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The Rationality of the Moduli Space of
Genus-4 Curves Endowed with an

Order-3 Subgroup of Their Jacobian

Ingrid Bauer & Alessandro Verra

0. Introduction

Let C be a smooth, irreducible complex projective curve of genus g and let η ∈
Pic0(C) be a nontrivial nth root of the trivial bundle OC. For several different
reasons, special attention has been paid, now and in the recent past, to the mod-
uli spaces Rg,n of pairs (C, η) as above and to its possible compactifications (see
e.g. [CapCasC]).

For instance, they are generalizations of the case n = 2, the so-called Prym
moduli spaces, usually denoted by Rg. Since they are related to the theory of
Prym varieties, the interest in this case occupies a prominent position. In par-
ticular, many results on the Kodaira dimension of Rg are now available, while
classical geometric descriptions of Rg exist for g ≤ 7. More precisely, let us men-
tion that Farkas and Ludwig [FLu] proved that Rg is of general type for g ≥ 14
and g �= 15. On the other hand, unirational parameterizations of Rg are known for
g ≤ 7 [Cat, D, Do, ILoS, Ve1, Ve2].

One can also consider the moduli spaces Rg,〈n〉 of pairs (C, Z/nZ), where C is
a smooth, irreducible complex projective curve of genus g and Z/nZ is a cyclic
subgroup of order n of Pic0(C). As Rg,〈2〉 = Rg,2, these mouli spaces are gener-
alizing the Prym moduli spaces in a (slightly) different way. In contrast to the case
n = 2, not very much is known about Rg,n and Rg,〈n〉 for n > 2. In particular,
the (probably short) list of all pairs (g, n) such that Rg,n and Rg,〈n〉 have negative
Kodaira dimension is not known.

The rationality of Rg,n and Rg,〈n〉 has been proved in some cases of very low
genus: the case of R4 is a result of Catanese [Cat]. The rationality of R3 was
proved by Katsylo in [Ka]. Independent proofs are also due to Catanese and to
Dolgachev; see [D] (also for R2). Recently, the rationality of R3,3 and of R3,〈3〉
has been proven by Catanese and the first author [BCat].

To complete the picture, we recall that R1,n is an irreducible curve for every
prime n and that its geometric genus is well known.
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Usually, for reaching one of the previous rationality results, beautiful geomet-
ric properties of low-genus canonical curves come to the rescue. This is the case
also for this paper: we will use the classical geometry of cubic surfaces in P

3 to
prove the following statement.

Theorem 0.1. The moduli space R4,〈3〉 is rational.

Let us very briefly describe our proof.
We consider the moduli space P of the sets x of six general (unordered) points

in P
2. Equivalently, P is the moduli space of pairs (S, σ) such that S ⊂ P

3 is
a smooth cubic surface and σ : S → P

2 is the blow-up of x. Let C ∈ |ω−2
S | be

smooth, and let L∈ |σ ∗OP2(1)|. It turns out that C is a canonical curve of genus 4
endowed with the line bundle

ηC := ωC(−L)∈ Pic0(C).

We say that (C, ηC) defines a point of R4,3 if C is smooth, ηC is nontrivial, and
η3
C
∼= OC. Of course, we are interested in the locally closed set

Qx := {C ∈ |ω−2
S | | (C, ηC) defines a point of R4,3}.

To study this set, we make use (as in [BaVe]) of the cup product map

µ : H1(ω−1
S (−3L))⊗H 0(ω−2

S )→ H1(ω−3
S (−3L)).

Let v⊗ s ∈H1(ω−1
S (−3L))⊗H 0(ω−2

S ) be a nonzero decomposable vector and
let C = div(s): we show that v ⊗ s ∈Kerµ if and only if (C, ηC) defines a point
of R4,3. Then we consider the Segre product

� := P(H1(ω−1
S (−3L)))× |ω−2

S | ⊂ P := P(H1(ω−1
S (−3L))⊗H 0(ω−2

S ))

and the intersection scheme

M
o
x := P(Kerµ) ∩�o ⊂ P,

where�o := {(z,C)∈� | C is smooth}. It turns out that the projection (z,C)→
C induces a biregular map

qx : M
o
x → Qx.

Moreover, by the previous remarks, there exists a natural rational map

φx : M
o
x → R4,3

sending (z,C) to the moduli point of the pair (C, ηC).
As a first step, we show that M

o
x is integral and of the expected dimension 5.

Let Mx be the Zariski closure of M
o
x . Then we show that the projection

px : Mx → P(H1(ω−1
S (−3L)))

is a locally trivial P
1-bundle over a suitable nonempty open set.

As a second step, we globalize the construction to the moduli space P. On a
dense open set P o ⊂ P, we define vector bundles E and H such that:

• the fibre of E at the moduli point of x is H1(ω−1
S (−3L));

• the fibre of H at the moduli point of x is H 0(ω−2
S ).
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Let E := P(E ) and H := P(H) be the respective projectivizations. In the fibre
product E ×P o H we construct then an integral variety

M ⊂ E ×P o H

such that, at the moduli point of x, the fibre of the projection π : M → P o is the
Zariski closure Mx of M

o
x . This allows us to define a rational map

φ : M → R4,3

whose restriction to the fibre Mx is the rational map φx just considered.
As a third step we show that:

(1) φ : M → R4,3 is birational;
(2) M is birational to P × P

4 × P
1.

Indeed, (2) follows because E is a P
4-bundle over P o and because M is birational

to a P
1-bundle over E.

Finally, we observe that R4,〈3〉 = R4,3/〈i〉, where i : R4,3 → R4,3 is the invo-
lution mapping (C, η) to (C, η−1). Moreover, this involution is given on P × P

5

by the Schlaefli involution j : P → P on the first factor and the identity on the
second factor. The quotient P/〈j〉 turns out to be the moduli space of a double
six, a well-known configuration of lines in a cubic surface (see Section 2). Now,
the rationality of R4,〈3〉 is a consequence of the following theorem.

Theorem 0.2. The moduli space P/〈j〉 of double sixes in P
2 is rational.

This result is due to Coble [Cob, p. 176], and a modern proof of it has been com-
municated to us by Igor Dolgachev. We reproduce in the last section Dolgachev’s
proof; we would like to thank him warmly for allowing us to include his proof and
for further useful remarks on this paper.

This work also profited of some interesting discussions on the subject with
Fabrizio Catanese during a visit of the second author in Bayreuth. Finally, we
wish to thank the referee for his useful remarks and corrections.

1. Plane Sextics of Genus 4

LetC be a smooth, irreducible, complete curve of genus g ≥ 3 and let η ∈ Pic0(C)

be a nontrivial line bundle. We are interested in the linear system |ωC ⊗ η−1| and
its associated rational map

φη : C → P
g−2.

We first derive some basic properties of |ωC ⊗ η−1|.
Proposition 1.1. The following conditions are equivalent:

(1) |ωC ⊗ η−1| has a base point p;
(2) h0(η(p)) = 1;
(3) η ∼= OC(q − p) for some q ∈C \ {p}.
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Proof. (1)⇔ (2): p is a base point of |ωC ⊗ η−1| if and only if (iff )

dim|(ωC ⊗ η−1)(−p)| = dim|ωC ⊗ η−1| = g − 2

iff h1(η(p)) = g − 1 iff h0(η(p)) = 1.
(2)⇔ (3): This is obvious.

The next (well-known) statement complements the previous one.

Proposition 1.2. Let b be the base divisor of |ωC(p − q)|, where p, q ∈C and
p �= q. Then either b = p orC is hyperelliptic, b is of degree 2, and b = p+ i(q),
where i is the hyperelliptic involution.

From now on we will restrict ourselves to the following case:

g = 4, η⊗3 ∼= OC.

Proposition 1.3. Let C be a general curve of genus 4 and let η be a nonzero 3-
torsion element of Pic0(C). Then |ωC ⊗ η−1| has no base points.

Proof. By Proposition 1.1, |ωC ⊗ η−1| has a base point iff η ∼= OC(q − p) with
p, q ∈ C. In particular, 3p ∼ 3q. Let f : C → P

1 be the map defined by |3p| =
|3q|; then f has double ramification in p and q. By Hurwitz’s formula, the de-
gree of the ramification divisor R of f is 12. Then, since 2p + 2q ≤ R, f has at
most ten branch points. Hence, by Riemann’s existence theorem, the map f de-
pends on at most seven moduli. This implies the statement.

Therefore we will assume from now on that |ωC⊗η−1| has no base points. Consider

!η := φη(C) ⊂ P
2.

Since φη is a morphism, we have the following possibilities:

• φη : C → !η has degree 1 and !η is an integral sextic;
• φη : C → !η has degree 2 and !η is an integral cubic;
• φη : C → !η has degree 3 and !η is an integral conic.

All these cases actually occur, but we will show that for a general curve C, !η is a
sextic and Sing!η consists of six ordinary double points in general position.

To this purpose we consider the image S ⊂ Pic2(C) of the Abel map

a : C(2) → Pic2(C).

Then the cohomology class of S is θ 2/2, where θ is the class of a theta divisor in
Pic2(C). In particular, we have S 2 = 6. For any η ∈ Pic0(C), let Sη be the trans-
late of S by η. Moreover, let

Zη := a∗Sη

be the pull-back of Sη under the Abel map. By the transversality of a general trans-
late, Sη is transversal to a for general η. Therefore, in this case, the scheme Zη
consists of six smooth and distinct points.
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Lemma 1.4. For d ∈C(2), the following conditions are equivalent:

(1) φη contracts d to a point ;
(2) h0(η(d )) ≥ 1;
(3) d ∈Zη.
Proof. By assumption, |ωC ⊗ η−1| has no base points. Then φη contracts d to a
point iff h0((ωC ⊗ η−1)(−d)) ≥ 2. On the other hand, h0((ωC ⊗ η−1)(−d)) ≥ 2
iff h0(η(d )) ≥ 1 iff d ∈Zη.
In the following lemma we prove that, with respect to Zη and φη, a general hyper-
elliptic curve C has a sufficiently general behavior.

Lemma 1.5. Let C be a general hyperelliptic curve of genus 4 and let η be any
nontrivial line bundle on C such that η3 ∼= OC. Then:

(1) each element d ∈Zη is a smooth divisor of degree 2;
(2) φη : C → !η is a birational morphism;
(3) Zη is a smooth, 0-dimensional scheme supported in six points;
(4) !η is a sextic with an ordinary singular point of multiplicity 4.

Moreover, conditions (1)–(3) hold also for a general C of genus 4.

Proof. (1) Assume by contradiction that d ∈ Zη is not smooth. Then it follows
that d = 2p for some p ∈C. On the other hand, Lemma 1.4 implies that η(d ) ∼=
OC(d

′), where d ′ is an effective divisor. Therefore we have d ′ = q + r for some
q, r ∈ C. Since η3 is trivial, the divisors 6p and 3q + 3r generate a pencil P. To
prove (1), we show that a pencil like P cannot exist on a general hyperelliptic
curve C.

First, let us show that P has no base points: if P has a base point x, then x = p

and p ∈ {q, r}. Hence 3p is a fixed component of P. Moreover, |3p| is a pencil of
degree 3 and, since C is hyperelliptic, it has a base point. But then 4p is a fixed
component of P and p = q = r: a contradiction.

Now let |h| be the hyperelliptic pencil ofC.We consider the morphismψ : C →
P

1 × P
1, defined by P × |h|, and the curve ! := ψ(C). Two cases are possible:

(A) ! has bidegree (6, 2) and ψ : C → ! is birational;
(B) ! has bidegree (3, 1) and ψ : C → ! has degree 2.

In both cases we show that C cannot be a general hyperelliptic curve.
(A) Note that ψ(q) and ψ(r) are in the same line l of bidegree (0, 1) and

ψ(p) /∈ l. Indeed, the pull-back by ψ of the ruling of lines of bidegree (0, 1)
is the pencil P generated by the divisors 6p and 3q + 3r. Now let us fix coordi-
nates (X0 : X1)× (Y0 : Y1) on P

1 × P
1 such that

l = {Y1 = 0}, ψ(p) = {X0 −X1 = Y0 = 0},
{ψ(q),ψ(r)} = {X0Xe = Y1 = 0},

where e = 1 if ψ(q) �= ψ(r) and e = 0 if ψ(q) = ψ(r). After this choice, ! is an
element of the 8-dimensional linear system � defined by the equation
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aY 2
0X

3
0X

3
e + bY 2

1 (X0 −X1)
6 +

∑
i=0,...,6

ciY0Y1X
i
0X

6−i
1 = 0.

A general element of � is smooth; moreover, dim� = 8. On the other hand,
pa(!) = 5, whence ! is singular and belongs to the 7-dimensional discriminant
hypersurface. ⊂ �. Note that the stabilizerG ⊂ Aut(P1×P

1) of � has dimen-
sion ≥ 1, whence dim./G ≤ 6. But then C has at most 6 moduli and it is not
general hyperelliptic.

(B) ! is a smooth rational curve of type (3, 1). Note that 6p = ψ∗l1 and
3q + 3r = ψ∗l2, where l1, l2 are lines of type (0, 1). The latter equality implies
l2 ·! = 3v for some v ∈ l2, hence q + r = ψ∗v. The first one implies l1 ·! = 3u
for some u∈ l1, hence 2p = ψ∗u. Since ! is rational, it follows that ψ∗(u− v) =
2p − (q + r) ∼ 0. Then η ∼= OC and this case is excluded.

(2) A non-birational φη ramifies at some p ∈C. Hence φη contracts 2p and, by
Lemma 1.4, 2p ∈Zη. By (1) this is impossible for a general C.

(4) Let |h| be the g1
2 of C; then ωC ∼= OC(3h). This implies that |ωC ⊗ η−1| =

|h + b|, where b ∈ |η−1(2h)|. Here b has degree 4 and φη(b) is a point o. Then,
since φη is birational, o is a 4-tuple point of !η. By the genus formula, Sing!η =
{o} and, by (1), b is smooth. Hence o is an ordinary 4-tuple point.

(3) If b = p1+p2+p3+p4 is the divisor considered above, then the conclusion
is definitely clear: by (4) Zη is a scheme supported in the six points pi + pj , 1 ≤
i < j ≤ 4. On the other hand, we know that Zη has length 6. So Zη is smooth.

Finally we remark that statements (1)–(3) define an open subset U in the moduli
space of curves of genus 4, where the statements are true. By the previous part of
the proof, U is not empty. This completes the proof.

Lemma 1.6. If C is general, then !η has no point of multiplicity m ≥ 3.

Proof. We can assume that !η is a non-hyperelliptic sextic. Then each point
o ∈ !η has multiplicity m ≤ 3. To exclude the case m = 3, we consider the
theta divisor 4 := {N ∈ Pic3(C) | h0(N ) ≥ 1} and observe the following.

Claim. !η has a triple point iff L⊗ η ∈4 iff M ⊗ η−1∈4, where |L| and |M|
are the only trigonal pencils on C.

Proof of Claim. Note that the following conditions are equivalent:

(1) !η has a triple point o;
(2) there exists an effective d ∈Div3(C) such that φη(d ) = o;
(3) there exists an effective d ∈Div3(C) such that h0(ωC ⊗ η−1(−d)) = 2;
(4) there exists an effective d ∈Div3(C) such that h0(η(d )) = 2.

On the other hand, a non-hyperellipticC has at most two trigonal line bundles, say
L and M. Therefore (2) holds iff {L,M} = {ωC ⊗ η−1(−d), η(d )} iff L⊗ η ∈4
iff M ⊗ η−1∈4. This proves the claim.

The previous conditions cannot hold for all η ∈ Pic0
3(C) − {OC}. Indeed, this

would imply that the set L + Pic0
3(C) := {η ⊗ L, η ∈ Pic0

3(C)} is in the theta
divisor 4 of Pic3(C). Equivalently, Pic0

3(C) would be contained in
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40 := {N ⊗ L−1, N ∈4} = {N−1 ⊗M, N ∈4},
where the latter equality follows from

N ∈4 ⇐⇒ ωC ⊗N−1∈4 and ωC ∼= L⊗M.

But it is well known that, in the embedding defined by 340, the set Pic0
3(C)−{OC}

is not in a hyperplane. Hence there exists a nontrivial η such that h0(η(d )) ≤ 1
for each effective d ∈ Div3(C). Since R4,3 is irreducible, this property holds for
all η ∈ Pic0

3(C)− {OC} if C is general.

The next definition is well known; it will be important in the sequel.

Definition 1.1. Six distinct points of P
2 are in general position if no conic con-

tains all of them and no line contains three of them.

We are now ready to prove the main result of this section.

Theorem 1.7. Let C be a general curve of genus 4 and let η be any nontrivial
line bundle on C such that η3 ∼= OC. Then:

(1) φη : C → !η is a birational morphism;
(2) Sing!η consists of six ordinary nodes in general position.

Proof. From the previous lemmas we know that φη is a birational morphism and
that !η is a sextic with at most double points. Let Zη be the scheme considered in
Lemma 1.4. We know from Lemma 1.5 that Zη consists of six distinct and smooth
effective divisors of degree 2 on C and that each of them is contracted by φη to a
double point of !η. It is easy to deduce that Sing!η consists of six ordinary nodes:
x1, . . . , x6. It remains to show that they are in general position.

Assume that a conic B contains Sing!η. It is easy to deduce that, for any line
L ⊂ P

2, φ∗L∈ |ωC |, whence |ωC | = |ωC ⊗ η−1|: a contradiction.
The condition that no line contains three points of Sing!η is equivalent to the

following condition on Zη: for any three distinct elements u, v, t ∈ Zη, their sum
u+v+ t is not in |ωC⊗η−1|. So it suffices to prove the latter condition for at least
one pair (C, η). Let C be general hyperelliptic; from the proof of Lemma 1.5(4)
we know that

Zη = {xi + xj ; 1 ≤ i < j ≤ 4} for some b = x1 + x2 + x3 + x4

and that |ωC ⊗ η−1| = |b + h|, where |h| is the hyperelliptic pencil of C. Let
u+ v + t ∈ |ωC ⊗ η−1| for some u, v, t ∈Zη; then u+ v + t ∼ b+ h. Moreover,
u + v + t − b is effective because Supp b ⊂ Supp u ∪ Supp v ∪ Supp t. Hence
u+ v + t − b = p ′ + p ′′, where p ′,p ′′ ∈ Supp b and b ≡ h+ p ′ + p ′′. But then
|ωC ⊗ η−1| = |2h+ p ′ + p ′′| and p ′,p ′′ are base points: a contradiction.

We end this section by giving some definitions and fixing some further notation
that will be used in the sequel.

Definition 1.2. Let Hilb6(P
2) be the Hilbert scheme of six points in P

2. Then
X is the open subset of Hilb6(P

2) parameterizing those schemes x that are sup-
ported in six points in general position.
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Definition 1.3. R4,3 is the moduli space of pairs (C, η) such that:

(1) C is a smooth, irreducible projective curve of genus 4;
(2) η is a nonzero 3-torsion element of Pic0(C).

Here R4,3 is an irreducible quasi-projective variety of dimension 9. Throughout
the paper we will keep the previous notation.

Remark 1.1. Note that we have a natural involution i on R4,3 sending (C, η) to
(C, η−1). We will denote the quotient R4,3/i by R4,〈3〉. Obviously, R4,〈3〉 is the
moduli space of pairs of smooth, irreducible projective curves of genus 4 together
with a cyclic subgroup of Pic0(C) of order 3.

2. A Cup Product Map on the Cubic Surface

It is important to point out that Theorem 1.7 relates the family of pairs (C, η) to
smooth cubic surfaces in P

3.

More precisely, assume that (C, η) defines a general point of R4,3. Then Sing!η
is an element of X—that is, its points are in general position. Let σ : S → P

2 be
the blow-up of Sing!η. Then S is a del Pezzo surface of degree 3; in other words,
its anticanonical divisor −KS is semiample andK2

S = 3. It is well known that, for
the blow-up of P

2 in six distinct points, the following conditions are equivalent:

• the six points are in general position;
• the anticanonical divisor is very ample.

Thus we will assume that our S is anticanonically embedded in P
3 as a smooth

cubic surface. We also remark that

(1) C ∈ |−2KS |,
(2) η ∼= OC(−KS − L), and
(3) E · C = ∑

d∈Zη d,

where L ∼= σ ∗OP2(1) and E is the exceptional divisor of σ. In particular, C is a
quadratic section of S and a canonical curve of genus 4.

Remark 2.1. Though Sing!η is a set of points in general position, still we did
not prove that it is a general point of X , so that S is a general smooth cubic sur-
face. The proof of this property is a relevant step of this section (see Theorem 2.9).

In the sequel we will deal with any element x ∈X supported on the set {x1, . . . , x6}.
Let σ : S → P

2 be the blow-up of x and let Ei = σ−1(xi), i = 1, . . . , 6. As usual,
we will have the line bundle

L := σ ∗OP2(1)

and the exceptional divisor E := E1 + · · · + E6 of σ.

Definition 2.1. For any C ∈ |−2KS | we define:

• sC := any nonzero vector of H 0(OS(−2KS)) vanishing on C;
• ηC := OC(−KS − L);
• nC := C · E.
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It is easily checked that η⊗3(nC) ∼= OC(−2KS).

Proposition 2.1. For any C ∈ |−2KS |, the sheaf ηC is nontrivial.

Proof. Consider the long exact sequence associated to the exact sequence

0 → OS(KS − L)→ OS(−KS − L)→ ηC → 0.

We have h1(OS(KS − L)) = 0. Since no conic contains x, we have also
h0(OS(−KS − L)) = 0. Then h0(ηC) = 0 and ηC is nontrivial.

Note that σ|C is the map defined by |ωC ⊗ η−1
C |. Therefore, if (C, η) is a pair as in

Section 1 and x = Sing!η, one has η ∼= ηC.

We want to understand the family of smooth curves C ∈ |−2KS | such that
η3
C
∼= OC. To this purpose, we analyze the cup product

∪ : H 0(OS(−2KS))⊗H1(OS(−E))→ H1(OS(−2KS − E)).
First we observe that there is a standard exact sequence

0 → OS(−E)→ OS(−2KS − E)→ η3
C → 0

just because −C − 3KS − 3L ∼ −E. Second, we consider the associated long
exact sequence and recall that the induced map

µC : H1(OS(−E))→ H1(OS(−2KS − E))
is the cup product with sC. Let

s⊥C := {v ∈H1(OS(−E)) | v ∪ sC = 0}
be the ∪-orthogonal space of sC. The next property is immediate.

Proposition 2.2. Let C ∈ |−2KS |. Then H 0(η3
C) = s⊥C .

Proof. Since h0(OS(−2KS−E)) = 0, the preceding long exact sequence implies
that H 0(η3

C) = KerµC = s⊥C .

Moreover, we have the following result.

Proposition 2.3. Let C ∈ |−2KS | be a smooth curve. Then the following con-
ditions are equivalent :

(1) ηC is a nonzero 3-torsion element of Pic0(C);
(2) the ∪-orthogonal space to sC has dimension 1;
(3) nC is the base locus of a pencil Q ⊂ |−2KS |.
Proof. (1)⇔ (2): This is clear from the previous remarks.
(2)⇒ (3): By η⊗3(nC) ∼= OC(−2KS) and η⊗3 ∼= OC , it follows that OC(nC) ∼=

OC(−2KS). By h1(OS) = 0, the restriction map

H 0(OS(−2KS))→ H 0(OC(−2KS))

is surjective. Hence nC is cut out on C by a member of |−2KS |.
(3)⇒ (2): This follows by reversing the argument.
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Schlaefli’s Double Six. We need to consider the six exceptional lines defined
as follows:

Fi := strict transform of the conic through x − {xi} under σ, i = 1, . . . , 6.

The twelve lines E1, . . . ,E6,F1, . . . ,F6 form a configuration of lines on S that is
well known as a Schlaefli’s double six. In particular, the divisor

F := F1 + · · · + F6

is the exceptional divisor of a second blow-up σ̂ : S → P
2 defined by

|L̂| := |5L− 2E|.
It is immediately checked that OC(−KS − L̂) ∼= OC(KS + L) ∼= η−1

C . Let us also
point out that σ̂|C : C → P

2 is the morphism associated to |ωC ⊗ ηC |.
Remark 2.2. For later use we observe that, for (C, η)∈R4,3, Sing!η∪Sing!η−1

gives rise to a Schlaefli’s double six on S.

Since h1(OS(−E)) = 5, we fix from now on the following notation:

• P
4 := P(H1(S, OS(−E)));

• v̄ ∈ P
4 is the point defined by v ∈H1(S, OS(−E)) \ {0}.

Now we study the ∪-orthogonal space v⊥ of a vector v ∈H1(OS(−E)). Note
that v corresponds to a vector of Ext1(OS(−2KS), OS(−2KS −E)). Therefore, a
general v defines an extension

0 → OS(−2KS − E)→ V → OS(−2KS)→ 0,

where V is a rank-2 vector bundle on S. It is easy to compute that

det V ∼= OS(F ).

Passing to the long exact sequence, the coboundary map

∂v : H 0(OS(−2KS))→ H1(OS(−E − 2KS))

is the cup product with v. Therefore it follows that

v⊥ = Ker(∂v) ∼= H 0(V ).
From the same long exact sequence we see that h2(V ) = 0. Therefore, applying
Riemann–Roch to V, we conclude that

dim v⊥ = h0(V ) ≥ 2.

Definition 2.2. Let v̄ ∈ P
4 be the point defined by the vector v. Then

Pv̄ := P(v⊥) (= P(H 0(V ))).

Here Pv̄ is a linear system contained in |−2KS |, and by the previous remarks
we have

dimPv̄ ≥ 1.
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In order to describe Pv̄ , we need to understand its position with respect to the lin-
ear subspaces =i ⊂ |−2KS |, which are defined as

=i := {C ∈ |−2KS | | Fi ⊂ C}, i = 1, . . . , 6.

We have the following result.

Theorem 2.4. Assume that Pv̄ has no fixed component. Then

(1) Pv̄ is a pencil,
(2) Pv̄ ∩=i is a point for each i = 1, . . . , 6, and
(3) the base locus of Pv̄ is a quadratic section of F.

Proof. We know that det V ∼= OS(F ) and h0(V ) ≥ 2. Let us consider s ∈
H 0(V ) \ {0} and its scheme of zeros Zs. Since c2(V ) = 0, either Zs = ∅ or
dimZs = 1.

Claim. If Pv̄ does not have a fixed component, then there exists a s ∈H 0(V ) \
{0} such that Zs = ∅.

We will prove the claim in a moment. We can now assume that Zs = ∅. Then
s defines an exact sequence

0 → OS → V → OS(F )→ 0.

Since S is regular, the associated long exact sequence yields h0(V ) = 2. Hence
Pv̄ is a pencil and (1) follows.

To prove (2), tensor the preceding exact sequence by OS(−Fi) and consider the
associated long exact sequence. Since h1(OS(−Fi)) = 0 and Fi is a component of
F, it follows that h0(V(−Fi)) = h0(OS(F − Fi)) = 1. On the other hand, the ex-
tension defined by v induces the following commutative diagram with exact lines:

H 0(OS(−2KS − E − Fi)) ��

��

H 0(V(−Fi)) u ��

��

H 0(OS(−2KS − Fi))

��

H 0(OS(−2KS − E)) �� H 0(V ) �� H 0(OS(−2KS)).

Here u is injective because h0(OS(−2KS −E−Fi)) = 0. The vertical arrows are
injective, too. Then the image of H 0(V(−Fi)) in H 0(OS(−2KS)) is the unique
element C ∈Pv̄ that contains Fi. This implies (2).

Proof of Claim. Assume that dimZs = 1 for all s ∈ H 0(V ) − {0}. Let s ∈
H 0(V )− {0} and write Zs = Z0,s +Ds , where Z0,s is 0-dimensional andDs is a
curve. Consider the exact sequence

0 → OS(Ds)→ V → IZ0,s
(F −Ds)→ 0,

where IZ0,s
is the ideal sheaf of Z0,s in S. Applying the same argument as be-

fore but replacing Fi by Ds , it follows that each C ∈ Pv̄ contains a curve Ds. On
the other hand, Ds �= C: if not, OS(−2KS) would be a subbundle of V, which is
impossible for s �= 0. Thus we have shown that each C ∈ Pv̄ is reducible. For
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a general C ∈ Pv̄ , let d := −KS · B be the minimal degree of an integral curve
B ⊂ C. Then one has d ≤ 3. If d = 1, then B is a line and a fixed component of
Pv̄; if d = 2, then B is a conic and dim|B| = 1. It is easy to see that the family
of reducible curves C ∈ |−2KS | containing some conic of |B| is exactly the Segre
embedding of P

4 × P
1 := |B| × |−2KS − B|. Note that Pv̄ is a linear space in

P
4 × P

1 and that the projection Pv̄ → |B| is a surjective morphism. This implies
that Pv̄ = {E} × |B| for some E ∈ |−2KS −B|. Hence Pv̄ is a pencil and E is its
fixed component. If d = 3 andB is a skew cubic, then dim|B| = 2. The argument
is completely analogous to the previous one: we leave it to the reader. The last
case is when d = 3 and B is a plane section of S. Then any C ∈ Pv̄ is the union
of two elements B,B ′ of |−KS |. It is well known that then either one of them is a
fixed component or the pencil Pv̄ consists of a pencil of |−KS | containing B and
B ′. Since B is integral, the latter pencil has no fixed components. Moreover, by
monodromy, one cannot distinguish between B and B ′ when C varies in Pv̄. This
implies that both B and B ′ are inDs and hence thatDs = B +B ′ = C. Therefore
OS(−2KS) is a subbundle of V, a case already excluded. Thus we have proved the
Claim.

To prove (3), note that the base locus m of Pv̄ has degree 12. By (2), Pv̄ con-
tains some Ci = Di + Fi, i = 1, . . . , 6. Let C ∈ Pv̄ be an element not containing
F1, . . . ,F6. Then mi := C · Fi is a subscheme of m. The same holds for C · F =∑
mi, since the Fi are disjoint. Hence m = C · F for degree reasons.

Definition 2.3. For any C ∈ |−2KS | we define mC := C · F.
The next result simply summarizes some useful equivalent conditions.

Proposition 2.5. Let C ∈ |−2KS | be smooth. Then the following conditions are
equivalent :

(1) ηC is a nontrivial 3-torsion element of Pic0(C);
(2) C ∈Pv̄ for some v̄ ∈ P

4;
(3) nC is the base locus of a pencil Q ⊂ |−2KS |;
(4) mC is the base locus of a pencil P, and P = Pv̄ for some v̄ ∈ P

4.

Proof. Conditions (1), (2), and (3) are equivalent by Proposition 2.3. To prove their
equivalence with (4), we recall that L̂ = 5L − 2E defines a morphism σ̂ : S →
P

2, which is the contraction of the previously defined divisor F. It is clear that
OC(−KS − L̂) ∼= η−1

C . Then, if we apply Proposition 2.3 to σ̂ and η−1
C , it follows

that η−1
C is a nontrivial 3-torsion element of Pic0(C) iff (4) holds. Proposition 2.3

also implies the last statement.

Proposition 2.6. There exists a v̄ ∈ P
4 such that Pv̄ is a pencil with no fixed

component and the general element C ∈Pv̄ is smooth.

Proof. We use Schlaefli’s double six configurationE1, . . . ,E6,F1, . . . ,F6. Observe
that |−2KS | contains the elements
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C0 := E1 + E2 + E3 + F4 + F5 + F6,

C∞ := F1 + F2 + F3 + E4 + E5 + E6.

Obviously, the pencil P generated by C0 and C∞ has no fixed components. With
a small additional effort one shows that its base locusm is a smooth quadratic sec-
tion of F. Hence a general C ∈ P is smooth and m = mC. Then Proposition 2.5
implies that P = Pv̄ for some v̄ ∈ P

4.

Corollary 2.7. The cup product

∪ : H1(OS(−E))⊗H 0(OS(−2KS))→ H1(OS(−E − 2KS))

is surjective for any x ∈X .
Proof. Let ∪v : 〈v〉 ⊗H 0(OS(−2KS))→ H1(OS(−E − 2KS)) be the cup prod-
uct with a general v ∈ H1(OS(−E)). By Theorem 2.4 and Proposition 2.6,
dim Ker∪v = v⊥ = 2. Since

dim(〈v〉 ⊗H 0(OS(−2KS))) = 10 and h1(OS(−E − 2KS)) = 8,

it follows that ∪v is surjective. Hence ∪ is surjective.

We mention without proof, since it is not needed in the sequel, a method to de-
scribe those Pv̄ having fixed components.

Proposition 2.8. LetD be the fixed curve of a linear system Pv̄. ThenD is con-
tained in a quadratic section of S. Moreover, V fits in an exact sequence

0 → OS(D)→ V → IZ(F −D)→ 0,

where dimZ = 0, IZ is the ideal sheaf of Z, and degZ +D(F −D) = 0.

Remark 2.3. For instance, let v̄i ∈ P
4 define the natural extension

0 → OS(−2KS − E)→ OS(−2KS − E + Ei)⊕ OS(−2KS − Ei)
→ OS(−2KS)→ 0.

In this case, we have D = Ei for the fixed curve of Pv̄i and Z = 0. Moreover,

Pv̄i = |−2KS − Ei | = P
6.

All this suggests that we should study the projectivized set of decomposable ten-
sors v ⊗ s such that v ∪ s = 0 and div(s) is smooth. To describe this set, we
consider:

• P
49 := P(H1(−E)⊗H 0(−2KS));

• the Segre embedding P
4 × |−2KS | ⊂ P

49;
• the linear subspace P(Ker∪) ⊂ P

49.

Then we give the following definition.

Definition 2.4. Tx := P(Ker∪) ∩ P
4 × |−2KS |.
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It is clear from the definition that

Tx = {(v̄,C)∈ P
4 × |−2KS | | h0(η3

C) ≥ 1}
and also that, for any v̄ ∈ P

4, one has

Tx ∩ {v̄} × |−2KS | = {v̄} × Pv̄.
It turns out that Tx is reducible: this is clear when one considers the example of
Remark 2.3 and Theorem 2.9. However, we are now ready to show that there
exists a unique irreducible component containing all pairs (v̄,C) ∈ Tx such that
C is smooth. To prove this, one more definition will be convenient.

Definition 2.5.

• Mx := the Zariski closure of {(v̄,C)∈Tx | dimPv̄ = 1};
• M

o
x := {(v̄,C)∈Tx | C is smooth};

• px : Mx → P
4 and qx : Mx → |−2KS | are the projection maps.

By Proposition 2.6, Mx and M
o
x are not empty. Notice also that M

o
x ⊂ Mx. Indeed,

let (v̄,C) ∈ M
o
x; then C ∈ Pv̄. Since C is integral, Pv̄ has no fixed component.

Hence, by Theorem 2.4, dimPv̄ = 1. Clearly, M
o
x is open in Mx.

We are now ready to conclude this section.

Theorem 2.9. For any x ∈X , the projection px : Mx → P
4 is surjective. More-

over, px is a locally trivial P
1-bundle over a nonempty open set of P

4. In partic-
ular, Mx is irreducible and rational.

Proof. The fibre of px at v̄ is the linear space Pv̄. By definition, Mx is the Zariski
closure of the union of the fibres of minimal dimension 1. Hence Mx is a union of
irreducible components of Tx. Each of them has dimension≥ 5. Indeed, by Corol-
lary 2.7, the cup product map ∪ is surjective. Then the codimension of P(Ker∪)
in P

49 is h1(OS(−2KS −E)) = 8. Hence, counting dimensions, each irreducible
component of Tx has dimension ≥ 5. But over a dense open set U of px(Mx), the
fibre of px is P

1. Hence px(Mx) = P
4 and Mx is irreducible. Moreover, Mx is a

P
1-bundle over U.

3. Moduli of Plane Models of Cubic Surfaces

Starting from a pair (C, η), we came up with a set x ∈X of six points of P
2 in gen-

eral position. It is now time to globalize our constructions over the moduli space
of x. This space can be viewed as the GIT-quotient X/PGL(3), and it will be dis-
cussed in the next section. On the other hand, it is well known that this space is
birational to another moduli space, the space of pairs defined as follows.

Definition 3.1. A pair (S,L) is a plane model of a cubic surface if:

• S is a del Pezzo surface of degree 3;
• −KS is very ample;
• L∈ Pic(S), L2 = 1, and KS · L = −3.
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Definition 3.2. The moduli space of pairs (S,L) will be denoted by P.
As is well known, every line bundle L∈ Pic(S) satisfying the listed conditions de-
fines a map σ : S → P

2 that is the blow-up of a set x ∈ X . It is also well known
that the assignment (S,L)→ x induces a map

P → X/PGL(3),

which is a birational morphism.
For the blow-up σ : S → P

2, we will keep our usual conventions:

• x = {x1 . . . x6} = fundamental locus of σ−1;
• E = the exceptional divisor of σ ;
• Ei = σ−1(xi);
• S is embedded in P

3 by |−KS |.
There are 72 plane models of the same cubic S, and they come in pairs: each pair
defines a Schlaefli’s double six.

Remark 3.1. As already mentioned, a smooth curve C of genus 4 together with
a subgroup of order 3 in Pic0(C) defines a Schlaefli’s double six.

Let (S1,L1) and (S2,L2) be plane models of cubic surfaces.

Definition 3.3. A morphism of plane models of cubic surfaces

ψ : (S1,L1)→ (S2,L2)

is a morphism ψ : S1 → S2 such that L2 = ψ∗L1. We will say that

(1) ψ is an isomorphism if ψ is biregular and that
(2) ψ is an automorphism if, furthermore, (S1,L1) = (S2,L2).

Proposition 3.1. For a general plane model (S,L) of a cubic surface, the only
automorphism is the identity.

Proof. Let ψ : (S,L)→ (S,L) be an automorphism. The assumption ψ∗L ∼= L

implies ψ∗E = E. Then ψ induces a map ψ̄ ∈Aut(P2) such that ψ̄(x) = x. This
implies ψ̄ = idP2 and hence ψ = idS.

The moduli space P contains a nonempty open set

P o ⊂ P,

which is the moduli space of pairs (S,L) with trivial automorphism group. From
the general theory of moduli of del Pezzo surfaces and their explicit construction,
as in [CoVL], it follows that on P o there exists a universal family representing the
moduli functor. This is a pair (S, L), where S is a variety endowed with a mor-
phism π : S → P o and a line bundle L. We call such a pair the universal plane
model of a cubic surface. In particular, it has the following properties:

• the fibre of π at a moduli point of (S,L) is S;
• the restriction of L to this fibre S is L.
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Let ω be the relative dualizing sheaf of π. Then we consider the sheaves

(i) H := π∗(ω−2),
(ii) E := R1π∗(L−3 ⊗ ω−1), and

(iii) F := R1π∗(ω−3 ⊗ L−3).

Let u be the moduli point of (S,L). For the fibre over u, we have:

(i) Hu
∼= H 0(S, O(−2KS));

(ii) Eu ∼= H1(S, O(−E));
(iii) Fu

∼= H1(S, O(−2KS − E)).
Recall that h0(OS(−2KS)) = 10, h1(OS(−E)) = 5, and h1(OS(−E− 2KS)) =

8. Therefore, by Grauert’s theorem, it follows that H, E , and F are vector bundles
of rank 10, 5, and 8, respectively. Finally we consider the morphism

µ : E ⊗ H → F,

which fibrewise over u induces the cup product

∪ : H 0(S, OS(−2KS))⊗H1(S, OS(−E))→ H1(S, OS(−2KS − E)).
By Corollary 2.7, ∪ is surjective. Hence µ is surjective and the kernel of µ is a
vector bundle: we will denote it as K.

We fix the following notation for the induced projective bundles:

• K := P(K);
• P := P(E ⊗ H);
• E := P(E );
• H := P(H).
Since F has rank 8, K has codimension 8 in P. We denote by

Ku, Pu, Eu, Hu

(respectively) the fibres at u of the projective bundles K , P, E , H. We also need
to consider the set of decomposable tensors

� := E ×P o H ⊂ P.

This is the subvariety of P whose fibre at u is the Segre product

Eu × Hu ⊂ Pu.

In particular, � is endowed with the two natural projections

p : � → E and q : � → H.

If u is the moduli point of (S,L), then Hu = |−2KS |. Hence a point of H is a
pair (u,C), where u is as before and C ∈ |−2KS |. In particular, H contains the
following open set:

U := {(u,C)∈H | C is smooth}.
Definition 3.4. M is the Zariski closure of

M
o := K ∩ E ×P o U .
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Here M
o is a scheme over P o. Let M

o
u be its fibre at u∈P o; then

M
o
u = Ku ∩ Eu × U,

where U = {C ∈ |−2KS | | C is smooth}.
We already met M

o
u. Indeed, u is the moduli point of (S,L), and |L| defines the

blow-up σ : S → P
2 of a given set x ∈X . In Definition 2.5 we considered

M
o
x = P(Ker∪) ∩ P

4 × U,

where U is the same as before. But it is clear that Eu = P
4 = P(H1(OS(−E)))

and that Ku = P(Ker∪). Hence M
o
u = M

o
x.

In Section 2 we described M
o
x and Mx. So we are now in position to describe

M and its projection map
p|M : M → E.

Theorem 3.2. M is irreducible and dominates E via p|M. This map is a lo-
cally trivial P

1-bundle over a nonempty open set of E; that is, M is birational to
P × P

4 × P
1.

Proof. Note that, at a general point (u,C) ∈ E , the fibre of p is Mx. The state-
ment then follows from the description of Mx given in Theorem 2.9. We omit for
brevity several standard details.

4. A Birational Model for R4,3 and
the Rationality of R4,〈3〉

The aim of this section is to prove that M is birational to the moduli space R4,3

of étale triple covers of genus-4 curves. Therefore, by Theorem 3.2 we have that
R4,3 is birational to P × P

5.

Remark 4.1. It is an obvious consequence of our construction that the involu-
tion i : R4,3 → R4,3, i(C, η) = (C, η−1), corresponds to the involution (j, id):
P × P

5 → P × P
5, where j is the Schlaefli involution on P.

To begin, we observe that a point in the open set M
o (defined in the previous sec-

tion) is a triple (u, v̄,C), where u is the moduli point of a plane model of a cubic
(S,L) or, equivalently, of six unordered points x ∈ X in general position in P

2

and (v̄,C) ∈ Mu = M
o
x . This is equivalent to saying that C is a smooth element

of |−2KS | and that
v ∪ sC = 0,

where v ∈H1(OS(−E)) defines the point v̄ ∈ Eu and sC ∈H 0(OS(−2KS)) is an
equation of C. We proved in Section 2 that η := OC(−L − KS) is a nonzero 3-
torsion element of Pic0(C). Hence M comes equipped with a natural rational map

α : M → R4,3
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sending the triple (u, v̄,C) to the moduli point of (C, η). Conversely, we want now
to show that the triple (u, v̄,C) is uniquely reconstructed from the pair (C, η). This
implies that there exists a second rational map

β : R4,3 → M

that is inverse to α. We proceed in several steps.

Step 1

We observe that the image of |ωC ⊗ η−1| is a plane sextic !η such that Sing!η ≡
x mod PGL(3). This follows because η ∼= OC(−KS−L). SinceωC ∼= OC(−KS),
we have |ωC ⊗ η−1

C | = |OC(L)|. Hence, up to projective automorphisms, !η =
σ(C) and therefore Sing!η = x mod PGL(3).

Step 2

Starting from (C, η), we first associate to it the moduli point u of the pair (S,L)
or, equivalently, the moduli point of Sing!η. Next, we reconstruct uniquely the
curve C in the linear system |−2KS |. More precisely, we have to show that there
exists a unique D ∈ |−2KS | such that D ∼= C and OD(−KS − L) ∼= η. This fol-
lows from the next lemma.

Lemma 4.1. Assume that C1,C2 ∈ |−2KS | are smooth biregular curves such that
ε1
∼= ε2, where εi = OCi (−KS − L). Then C1 = C2.

Proof. Applying the same proof as the one of Proposition 2.1, it follows that εi
is nontrivial. Let !i = σ(Ci). Then, under our assumption, !1 and !2 are projec-
tively equivalent. Since Sing!1 = Sing!2 = x, there exists an a ∈Aut(P2) such
that a(x) = x. Since the pair (S,L) has no automorphism, a is the identity and
hence C1 = C2.

Remark 4.2. Let Pic0,4 be the universal Picard variety of genus 4 and degree 0
and let s : |−2KS | → Pic0,4 be the rational map sending C to the moduli point of
the pair (C, OC(−KS − L)). By Lemma 4.1, s is injective on the open set U of
smooth curves.

Step 3

So far we have reconstructed uniquely from (C, η) the moduli point u and a copy
of C in |−2KS | such that η ∼= OC(−KS −L). Finally, the point v̄ is also uniquely
reconstructed: consider the standard exact sequence

0 → OS(−E)→ OS(−E − 2KS)→ η3 → 0.

Passing to the long exact sequence, the image of H 0(η3) via the coboundary map
is exactly the vector space v̄ generated by v.

By Steps 1–3, the triple (u, v̄,C) is uniquely defined by the isomorphism class of
(C, η). Hence there exists a rational map
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β : R4,3 → M

sending the moduli point of (C, η) to (u, v̄,C). We conclude as follows.

Theorem 4.2. α : M → R4,3 is birational. In particular, R4,3 # P × P
5.

Proof. Since M and R4,3 are integral and of the same dimension, α and β are each
the inverse of the other. The second part then follows from Theorem 3.2.

We conclude this section with the following statement.

Theorem 4.3. R4,〈3〉 is rational.

Proof. We have R4,〈3〉 # R4,3/i # P/j ×P
5, where j is the Schlaefli involution.

Moreover, P/j is rational, as shown in the next section.

5. The Rationality of the Moduli Space
of Double Sixes in PPP2

Recall that P is birational to the GIT-quotient X/PGL(3). In this section, we prove
the rationality of the quotient of the moduli space of six unordered points in P

2 by
the Schlaefli involution. In other words, we show that the moduli space of dou-
ble sixes (modulo PGL(3)) in P

2 is rational. A proof of this result is due to Coble
[Cob, p. 176]. A modern proof was kindly communicated to us by Igor Dolgachev.
In the remaining part of this section, we present Dolgachev’s proof. This com-
pletes the proof of the rationality of R4,〈3〉.

Theorem 5.1. The moduli space of double sixes in P
2 is rational.

Proof. Consider the GIT-quotient Y := X/PGL(3). Let . be the big diagonal
in (P2)6. Let P 6

2 = ((P2)6 \.)//SL(3) be the GIT-quotient with respect to the
symmetric linearization of the action of SL(3). Obviously, Y is birationally iso-
morphic to P 6

2 /S6. Recall from [DO] that

P 6
2
∼= ProjR6

2 ,

where R6
2 is the graded algebra with d-homogeneous part (R6

2 )d = (V(d )⊗6)SL(3)

and V(d ) = H 0(P2, OP2(d )).

Let V(1)i be the ith copy of the space V(1) and let t (i)1 , t (i)2 , t (i)3 be a basis of
V(1)i . For any subset I = {i1, i2, i3} of {1, . . . , 6}, denote by DI the determinant
of the matrix 


t
(i1)
1 t

(i1)
2 t

(i1)
3

t
(i2 )
1 t

(i2 )
2 t

(i2 )
3

t
(i3)
1 t

(i3)
2 t

(i3)
3


.

We consider DI as an element of V(1)i1 ⊗ V(1)i2 ⊗ V(1)i3 . By the fundamen-
tal theorem of invariant theory, the vector space (R6

2 )d is spanned by the (tensor)
products of DI such that each k ∈ {1, . . . , 6} appears exactly d times. An explicit
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computation (due to Coble; see [DO]) shows that the graded algebra R6
2 is gener-

ated by five elements of degree 1 given by

x0 = D123D456, x1 = D124D356, x2 = D125D346,

x3 = D134D256, x4 = D135D246

and one element of degree 2:

x5 = D123D145D246D356 −D124D135D236D456.

There is one relation

x 2
5 = (−x2x3 + x1x4 + x0x1 + x0x4 − x0x2 − x0x3 − x 2

0 )
2

− 4x0x1x4(−x0 + x1 − x2 − x3 + x4).

After change of a basis,

(y0, y1, y2, y3, y4, y5) = (x0, x1, x4,−x0 − x2,−x0 − x3, x5),

the relation becomes

y2
5 = (y0y1 + y0y2 + y1y2 − y3y4)

2 − 4y0y1y2(y0 + y1 + y2 + y3 + y4). (∗)
Note that the polynomial on the right-hand side defines a quartic hypersurface in
P

4 isomorphic to the dual of the 10-nodal Segre cubic 3-fold. This hypersurface is
also isomorphic to a compactification of the moduli space of principally polarized
abelian surfaces with level-2 structure (see [Ig]).

Now let us see how the permutation group S6 acts on the generators. Using the
straightening algorithm, we find that the following representatives of the conju-
gacy classes of S6 act on the the space (R6

2 )1—that is, on (x0, . . . , x4)—as follows.

(12): (−x0,−x1,−x2, x0 − x1 + x3,−x0 − x2 + x4).

(12)(34): (−x1,−x0, x2,−x0 + x1 − x3,−x0 − x3 + x4).

(12)(34)(56): (x1, x0, x0 − x1 + x2, x0 − x1 + x3, x4).

(123): (x0, x0 − x1 + x3,−x0 − x2 + x4,−x1,−x2).

(1234): (x0 − x1 + x3, x0, x0 + x2 − x4, x1, x0 + x3 − x4).

(1234)(56): (−x0 + x1 − x3,−x0, x0 − x1 + x2 + x3 − x4,−x1,−x4).

(12345): (−x0 + x1 − x3, x0 + x2 − x4, x0, x0 + x3 − x4, x1).

(123)(45): (−x0,−x0 − x2 + x4, x0 − x1 + x3,−x2,−x1).

(123456): (x0 − x1 + x3,−x0 − x2 + x4,−x0 + x1 − x2 − x3 + x4,
−x0 − x3 + x4, x4).

(123)(456): (x0, x0 + x2 − x4, x0 − x1 + x2 + x3 − x4, x2, x0 − x1 + x2).

This allows us to compute the characters of the representation of S6 on (R6
2 )1, and

we find that this representation is isomorphic to the 5-dimensional irreducible U5

that is obtained from the 5-dimensional standard representation of S6 by compo-
sition with an outer automorphism of S6.

One checks that the polynomial

(y0y1 + y0y2 + y1y2 − y3y4)
2 − 4y0y1y2(y0 + y1 + y2 + y3 + y4)
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is invariant. Therefore, under the isomorphism of representations (R6
2 )1

∼= U5,
this polynomial corresponds to a linear combination of the elementary symmetric
polynomials σ2 and σ4 in variables z0, . . . , z4. Since S6 acts on R6

2 by automor-
phisms of the graded ring, the subspace (R2

6)2 is invariant and the relation (∗)
is S6-invariant. This shows that S6 acts on x5 by changing it to ±x5. It is im-
mediately checked that x5 is not invariant; hence it is transformed via the sign
representation of S6. There is another skew invariant of U5, the square root D
of the discriminant δ of a general polynomial of degree 6, whence we get a fur-
ther invariant of the S6 action—namely, Dx5. We have the equation (Dx5)

2 =
δ(λ1σ

2
2 + λ2σ4), which is invariant. Therefore, we see that X2

6 is isomorphic to a
hypersurface F34 ⊂ P(2, 3, 4, 5, 6,17).

Now we take the quotient of X2
6 by the Schlaefli involution j. By [DO], the

Schlaefli involution is just the association morphism a2,6 : R2
6 → R2

6, which is
given by xi %→ xi for 0 ≤ i ≤ 4, and D123D145D246D356 %→ D124D135D236D456.

This implies that x5 %→ −x5 and the square root D of the discriminant δ is invari-
ant. This implies that X2

6/j is isomorphic to P(2, 3, 4, 5, 6), whence rational.
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