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Weil–Petersson Geometry for Families of
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1. Introduction

Hyperbolic structures on weighted punctured Riemann surfaces have recently
gained major attention. Hyperbolic metrics on weighted punctured Riemann sur-
faces have, by definition, conical singularities at the punctures; the cone angles
are between 0 and 2π, corresponding to weights between 1 and 0. Conical metrics
of constant negative curvature (with fixed weights) induce new structures on the
Teichmüller spaces of punctured Riemann surfaces. Tan, Wong, and Zhang [28]
showed the existence of corresponding Fenchel–Nielsen coordinates, proved a
McShane identity for this case, and investigated the induced symplectic structure.
In this way they generalized results of Mirzakani [18] to this situation (cf. [5]).
Conical metrics on punctured spheres were studied by Takhtajan and Zograf in
[27], who introduced Kähler structures on the moduli spaces depending on cone
angles in the context of Liouville actions. From the algebraic geometry point of
view, Hassett [8] introduced a hierarchy of compactifications of the moduli space
of punctured Riemann surfaces according to the assigned weights of the punc-
tures. These spaces interpolate between the classical Deligne–Mumford compact-
ifications of the moduli spaces of Riemann surfaces with and without punctures.
Conical hyperbolic metrics had been studied by Heins [9] and constructed by
McOwen [16] and Troyanov [30] using the method of Kazdhan and Warner [13].

By definition, a weighted punctured Riemann surface (X, a) is a compact Rie-
mann surface X together with an R-divisor a = ∑n

j=1 ajpj with weights 0 <

aj ≤ 1 at the punctures pj . The necessary and sufficient condition for the exis-
tence of a hyperbolic conical metric according to [16; 30] is that the statement of
the Gauss–Bonnet theorem holds—in other words, the degree of KX + a is posi-
tive, where KX denotes the canonical divisor of X. In this case the cone angles are
2π(1− aj ).

Our aim is to study the Weil–Petersson geometry in the conical case and develop
a theory parallel to the classical one. We show the existence of a Weil–Petersson
Kähler form of class C∞ that descends to the moduli space. Let X → S be the
universal family or any other holomorphic family of weighted punctured Riemann
surfaces. It turns out that the classical Wolpert formula [32, Cor. 5.11] holds in
our case as well; that is, the Weil–Petersson form is the push-forward of the form
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2π2c1(KX/S
−1, ga), where (KX/S

−1, ga) is the relative anticanonical line bundle
equipped with the family of hyperbolic conical metrics on the fibers. From this
we derive the Kähler property of the Weil–Petersson metric.

For rational weights the bundle KX/S + a defines a determinant line bundle on
the base space S, which carries a Quillen metric—according to the theorems of
Quillen [20], Takhdajan and Zograf [26], and Bismut, Gillet, and Soulé [4]—once
smooth metrics are chosen on KX/S + a. We show that the conical metrics on
the fibers induce a C∞ metric on the determinant line bundle; such a metric de-
scends to the moduli space. As in the classical case, its curvature is the generalized
Weil–Petersson form.

We also prove the formula for the curvature tensor of the Weil–Petersson metric
for Riemann surfaces with conical singularities. In the classical case the curva-
ture was computed in [6; 21; 32]. Our formula holds for the case of weights >
1/2, which is also the range within which Fenchel–Nielsen coordinates exist. It
includes also the case of orbifold singularities of degree m > 2.

Although hyperbolic conical metrics are well understood from the standpoint
of hyperbolic geometry, the dependence upon holomorphic parameters poses es-
sential difficulties. For this reason it was necessary in our previous paper [24]
to introduce an ad hoc definition of harmonic Beltrami differentials on which a
Weil–Petersson inner product could be based. Our present results are valid with
no restrictions on the weights; in particular they include the interesting cases of
weights between 1/2 and 1, which arise in finite group quotients. Most results are
known for cusps (i.e., punctures with zero cone angle), but our approach seems to
be suitable only for positive cone angles so that we avoid mixed cases.

Acknowledgments. The first-named author would like to thank Inkang Kim
for stimulating discussions. The authors would also like to thank the referee for
his or her helpful comments.

2. Hyperbolic Conical Metrics

Let X be a compact Riemann surface with n punctures p1, . . . ,pn and weights
0 < aj ≤ 1 for j = 1, . . . , n. We denote by a = ∑

j ajpj the corresponding
R-divisor and by (X, a) the weighted punctured Riemann surface. We say that a
hermitian metric of class C∞ on the punctured Riemann surface has a cone sin-
gularity of weight a if, in a holomorphic local coordinate system centered at pj ,
the metric is of the form (ρ(z)/|z|2aj )|dz|2 if 0 < aj < 1 and is of the form
(ρ(z)/|z|2 log2(|1/z|2))|dz|2 if aj = 1. Here ρ is continuous at the puncture and
positive. The cone angle is 2π(1 − aj ), including the complete case with angle
zero. Let KX be the canonical divisor of X; the weighted punctured Riemann sur-
face (X, a) is called stable if the the degree of the divisor KX + a is positive. In
this case, by a result of McOwen and Troyanov [16; 17; 31], in the given confor-
mal class, there exists a unique conical metric ga on X that has constant curva-
ture −1 and prescribed cone angles. Moreover, Vol(X, ga)/π = deg(KX + a) =
−χ(X, a), where χ(X, a) = χ(X) − ∑

aj is by definition the Euler–Poincaré
characteristic of the weighted punctured Riemann surface (X, a).
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At a noncomplete conical puncture we consider an emanating geodesic and see
that, on a neighborhood of the puncture, the hyperbolic metric is isometric to a
classical cone metric as obtained from the unit disk by removing a sector and
identifying the resulting edges. So a posteriori a conical metric satisfies a some-
what stronger regularity condition than predicted in terms of the partial differential
equation for hyperbolicity.

Remark 2.1. Let (X, a) be a weighted Riemann surface and pj a puncture with
0 < aj < 1 for all 1 ≤ j ≤ n. Then there exists a local coordinate function z

near pj such that ga = (ρ(z)/|z|2aj )|dz|2, where ρ(z) = η(|z|2(1−aj )) for some
positive, real analytic function η.

The dependence of the hyperbolic cone metrics on the weights is characterized as
follows.

Proposition 2.2. Let aj(k) be an increasing sequence of weights with R-divisors
a(k) on X. Suppose that deg(KX + a(k)) > 0 for all k ∈N and that aj(k)→ aj
as k →∞. Then ga(k) converges to ga uniformly on compact sets away from the
punctures. Moreover, the sequence of functions ga(k)/ga converges to the constant
function 1 in L1(X, ga).

Proof. In [24, Prop. 2.4] we defined �k = ga(k)/ga; then 0 < �k ≤ �k+1 ≤ 1,
as we proved there, and −log(�k) is a decreasing sequence of subharmonic func-
tions on the complement of the punctures. Therefore −log(�k) converges point-
wise to a subharmonic function δ ≥ 0 on the complement of the punctures. By
[24, Prop. 2.5], the function δ is identically equal to 0 in a neighborhood of each
puncture pj with aj < 1. Moreover, if aj < 1 for all j then δ ≡ 0 and the conver-
gence is uniform on compact sets by Dini’s lemma. (Observe that the argument in
the proof [24, Prop. 2.5] is local.) Suppose that aj0 = 1 for some j0, and consider
the functions δk = −log(�k) + (1 − a(k)j0) log(|z|2) on an open neighborhood
Uj0 of pj0 . By the local expression of each function �k near pj0 , we have that the
functions δk are subharmonic and uniformly bounded from above, so each func-
tion δk extends to a subharmonic function on Uj0;moreover, the function δ ′, which
is the upper semicontinuous envelope of lim sup δk , is also subharmonic on Uj0

(cf. [14]). Hence δ = δ ′ on Uj0\{0}. In other words, the function δ extends to a
subharmonic function on all of X, and therefore δ ≡ c is constant. By the domi-
nated convergence theorem, the sequence �k converges to e−c in L1(X, ga). Since
Vol(ga(k)) converges to Vol(ga), we have e−c = 1.

We consider the classical Teichmüller space Tγ,n of (marked) Riemann surfaces
of genus γ with punctures p1, . . . ,pn. We denote by � : Xγ,n → Tγ,n the univer-
sal family. The punctures on the fibers Xs = �−1(s) are given by n holomorphic
sections σ1(s), . . . , σn(s), s ∈ Tγ,n, where for all s the values are pairwise distinct.
Constant weights 0 < aj ≤ 1 are assigned to the σj(s), and the corresponding real
divisors are denoted by a(s) = ∑n

j=1 aj σj(s). The resulting family of weighted
punctured surfaces is denoted by � : (Xγ,n, a)→ Tγ,n. We assume that the fibers
are stable and endowed with the hyperbolic conical metrics ga(s). The complete
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case of weights 1 is well understood and, since the essential arguments will be lo-
cal, we may assume that 0 < aj < 1 holds for all weights.

We will show that the conical hyperbolic metrics define new Kähler structures
on the Teichmüller and moduli spaces of punctured Riemann surfaces depending
on the assigned weights.

For short we will write � : X → S for any holomorphic family of punctured
Riemann surfaces over a complex manifold S with holomorphic sections σi(s).
Our arguments will be local with respect to the base. When considering the varia-
tion of conical metrics and defining the induced hermitian structure on the Teich-
müller space, we may assume that S = {s ∈C : |s| < 1}.

Denote by X the central fiber X0. In order to introduce Sobolev spaces and to
use the theory of elliptic equations depending upon parameters [2], we need to fix
a differentiable trivialization of the family. Our method of choice is as follows.

After shrinking S if necessary, on neighborhoods of each holomorphic sec-
tion σj in X we take holomorphic coordinates Wj ≡ Uj × S = {(z, s)} such that
σj(s) ≡ 0. Assuming that these coordinates also exist on slightly larger neigh-
borhoods, we can use a differentiable trivialization � : X → X × S, which is
holomorphic on Wj and respects the coordinates just described. The map � de-
fines a differentiable lift

V0 = ∂

∂s
+ b1(z, s)

∂

∂z
+ b2(z, s)

∂

∂z̄

of the vector field ∂
∂s

on S such that V0|Wj
= ∂

∂s
. We introduce Sobolev spaces

H
p

k (Xs) defined with respect to the measure induced by a smooth family g0(s) of
differentiable background metrics. We identify H

p

k (Xs) with H
p

k (X) by the pre-
ceding differentiable trivialization.

Set
ga = eug0,

where ga(s) = ga(s, z)|dz|2 and g0(s) = g0(s, z)|dz|2 in local coordinates. The
functions u carry the singularities.

As in [24, Sec. 4], for 1≤ j ≤ n we introduce a function �j(z, s) that is smooth
on the complement of the punctures and is of the form �j = −log(|z|2|) on Uj .

(Here we use our assumption that σj(s) ≡ 0.) Let us define

w(z, s) = u−
∑
j

aj�j .

Let ) = 1
g0

∂
∂z∂z̄

denote the Laplacian with respect to the smooth background met-
ric g0. Then the equation for hyperbolicity reads

)u− eu = Kg0 , (1)

where Kg0 is the Ricci curvature of g0; that is,

Kg0(s, z) = −
1

g0(s, z)
· ∂

2 log(g0)

∂z∂z̄
.
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Now equation (1) reads

)w −
(

exp

(∑
i

ai�i

))
ew = K −)

(∑
i

ai�i

)
,

and on Uj \ {z = 0} it is of the form

)w − eM(z) ew

|z|2aj = K,

where the function M(z) =∑
i �=j ai�i is smooth and bounded on Uj .

It follows that w(s) ∈ H
p

2 (Xs) for all 1 ≤ p < min(1/aj ) (cf. [16]), and by
standard regularity theory the solutions are of class C∞ on the complement of the
punctures.

Our aim is to show that the conical metrics depend differentiably on the pa-
rameters in a suitable sense. Given a family (X , a)→ S, we write the hyperbolic
metrics as

ga = exp(a1�1+ · · · + an�n + w)g0

and fix a differentiable trivialization X → X × S in the above sense.

Theorem 2.3. Fix a real number 1 ≤ p < min(1/aj ). Then the assignment s �→
w(s) defines a map w : S → H

p

2 (X) that is of class C∞; that is, all higher deriva-
tives of w with respect to V0 and V̄0 exist in H

p

2 (X) and depend in a C∞ way on
s. In particular, since H

p

2 (X) ⊆ C 0(X), it follows that for any fixed z ∈ X the
function s �→ w(z, s) is of class C∞.

Proof. Since the argument is local, we may assume n = 1 for simplicity. We de-
fine a C1 map + : S ×H

p

2 (X)→ Lp(X) by

+(s,w) = )g0(s)(w)− ea�(s)ew −Kg0(s) + a)g0(s)(�(s)).

It is important to note that the given trivialization is holomorphic in a neighborhood
of the punctures and that �(z, s) = −log(|z|2) does not depend on s. Therefore,
the map + is of class C1. We now indicate how to compute (D1+)(s0,w0) ∈
Lp(X). We have

(D1+)(s0,w0) = −∂ log g0(s0)

∂s
)g0(s0)(w0)− a

∂�(s0)

∂s
ea�(s0)ew0

− ∂Kg0(s0)

∂s
+ ∂

∂s

(
)g0(s0)(�(s,−))

)
.

Note that this function belongs to Lp(X) because )g(s0)(w0)∈Lp(X) and ∂�
∂s
=

)g(s0)(�) ≡ 0 near the puncture for all s ∈ S. Moreover, both of the functions
∂ log g0

∂s

∣∣
s0

and
∂Kg0

∂s

∣∣
s0

are bounded. Now

(D2+)(s0,w0)(W ) : Hp

2 (X)→ Lp(X)

is given by

(D2+)(s0,w0)(W ) = )g0(s0)(W )− ea�(s0)ew0W.
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By [24, Lemma 2.1], the implicit function theorem is applicable. Since all deriva-
tives of ea� with respect to s and s̄ are in Lp(X), it is possible to repeat the argu-
ment and thereby demonstrate the rest of the statement.

Remark 2.4. The methods just described can also be used to show that an
analogous statement is true for the dependence of conical metrics on the weights—
provided these are less than 1. For a = ∑

pj we have the statement of Proposi-
tion 2.2.

3. The Generalized Weil–Petersson Metric

The classical Weil–Petersson metric is defined as theL2 inner product of harmonic
Beltrami differentials with respect to the hyperbolic metrics on the fibers. For rea-
sons that will become apparent later, we first introduce the Weil–Petersson metric
on the cotangent space.

Let (X, a) be a weighted punctured Riemann surface with a =∑
ajpj . We set

D =∑
pj and denote by

H 0(X,-2
(X,a)) = H 0(X,-2

X(D))

the space of holomorphic quadratic differentials with at most simple poles at the
punctures, which is identified with the cotangent space of the corresponding Teich-
müller space of punctured Riemann surfaces at the given point.

Definition 3.1. The Weil–Petersson inner product

G∗
WP,a on H 0(X,-2

(X,a))

is given by

〈φ,ψ〉WP,a =
∫
X

φψ̄

g2
a
dAa,

where ga is the hyperbolic conical metric with surface element dAa.

Observe that the integrals in this definition are finite because 0 ≤ aj ≤ 1 for all i.
The Weil–Petersson inner products depend continuously on the weights if these

weights are less than 1 (cf. Remark 2.4). Under the hypotheses of Proposition 2.2,
we have the following statement.

Corollary 3.2. Let
φ ∈H 0(X,-2

(X,a));
then

lim
k
|φ|2WP,ga(k)

= |φ|2WP,ga
.

Proof. Fix a reference smooth metric g0 on X. Then |φ|2/ga(k) is a decreasing se-
quence of g0 integrable positive functions converging to |φ|2/ga.

Observe that harmonicity of Beltrami differentials in the first place means that a
certain partial differential equation holds. In the case of compact Riemann surfaces
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(and punctured surfaces equipped with complete hyperbolic metrics), L2-theory
implies that any Beltrami differential has a unique harmonic representative, which
is the quotient of a conjugate holomorphic quadratic differential by the metric
tensor.

We use an ad hoc definition of the space of harmonic Beltrami differentials for
(X, a) with respect to the hyperbolic conical metric ga; it coincides with the usual
definition in the classical case of weights 1. Let X ′ = X\{p1, . . . ,pn}.
Definition 3.3. Letga = ga(z) dz dz be the hyperbolic conical metric on (X, a).
If φ = φ(z) dz2 ∈H 0(X,-2

(X,a)) is a quadratic holomorphic differential, we call
the Beltrami differential

µ = µ(z)
∂

∂z
dz = φ(z)

ga(z)

∂

∂z
dz

on X ′ harmonic on (X, a) and denote the vector space of all such differentials by
H1(X, a).

Proposition 3.4. For 0 < aj < 1, the space of harmonic Beltrami differen-
tials H1(X, a) on (X, a) can be identified with the cohomology H1(X,3X(−D)),
where 3X is the sheaf of holomorphic vector fields on X and D =∑

j pj .

Proof. It is sufficient to verify that a duality

+ : H 0(X,-2
(X,a))×H1(X, a)→ C

is defined by

+

(
φ(z) dz2,µ(z)

∂

∂z
dz

)
=

∫
X

φ(z)µ(z) dz dz̄.

The Weil–Petersson metric on the cotangent space to Tγ,n, together with the duality
just described, defines a Weil–Petersson metric GWP,a on the tangent space iden-
tified with H1(X, a).

Let µ1 and µ2 be in H1(X, a). Then

〈µ1,µ2〉WP,a =
∫
X

µ1µ2 dAa

(cf. [24, Lemma 3.4]).
If 1/2 ≤ aj ≤ 1 then the Fenchel–Nielsen coordinates can be defined [28]; it

is shown in [3] that, in this case, the Fenchel–Nielsen symplectic form coincides
with the Weil–Petersson Kähler form. The generalized Weil–Petersson metric can
be defined on the Teichmüller space Tγ,n of surfaces of genus γ with n punctures.
From [24, Prop. 2.4] we know that if a ≤ b then ga ≤ gb; hence G∗

WP,b ≤ G∗
WP,a

and, for the metrics on the dual spaces, we have GWP,a ≤ GWP,b. Therefore,
if a ≤ b then the identity map from (Tγ,n,GWP,b) to (Tγ,n,GWP,a) is distance
decreasing.

Since the conical metrics are intrinsically defined on the fibers, the classical
mapping class group 4γ,n acts on Teichmüller spaces as a group of isometries
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for both the classical and the generalized Weil–Petersson metrics; hence also the
generalized Weil–Petersson metric descends to Mγ,n. Let us define Mγ,a as the
completion of the moduli space Mγ,n with respect to the distance defined by the
generalized metric. Therefore the identity map descends to a distance-decreasing
map of the moduli spaces, and such a map extends to a continuous map

jb,a : Mγ,b → Mγ,a.

Moreover, let b = (b′, b′′) and b∗ = (b′, 0), where b′ ∈ [0,1]m. Denote by
F : Tγ,n → Tγ,m the holomorphic map that forgets the punctures b′′. Then, by [24,
Thm. 3.5], GWP,b∗ coincides with the degenerate metric F ∗(GWP,b′). The map

F : (Mγ,n,F ∗(GWP,b′))→ (Mγ,m,GWP,b′)

is also obviously (pseudo)distance decreasing; and, since b ≥ b∗, so is the map
F = F � id : (Mγ,n,GWP,b))→ (Mγ,m,GWP,b′).

Therefore we also have the continuous map-forgetting punctures

Fb,b′ : Mγ,b → Mγ,b′ .

Corollary 3.5. The space Mγ,a is a compactification of the moduli space Mγ,n.

In particular, the generalized Weil–Petersson metric is not complete.

Proof. The usual Deligne–Mumford compactification of Mγ,n is the quotient by
the mapping class group of the Weil–Petersson metric completion of Teichmüller
space (see e.g. [15; 33]); hence it is the completion of Mγ,n. Therefore, if 1 =
(1, . . . , 1) then j1,a(Mγ,1) ⊆ Mγ,a is compact and dense, so that the map j1,a is
onto and Mγ,a is compact.

4. The Kodaira–Spencer Map and Conical Metrics

First, we briefly describe the close relationship of variations of hyperbolic metrics
and harmonic Beltrami differentials in the classical case of holomorphic families
of compact Riemann surfaces (cf. [22]).

Let f : X → S be such a family. Let s0 ∈ S be a distinguished point and X =
f −1(s0) its fiber. The map induces a short exact sequence involving the sheaf TX/S

of holomorphic vector fields in fiber direction, the sheaf of holomorphic vector
fields TX on the total space, and the corresponding pull-back:

0 → TX/S → TX → f ∗TS → 0.

The connecting homomorphism

ρ : Ts0 → H1(X, TX)
is the Kodaira–Spencer map, which in fact assigns to a tangent vector the coho-
mology class of the corresponding Beltrami differential.

In terms of Dolbeault cohomology, this map can be described as follows. Let
∂/∂s stand for a tangent vector on the base at s0. Let V be any differentiable lift
of the tangent vector to the total space X (along the fiber X).
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Proposition 4.1. The restriction ∂̄V |X is ∂̄-closed and represents ρ
(
∂
∂s

∣∣
s0

)
.

Now the fibers Xs of the family are equipped with the hyperbolic metrics
g(z, s)|dz|2, which depend in a differentiable way on the parameter s. The col-
lection of these metrics is considered a relative volume form on X; that is, for a
metric on the relative tangent bundle of X , its dual is a hermitian metric on the
relative canonical bundle KX/S. Let

ωX =
√−1

2
∂X ∂̄X log(g(z, s))

be its curvature form.

Lemma 4.2. The restrictions of ωX to the fibers Xs equal the Kähler formsωXs
=√−1

2 g(z, s) dz ∧ dz.

In particular, the real (1, 1)-form ωX is positive definite along the fibers. So the
horizontal lift Vhor of ∂

∂s
, which by definition consists of tangent vectors that are

perpendicular to the fibers and project to the given tangent vector, is well-defined
as follows.

Lemma 4.3.
Vhor = ∂

∂s

∣∣∣∣
s0

+ az
∂

∂z
,

where

az = −1

g

∂ 2 log g(z, s0)

∂s∂z̄
.

The lemma follows immediately from the computation of the inner product of Vhor

and ∂
∂z

with respect to ωX .
So far, general theory implies the following.

Proposition 4.4. The harmonic Beltrami differential corresponding to the tan-
gent vector ∂

∂s

∣∣
s0

is induced by the horizontal lift. It equals

µ = µ(z)
∂

∂z
dz̄ = ∂az

∂z̄

∂

∂z
dz̄ = − ∂

∂z̄

(
1

g

∂ 2 log g(z, s0)

∂s∂z̄

)
∂

∂z
dz̄.

In fact, a straightforward verification shows that g(z, s0)µ(z) is a holomorphic
quadratic differential; that is, µ is harmonic with respect to the hyperbolic metric
on X.

Now let (X , a) → S be a holomorphic family of weighted Riemann surfaces
with 0 < aj < 1 and with central fiber X = Xs0 , s0 ∈ S. This section is concerned
with how to recover the Kodaira–Spencer map ρ : Ts0(S) → H1(X, a) from the
family of conical hyperbolic metrics ga.

In the case of conical hyperbolic metrics, we define the Beltrami differential
given by

µa

(
∂

∂s

)
= − ∂

∂z̄

(
1

ga

∂ 2 log ga

∂z̄∂s

)
∂

∂z
dz̄ (2)

and the quadratic differential φa
(
∂
∂s

) = gaµa
(
∂
∂s

)
.
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In order to prove that the Beltrami differential µa
(
∂
∂s

)
in (2) is harmonic in the

sense of Definition 3.3, it is sufficient to show the following.

Lemma 4.5. φa
(
∂
∂s

)
is in L1(X).

Proof. Again we use the special coordinates for the family near the punctures. For
simplicity we assume n = 1 and set 0 < a = a1 < 1 and ga = ga. We have

φa

(
∂

∂s

)
= ∂ log ga

∂z
· ∂

2 log ga
∂z∂s̄

− ∂ 3 log ga
∂z2∂s̄

.

Moreover, in local coordinates the following equation holds:

log(ga) = log(g0)+ w − a log(|z|2). (3)

Now, by Theorem 2.3, for 1≤ p < 1/a we have that

∂w

∂z
,
∂ 2w

∂s̄∂z
∈Hp

1 (U1)

whereas
∂ 3w

∂s̄∂z2
∈Lp(U1).

Therefore, by equation (3),

∂ 3 log ga

∂z2∂s̄
∈L1(U1).

Moreover, 1/z∈Lq(U1) and so

∂ log ga

∂z
∈Lq(U1) for 1≤ q < 2.

By the Sobolev embedding theorem, Hp

1 (U1) ⊆ Lh(U1) for all h < p ′, where
p ′ = 2p

2−p for 1≤ p < 2 and p ′ = ∞ for p ≥ 2. It follows that

∂ 2 log ga

∂z∂s̄
∈Lh(U1) for 1≤ h <∞ if 0 < a ≤ 1/2

and

∂ 2 log ga

∂z∂s̄
∈Lh(U1) for 1≤ h <

1

a − 1/2
> 2 if 1/2 < a < 1.

Hence, for 0 < a < 1,

∂ log ga

∂z
· ∂

2 log ga

∂z∂s̄
∈L1(U1).

So far we only showed that, on one hand, H1(X, a) is the space of infinitesimal de-
formations and that, on the other hand, the variation of hyperbolic conical metrics
gives rise to element of this space according to (2). If this assignment is injective
for effective families, then we have recovered the Kodaira–Spencer map.
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Theorem 4.6. The Kodaira–Spencer map ρ : Ts0S → H1(X, a) is given by

ρ

(
∂

∂s

)
= µa

(
∂

∂s

)
= − ∂

∂z̄

(
1

ga

∂ 2 log(ga(z, s))

∂z̄∂s

)∣∣∣∣
s=s0

∂

∂z
dz̄,

where ∂
∂s

stands for a tangent vector.

Proof. We may assume that S is a disk and that we only have one puncture.
If 0 < a < 1/2 then the proof of the theorem is given in [24, Thm. 5.4], so
we suppose 1/2 ≤ a < 1. Let µa

(
∂
∂s

) ≡ 0. Then the locally defined quantity
1
ga

∂2 log(ga(z, s))
∂z̄∂s

∣∣
s=s0

is holomorphic outside the punctures, and the vector field

Ws0 =
∂

∂s
+ γ (z)

∂

∂z
= ∂

∂s
−

(
1

ga

∂ 2 log(ga(z, s))

∂z̄∂s

∣∣∣∣
s=s0

)
∂

∂z

is a lift of the tangent vector ∂
∂s

that is holomorphic outside the punctures. We

know from the proof of Lemma 4.5 that
∂2 log(ga(z, s))

∂z̄∂s

∣∣
s=s0

is in Hp

1 (U1) ⊆ L2(U1)

for some p > 1. Since 1
ga

is bounded, the function 1
ga

∂2 log(ga(z, s))
∂z̄∂s

∣∣
s=s0

is also

in L2(U1); hence the vector field is holomorphic on the compact surface. So the
holomorphic structure of the corresponding compact Riemann surfaces is infinites-
imally constant. However, the puncture need not be kept fixed. Given the choice of
local coordinates, we need to show that the vector fieldWs0 equals ∂

∂s
at z = 0. We

have already observed that
∂2 log(ga(z, s))

∂z̄∂s

∣∣
s=s0

= ρ(z)

|z|2a γ (z) is in L2(U1). However,

for 1/2 ≤ a < 1, the function 1
|z|2a is not in L2(U1); hence γ (s0) = 0.

5. Horizontal Lifts of Tangent Vectors

Let f : (X , a) → S be the universal holomorphic family of weighted Riemann
surfaces over the Teichmüller space or, for computational purposes, a family over
the disk. Observe that—as in the classical case—the family of conical metrics will
give rise to a C∞ closed, real (1, 1)-form

ωX =
√−1

2
∂X ∂̄X log(ga)

on the complement of the punctures, which is positive when restricted to the fibers.
Assume that 1 < aj < 1 for 1 ≤ j ≤ n. Let S = {s ∈ C : |s| < 1} and denote

by X = X0 the central fiber. As in Section 2, we use a differentiable trivialization
of the family so that the Sobolev spaces of the fibers can be identified.

We will denote the coefficients of ωX by

gass̄
= ∂ 2 log ga(z, s)

∂s∂s
, (4)

gasz̄
= ∂ 2 log ga(z, s)

∂s∂z
, (5)
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gazs̄ =
∂ 2 log ga(z, s)

∂z∂s
, (6)

gazz̄ =
∂ 2 log ga(z, s)

∂z∂z
. (7)

As already pointed out, hyperbolicity translates into

gazz̄ = ga. (8)

As in Lemma 4.3 we have that the horizontal lift of ∂
∂s

is given by

V = ∂

∂s
+ az(z)

∂

∂z

with

az = −1

ga
gasz̄

. (9)

The function

χ = gass̄
− 1

ga
gasz̄

gazs̄ = gass̄
− gaa

z(z)az(z) (10)

has various geometric meanings, as described in the following proposition.

Proposition 5.1. Let µa ∈H1(Xs0 , a) be the harmonic Beltrami differential ac-
cording to (2). Then

χ = ‖V ‖2
ωX , (11)

ω2
X =

(√−1

2

)2

χ(z, s)ga(z, s) dz ∧ dz̄ ∧ ds ∧ ds̄, (12)

|µa|2 = (−)ga + id)χ. (13)

Proof. For simplicity we will drop the index a and will set ∂s = ∂/∂s, ∂z = ∂/∂z,
and so forth. The first claim follows from

‖V ‖2
ωX = 〈∂s + az∂z, ∂s + az∂z〉 = gss̄ + azgzs̄ + azgsz̄ + azazgzz̄

by (9) and (8). Equation (12) follows from

χ · g = χ · gzz̄ = det

(
gss̄ gsz̄

gz̄s gzz̄

)
.

The proof of (13) will require the following preparations.
In order to compute integrals over the fibers involving certain tensors, we will

use covariant differentiation with respect to the hyperbolic metrics on the fibers
and use the semicolon notation. For derivatives in the s direction we will use the
flat connection.

First, we note that

g2 · gss̄ = g2 · (log g);ss̄ = g · g;ss̄ − g;sg;s̄ = g · g;ss̄ − gzz̄;sgzz̄;s̄
= g · g;ss̄ − gsz̄;zgzs̄;z̄ = g · g;ss̄ − g2 · az;zaz;z̄.
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In short,
1

g
g;ss̄ = gss̄ + az;zaz;z̄.

We combine this with

gss̄;zz̄ = (log g);ss̄zz̄ = (log g);zz̄ss̄ = g;ss̄
and get

)g(χ) = 1

g
(gss̄ − g · azaz);zz̄ = 1

g
g;ss̄ − (azaz);zz̄

= gss̄ − az;z̄ az;z − azzz̄az − azaz;zz̄.
We know that

µ(z) = az;z̄;
hence

az;zz̄ = µ(z);z̄ =
(
ϕ(z)

g

)
;z̄
= 0,

where ϕ is some holomorphic quadratic differential. Furthermore, in terms of the
curvature tensor Rz

zzz̄ and the Ricci tensor Rzz̄ = −g, we have

azzz̄ = azz̄z + azRz
zzz̄ = µ̄;z + az(−Rzz̄) = g · az.

So
)g(χ) = χ − |µ|2,

which ends the proof of Proposition 5.1.

The equations have so far been established on the complement of the punctures.

Lemma 5.2. Let h0 = minj
( 1

1−aj
)

and q0 = min
(
minj

( 1
aj

)
, minj

( 1
1−aj

))
. Then:

(i) |µ|2ga
g0

∈Lh(Xs0) for 1 ≤ h < h0;
(ii) χ ∈Hq

2 (Xs0) for 1 ≤ q < q0;
(iii) the functions s �→ |µ|2ga

g0
∈ Lh(Xs) ≡ Lh(X) and s �→ χ ∈ H

q

2 (Xs) ≡
H

q

2 (X) are both of class C∞; and
(iv) for the coefficient of the harmonic Beltrami differential, we have that µ(z)∈

H
p

1 for every p < h0.

Proof. By Lemma 4.5, the expression |µ|2 ga
g0

in local coordinates near the punc-
ture pj behaves like 1

|z|2(1−aj)
; hence (i) follows. Now we write equation (13) as

−)g0χ +
ga

g0
χ = ga

g0
|µ|2.

However, near the puncturepj , the function ga
g0

is in Lp for 1≤ p < 1
aj

and so, by
[24, Lemma 2.1] together with (i), claim (ii) follows. To prove (iii) we apply The-
orem 2.3 together with the smooth dependence on parameters of the solution of
elliptic equations. In order to see (iv), we express µ in terms of a quadratic holo-
morphic differential and apply Remark 2.1.
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Proposition 5.3. For every point s0 ∈ S,∥∥∥∥ ∂

∂s

∣∣∣∣
s0

∥∥∥∥
2

WP,a
=

∫
Xs0

χ dAga .

Proof. We have ∫
X

)gaχ dAga =
√−1

∫
X

∂∂̄χ = 0

because χ ∈Hq

2 (X) for some q > 1, X is compact, and the space of smooth func-
tions is dense in H

q

2 (X). Now, by equation (13),∫
X

|µ|2 dAga =
∫
X

χ dAga .

Assume now that S is arbitrary and that f : X → S is a holomorphic family
of weighted punctured Riemann surfaces. We denote by ωWP

S the real (1, 1)-
form, which is determined as follows by the Weil–Petersson inner product of
tangent vectors on S. Given a tangent vector u ∈ TS,s0 , we denote by ρS,s0(u) =
µa(u) ∈ H1(X, a) the corresponding harmonic Beltrami differential in the sense
of Theorem 4.6.

At this point, we introduce the notion of fiber integrals of differential forms for
a holomorphic family f : X → S of compact complex manifolds of dimension n,
say. Let η be a differential form of a certain degree (k + n, k + n). Let

X × S
φ

��

pr
����

��
��

��
� X

f

��

S

be a differentiable trivialization. Then∫
X/S

η :=
∫
X×S/S

φ∗η

denotes a differential form of degree (k, k), where the latter integral is defined in
terms of the components of φ∗η that have total degree 2n in the fiber direction
and degree 2k in the S direction. The exterior derivative of a fiber integral can be
computed in different ways. Primarily,

d

(∫
X/S

η

)
=

∫
X/S

dη.

The latter integral can be evaluated in terms of φ. Since a differentiable trivializa-
tion determines a lift v of tangent vectors ∂

∂x
of the base, any partial derivative

∂

∂x

∫
X/S

η =
∫

X/S

Lv(η),

where Lv denotes the Lie derivative of the differential form η with respect to v.

One can verify that this is also true for differentiable lifts of complex tangent vec-
tors, which need not arise from differentiable trivializations.
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These results lead to our next theorem.

Theorem 5.4. The fiber integral∫
X/S

ω2
X = ωWP

S

equals the Weil–Petersson form.

Proof. Let α : S̃ → S be a holomorphic map of complex manifolds. We consider
X̃ = X ×S S̃ and the Cartesian diagram

X̃ α̃ ��

f̃

��

X
f

��

S̃
α �� S

Since the hyperbolic metrics on the fibers X̃t are just the hyperbolic metrics on the
Xα(t), t ∈ S̃, it follows that the relative volume form on X̃ → S̃ equals α̃∗g, where
g denotes the relative volume form for X → S. This implies that

α̃∗ωX = α̃∗
(√−1∂∂̄ log g) = √−1∂∂̄ log α̃∗g = ωX̃ .

Hence the integral in Theorem 5.4 commutes with base change and, in particular,
with the restriction to local analytic curves.

On the other hand, the Weil–Petersson hermitian product (i.e., the evaluation
of ωWP at tangent vectors) commutes with base change. For v ∈ TS̃,t0

, we have
ρS̃,t0

(v) = ρS,α(t0)(α∗(v)). Hence

ωWP
S̃
(v,w) = 〈ρS̃,t0

(v), ρS̃,t0
(w)〉WP,a

= 〈ρS,α(t0)(α∗(v)), ρS,α(t0)(α∗(w))〉WP,a = ωWP
S (α∗(v),α∗(w)),

and so
α∗ωWP

S = ωWP
S̃

.

Since both ωX and ωWP are defined in a functorial way, it is sufficient to check
the case dimC S = 1, which follows from Proposition 5.3 and equation (12).

Theorem 5.5. The Weil–Petersson form is of class C∞ and is d-closed on the
base of any holomorphic family. In particular, on the Teichmüller space, ωWP is
a Kähler form.

Proof. At this point we introduce holomorphic coordinates s i (i = 1, . . . ,N) on
the base space S. We consider the horizontal lifts Vi on X and their inner product
with respect to ωX :

χī = 〈Vi,Vj〉.
Furthermore,

()ga − id)χī = µiµ̄. (14)
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The relevant term for the fiber integral of ω2
X is

√−1χīga dAdsi ∧ ds ̄.

In order to show the theorem, we need to prove that

d

∫
X/S

ω2
X =

∫
X/S

d(ω2
X ),

The map S → Lp (with p as before) that sends s to χīga/g0 is of class C∞; this
follows from Theorem 2.3 and Lemma 5.2. So we apply a differerentiable local
trivialization of the family. Then

∂

∂s k

∫
X

χīga dA =
∫
X

Fīkga dA

for some Fīk ∈ Lp(X). Since Lp-convergence of a sequence implies pointwise
convergence of a subsequence almost everywhere, the function Fīk must be the
derivative of the integrand outside a set of measure 0. This argument shows that
the exterior derivative on S of the differential form given by the fiber integral of
ω2

X equals the fiber integral of the exterior derivative of ω2
X on the total space X .

The latter form d(ω2
X ) is in Lp and is equal to zero outside a set of measure 0, so

the integral is identically zero.

6. Determinant Line Bundles and Quillen Metrics
in the Conical Case

Let f : (X , a) → S be any holomorphic family of weighted punctured Riemann
surfaces equipped with the family ga of conical metrics; in particular, f may de-
note the universal such family. In this section we consider rational weights aj ∈Q.

Let m∈N be a common denominator. Let

Lm =
(
(m(KX/S + a))− (m(KX/S + a))−1

)⊗2

be an element of the corresponding Grothendieck group. Denote by

λm = det f!Lm

the determinant line bundle on S. The Hirzebruch–Riemann–Roch theorem states
that the Chern class of the determinant line bundle equals the degree-2 component

c1(λm) = −f∗(ch(Lm)td(X/S))(2) = 4m2f∗(c2
1 (KX/S + a))(2).

Now we equip the Q-bundle KX/S + a with a C∞ hermitian metric of the form
g̃−1 with positive curvature, and we denote by

ω̃X =
√−1∂∂̄ log g̃ = 2πc1(KX/S + a, g̃−1)

the Chern form. We denote by ch(Lm, g̃) the induced Chern character form. Only
the term of degree 0 contributes to the Todd character form, and the metric on X
need not be specified.
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The theorem of Quillen [20], Takhtajan and Zograf [26], and Bismut, Gillet,
and Soulé [4] posits the existence of a Quillen metric hQ0 on λm such that, for the
type-(1, 1) components, the following holds:

c1(λm,hQ0 ) = −
∫

X/S

ch(L, g̃)td(X/S)(1,1)

= 4m2
∫

X/S

c1(KX/S + a, g̃−1)2
(1,1)

= 16m2π2
∫

X/S

ω̃2
X .

Theorem 6.1. Let f : (X , a) → S be the universal holomorphic family of
weighted punctured Riemann surfaces equipped with the family ga of conical met-
rics. Let ωWP be the generalized Weil–Petersson metric. Then the determinant line
bundle λm possesses a hermitian metric h of class C∞ whose Chern form is up to
a numerical factor equal to the Weil–Petersson metric:

c1(λm,h) = 16m2π2ωWP.

The metric h descends to the moduli space.

Since Hilbert space methods are not available, the notion of an analytic torsion
of Dirac operators is void; in particular, there is no Quillen metric in its original
sense.

Proof of Theorem 6.1. We will use the notation of this section—in particular, the
metric g̃ on−(KX/S + a). We can choose g̃ invariant under the Teichmüller mod-
ular group. Let σν be the canonical sections of the line bundles on X given by
the punctures. These can be chosen as invariant under the Teichmüller modular
group. The quotient

g̃

�ν |σν |2aν
is a well-defined relative metric on X with poles of fractional order at the punctures.

In view of Section 2 we have

ga = g̃

�ν |σν |2aν e
w,

where the function w is globally defined on X . Now∫
X/S

(ω2
X/S − ω̃2

X/S) =
∫

X/S

√−1∂∂̄(w · (ωX/S + ω̃X/S)).

Let the induced relative metric be

ω̃X |Xs
= ˜̃g(z, s) dA.

The assignment

s �→ w ·
(
ga

˜̃g
+ 1

)
˜̃g
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defines a C∞ map S → Lp. Now the argument of the proof of Theorem 5.4 ap-
plies literally, and∫

X/S

√−1∂∂̄(w · (ωX/S + ω̃X/S)) =
√−1∂∂̄

∫
X/S

(w · (ωX/S + ω̃X/S)).

Here the integral on the right-hand side defines a C∞ function on S, which is in-
variant under the Teichmüller modular group.

7. Curvature of the Weil–Petersson Metric

In the classical case the Ricci and holomorphic sectional curvatures of the classi-
cal Weil–Petersson metric were proven to be negative by Ahlfors [1]. Royden [21]
conjectured the precise upper bound for the holomorphic sectional curvature. The
curvature tensor of the Weil–Petersson metric for Teichmüller spaces of compact
(or punctured) Riemann surfaces was computed explicitly by Tromba [29] and
Wolpert [32]. In this section we show the analogous result for the weighted punc-
tured case. Our methods are different and originate from the higher-dimensional
case treated in [22; 25].

We will first explain the approach and notation in the compact case. Let
f : X → S stand for the universal family, and let again (z, s) be local holo-
morphic coordinates on X with f(z, s) = s, where s i (i = 1, . . . ,N) are holomor-
phic coordinates on S. We denote the coefficients of ωX by g(z, s) = gzz̄(z, s),
gz̄ , and gī (cf. [4; 5; 6; 7]).

We use the notation of Kähler geometry. Accordingly, the Christoffel sym-
bols are

4 = 4z
zz =

∂ log g

∂z
and

4z̄
z̄z̄ = 4̄.

The curvature tensor is
Rz

zz̄z = −gzz̄.
Our computations require covariant derivatives with respect to the hyperbolic

metrics g = g(z, s) on the fibers Xs , although we can use ordinary derivatives
for parameters. We use the semicolon notation of the derivative of any tensor b
for both:

∇zb = b;z and ∇ib = ∂ib = b;i;
here the index i stands for the coordinate s i, so that ∂i = ∂

∂s i
.

Let the tangent vectors ∂

∂s i

∣∣
s

correspond to harmonic Beltrami differentials

µi = µz
iz̄∂z dz

with µ̄ = µj . Now the Weil–Petersson form in coordinates s i equals

ωWP
S =

√−1

2
Gī (s) ds

i ∧ ds ̄ ,

where
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Gī (s) = 〈µi,µj〉 =
∫

Xs

µiµ̄g dA.

As in Lemma 4.3 and Proposition 4.4, we use the horizontal lifts

Vi = ∂i + azi ∂z.

We set V̄ = Vj and ā = aj ; that is, az̄̄ = azk. We have

µi = azi;z̄∂z dz. (15)

In order to compute derivatives ∂k—say, of the coefficients Gī —in principle
we need a differential trivialization of the family. Instead one can apply the Lie
derivative LWk

with respect to a differentiable lift Wk of the tangent vector ∂

∂s k
to

the integrand. In this way the Lie derivative of the integrand can be separated into
tensors. Also (because of the symmetry of the Christoffel symbols) we can use
covariant derivatives for the computation of Lie derivatives. As usual, the metric
tensor defines a transition from contravariant to covariant tensors.

As differentiable lifts we take the horizontal lifts Vk described previously. Ob-
serve that Lie derivatives are not type preserving. We will need the following
identities:

LVk(g dA) = 0; (16)

χī := 〈Vi,Vj〉ωX = gī − azi a
z̄
 gzz̄; (17)

LVk(µ̄ ) = −(χk̄ )
;z̄
;z∂z̄ dz

− (µk)
z
z̄(µ̄ )

z̄
z
∂z dz+ (µk)

z
z̄(µ̄ )

z̄
z
∂z̄ dz. (18)

Proof. We show (16) and compute the (z, z̄)-component of the Lie derivative.
We have

(LVk gzz̄)zz̄ = [∂k + azk∂z, gzz̄] = gzz̄;k + azkgzz̄;z + azkzgzz̄ = gkz̄;z + akz̄;z = 0.

The inner product of horizontal lifts in (17) with respect to ωX was already eval-
uated for dim S = 1. Equation (18) follows from (15) and (17).

Proposition 7.1. For all s ∈ S,

∂kGī (s) =
∫

Xs

LVk(µi)µ̄g dA (19)

holds.

When evaluating (19), only the first component of (18) gives a contribution in the
pairing with µ̄.

Proof of Proposition 7.1. We compute LVk(µiµ̄g dA) using (16). Now, by partial
integration (for all s ∈ S),∫

Xs

µiLVk(µ̄ )g dA = −
∫

Xs

(µi)
z
z̄(χī )

;z̄
;zg dA

=
∫

Xs

(µi)
z
z̄;z(χī )

;z̄g dA = 0. (20)
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In the last step we used the harmonicity of µi in the form

(µi)
z
z̄;z = 0. (21)

Lemma 7.2.
LVk(µi)

z
z̄ = LVi(µk)

z
z̄. (22)

The proof is a direct computation.
We see that Lemma 7.2 together with Proposition 7.1 also implies the Kähler

property.

Lemma 7.3. The Lie derivatives

LVk(µi) = LVk(µi)
z
z̄∂z dz

of the harmonic Beltrami differentials are again harmonic Beltrami differentials.

Proof. We have
∇zLVk(µi) = 0.

Its formal proof corresponds to ∂̄∗LVk(µi) = 0 in [23]. The computation is
straightforward.

It is convenient to use normal coordinates of the second kind for the components
of the Weil–Petersson tensor at a given point s0 ∈ S. Because theµi span the space
of harmonic Beltrami differentials (for s = s0), the condition

∂kGī (s0) = 0

is equivalent (by Proposition 7.1) to saying that all derivatives LVk(µi) vanish at
s = s0 identically.

We compute the second derivative at the given point s0. By (19),

∂Ḡ∂kGī =
∫

Xs0

LVḠ
LVk(µi)µ̄g dA+

∫
Xs0

LVk(µi)LVḠ
(µ̄ )g dA. (23)

Lemma 7.4.

[VḠ,Vk] = −χ ;zkḠ ∂z + χ
;z̄
kḠ
∂z̄; (24)∫

Xs

L[VḠ,Vk ](µi)µ̄g dA = −
∫

Xs

)(χkḠ)µiµ̄g dA. (25)

Proof. We omit the computational proof of (24). In order to see (25), we write

[χ ;z
kḠ
∂z,µ

z
iz̄∂z dz]zz̄ = −χ ;zkḠµz

iz̄;z + χ
;z
kḠ;zµ

z
iz̄,

where the first term on the right-hand side vanishes because of the harmonicity of
the Beltrami differential µi. So we have the right-hand side of (25). Finally,

[χ ;z̄
kḠ
∂z̄,µ

z
iz̄∂z dz]zz̄ = χ

;z̄
kḠ
µz
iz̄;z̄ + χ

;z̄
kḠ;z̄µ

z
iz̄ = (χ

;z̄
kḠ
µz
iz̄);z̄,

so that (again by harmonicity) we have
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[χ ;z̄
kḠ
∂z̄,µ

z
iz̄∂z dz]zz̄ · µz̄

̄z = (χ
;z̄
kḠ
µz
iz̄µ

z̄
̄z);z̄.

The divergence theorem implies that the integral vanishes.

We continue the computation of (23).
We use that LV̄ LVk(µi) = L[VḠ,Vk ](µi) + LVkLV̄ (µi) and apply Lemma 7.4.

Now

∂Ḡ∂kGī =
∫

Xs

L[VḠ,Vk ](µi)µ̄g dA+
∫

Xs

LVkLVḠ
(µi)µ̄g dA

+
∫

Xs

LVk(µi)LVḠ
(µ̄ )g dA. (26)

The third term of (26) vanishes at s0 because, for s = s0 in normal coordinates,

LVk(µi) = 0.
Now

∂Ḡ∂kGī = −
∫

Xs

)(χkḠ)µiµ̄g dA+ ∂k

∫
Xs

LVḠ
(µi)µ̄g dA

−
∫

Xs

LVḠ
(µi)LVk(µ̄ )g dA. (27)

In order to treat the first term of (27), we use the equation

(−)+ id)χkḠ = µkµḠ (28)

corresponding to (13). Then

−
∫

Xs

)(χkḠ)µiµ̄g dA

=
∫

Xs

)(−)+ id)−1(µkµḠ) · (µiµ̄ )g dA

= −
∫

Xs

((−)+ id)− id)(−)+ id)−1(µkµḠ) · (µiµ̄ )g dA

= −
∫

Xs

(µkµḠ) · (µiµ̄ )g dA+
∫

Xs

(−)+ id)−1(µkµḠ) · (µiµ̄ )g dA. (29)

By (20), the second term of (27) vanishes.
In the third term of (27), all three components of (18) matter. We will use the

following identity, which follows from the hyperbolicity of the metrics:

χk̄ ;zzz̄ = χk̄ ;zz̄z − χk̄ ;zRz
zzz̄
= χk̄ ;zz̄z − gzz̄χk̄ ;z.

Therefore,

−
∫

Xs

(χiḠ);z̄z̄(χk̄ );zz(gz̄z)2g dA =
∫

Xs

(χiḠ);z̄(χk̄ );zzz̄(gz̄z)2g dA

= −
∫

Xs

(χiḠ);z̄z((χk̄ );zz̄ − gzz̄χk̄ )(g
z̄z)2g dA

=
∫

Xs

)(χiḠ)µkµ̄g dA.



24 Georg Schumacher & Stefano Trapani

The preceding argument shows that this is exactly equal to

−
∫

Xs

(µiµḠ) · (µkµ̄ )g dA+
∫

Xs

(−)+ id)−1(µiµḠ) · (µkµ̄ )g dA.

Hence the third term in (27) contains the three contributions of (18); it equals

−
∫

Xs

(χk̄ );zz(χiḠ);z̄z̄(g
z̄z)2g dA

+
∫

Xs

(µiµ̄ )(µkµḠ)g dA+
∫

Xs

(µiµḠ)(µkµ̄ )g dA

=
∫

Xs

(−)+ id)−1(µkµ̄ )(µiµḠ)+
∫

Xs

(µiµ̄ )(µkµḠ)g dA. (30)

(Here we have gathered the Beltrami differentials in a convenient way.)
Adding all terms together yields the curvature of the Weil–Petersson metric.

Theorem 7.5. Let s i be holomorphic coordinates on the Teichmüller space, and
let the tangent vectors ∂

∂s i

∣∣
s0

correspond to the harmonic Beltrami differentials µi

on X = Xs0 . Then

RīkḠ(s0) =
∫
X

()− id)−1(µiµ̄ )µkµḠg dA

+
∫
X

()− id)−1(µiµḠ)µkµ̄g dA. (31)

holds.

(We have been using the complex Laplacian with nonpositive eigenvalues, rather
than the real one; this accounts for a factor of 2.)

In the case of the generalized Weil–Petersson metric for weighted Riemann sur-
faces, we will show that the same formula holds for weights larger that 1/2. This
is the range for which also Fenchel–Nielsen coordinates were introduced. It con-
tains the interesting range of weights of the form 1− 1/m, m > 2, that arise from
orbifold singularities.

Theorem 7.6. Let (X, a) with 1/2 < aj < 1 be a weighted punctured Rie-
mann surface that is represented by a point s0 in the Teichmüller space Tγ,n. Let
s1, . . . , sN be any local holomorphic coordinates near s0, and let µα ∈ H1(X, a)
be harmonic representatives of the vectors ∂

∂sα

∣∣
s0
. Then the curvature tensor of the

Weil–Petersson metric is given by (31), where the Laplacian and the area elements
are replaced by )a and dAga (respectively), which are induced by the hyperbolic
conical metric on the fiber.

In all of our arguments we will assume that the antiholomorphic quadratic differ-
entials that define harmonic Beltrami differentials have at most a pole at the given
conical singularity. (The proofs are still valid in the holomorphic case.)
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We first prove the statement of Proposition 7.1 in the conical case. We need to
see that the integration commutes with a differentiation with respect to the param-
eter (after a differentiable trivialization of the family). This follows as in the proof
of Theorem 5.4.

Let first Ṽk be any C∞ lift. Now the map s �→ µiµ̄ga again is a C∞ map from
S to Lh(X) by Lemma 5.2(iii). So by our previous argument,

∂kGī (s) =
∫

Xs

LṼk
(µiµ̄g dA)

holds. Next, we need that
Vk − Ṽk = Cz∂z

is a (global) tensor in fiber direction. Now
[
Cz∂z, (µiµ̄ )gzz̄

√−1dz ∧ dz
]

= Cz∂z((µiµ̄ )gzz̄)+ ∂z(C
z)((µiµ̄ )gzz̄)

√−1dz ∧ dz

= d
(√−1Cz · (µiµ̄ )gzz̄ dz

) = d(Cz̄(µiµ̄ )).

Claim. ∫
Xs

d(Cz̄(µiµ̄ )) = 0.

Proof of Claim. We write the displayed integral as the limit of integrals over
closed paths around the punctures. We first estimate the coefficient Cz̄. It satisfies
the same estimates as the akz̄. Now

∂azk

∂z̄
= µk = ϕ̄

g

for some holomorphic quadratic differential ϕ with at most a simple pole. By Re-
mark 2.1 we can find a continuous z̄-antiderivative η of the right-hand side on a
punctured disk U ∗. (This fact is a consequence of the more general Remark 7.8 to
follow.)

The term
azk − η

is holomorphic on U ∗, and

akz̄ = g · azk ∈Hp

1 (U) ⊂ L2(U)

for p < 1/a by Theorem 2.3. In particular,

azk − η ∈L2(U).

Hence azk − η must be holomorphic at the puncture (cf. [24, Lemma 5.3]). Now

|Cz̄| ! |akz̄| = |g · azk | � |z|−2a

and

|Cz(µiµ̄ )| � 1

|z|2(1−a) ,

so that
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lim
ε→0

∫
r=ε

r dϕ

r 2(1−a) = 0

implies the claim.

Lemma 7.7. Let )r be the disk of radius r in C, and let 1/2 < α < 1. Let f ∈
C∞()1\{0}, C) be a function such that |z|2αf(z) is bounded in a neighborhood
of 0. Let U be a relatively compact open subset of )1 containing 0. Then the
equation

∂g

∂z̄
= f (32)

has a solution that is of classC∞ on (U\{0}) and such that |z|2α−1g(z) is bounded
in a neighborhood of 0. In particular, it is contained in L2(U). Moreover, any
solution of (32), that is in L2(U) has this boundedness property.

Proof. For any 0 ≤ r < ρ < 1 and )r,ρ = {z∈C : r < |z| < ρ}, we define

F(r, ρ)(z) = −1

π

∫
)r,ρ

f(ζ)

ζ − z
i
dζ ∧ dζ̄

2
.

From the Cauchy formula we see that, for z∈)r,ρ with r > 0,

∂F(r, ρ)(z)

∂z
= f(z)

holds. Let K be a compact subset of )ρ\{0}. Let r0 > 0 be chosen such that K ⊂
)r0,ρ. Then, for all 0 < r < r0, the function |f(ζ)/|ζ − z| is uniformly bounded
by some M > 0 for z∈K and ζ ∈)ρ0\{0}. So

|F(r, ρ)(z)− F(0, ρ)(z)| ≤ Mr 2,

which implies uniform convergence for r → 0. The same argument holds for the
derivatives with respect to z and z̄. It follows that F(0, ρ) is differentiable and
solves (32) on )ρ\{0}.

On the open set )ρ\{0} we write f(ζ) = |ζ|−2αm(ζ) with |m(ζ)| ≤ C. Now
we make the change of variables ζ = zη. Then

|F(0, ρ)(z)| ≤ 1

π
C|z|−2α+1

∫
C

1

|η|2α|(η − 1)| i
dη ∧ dη̄

2
,

so we just need to show that∫
C

1

|η|2α|(η − 1)| i
dη ∧ dη̄

2
< +∞.

The convergence of the right-hand-side integral follows from∫ 1

0

r dr

r 2α
<∞ and

∫ ∞

2

r dr

r 2α+1
<∞.

Choose ρ such that Ū ⊆ )ρ. Then the condition that |z|2α−1g(z) be bounded im-
plies that g is in L2(U). The second claim now follows because a holomorphic
function in )ρ\{0} that is in L2(U) is bounded on U.
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Remark 7.8. By applying Lemma 7.7 to f(z)/z we can treat the case 0 < α <

1/2. Under the same boundedness assumption, equation (32) has a solution that
extends continuously to the origin.

Remark 7.9. If α = 1/2, then a statement as in the lemma does not hold in
general.

In fact, let us choose f(z) = 1
z̄
= ∂

∂z̄
log(|z|2). Assume there exists a bounded

function g on a small punctured disk such that g− log(|z|2) is holomorphic. Since
g − log(|z|2) is in L2 of the disk, we would obtain that it is bounded. However,
log(|z|2) is not bounded near 0. By replacing f by zkf and g by z−kg for some
integer k, we may prove a similar lemma for α ∈R such that 2α �= Z and also find
an example as before if 2α ∈Z.

We return to the discussion of the generalized Weil–Petersson metric. We know
that

∂kGī (s) =
∫

Xs

LVk(µiµ̄g dA).

So far the integral can be computed in terms of the (singular) horizontal lifts Vk ,
and we are in a position to use covariant derivatives, too, because the Lie deriva-
tives can also be computed in terms of those.

We use the fact LVk(g) = 0 from (16), which is still pointwise true outside a set
of measure 0; hence the statement of Proposition 7.1 in the conical case is reduced
to showing that ∫

X

µiLVk(µ̄ )ga dA = 0.

By (18), this integral equals

−
∫
X

µi
z
z̄χk̄

;z̄
;zg dA = −

∫
X

(µi
z
z̄χk̄

;z̄);zg dA

because of the harmonicity of µi. This integral is, up to a numerical factor, writ-
ten as ∫

X

d

(
µi

∂

∂z
dz · χk̄ ;z dz

)
=

∫
X

d(µi · χk̄ ;z dz).

We consider the defining equation for χ = χk̄ in the form

∂ 2χ

∂z∂z
= −gµkµ̄ + gχ.

We know that χ is continuous and for some neighborhood U of a puncture we
again apply Lemma 7.7 and take a z̄-antiderivative η of the right-hand side that
satisfies (with a > 1/2)

|η| � r1−2a.

Again, since ∂χ

∂z
∈Hp

1 ⊂ L2, the function

∂χ

∂z
− η ∈O(U ∗)
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is holomorphic at the puncture. Given the estimate for µi, the argument of the
previous claim immediately yields the vanishing of the integral.

Next, we chose normal coordinates for the Weil–Petersson metric on S of the
second kind at a given point s = s0. This concludes the proof of Proposition 7.1
in the conical case.

We will follow the computation of the curvature of the Weil–Petersson metric
in the compact case.

Lemma 7.10. The Lie derivatives

LVk(µi)
z
z̄∂z dz

of the harmonic Beltrami differentials are again harmonic Beltrami differentials
with respect to the conical structure (depending in aC∞way upon the parameter ).

Now we can apply the argument of Proposition 7.1 literally to∫
Xs

LVk(µi)µ̄g dA

and obtain the following statement.

Corollary 7.11. Equation (23) holds in the conical case.

Proof of Lemma 7.10. We have from Lemma 7.3 that

∇zLVk(µi) = 0. (33)

We need to see that the antiholomorphic term g ·LVk(µi) is inL1 so that it can have
at most a simple pole. After the verification, we know that LVk(µi) is a harmonic
Beltrami differential in our sense. We have

g · LVk(µi)
z
z̄ = −g∂z

(
1

g
∂k(giz̄)

)
− giz̄gkz̄

= −∂z̄(log g)(∂kgiz̄)+ ∂z̄(∂kgiz̄)− giz̄gkz̄.

We show that all three terms are in L1. For the first term we can use the proof of
Lemma 4.5. Since giz̄ ∈Hp

1 , the second term is in L1. Finally, both giz̄ and gkz̄ are
in H

p

1 ⊂ L2.

We prove the statement of Lemma 7.4 in the conical case: equation (24) is point-
wise and carries over. We show (25); for the required partial integration. we just
need that ∫

Xs

d(χkḠ;zµiµ̄ dz) = 0.

As before, we reduce this to the vanishing of limits of integrals along closed paths
around the punctures.

We know from Lemma 7.15 (to follow) that |χkḠ :z| � r−2a+1 andµiµ̄ ∼ r−2+4a

so that |χkḠ;zµiµ̄ | � r 4a−1. So
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lim
r→0

(r · r 4a−1) = 0

implies that the above integral vanishes, which proves (25) in the conical case.
In particular, (27) is now valid in our situation. A purely local computation

(under the integral sign) implies (29).
The final step is to arrive at (30) in the conical case—that is, by applying a

twofold partial integration to∫
Xs

(χiḠ);z̄z̄(χk̄ );zz(gz̄z)2g dA.

This is achieved by Lemmas 7.12 and 7.13.

Lemma 7.12. The following singular integral vanishes:∫
X

d(χk̄ ;zz̄χiḠ ;z̄g
z̄z dz) = 0. (34)

Proof. The integrand equals

d((χk̄ − µkµ̄ )χiḠ :z̄ dz).

We know from Lemma 7.15 (to follow) that

|χiḠ :z̄| � r−2a+1

and we have the continuity of χk̄. Furthermore,

|µkµ̄ | � r−2+4a

so that χk̄ −µkµ̄ is continuous. We use integration along closed loops as before
and see that the integral vanishes.

Lemma 7.13. ∫
X

d(χk̄ ;zzχiḠ ;z̄g
z̄z dz) = 0. (35)

We reduce the proof to the following statement, which shows that possible residues
in (35) and (34) must be equal up to a sign. However, we know already that the
latter integral vanishes.

Lemma 7.14.

lim
ε→0

∫
{|z|<ε}

√−1

2
∂∂̄(χk̄ ;zχiḠ ;z̄g

z̄z) = 0. (36)

Proof of Lemma 7.13. We expand the integrand of (36) and find that

0 = lim
ε→0

∫
|z|=ε

∂(χk̄ ;zχiḠ ;z̄g
z̄z)

= lim
ε→0

∫
|z|=ε

(χk̄ ;zzχiḠ ;z̄ + χk̄ ;zχiḠ ;z̄z)g
z̄z dz.
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Lemma 7.15.
|χk̄ ;z| � r−2a+1. (37)

Proof. We know that
∂∂̄χk̄ = (χk̄ − µkµ̄ )g.

Furthermore, χk̄ − µkµ̄ is continuous since χk̄ ∈ H
p

2 (X), and the continuity
of µkµ̄ follows since a > 1/2. Now the argument involving the z̄-antiderivative
again gives the claim.

Proof of Lemma 7.14. At this point, we assume that k = i = j = G. This case is
sufficient because the curvature formula will follow as usual from it by polariza-
tion. We set χ = χk̄ and |µ|2 = µiµ̄ for short. The integrand equals

η :=
√−1

2
∂∂̄(gz̄zχ;zχ;z̄)

= gz̄z(χ;zz̄zχz̄ + χ;zz̄χz̄z + χ;zzχ;z̄z̄ + χ;zχ;z̄z̄z)
√−1

2
dz ∧ dz.

Now we use (13) and (14) on the integrand together with the following formula:

χ;z̄z̄z = χ;z̄zz̄ − χ;z̄Rz̄
z̄z̄z = χ;z̄zz̄ − gzz̄χ;z̄ = −gzz̄(|µ|2);z̄.

Hence

η = (
gzz̄(χ − |µ|2)2 + gz̄zχ;zzχ;z̄z̄

+ (χ − |µ|2);z(χ − |µ|2);z̄ − (|µ|2);z(|µ|2);z̄
)√−1

2
dz ∧ dz

≥ −(|µ|2);z(|µ|2);z̄
√−1

2
dz ∧ dz.

Again we realize a harmonic Beltrami differential as a quotient of an antiholo-
morphic quadratic differential with at most a single pole by the metric tensor, and
again we use the analyticity property of Remark 2.1. This implies

|(|µ|2);z| � r 4a−3,

so that
(|µ|2);z(|µ|2);z̄ � r8a−6.

As a result, for some c, r0 > 0 and all 0 < |z| ≤ r0 we have
√−1

2
∂∂̄(gz̄zχ;zχ;z̄ − c · r8a−4) ≥ 0.

Observe that, by our assumption, r8a−4 → 0 with r → 0. We write
(√−1/2

)
∂∂̄τ

for the expression just displayed. In terms of the polar coordinates z = r ·
exp

(√−1ϕ
)

we set

τ̃ (r) =
∫ 2π

0
τ(r,ϕ) dϕ.

Hence for all 0 < δ < ε we have
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0 ≤
∫
δ<|z|<ε

√−1

2
∂∂̄τ =

∫ ε

δ

∂

∂r

(
r · ∂

∂r
τ̃

)
dr = r · ∂

∂r
τ̃

∣∣∣∣
ε

δ

.

Up to a multiplicative constant, the contribution of −c · r8a−4 to the integral
amounts to

r8a−4|εδ ,
which tends to zero as ε, δ→ 0.

The monotonicity implies the existence of

G = lim
r→0

r
∂τ̃

∂r
≥ −∞.

If we assume G ≤ −c ′ < 0, we see immediately that

τ̃ (r) ≥ c ′′ − c ′ log r

for some real number c ′′ so that τ̃ →∞with r → 0. On the other hand, it follows
from (37) that

χ;zχ;z̄g z̄z � r 2−2a.

So

lim
r→0

r
∂τ̃

∂r
≥ 0

is a finite number and

lim
ε→0
δ→0
ε>δ

∫
δ<|z|<ε

√−1

2
∂∂̄(‖χ;z‖2) = lim

ε→0
δ→0
ε>δ

∫ ε

δ

1

r

∂

∂r

(
r · ∂τ

∂r

)
r dr

= lim
ε→0
δ→0
ε>δ

(
r · ∂τ̃

∂r

)∣∣∣∣
ε

δ

= 0.
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