Michigan Math. J. 59 (2010), 411-417

An Elementary Proof of the Cross Theorem
in the Reinhardt Case

MAREK JARNICKI & PETER PFLUG

1. Introduction and Main Result

The problem of continuation of separately holomorphic functions defined on a
cross has been investigated in several papers (e.g., [B; S1; S2; AkR; Za; S3; Sh;
NS; NZ1; NZ2; N; AZ; Z]) and may be formulated in the form of the following
cross theorem.

THEOREM 1.1.  Let D; C C" be a domain of holomorphy and let A; C D; be a
locally pluriregular set, j = 1,..., N, N > 2. Define the cross

N
XZ:UA]X'~'XAj_]XDJ‘XAJ‘_HX”'XAN.
j=1

Let f: X — C be separately holomorphic—that is, for any (ai,...,ay) €
Al X - X Ay and j €{l,..., N}, the function

Dj 2% > f(al,...,aj,l,zj,ajﬂ,...,aN) eC

is holomorphic. Then f extends holomorphically to a uniquely determined func-
tion f on the domain of holomorphy

N
v . . * .
X = {(zl,...,zN)eDl X - X Dy : ZhAij.f(Zf) < 1}, (%)
j=1
where hjf\j’ D; is the upper regularization of the relative extremal function hy; p;,
j=1,...,N.

Recall that his p := sup{u e PSH(D) : u <1,ul|s <0}

Observe that in the case where A; is open, j = 1,..., N, the cross X is a domain
in C" withn := n; + - - - + ny. Moreover, by the classical Hartogs lemma, every
separately holomorphic function on X is simply holomorphic. Consequently, the
formula (x) is nothing more than a description of the envelope of holomorphy of
X. Thus, it is natural to conjecture that in this case the formula () may be ob-
tained without the cross theorem machinery. Unfortunately, we do not know of
any such simplification.
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The aim of this note is to present an elementary geometric proof of Theorem 1.1
in the case where D; is a Reinhardt domain and A; is a nonempty Reinhardt open
set, j = 1,..., N. The proof (Section 4) will be based on well-known interrela-
tions between the holomorphic geometry of a Reinhardt domain and the convex
geometry of its logarithmic image. Moreover, the cross theorem for the Reinhardt
case may be taught in any lecture on several complex variables; its proof needs
only some basic facts for Reinhardt domains (see [JP]).

2. Convex Geometry
We begin with some elementary results related to the convex domains in R”.

DerINITION 2.1, Let? #= S C U C R”, where U is a convex domain. Define the
convex extremal function

Dy :=sup{p e CVX(U), ¢ <1, p|s <0},

where CVX (U) stands for the family of all convex functions ¢ : U — [—00, 4-00).

REMARK 2.2. (a) sy €CVX(U),0 < 5y < 1,and Pgy =0o0n S.

(b) Peonvis),v = Ps,u-

©)If @ # Si C U C R", Uy is aconvex domain, k €N, Sy 7 S,and U, /' U,
then q)Sk,Uk N\ CDS,U~

(dFor0 < u < LletU, :={x €U : Ogy(x) < u} (observe that U, is a
convex domain with § C U,,). Then ®g ¢y, = (1/u)®Ps vy on U,.

Indeed, the inequality “>" is obvious. To prove the opposite inequality, let

) max{®s vy, uds,y,} onU,,
. { Dy on U\ U,.
Then ¢ € CVX(U), ¢ < 1,and ¢ = 0on S. Thus ¢ < &5y and hence &5y, <
(1/n)®s,y in U,.
(e)Let? # S; C U; C R", where U; is aconvex domain, j =1,...,N, N > 2.

Put
N

W .= {(xl,...,xN)eUl X - x Uy : Z‘bsj,z/j(xj) < 1}
j=1

(observe that W is a convex domain with S; x --- x Sy € W). Then
N

q>S1><---><SN,W(x) = ZCI)S;',U_;'(xj)’ X = (xl,...,xN) ceW.
j=1

Indeed, the inequality “>" is obvious. To prove the opposite inequality we use
induction on N > 2.

Let N = 2. To simplify notation write A := §;, U := U}, B := §,, and
V :=U,. Observe that T := (A x V) U (U x B) C W, then directly from the
definition we get

Dpxpw(x,y) <@g py(x) + Ppy(y), (x,y)eT.
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Fix a point (xq, yo) € W\ T. Let
ni=1—®4 y(x9) €(0,1], Vii={yeV :®py(y) < ul,

1
@ = ;(q’AxB,W(Xo, ) — @4, (x0)).

Then ¢ is a well-defined convex functionon V,,, ¢ < lonV,, and ¢ < 0 on B.
Thus, by (d), ¢(yo) < ®p v, (yo) = (1/u)Pp v (yo), which finishes the proof.
Now, assume that the formula is true for N—1 > 2. Put §’ := Sy x---x Sy_j and
N-1

W' = {(X], e XN EU X - X Uy_y: Z CDSijj(xf) < 1}
j=1
Then, by the inductive hypothesis, we have
N—1
Dy (x) =D Pg(x), x'= (X1, xy_ ) EW.
j=1

Consequently,
W = {(x’,xN) e W' x Uy : <I>5/,W/(x’) + qDSN,UN(xN) < 1}
Hence, using the case N =2 (to S’ ¢ W’ and Sy C Uy), we get

N
D, sy () = B (X)) + By vy (xn) = Y P, 1,(x)),
j=1

x=(x"xn)=(x1,...,xy) EW.

Notice that properties (d) and (e) correspond to analogous properties of the rela-
tive extremal function (cf. e.g. [S3]).

PROPOSITION 2.3. Let ¥ # §; C U; C R, where U; is a convex domain and
intS; #0, j=1,...,N, N > 2, and define the cross

N
T:ZUSI X oo XSj_l X ljj XSj-H X oo XSN.
j=1

Then

N
conv(T) = {(xl,...,xN) €Uy x - xUy: Yy O50(x) < 1} = W.

j=1

(It seems to us that this “convex cross theorem” is so far nowhere in the literature.)

Proof. We may assume that S; is convex, j =1,..., N (cf. Remark 2.2(b)). The
inclusion “C” is obvious. Let
TjZ:S]X-'-XSj',llejXSj+1X-~-XSN, j:1,...,N,

N-1
T' = Six xS x Uy x Sjaq x -+ x Sy_1, 8/ := S x -+ x Sy_1.
j=I
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Recall (cf. [Ro, Thm. 3.3]) that

conv(l)= | J aTi+-+twTy
.oy iy >0
t+-+iy=1
= conv((conv(T") x Sy) U (S’ x Uy)). ()

We use induction on N. Suppose N = 2. To simplify notation write A := §j,
U:=U,p:=nmn,B:=385,,V :=U,,and q := n,. Using Remark 2.2(c), we
may assume that U and V are bounded.

Since conv(T) is open and conv(7) C W, we only need to show that for every
(x0,y0) € d(conv(T)) N (U x V) we have Oy 7 (x¢) + Pp v (yo) = 1. Since U,V
are bounded, we have conv(T) = conv(T) (cf. [Ro, Thm. 17.2]) and therefore
(x0,y0) = t(x1,y1) + (I — 1)(x2,y2), where 1 € [0,1], (x1,y1) € A x U, and
(x2,y2) € U x B. First observe that t € (0, 1).

Indeed, suppose for instance that (xg, o) € U x (B N V). Take an arbitrary
xs €int A and let r > 0 and ¢ > 0 be such that the Euclidean ball B((x,, yo),7)
is contained in A x V and x,, := x4, + &(xg — x4) € U. Then

(x0, yo) € int(conv(B((x«, y0),7) U {(xsx> Y0)})

C int(conv(T)) = int(conv(T)) = conv(T);
a contradiction.

Let L: R?” x R? — R be a linear form such that L(xg,yo) = land L <1
on T. Since 1 = L(xg,yo) = tL(x1,y1) + (1 — t)L(x2,y2), we conclude that
L(x1,y1) = L(x3,y2) = 1. Write L(x,y) = P(x) + Q(y), where P: R? — R
and Q: R? — R are linear forms.

Put P¢ := supe P withC C R? and Qp := supp Q with D C R?. Since L < 1
on T and L(x1,y1) = L(x2,y2) = 1, we conclude that

PA + QV = 1’

Py+0p=1.
In particular, P4 = Py if and only if Qp = Qy . Consider the following two cases.
(i) P4 < Py and Qg < Qy: Then

P—-P —
—A§©AU7 &<©BV~
Py — P4 : :

Hence
P(x0) — Py O(yo) — OB _1
1—Qp—Py 1—Py—Qp

(ii) Py = Py and Qp = Qy: Then Py 4+ Qy = 1, which implies that (xq, yo) €
U x V C {L < 1}—a contradiction.

Dy v (x0) + Pp v (yo) >

Now, assume that the result is true for N — 1 > 2. In particular,

N—1
conv(T') = {(xl, XN €U X X Uyoy Yy @ g(x)) < 1} =W

j=1



An Elementary Proof of the Cross Theorem in the Reinhardt Case 415

Using (), the case N = 2, and Remark 2.2(e), we get
conv(T) = conv((W' x Sy) U ((S” x Uy))
={(x",xn) eW' x Uy : Oy (x') + Py v (xn) < J=W. O

3. Reinhardt Geometry
Now we recall basic facts related to Reinhardt domains.

DEeFINITION 3.1. We say that a set A C C" is a Reinhardt set if for every
(aj,...,a,) € A we have
{(z1,...,z0) €C" 1|zl =ajl, j=1,...,n} C A
(cf. [JP, Def. 1.5.2]). Put
Vi i=C" /7' x {0} xC"Y,  Voi=ViU---UV,
log A := {(log|z1l,..-,10g|z,]) : (z1,---,2,) € A\Vo}, A CC",
exp S :={(z1,...,2,) €C"\ Vo : (log|zyl,...,log|z,[) €S}, S CR",
A* :=int(exp(log A)), A C C".

We say that a set A C C" is logarithmically convex (log-convex) if log A is con-

vex (cf. [JP, Def. 1.5.5]).

THEOREM 3.2 [JP, Thm. 1.11.13]. Let Q2 C C" be a Reinhardt domain. Then the
following conditions are equivalent:
(i) Q is a domain of holomorphy;
(ii) 2 islog-convex and 2 = Q* \ Ujeq,...n) V;-
QnV=p
THEOREM 3.3 [JP, Thm. 1.12.4].  For every Reinhardt domain Q C C", its enve-
lope of holomorphy Q2 is a Reinhardt domain.

COROLLARY 3.4. Let Q C C" be a Reinhardt domain and let S be its envelope
of holomorphy. Then:

() V; N Q =@ ifand only if V; N Q = 0;

(b) log 2 = conv(log 2).

Consequently, by Theorem 3.3,

Q= int(exp (conv(log €2))) \ U V, = Q.

jell,...,n}

QNV,=¢
Proof. (a) If V; N Q = @, then the function 5 z; > 1/z; is holomorphic on Q.
Thus, it must be holomorphically continuable to fZ, which means that V; N Q=0.
(b) First observe that, by [JP, Rem. 1.5.6(a)], we get long = conv(log 2).
Consequently, € is a domain of holomorphy with 2 c . Hence, Qc Q.
Finally, log €2 C log Qc log € = conv(log Q). U
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ProposiTiON 3.5 [JP, Prop. 1.14.20]. Let Q2 be a log-convex Reinhardt domain.
(a) Let u € PSH(2) be such that

u(zi, . zn) = ulzils . lzal), (21,0, 20) € Q.
Then the function

log 23 (x1,...,X,) AN ule™,...,e*)

is convex.
(b) Let ¢ € CVX (log 2). Then the function

Q\Vy 3z —> g(log|zyl, ..., 1og|z,])

is plurisubharmonic.

COROLLARY 3.6. Let # # A C Q, where Q is a log-convex Reinhardt domain
and A is a Reinhardt open set. Then

h;,D(Z) = ¢lugA,lqu(10g|Zl|, .. ~’10g|zn|)’ = (Zl, .. -’Zn) e \VO
(cf. Definition 2.1).
Proof. Since A and 2 are invariant under rotations, we easily conclude that
hy p(2) = hy p(zils. s lzal), 2= (2150, 20) € Q.
Thus, by Proposition 3.5,

hy p(2) = p(oglzil,....loglz,D), z=(21,...,2,) €2\ Vo,

where ¢ € CVX (log 2). Clearly, i} ;, = 0 on A. Thus ¢ = 0 on log A. Finally,
(S chogA,logQ'
To prove the opposite inequality, observe that by Proposition 3.5, the function

Q\Vy 32> Piogatogalloglzil, ..., loglz,])

is plurisubharmonic, ¥ < 1, and ¥ = 0 on A\ V;. Consequently, u extends to a
u € PSH(S2). Clearly, u < landu = 0on A. Thus u < h} . O

4. Proof of the Cross Theorem When D; Is a
Reinhardt Domain of Holomorphy and
Aj Is an Open Reinhardt Set,
j=1...,N

We have to prove that the envelope of holomorphy X of the domain X coincides
with

N
X:= {(z],...,zN) €Dy x - x Dy Y Ry (7)) < 1}.
j=1
First, observe that X is a domain of holomorphy containing X. Thus X C X. On

the other hand, by Proposition 2.3 and Corollary 3.6, logX = conv(logX) =
log X. Thus, using Corollary 3.4, we only need to show that if V; N X # ¢, then



An Elementary Proof of the Cross Theorem in the Reinhardt Case 417

V; N X # (. Indeed, let for example a = (ay,...,ay) €V, nx # (). Take arbi-
trary b_,‘ GA_]', Jj= 1,...,N — 1. Then (by,...,by_1,ay) €V, N X. O
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