → 0, n → ∞,

and hence {zn}∞n=1 ∪ {wn}∞n=1 is not ϕ-separated. Thus (2) implies (1).
If B1/B2 ∈ N ϕ

0 , then the foregoing arguments with C replaced by o(1), as
n → ∞, show that {zn}∞n=1 ∪{wn}∞n=1 is strongly uniformly ϕ-separated and hence
strongly ϕ-separated.

To prove that (2′) implies (1′), assume to the contrary of the assertion that
B1/B2 /∈ N ϕ

0 . Let {ak}∞k=1 be a sequence of points in D for which (1.4) fails. Fol-
lowing our previous reasoning, we deduce that

lim
k→∞|Bi(ak)|ϕ(|ak|)(1 − |ak|2)∈ (0, ∞), i = 1, 2. (9.8)

Further, passing to subsequences if necessary, we obtain

lim
n→∞ ρ(zn,wn)ϕ(|zn|)(1 − |zn|2) < ∞;

hence {zn}∞n=1 ∪ {wn}∞n=1 is not strongly ϕ-separated. Thus (2′) implies (1′).
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