An Elementary Proof of the Cross Theorem in the Reinhardt Case

Marek Jarnicki \& Peter Pflug

1. Introduction and Main Result

The problem of continuation of separately holomorphic functions defined on a cross has been investigated in several papers (e.g., [B; S1; S2; AkR; Za; S3; Sh; $\mathrm{NS} ; \mathrm{NZ1} ; \mathrm{NZ2} ; \mathrm{N} ; \mathrm{AZ} ; \mathrm{Z}])$ and may be formulated in the form of the following cross theorem.

Theorem 1.1. Let $D_{j} \subset \mathbb{C}^{n_{j}}$ be a domain of holomorphy and let $A_{j} \subset D_{j}$ be a locally pluriregular set, $j=1, \ldots, N, N \geq 2$. Define the cross

$$
\boldsymbol{X}:=\bigcup_{j=1}^{N} A_{1} \times \cdots \times A_{j-1} \times D_{j} \times A_{j+1} \times \cdots \times A_{N}
$$

Let $f: \boldsymbol{X} \rightarrow \mathbb{C}$ be separately holomorphic-that is, for any $\left(a_{1}, \ldots, a_{N}\right) \in$ $A_{1} \times \cdots \times A_{N}$ and $j \in\{1, \ldots, N\}$, the function

$$
D_{j} \ni z_{j} \longmapsto f\left(a_{1}, \ldots, a_{j-1}, z_{j}, a_{j+1}, \ldots, a_{N}\right) \in \mathbb{C}
$$

is holomorphic. Then f extends holomorphically to a uniquely determined function \hat{f} on the domain of holomorphy

$$
\begin{equation*}
\hat{\boldsymbol{X}}:=\left\{\left(z_{1}, \ldots, z_{N}\right) \in D_{1} \times \cdots \times D_{N}: \sum_{j=1}^{N} h_{A_{j}, D_{j}}^{*}\left(z_{j}\right)<1\right\}, \tag{*}
\end{equation*}
$$

where $h_{A_{j}, D_{j}}^{*}$ is the upper regularization of the relative extremal function $h_{A_{j}, D_{j}}$, $j=1, \ldots, N$.

Recall that $h_{A, D}:=\sup \left\{u \in \mathcal{P S} \mathcal{H}(D): u \leq 1,\left.u\right|_{A} \leq 0\right\}$.
Observe that in the case where A_{j} is open, $j=1, \ldots, N$, the cross \boldsymbol{X} is a domain in \mathbb{C}^{n} with $n:=n_{1}+\cdots+n_{N}$. Moreover, by the classical Hartogs lemma, every separately holomorphic function on \boldsymbol{X} is simply holomorphic. Consequently, the formula $(*)$ is nothing more than a description of the envelope of holomorphy of \boldsymbol{X}. Thus, it is natural to conjecture that in this case the formula $(*)$ may be obtained without the cross theorem machinery. Unfortunately, we do not know of any such simplification.

[^0]The aim of this note is to present an elementary geometric proof of Theorem 1.1 in the case where D_{j} is a Reinhardt domain and A_{j} is a nonempty Reinhardt open set, $j=1, \ldots, N$. The proof (Section 4) will be based on well-known interrelations between the holomorphic geometry of a Reinhardt domain and the convex geometry of its logarithmic image. Moreover, the cross theorem for the Reinhardt case may be taught in any lecture on several complex variables; its proof needs only some basic facts for Reinhardt domains (see [JP]).

2. Convex Geometry

We begin with some elementary results related to the convex domains in \mathbb{R}^{n}.
Definition 2.1. Let $\emptyset \neq S \subset U \subset \mathbb{R}^{n}$, where U is a convex domain. Define the convex extremal function

$$
\Phi_{S, U}:=\sup \left\{\varphi \in \mathcal{C} \mathcal{V} \mathcal{X}(U), \varphi \leq 1,\left.\varphi\right|_{S} \leq 0\right\}
$$

where $\mathcal{C} \mathcal{V}(U)$ stands for the family of all convex functions $\varphi: U \rightarrow[-\infty,+\infty)$.
Remark 2.2. (a) $\Phi_{S, U} \in \mathcal{C} \mathcal{V} \mathcal{X}(U), 0 \leq \Phi_{S, U}<1$, and $\Phi_{S, U}=0$ on S.
(b) $\Phi_{\operatorname{conv}(S), U} \equiv \Phi_{S, U}$.
(c) If $\emptyset \neq S_{k} \subset U_{k} \subset \mathbb{R}^{n}, U_{k}$ is a convex domain, $k \in \mathbb{N}, S_{k} \nearrow S$, and $U_{k} \nearrow U$, then $\Phi_{S_{k}, U_{k}} \searrow \Phi_{S, U}$.
(d) For $0<\mu<1$, let $U_{\mu}:=\left\{x \in U: \Phi_{S, U}(x)<\mu\right\}$ (observe that U_{μ} is a convex domain with $\left.S \subset U_{\mu}\right)$. Then $\Phi_{S, U_{\mu}}=(1 / \mu) \Phi_{S, U}$ on U_{μ}.

Indeed, the inequality " \geq " is obvious. To prove the opposite inequality, let

$$
\varphi:= \begin{cases}\max \left\{\Phi_{S, U}, \mu \Phi_{S, U_{\mu}}\right\} & \text { on } U_{\mu} \\ \Phi_{S, U} & \text { on } U \backslash U_{\mu}\end{cases}
$$

Then $\varphi \in \mathcal{C} \mathcal{V X}(U), \varphi<1$, and $\varphi=0$ on S. Thus $\varphi \leq \Phi_{S, U}$ and hence $\Phi_{S, U_{\mu}} \leq$ $(1 / \mu) \Phi_{S, U}$ in U_{μ}.
(e) Let $\emptyset \neq S_{j} \subset U_{j} \subset \mathbb{R}^{n_{j}}$, where U_{j} is a convex domain, $j=1, \ldots, N, N \geq 2$. Put

$$
W:=\left\{\left(x_{1}, \ldots, x_{N}\right) \in U_{1} \times \cdots \times U_{N}: \sum_{j=1}^{N} \Phi_{S_{j}, U_{j}}\left(x_{j}\right)<1\right\}
$$

(observe that W is a convex domain with $S_{1} \times \cdots \times S_{N} \subset W$). Then

$$
\Phi_{S_{1} \times \cdots \times S_{N}, W}(x)=\sum_{j=1}^{N} \Phi_{S_{j}, U_{j}}\left(x_{j}\right), \quad x=\left(x_{1}, \ldots, x_{N}\right) \in W
$$

Indeed, the inequality " \geq " is obvious. To prove the opposite inequality we use induction on $N \geq 2$.

Let $N=2$. To simplify notation write $A:=S_{1}, U:=U_{1}, B:=S_{2}$, and $V:=U_{2}$. Observe that $T:=(A \times V) \cup(U \times B) \subset W$; then directly from the definition we get

$$
\Phi_{A \times B, W}(x, y) \leq \Phi_{A, U}(x)+\Phi_{B, V}(y), \quad(x, y) \in T
$$

Fix a point $\left(x_{0}, y_{0}\right) \in W \backslash T$. Let

$$
\begin{gathered}
\mu:=1-\Phi_{A, U}\left(x_{0}\right) \in(0,1], \quad V_{\mu}:=\left\{y \in V: \Phi_{B, V}(y)<\mu\right\}, \\
\varphi:=\frac{1}{\mu}\left(\Phi_{A \times B, W}\left(x_{0}, \cdot\right)-\Phi_{A, U}\left(x_{0}\right)\right) .
\end{gathered}
$$

Then φ is a well-defined convex function on $V_{\mu}, \varphi<1$ on V_{μ}, and $\varphi \leq 0$ on B. Thus, by (d), $\varphi\left(y_{0}\right) \leq \Phi_{B, V_{\mu}}\left(y_{0}\right)=(1 / \mu) \Phi_{B, V}\left(y_{0}\right)$, which finishes the proof.

Now, assume that the formula is true for $N-1 \geq 2$. Put $S^{\prime}:=S_{1} \times \cdots \times S_{N-1}$ and

$$
W^{\prime}:=\left\{\left(x_{1}, \ldots, x_{N-1}\right) \in U_{1} \times \cdots \times U_{N-1}: \sum_{j=1}^{N-1} \Phi_{S_{j}, U_{j}}\left(x_{j}\right)<1\right\} .
$$

Then, by the inductive hypothesis, we have

$$
\Phi_{S^{\prime}, W^{\prime}}\left(x^{\prime}\right)=\sum_{j=1}^{N-1} \Phi_{S_{j}, U_{j}}\left(x_{j}\right), \quad x^{\prime}=\left(x_{1}, \ldots, x_{N-1}\right) \in W^{\prime}
$$

Consequently,

$$
W=\left\{\left(x^{\prime}, x_{N}\right) \in W^{\prime} \times U_{N}: \Phi_{S^{\prime}, W^{\prime}}\left(x^{\prime}\right)+\Phi_{S_{N}, U_{N}}\left(x_{N}\right)<1\right\} .
$$

Hence, using the case $N=2$ (to $S^{\prime} \subset W^{\prime}$ and $S_{N} \subset U_{N}$), we get

$$
\begin{aligned}
\Phi_{S_{1} \times \cdots \times S_{N}, W}(x)=\Phi_{S^{\prime}, W^{\prime}}\left(x^{\prime}\right)+\Phi_{S_{N}, U_{N}}\left(x_{N}\right) & =\sum_{j=1}^{N} \Phi_{S_{j}, U_{j}}\left(x_{j}\right) \\
x & =\left(x^{\prime}, x_{N}\right)=\left(x_{1}, \ldots, x_{N}\right) \in W
\end{aligned}
$$

Notice that properties (d) and (e) correspond to analogous properties of the relative extremal function (cf. e.g. [S3]).

Proposition 2.3. Let $\emptyset \neq S_{j} \subset U_{j} \subset \mathbb{R}^{n_{j}}$, where U_{j} is a convex domain and int $S_{j} \neq \emptyset, j=1, \ldots, N, N \geq 2$, and define the cross

$$
T:=\bigcup_{j=1}^{N} S_{1} \times \cdots \times S_{j-1} \times U_{j} \times S_{j+1} \times \cdots \times S_{N}
$$

Then

$$
\operatorname{conv}(T)=\left\{\left(x_{1}, \ldots, x_{N}\right) \in U_{1} \times \cdots \times U_{N}: \sum_{j=1}^{N} \Phi_{S_{j}, U_{j}}\left(x_{j}\right)<1\right\}=: W
$$

(It seems to us that this "convex cross theorem" is so far nowhere in the literature.)
Proof. We may assume that S_{j} is convex, $j=1, \ldots, N$ (cf. Remark 2.2(b)). The inclusion " C " is obvious. Let

$$
T_{j}:=S_{1} \times \cdots \times S_{j-1} \times U_{j} \times S_{j+1} \times \cdots \times S_{N}, \quad j=1, \ldots, N
$$

$$
T^{\prime}:=\bigcup_{j=1}^{N-1} S_{1} \times \cdots \times S_{j-1} \times U_{j} \times S_{j+1} \times \cdots \times S_{N-1}, \quad S^{\prime}:=S_{1} \times \cdots \times S_{N-1}
$$

Recall (cf. [Ro, Thm. 3.3]) that

$$
\begin{align*}
\operatorname{conv}(T) & =\bigcup_{\substack{t_{1}, \ldots, t_{N} \geq 0 \\
t_{1}+\cdots+t_{N}=1}} t_{1} T_{1}+\cdots+t_{N} T_{N} \\
& =\operatorname{conv}\left(\left(\operatorname{conv}\left(T^{\prime}\right) \times S_{N}\right) \cup\left(S^{\prime} \times U_{N}\right)\right) \tag{**}
\end{align*}
$$

We use induction on N. Suppose $N=2$. To simplify notation write $A:=S_{1}$, $U:=U_{1}, p:=n_{1}, B:=S_{2}, V:=U_{2}$, and $q:=n_{2}$. Using Remark 2.2(c), we may assume that U and V are bounded.

Since $\operatorname{conv}(T)$ is open and $\operatorname{conv}(T) \subset W$, we only need to show that for every $\left(x_{0}, y_{0}\right) \in \partial(\operatorname{conv}(T)) \cap(U \times V)$ we have $\Phi_{A, U}\left(x_{0}\right)+\Phi_{B, V}\left(y_{0}\right)=1$. Since U, V are bounded, we have $\overline{\operatorname{conv}(T)}=\operatorname{conv}(\bar{T})(\mathrm{cf}$. [Ro, Thm. 17.2]) and therefore $\left(x_{0}, y_{0}\right)=t\left(x_{1}, y_{1}\right)+(1-t)\left(x_{2}, y_{2}\right)$, where $t \in[0,1],\left(x_{1}, y_{1}\right) \in \bar{A} \times \bar{U}$, and $\left(x_{2}, y_{2}\right) \in \bar{U} \times \bar{B}$. First observe that $t \in(0,1)$.

Indeed, suppose for instance that $\left(x_{0}, y_{0}\right) \in U \times(\bar{B} \cap V)$. Take an arbitrary $x_{*} \in \operatorname{int} A$ and let $r>0$ and $\varepsilon>0$ be such that the Euclidean ball $\mathbb{B}\left(\left(x_{*}, y_{0}\right), r\right)$ is contained in $A \times V$ and $x_{* *}:=x_{*}+\varepsilon\left(x_{0}-x_{*}\right) \in U$. Then

$$
\begin{aligned}
&\left(x_{0}, y_{0}\right) \in \operatorname{int}\left(\operatorname{conv}\left(\mathbb{B}\left(\left(x_{*}, y_{0}\right), r\right) \cup\left\{\left(x_{* *}, y_{0}\right)\right\}\right)\right) \\
& \subset \operatorname{int}(\operatorname{conv}(\bar{T}))=\operatorname{int}(\overline{\operatorname{conv}(T)})=\operatorname{conv}(T)
\end{aligned}
$$

a contradiction.
Let $L: \mathbb{R}^{p} \times \mathbb{R}^{q} \rightarrow \mathbb{R}$ be a linear form such that $L\left(x_{0}, y_{0}\right)=1$ and $L \leq 1$ on T. Since $1=L\left(x_{0}, y_{0}\right)=t L\left(x_{1}, y_{1}\right)+(1-t) L\left(x_{2}, y_{2}\right)$, we conclude that $L\left(x_{1}, y_{1}\right)=L\left(x_{2}, y_{2}\right)=1$. Write $L(x, y)=P(x)+Q(y)$, where $P: \mathbb{R}^{p} \rightarrow \mathbb{R}$ and $Q: \mathbb{R}^{q} \rightarrow \mathbb{R}$ are linear forms.

Put $P_{C}:=\sup _{C} P$ with $C \subset \mathbb{R}^{p}$ and $Q_{D}:=\sup _{D} Q$ with $D \subset \mathbb{R}^{q}$. Since $L \leq 1$ on T and $L\left(x_{1}, y_{1}\right)=L\left(x_{2}, y_{2}\right)=1$, we conclude that

$$
\begin{aligned}
& P_{A}+Q_{V}=1 \\
& P_{U}+Q_{B}=1
\end{aligned}
$$

In particular, $P_{A}=P_{U}$ if and only if $Q_{B}=Q_{V}$. Consider the following two cases.
(i) $P_{A}<P_{U}$ and $Q_{B}<Q_{V}$: Then

$$
\frac{P-P_{A}}{P_{U}-P_{A}} \leq \Phi_{A, U}, \quad \frac{Q-Q_{B}}{Q_{V}-Q_{B}} \leq \Phi_{B, V} .
$$

Hence

$$
\Phi_{A, U}\left(x_{0}\right)+\Phi_{B, V}\left(y_{0}\right) \geq \frac{P\left(x_{0}\right)-P_{A}}{1-Q_{B}-P_{A}}+\frac{Q\left(y_{0}\right)-Q_{B}}{1-P_{A}-Q_{B}}=1 .
$$

(ii) $P_{A}=P_{U}$ and $Q_{B}=Q_{V}$: Then $P_{U}+Q_{V}=1$, which implies that $\left(x_{0}, y_{0}\right) \in$ $U \times V \subset\{L<1\}$-a contradiction.
Now, assume that the result is true for $N-1 \geq 2$. In particular,

$$
\operatorname{conv}\left(T^{\prime}\right)=\left\{\left(x_{1}, \ldots, x_{N-1}\right) \in U_{1} \times \cdots \times U_{N-1}: \sum_{j=1}^{N-1} \Phi_{S_{j}, U_{j}}\left(x_{j}\right)<1\right\}=: W^{\prime}
$$

Using $(* *)$, the case $N=2$, and Remark 2.2(e), we get

$$
\begin{aligned}
\operatorname{conv}(T) & =\operatorname{conv}\left(\left(W^{\prime} \times S_{N}\right) \cup\left(\left(S^{\prime} \times U_{N}\right)\right)\right. \\
& =\left\{\left(x^{\prime}, x_{N}\right) \in W^{\prime} \times U_{N}: \Phi_{S^{\prime}, W^{\prime}}\left(x^{\prime}\right)+\Phi_{S_{N}, U_{N}}\left(x_{N}\right)<1\right\}=W
\end{aligned}
$$

3. Reinhardt Geometry

Now we recall basic facts related to Reinhardt domains.
Definition 3.1. We say that a set $A \subset \mathbb{C}^{n}$ is a Reinhardt set if for every $\left(a_{1}, \ldots, a_{n}\right) \in A$ we have

$$
\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:\left|z_{j}\right|=\left|a_{j}\right|, j=1, \ldots, n\right\} \subset A
$$

(cf. [JP, Def. 1.5.2]). Put

$$
\begin{gathered}
\boldsymbol{V}_{j}:=\mathbb{C}^{n-j-1} \times\{0\} \times \mathbb{C}^{n-j}, \quad \boldsymbol{V}_{0}:=\boldsymbol{V}_{1} \cup \cdots \cup \boldsymbol{V}_{n}, \\
\log A:=\left\{\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right):\left(z_{1}, \ldots, z_{n}\right) \in A \backslash \boldsymbol{V}_{0}\right\}, \quad A \subset \mathbb{C}^{n}, \\
\exp S:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \backslash \boldsymbol{V}_{0}:\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right) \in S\right\}, \quad S \subset \mathbb{R}^{n}, \\
A^{*}:=\operatorname{int}(\overline{\exp (\log A)}), \quad A \subset \mathbb{C}^{n} .
\end{gathered}
$$

We say that a set $A \subset \mathbb{C}^{n}$ is logarithmically convex (log-convex) if $\log A$ is convex (cf. [JP, Def. 1.5.5]).

Theorem 3.2 [JP, Thm. 1.11.13]. Let $\Omega \subset \mathbb{C}^{n}$ be a Reinhardt domain. Then the following conditions are equivalent:
(i) Ω is a domain of holomorphy;
(ii) Ω is log-convex and $\Omega=\Omega^{*} \backslash \bigcup_{\substack{j \in\{1, \ldots, n\} \\ \Omega \cap V_{j}=\emptyset}} V_{j}$.

Theorem 3.3 [JP, Thm. 1.12.4]. For every Reinhardt domain $\Omega \subset \mathbb{C}^{n}$, its envelope of holomorphy $\hat{\Omega}$ is a Reinhardt domain.

Corollary 3.4. Let $\Omega \subset \mathbb{C}^{n}$ be a Reinhardt domain and let $\hat{\Omega}$ be its envelope of holomorphy. Then:
(a) $\boldsymbol{V}_{j} \cap \hat{\Omega}=\emptyset$ if and only if $\boldsymbol{V}_{j} \cap \Omega=\emptyset$;
(b) $\log \hat{\Omega}=\operatorname{conv}(\log \Omega)$.

Consequently, by Theorem 3.3,

$$
\hat{\Omega}=\operatorname{int}(\overline{\exp (\operatorname{conv}(\log \Omega))})\rangle \bigcup_{\substack{j \in \in 1, \ldots, n\} \\ \Omega \cap V_{j}=\emptyset}} V_{j}=: \tilde{\Omega} .
$$

Proof. (a) If $\boldsymbol{V}_{j} \cap \Omega=\emptyset$, then the function $\Omega \ni z_{j} \mapsto 1 / z_{j}$ is holomorphic on Ω. Thus, it must be holomorphically continuable to $\hat{\Omega}$, which means that $V_{j} \cap \hat{\Omega}=\emptyset$.
(b) First observe that, by [JP, Rem. 1.5.6(a)], we get $\log \tilde{\Omega}=\operatorname{conv}(\log \Omega)$. Consequently, $\tilde{\Omega}$ is a domain of holomorphy with $\Omega \subset \tilde{\Omega}$. Hence, $\hat{\Omega} \subset \tilde{\Omega}$. Finally, $\log \Omega \subset \log \hat{\Omega} \subset \log \tilde{\Omega}=\operatorname{conv}(\log \Omega)$.

Proposition 3.5 [JP, Prop. 1.14.20]. Let Ω be a log-convex Reinhardt domain.
(a) Let $u \in \mathcal{P S H}(\Omega)$ be such that

$$
u\left(z_{1}, \ldots, z_{n}\right)=u\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right), \quad\left(z_{1}, \ldots, z_{n}\right) \in \Omega
$$

Then the function

$$
\log \Omega \ni\left(x_{1}, \ldots, x_{n}\right) \stackrel{\varphi}{\longmapsto} u\left(e^{x_{1}}, \ldots, e^{x_{n}}\right)
$$

is convex.
(b) Let $\varphi \in \mathcal{C V X}(\log \Omega)$. Then the function

$$
\Omega \backslash \boldsymbol{V}_{0} \ni z \stackrel{u}{\longmapsto} \varphi\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)
$$

is plurisubharmonic.
Corollary 3.6. Let $\emptyset \neq A \subset \Omega$, where Ω is a log-convex Reinhardt domain and A is a Reinhardt open set. Then

$$
h_{A, D}^{*}(z)=\Phi_{\log A, \log \Omega}\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right), \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \Omega \backslash \boldsymbol{V}_{0}
$$

(cf. Definition 2.1).
Proof. Since A and Ω are invariant under rotations, we easily conclude that

$$
h_{A, D}^{*}(z)=h_{A, D}^{*}\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right), \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \Omega
$$

Thus, by Proposition 3.5,

$$
h_{A, D}^{*}(z)=\varphi\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right), \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \Omega \backslash \boldsymbol{V}_{0}
$$

where $\varphi \in \mathcal{C} \mathcal{V} \mathcal{X}(\log \Omega)$. Clearly, $h_{A, D}^{*}=0$ on A. Thus $\varphi=0$ on $\log A$. Finally, $\varphi \leq \Phi_{\log A, \log \Omega}$.

To prove the opposite inequality, observe that by Proposition 3.5, the function

$$
\Omega \backslash \boldsymbol{V}_{0} \ni z \stackrel{u}{\longmapsto} \Phi_{\log A, \log \Omega}\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)
$$

is plurisubharmonic, $u<1$, and $u=0$ on $A \backslash \boldsymbol{V}_{0}$. Consequently, u extends to a $\tilde{u} \in \mathcal{P S H}(\Omega)$. Clearly, $\tilde{u} \leq 1$ and $\tilde{u}=0$ on A. Thus $\tilde{u} \leq h_{A, D}^{*}$.

4. Proof of the Cross Theorem When D_{j} Is a Reinhardt Domain of Holomorphy and A_{j} Is an Open Reinhardt Set, $j=1, \ldots, N$

We have to prove that the envelope of holomorphy $\hat{\boldsymbol{X}}$ of the domain \boldsymbol{X} coincides with

$$
\tilde{\boldsymbol{X}}:=\left\{\left(z_{1}, \ldots, z_{N}\right) \in D_{1} \times \cdots \times D_{N}: \sum_{j=1}^{N} h_{A_{j}, D_{j}}^{*}\left(z_{j}\right)<1\right\} .
$$

First, observe that $\tilde{\boldsymbol{X}}$ is a domain of holomorphy containing \boldsymbol{X}. Thus $\hat{\boldsymbol{X}} \subset \tilde{\boldsymbol{X}}$. On the other hand, by Proposition 2.3 and Corollary 3.6, $\log \tilde{X}=\operatorname{conv}(\log X)=$ $\log \hat{\boldsymbol{X}}$. Thus, using Corollary 3.4, we only need to show that if $\boldsymbol{V}_{j} \cap \tilde{\boldsymbol{X}} \neq \emptyset$, then
$\boldsymbol{V}_{j} \cap \boldsymbol{X} \neq \emptyset$. Indeed, let for example $a=\left(a_{1}, \ldots, a_{N}\right) \in \boldsymbol{V}_{n} \cap \tilde{\boldsymbol{X}} \neq \emptyset$. Take arbi$\operatorname{trary} b_{j} \in A_{j}, j=1, \ldots, N-1$. Then $\left(b_{1}, \ldots, b_{N-1}, a_{N}\right) \in \boldsymbol{V}_{n} \cap \boldsymbol{X}$.

References

[AkR] N. I. Akhiezer and L. I. Ronkin, Separately analytic functions of several variables and "edge of the wedge" theorems, Uspekhi Mat. Nauk 28 (1973), 27-44.
[AZ] O. Alehyane and A. Zeriahi, Une nouvelle version du théorème d'extension de Hartogs pour les applications séparément holomorphes entre espaces analytiques, Ann. Polon. Math. 76 (2001), 245-278.
[B] S. N. Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par des polynomes de degré donné, Bruxelles, 1912.
[JP] M. Jarnicki and P. Pflug, First steps in several complex variables: Reinhardt domains, EMS Textbk. Math., Eur. Math. Soc., Zurich, 2008.
[N] Nguyen Thanh Van, Separate analyticity and related subjects, Vietnam J. Math. 25 (1997), 81-90.
[NS] Nguyen Thanh Van and J. Siciak, Fonctions plurisousharmoniques extrémales et systèmes doublement orthogonaux de fonctions analytiques, Bull. Sci. Math. 115 (1991), 235-244.
[NZ1] Nguyen Thanh Van and A. Zeriahi, Une extension du théorème de Hartogs sur les fonctions séparément analytiques, Analyse Complexe Multivariables, Récents Dévelopements (Guadeloupe, 1988), Sem. Conf., 5, pp. 183-194, EditEl, Rende, 1991.
[NZ2] -, Systèmes doublement othogonaux de fonctions holomorphes et applications, Topics in complex analysis (Warsaw, 1992), Banach Center Publ., 31, pp. 281-297, Polish Acad. Sci. Inst. Math., Warsaw, 1995.
[Ro] R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, NJ, 1970.
[Sh] B. Shiffman, Separate analyticity and Hartogs theorems, Indiana Univ. Math. J. 38 (1989), 943-957.
[S1] J. Siciak, Analyticity and separate analyticity of functions defined on lower dimensional subsets of \mathbb{C}^{n}, Zeszyty Nauk. Uniw. Jagiello. Prace Mat. Zeszyt 13 (1969), 53-70.
[S2] -, Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of \mathbb{C}^{n}, Ann. Polon. Math. 22 (1969/1970), 147-171.
[S3] ——, Extremal plurisubharmonic functions in \mathbb{C}^{N}, Ann. Polon. Math. 39 (1981), 175-211.
[Za] V. P. Zahariuta, Separately analytic functions, generalizations of Hartogs theorem, and envelopes of holomorphy, Mat. Sb. (N.S.) 30 (1976), 51-67.
[Z] A. Zeriahi, Comportement asymptotique des systemes doublement orthogonaux de Bergman: Une approche élémentaire, Vietnam J. Math. 30 (2002), 177-188.

M. Jarnicki	P. Pflug
Institute of Mathematics	Institut für Mathematik
Jagiellonian University	Carl von Ossietzky Universität Oldenburg
Łojasiewicza 6	Postfach 2503
30-348 Kraków	D-26111 Oldenburg
Poland	Germany
Marek.Jarnicki@im.uj.edu.pl	pflug@mathematik.uni-oldenburg.de

[^0]: Received February 5, 2009. Revision received June 5, 2009.
 The research was partially supported by grant no. N N201 361436 of the Ministry of Science and Higher Education and DFG-grant 436POL113/103/0-2.

