Spectral Characteristics and Stable Ranks for the Sarason Algebra $H^{\infty}+C$

Raymond Mortini \& Brett D. Wick

0. Introduction

We prove a corona-type theorem with bounds for the Sarason algebra $H^{\infty}+C$ and determine its spectral characteristics, thus continuing a line of research initiated by N. Nikolski. We also determine the Bass, the dense, and the topological stable ranks of $H^{\infty}+C$.

To fix our setting, let A be a commutative unital Banach algebra with unit e and let $M(A)$ be its maximal ideal space. The following concept of spectral characteristics was introduced by Nikolski [15]. For $a \in A$, let \hat{a} denote the Gelfand transform of a. We let

$$
\delta(a)=\min _{t \in M(A)}|\hat{a}(t)| .
$$

Note that $\delta(a) \leq\|\hat{a}\|_{\infty} \leq\|a\|_{A}$. When $a=\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$ we define

$$
\delta_{n}(a)=\min _{t \in M(A)}|\hat{a}(t)|
$$

where $|\hat{a}(t)|=\sum_{j=1}^{n}\left|\hat{a}_{j}(t)\right|$ for $t \in M(A)$, and we let

$$
\|a\|_{A^{n}}=\max \left\{\left\|a_{1}\right\|_{A}, \ldots,\left\|a_{n}\right\|_{A}\right\}
$$

Typically, one defines $|\hat{a}(t)|=|\hat{a}(t)|_{2}:=\left(\sum_{j=1}^{n}\left|\hat{a}_{j}(t)\right|^{2}\right)^{1 / 2}$ and $\|a\|_{A^{n}}=\|a\|_{2}:=$ $\left(\sum_{j=1}^{n}\left\|a_{j}\right\|_{A}^{2}\right)^{1 / 2}$. Our later calculations will be easier, though, with the present definition.

Let δ be a real number satisfying $0<\delta \leq 1$. We are interested in finding, or bounding, the functions

$$
c_{1}(\delta, A)=\sup \left\{\left\|a^{-1}\right\|_{A}:\|a\|_{A} \leq 1, \delta(a) \geq \delta\right\}
$$

and

$$
\begin{equation*}
c_{n}(\delta, A)=\sup \left\{\inf \left\{\|b\|_{A^{n}}: \sum_{j=1}^{n} a_{j} b_{j}=e\right\},\|a\|_{A^{n}} \leq 1, \delta_{n}(a) \geq \delta\right\} \tag{0.1}
\end{equation*}
$$

when A is the Sarason algebra $H^{\infty}+C$. If a is not invertible, we define $\left\|a^{-1}\right\|=\infty$.

[^0]It should be clear that $1 \leq c_{n}(\delta, A) \leq c_{n+1}(\delta, A)$ and, if $0<\delta^{\prime} \leq \delta \leq 1$, then $c_{n}(\delta, A) \leq c_{n}\left(\delta^{\prime}, A\right)$. This implies the existence of a critical constant, denoted here by $\delta_{n}(A)$, such that

$$
c_{n}(\delta, A)=\infty \text { for } 0<\delta<\delta_{n}(A) \quad \text { and } \quad c_{n}(\delta, A)<\infty \text { for } \delta_{n}(A)<\delta \leq 1
$$

It is clear that if A is a uniform algebra, then $\delta_{1}(A)=0$ and $c_{1}(\delta, A)=1 / \delta$. It is not known for which uniform algebras $\delta_{n}(A)>0$.

If $A=H^{\infty}$, the algebra of bounded holomorphic functions in the unit disk \mathbb{D}, then the famous Carleson corona theorem tells us that $\delta_{n}\left(H^{\infty}\right)=0$ for each n. Estimates for $c_{n}\left(\delta, H^{\infty}\right)$ were given by (among others) Nikolski [14], Rosenblum [17], and Tolokonnikov [25]. The best-known estimate today seems to appear in [27] and [28]; see also [29]. Here, for the lower bound, δ is close to 0 and κ is a universal constant:

$$
\kappa \delta^{-2} \log \log \left(\frac{1}{\delta}\right) \leq c_{n}^{(2)}\left(\delta, H^{\infty}\right) \leq \frac{1}{\delta}+\frac{17}{\delta^{2}} \log \frac{1}{\delta}
$$

where $c_{n}^{(2)}(\delta, A)$ denotes the spectral characteristic $c_{n}(\delta, A)$ described previously whenever defined with the Euclidean norms $|\cdot|_{2}$ and $\|\cdot\|_{2}$.

The structure of the paper is as follows. In Section 1 we consider the problem of solving Bezout equations in the Sarason algebra $H^{\infty}+C$. Indeed, we prove that the corona theorem with bounds holds in $H^{\infty}+C$ (i.e., $\delta_{n}\left(H^{\infty}+C\right)=0$ for each n). We also give explicit estimates of the associated spectral characteristics.

In Section 2 we present different notions of stable ranks that are relevant to the topic of this paper. We also show the relationships between these various notions of stable ranks.

In Section 3 we determine the Bass and topological stable ranks of $H^{\infty}+C$. These results can be considered as a generalization of the corona theorem for H^{∞}. In particular, we investigate whether any Bezout equation $a f+b g=1$ in $H^{\infty}+C$ admits a solution where a itself is invertible. We also show that, on $\left(H^{\infty}+C\right)$ convex sets in $M\left(H^{\infty}+C\right)$, zero-free functions admit $\left(H^{\infty}+C\right)$-invertible approximants. This will be used to determine the dense stable rank of $H^{\infty}+C$.

1. Spectral Characteristics of the Sarason Algebra $H^{\infty}+C$

Since we are dealing only with uniform algebras A, we shall identify the elements in A with their Gelfand transform \hat{f}.

Let $L^{\infty}(\mathbb{T})$ denote the algebra of essentially bounded, Lebesgue measurable functions on the unit circle \mathbb{T}. Then a Douglas algebra is a uniformly closed subalgebra of $L^{\infty}(\mathbb{T})$ that properly contains the algebra, H^{∞}, of (boundary values of) bounded analytic functions in the open unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. We refer the reader to the book by Garnett [7] for items and results not explicitly defined here.

The simplest example of a Douglas algebra is the algebra $H^{\infty}+C$ of sums of (boundary values of) bounded analytic functions and complex-valued continuous
functions on \mathbb{T}. This algebra is frequently called the Sarason algebra because it was first shown by Sarason that this space is a closed subalgebra of $L^{\infty}(\mathbb{T})$; see [22]. He showed that (on \mathbb{T}) $H^{\infty}+C$ is the uniform closure of the set of functions $\left\{f \bar{z}^{n}: f \in H^{\infty}, n \in \mathbb{N}\right\}$. Thus, $H^{\infty}+C=\left[H^{\infty}, \bar{z}\right]$, the closed algebra generated by H^{∞} and the monomials \bar{z}^{n}.

Let $M\left(H^{\infty}\right)$ denote the maximal ideal space of H^{∞}. It is well known that the spectrum of $M\left(H^{\infty}+C\right)$ can be identified with the corona of H^{∞}-namely, the set $M\left(H^{\infty}\right) \backslash \mathbb{D}$; see [7, p. 377]. We denote by

$$
Z(f)=\left\{m \in M\left(H^{\infty}\right): f(m)=0\right\}
$$

the zero set of a function in H^{∞}. We will also need the notion of pseudo-hyperbolic distance, $\rho(x, m)$, of two points $m, x \in M\left(H^{\infty}\right)$. Recall that

$$
\rho(x, m)=\sup \left\{|f(m)|:\|f\|_{\infty} \leq 1, f(x)=0\right\}
$$

and that for $z, w \in \mathbb{D}$ we obtain $\rho(z, w)=\left|\frac{z-w}{1-\bar{w} z}\right|$, where we identify the point evaluation functional $f \mapsto f(z)$ with the point z itself.

Also, for a set E in $M\left(H^{\infty}\right)$, we let $\rho(E, x)=\inf \{\rho(e, x): e \in E\}$ be the pseudo-hyperbolic distance of E to a point $x \in M\left(H^{\infty}\right)$. Similarly, $\rho(E, U)=$ $\inf \{\rho(E, u): u \in U\}=\inf \{\rho(e, u): e \in E, u \in U\}$. It is well known that for closed sets E the distance functions $\rho(\cdot, \cdot)$ and $\rho(\cdot, E)$ are lower semicontinuous on $M\left(H^{\infty}\right)$; see [8] and [9]. In particular, if $\rho(E, x)>\eta>0$ then there exists an open set U containing x such that $\rho(E, U)>\eta$.

Finally, for a point $m \in M\left(H^{\infty}\right)$, let $P(m)=\left\{x \in M\left(H^{\infty}\right): \rho(x, m)<1\right\}$ denote the Gleason part associated with m. For example, \mathbb{D} itself is the Gleason part asociated with the origin. By Hoffman's theory, there exists a map L_{m} of \mathbb{D} onto $P(m)$ such that $\hat{f} \circ L_{m}$ is analytic for all $f \in H^{\infty}{ }_{a_{\beta}+z}$. If $\left(a_{\beta}\right)$ is any net in \mathbb{D} that converges to m, then L_{m} is given by $L_{m}(z)=\lim \frac{a_{\beta}+z}{1+\overline{a_{\beta} z}}$, where the limit is taken in the topological product space $M\left(H^{\infty}\right)^{\mathbb{D}}$.

1.1. The Corona Property for $H^{\infty}+C$

Our first theorem is based on Axler's result that any function $u \in L^{\infty}$ can be multiplied by a Blaschke product into $H^{\infty}+C$. See [1]. Using this result, it is possible to prove the following assertion.

Theorem 1.1. The corona theorem with bounds holds on $H^{\infty}+C$.
Proof.
Step 1. We first consider H^{∞}-corona data on $M\left(H^{\infty}+C\right)$. The goal is to find $H^{\infty}+C$ solutions.

Let $f_{1}, \ldots, f_{n} \in H^{\infty}$ satisfy $\left\|f_{j}\right\|_{\infty} \leq 1$ and $\left|f_{1}\right|+\cdots+\left|f_{n}\right| \geq \delta>0$ on $M\left(H^{\infty}+C\right)$. In particular, $\left|f_{1}\right|+\cdots+\left|f_{n}\right| \geq \delta>0$ a.e. on \mathbb{T}. Hence

$$
1=\sum_{j=1}^{n} f_{j} \frac{\overline{f_{j}}}{\sum_{k=1}^{n}\left|f_{k}\right|^{2}} \quad \text { a.e. on } \mathbb{T} \text {. }
$$

Note that the functions $\bar{f}_{j} / \sum_{k}\left|f_{k}\right|^{2}$ belong to $L^{\infty}(\mathbb{T})$. By the Axler multiplier theorem [1], there exists a Blaschke product B such that for all $j \in\{1, \ldots, n\}$

$$
\Phi_{j}:=B \frac{\overline{f_{j}}}{\sum_{k}\left|f_{k}\right|^{2}} \in H^{\infty}+C
$$

So, a.e. on \mathbb{T}, we have $B=\sum_{j} \Phi_{j} f_{j}$. Moreover, $\left\|\Phi_{j}\right\|_{\infty} \leq n / \delta^{2}$.
We know that, by continuity, there exists an annulus $A_{r}:=\{r \leq|z|<1\}$ such that $\left|f_{1}\right|+\cdots+\left|f_{n}\right| \geq \delta / 2$ on A_{r}. Choose a tail B_{1} of B such that $\left|B_{1}\right| \geq \delta / 2$ on $\{|z| \leq r\}$. Let $b_{1}=B / B_{1}$. Note that \bar{b}_{1}, viewed as a function on \mathbb{T}, belongs to $H^{\infty}+C$.

Now consider the ideal $I\left(f_{1}, \ldots, f_{n}, B_{1}\right)$ in H^{∞}. We obviously have that $\left|f_{1}\right|+\cdots+\left|f_{n}\right|+\left|B_{1}\right| \geq \delta / 2$ on \mathbb{D}. Hence, by the H^{∞}-corona theorem, there exists a constant depending on $\delta, C(\delta)$, and functions $x_{1}, \ldots, x_{n}, t \in H^{\infty}$ with

$$
\left\|x_{1}\right\|_{\infty}+\cdots+\left\|x_{n}\right\|_{\infty}+\|t\|_{\infty} \leq C(\delta)
$$

such that $1=\sum_{j=1}^{n} x_{j} f_{j}+t B_{1}$ on \mathbb{D}, and thus almost everywhere on \mathbb{T} we have $1=\sum_{j=1}^{n} x_{j} f_{j}+t B_{1}$. Switching again to $H^{\infty}+C$, we see that a.e. on \mathbb{T}

$$
B_{1}=\bar{b}_{1} B=\sum_{j=1}^{n}\left(\bar{b}_{1} \Phi_{j}\right) f_{j}
$$

Hence

$$
1=\sum_{j=1}^{n} x_{j} f_{j}+t\left(\sum_{j=1}^{n}\left(\bar{b}_{1} \Phi_{j}\right) f_{j}\right)=\sum_{j=1}^{n} f_{j}\left(x_{j}+t \bar{b}_{1} \Phi_{j}\right)
$$

where $\sum_{j=1}^{n}\left\|x_{j}+t \bar{b}_{1} \Phi_{j}\right\|_{\infty} \leq C(\delta)\left(1+n^{2} / \delta^{2}\right)=: \chi(\delta)$. Since $H^{\infty}+C$ is an algebra, the functions $\varphi_{j}:=x_{j}+t \bar{b}_{1} \Phi_{j}$ belong to $H^{\infty}+C$. Thus, we have found a solution with bounds to the Bezout equation $\sum_{j=1}^{n} \varphi_{j} f_{j}=1$ a.e. on \mathbb{T} or, equivalently, on $M\left(H^{\infty}+C\right)$.

Step 2. We now look at general $H^{\infty}+C$ corona data.
Let $F_{1}, \ldots, F_{n} \in H^{\infty}+C$ satisfy $\left\|F_{j}\right\|_{\infty} \leq 1$ and $\sum_{j=1}^{n}\left|F_{j}\right| \geq \delta>0$ on $M\left(H^{\infty}+C\right)$. Let $\chi(\delta)$ be the function described previously. We uniformly approximate F_{j} by functions of the form $\bar{z}^{N_{j}} f_{j}$; say

$$
\sum_{j=1}^{n}\left\|F_{j}-\bar{z}^{N_{j}} f_{j}\right\|_{\infty} \leq \varepsilon=\varepsilon(\delta):=\min \left\{\delta / 4,[4 \chi(\delta / 2)]^{-1}\right\}
$$

where $f_{j} \in H^{\infty}$ and $\left\|f_{j}\right\|_{\infty} \leq 1$.
Then $\sum_{j=1}^{n}\left|f_{j}\right| \geq \delta / 2$ on $M\left(H^{\infty}+C\right)$. We apply Step 1 to the functions f_{j} and find $H^{\infty}+C$ functions φ_{j} and a constant $\chi(\delta / 2)$ that bounds the sum of the norms of these functions and such that $1=\sum_{j=1}^{n} \varphi_{j} f_{j}$. Now

$$
\begin{aligned}
u:=\sum_{j=1}^{n} z^{N_{j}} \varphi_{j} F_{j} & =\sum_{j=1}^{n} z^{N_{j}} \varphi_{j}\left(F_{j}-\bar{z}^{N_{j}} f_{j}\right)+\sum_{j=1}^{n} \varphi_{j} f_{j} \\
& =\gamma+1
\end{aligned}
$$

where $\gamma:=\sum_{j=1}^{n} z^{N_{j}} \varphi_{j}\left(F_{j}-\bar{z}^{N_{j}} f_{j}\right) \in H^{\infty}+C$ is majorized by $\varepsilon \sum_{j=1}^{n}\left\|\varphi_{j}\right\|_{\infty} \leq$ $\varepsilon \chi(\delta / 2) \leq 1 / 2$. Thus $|u| \geq 1 / 2$ on $M\left(H^{\infty}+C\right)$; hence u is invertible in $H^{\infty}+C$ with $\left\|u^{-1}\right\|_{\infty} \leq 2$. We conclude that

$$
1=\sum_{j=1}^{n}\left(u^{-1} z^{N_{j}} \varphi_{j}\right) F_{j},
$$

where the coefficients are bounded by $2 \chi(\delta / 2)$.
An immediate corollary (at least for the upper bound) is the following.
Corollary 1.2. For every integer n we have $\delta_{n}\left(H^{\infty}+C\right)=0$ and, for δ close to 0 ,

$$
\kappa \delta^{-2} \log \left(\log \left(\frac{1}{\delta}\right)\right) \leq c_{n}\left(\delta, H^{\infty}+C\right) \leq 2 \chi\left(\frac{\delta}{2}\right)
$$

where $\chi(\delta)=\left(1+n^{2} / \delta^{2}\right) C(\delta)$ with $C(\delta)$ the best constant in the H^{∞}-corona problem and where κ is an absolute constant.

Proof. It remains to verify the lower estimate. Here we use a result of Treil [27, p. 484] that tells us that there exist two finite Blaschke products B_{1} and B_{2} satisfying $\left|B_{1}\right|+\left|B_{2}\right| \geq \delta>0$ on \mathbb{D} such that for any solution $\left(g_{1}, g_{2}\right) \in\left(H^{\infty}\right)^{2}$ of the Bezout equation $g_{1} B_{1}+g_{2} B_{2}=1$ we have $\left\|g_{1}\right\|_{\infty} \geq \kappa \delta^{-2} \log (\log (1 / \delta))$ whenever $\delta>0$ is close to 0 . Now, of course, this does not give us an example in $H^{\infty}+C$, since $1=\bar{B}_{1} B_{1}+0 B_{2}$ is a solution with coefficients bounded by 1 . We proceed to the following modification.

Let m be a thin point in $M\left(H^{\infty}+C\right)$-that is, a point lying in the closure of a thin interpolating sequence, say $\left(z_{n}\right)=(1-1 / n!)$. Since the associated Blaschke product b satisfies $\left(1-\left|z_{n}\right|^{2}\right)\left|b^{\prime}\left(z_{n}\right)\right| \rightarrow 1$, Schwarz's lemma implies that $\left(b \circ L_{m}\right)(z)=e^{i \theta} z$ for every $z \in \mathbb{D}$. Now consider the functions

$$
f_{1}=B_{1} \circ\left(e^{-i \theta} b\right) \quad \text { and } \quad f_{2}=B_{2} \circ\left(e^{-i \theta} b\right)
$$

Clearly $\left|f_{1}\right|+\left|f_{2}\right| \geq \delta$ on \mathbb{D} and hence, viewed as functions in $H^{\infty}+C$, we have $\left|f_{1}\right|+\left|f_{2}\right| \geq \delta$ on $M\left(H^{\infty}+C\right)$. Let $\left(h_{1}, h_{2}\right) \in\left(H^{\infty}+C\right)^{2}$ be a solution of $h_{1} f_{1}+h_{2} f_{2}=1$ in $H^{\infty}+C$. Since $f_{j} \circ L_{m}=B_{j}$, we get that $1=$ $\left(h_{1} \circ L_{m}\right) B_{1}+\left(h_{2} \circ L_{m}\right) B_{2}$ in \mathbb{D}. Thus, by Treil's result mentioned before,

$$
\left\|h_{1}\right\|_{\infty} \geq\left\|h_{1} \circ L_{m}\right\|_{\infty} \geq \kappa \delta^{-2} \log (\log (1 / \delta)) .
$$

Thus,

$$
c_{n}\left(\delta, H^{\infty}+C\right) \geq c_{2}\left(\delta, H^{\infty}+C\right) \geq \kappa \delta^{-2} \log (\log (1 / \delta))
$$

2. Several Notions of Stable Ranks

Let A be a commutative unital ring. An n-tuple $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$ is said to be invertible (or unimodular) if there is a solution $\left(x_{1}, \ldots, x_{n}\right) \in A^{n}$ of the Bezout equation $\sum_{j=1}^{n} a_{j} x_{j}=1$. Of course, this is equivalent to saying that the ideal generated by the a_{j} is the whole ring. The set of all invertible n-tuples in A is denoted by $U_{n}(A)$.

An $(n+1)$-tuple $\left(a_{1}, \ldots, a_{n}, a_{n+1}\right) \in U_{n+1}(A)$ is said to be n-reducible (or simply reducible) in A if there exists $\left(x_{1}, \ldots, x_{n}\right) \in A^{n}$ such that $\left(a_{1}+x_{1} a_{n+1}, \ldots\right.$, $a_{n}+x_{n} a_{n+1}$) is an invertible n-tuple in A^{n}. It can be shown that if every invertible n-tuple in A is reducible, then every invertible ($n+1$)-tuple is reducible (see e.g. [30]). The smallest integer $n \in\{1,2, \ldots\}$ for which every invertible $(n+1)$-tuple is reducible is called the Bass stable rank of A and is denoted by $\operatorname{bsr}(A)$. This notion was introduced in K-theory.

For algebras of continuous or analytic functions, this has been studied for example by Corach and Larotonda [3], Rupp [18; 19; 20; 21], Suárez [23; 24], and Vasershtein [30]. It was shown by Jones, Marshall, and Wolff [10] that the Bass stable rank of the disk algebra $A(\mathbb{D})$ is 1 . Later, simpler proofs were given by Corach, Suárez [4], and Rupp [18; 19]. Treil [26] later showed that the Bass stable rank of H^{∞} is 1 .

A notion related to the Bass stable rank is that of the topological stable rank. Let A be a commutative unital Banach algebra. The smallest integer n for which the set $U_{n}(A)$ of invertible n-tuples is dense in A^{n} is called the topological stable rank of A, denoted by $\operatorname{tsr}(A)$. This notion was introduced by Rieffel [16] in the study of C^{*}-algebras.

Finally, we recall two additional notions of stable ranks. Let \mathscr{B} be the class of all commutative unital Banach algebras over a field \mathbb{K}. We will always assume that algebra homomorphisms f between members of \mathscr{B} are continuous and satisfy $f\left(1_{A}\right)=1_{B}$. Also, if $f: A \rightarrow B$ is an algebra homomorphism, then \underline{f} will denote the associated map given by $\underline{f}:\left(a_{1}, \ldots, a_{n}\right) \mapsto\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right)$ from A^{n} to B^{n}.

By [6, p. 542], the dense stable $\operatorname{rank} \operatorname{dsr}(A)$ of $A \in \mathscr{B}$ is the smallest integer n such that for every $B \in \mathscr{B}$ and every algebra homomorphism $f: A \rightarrow B$ with dense image the induced map $U_{n}(A) \rightarrow U_{n}(B)$ has dense image. If there is no such n, we write $\operatorname{dsr}(A)=\infty$. We note that if for some $n \in \mathbb{N}$, all $B \in \mathscr{B}$ and all homomorphisms $f: A \rightarrow B$ with dense image the set $f\left(U_{n}(A)\right)$ is dense in $U_{n}(B)$, then $f\left(U_{n+1}(A)\right)$ is dense in $U_{n+1}(B)$ (see [6, p. 543]).

The surjective stable rank $\operatorname{ssr}(A)$ of $A \in \mathscr{B}$ is the smallest integer n such that for every $B \in \mathscr{B}$ and every surjective algebra homomorphism $f: A \rightarrow B$ the induced map of $U_{n}(A) \rightarrow U_{n}(B)$ is surjective, too. Again, if there is no such n, then we write $\operatorname{ssr}(A)=\infty$. Let us point out that the assumption $\underline{f}\left(U_{n}(A)\right)=U_{n}(B)$ for some n, all $B \in \mathscr{B}$, and all surjective homomorphisms $f: \bar{A} \rightarrow B$ implies that $\underline{f}\left(U_{n+1}(A)\right)=U_{n+1}(B)$. This works similarly to the proof for the corresponding statement for denseness in [6, p. 543].

In fact, let $b:=\left(b_{1}, \ldots, b_{n+1}\right) \in U_{n+1}(B)$. Consider for $I=\overline{\left(b_{n+1}\right)}$ (the closure of the principal ideal generated by b_{n+1}) the quotient algebra $\tilde{B}:=B / I$ and the quotient mapping $\pi: B \rightarrow \tilde{B}$. Then

$$
\left(b_{1}+I, \ldots, b_{n}+I\right) \in U_{n}(\tilde{B})
$$

By our hypothesis, since πf is surjective, there exists $a:=\left(a_{1}, \ldots, a_{n}\right) \in U_{n}(A)$ such that $\pi f\left(a_{j}\right)=\pi b_{j}$ for $1 \leq j \leq n$. Choose $\varepsilon>0$ so that every perturbation $\left(a_{1}-r_{1}, \ldots, a_{n}-r_{n}\right)$ of a with $\left\|r_{j}\right\|_{A}<\varepsilon$ is in $U_{n}(A)$ again. Using the open mapping theorem, let $\eta=\eta(\varepsilon)$ be such that

$$
\left\{y \in B:\|y\|_{B}<\eta\right\} \subseteq f\left(\left\{x \in A:\|x\|_{A}<\varepsilon\right\}\right)
$$

Since $f\left(a_{j}\right)-b_{j} \in I$, there exist $k_{j} \in B$ such that $\left\|f\left(a_{j}\right)-b_{j}-k_{j} b_{n+1}\right\|_{B}<\eta$ $(j=1, \ldots, n)$. Since f is surjective, we may choose $r_{j}, x_{j} \in A,\left\|r_{j}\right\|_{A}<\varepsilon$, and $a_{n+1} \in A$ such that $f\left(r_{j}\right)=y_{j}:=f\left(a_{j}\right)-b_{j}-k_{j} b_{n+1}, f\left(x_{j}\right)=k_{j}(j=1, \ldots, n)$, and $f\left(a_{n+1}\right)=b_{n+1}$. Then

$$
\left(a_{1}-r_{1}, \ldots, a_{n}-r_{n}\right) \in U_{n}(A)
$$

and so

$$
\left(a_{1}^{\prime}, \ldots, a_{n+1}^{\prime}\right):=\left(a_{1}-r_{1}-x_{1} a_{n+1}, \ldots, a_{n}-r_{n}-x_{n} a_{n+1}, a_{n+1}\right) \in U_{n+1}(A)
$$

Moreover, $f\left(a_{j}^{\prime}\right)=f\left(a_{j}\right)-f\left(x_{j}\right) f\left(a_{n+1}\right)-f\left(r_{j}\right)=f\left(a_{j}\right)-k_{j} b_{n+1}-y_{j}=b_{j}$ for $1 \leq j \leq n$ and $f\left(a_{n+1}^{\prime}\right)=b_{n+1}$. Hence $\underline{f}\left(U_{n+1}(A)\right)=U_{n+1}(B)$.

Next, we present relations between these notions of stable rank. Most of these relations are known and can be found in the papers of Corach and Larotonda [3] and Suárez [23; 24]. Many of the proofs in these papers are based on far-reaching concepts and techniques from algebraic geometry, such as Serre fibrations and homotopy classes. For the reader's convenience we present short direct proofs of some of these facts.

Proposition 2.1 [3, p. 293]. Suppose that $U_{n}(A)$ is dense in A^{n}. Then the stable rank of A is less than n. Namely, $\operatorname{bsr}(A) \leq \operatorname{tsr}(A)$.

Proof. Let $\left(f_{1}, \ldots, f_{n}, h\right) \in U_{n+1}(A)$. Then there exist $x_{j} \in A$ and $x \in A$ such that $1=\sum_{j=1}^{n} x_{j} f_{j}+x h$. Since $U_{n}(A)$ is dense in A^{n}, for every $\varepsilon>0$ there exists $\left(u_{1}, \ldots, u_{n}\right) \in U_{n}(A)$ such that $\left\|u_{j}-x_{j}\right\|_{A}<\varepsilon$. Also, $x=\sum_{j=1}^{n} h_{j} u_{j}$ for some $h_{j} \in A$ because (u_{1}, \ldots, u_{n}) is invertible. Hence

$$
\begin{aligned}
\sum_{j=1}^{n} u_{j}\left(f_{j}+h_{j} h\right) & =\sum_{j=1}^{n} u_{j} f_{j}+x h \\
& =\left(\sum_{j=1}^{n} x_{j} f_{j}+x h\right)+\sum_{j=1}^{n}\left(u_{j}-x_{j}\right) f_{j}=1+u
\end{aligned}
$$

where we have defined $u:=\sum_{j=1}^{n}\left(u_{j}-x_{j}\right) f_{j}$. Moreover, we have $\|u\|_{A} \leq$ $\varepsilon \sum_{j=1}^{n}\left\|f_{j}\right\|_{A}$. Hence, for $\varepsilon>0$ small enough, $1+u$ is invertible in A and so $\left(f_{1}+h_{1} h, \ldots, f_{n}+h_{n} h\right) \in U_{n}(A)$.

The following lemma is due to Corach and Suárez [4;5].
Lemma 2.2 [4, p. 636; 5, p. 608]. Let A be a commutative unital Banach algebra. Then, for $g \in A$, the set

$$
R_{n}(g)=\left\{\left(f_{1}, \ldots, f_{n}\right) \in A^{n}:\left(f_{1}, \ldots, f_{n}, g\right) \text { is reducible }\right\}
$$

is open-closed inside

$$
I_{n}(g)=\left\{\left(f_{1}, \ldots, f_{n}\right) \in A^{n}:\left(f_{1}, \ldots, f_{n}, g\right) \in U_{n+1}(A)\right\}
$$

In particular, for $n=1$, if $\varphi:[0,1] \rightarrow I_{1}(g)$ is a continuous curve and $(\varphi(0), g)$ is reducible, then $(\varphi(1), g)$ is reducible.

A very useful characterization of the Bass stable rank is the following. Here the equivalence of items (2) and (3) was known (see [3]).

Theorem 2.3. Let A be a commutative unital Banach algebra. The following assertions are equivalent:
(1) $\underline{\pi}\left(U_{n}(A)\right)$ is dense in $U_{n}(A / I)$ for every closed ideal I in A;
(2) $\operatorname{bsr}(A) \leq n$;
(3) $\underline{\pi}\left(U_{n}(A)\right)=U_{n}(A / I)$ for every closed ideal I in A.

Here $\pi: A \rightarrow A / I$ is the canonical quotient mapping and $\underline{\pi}$ the associated map on A^{n}.

Proof. (1) \Rightarrow (2): Let $\left(a_{1}, \ldots, a_{n}, a_{n+1}\right) \in U_{n+1}(A)$. Consider the closure I of the ideal generated by a_{n+1}. Then A / I is a Banach algebra under the quotient norm and $\left(a_{1}+I, \ldots, a_{n}+I\right) \in U_{n}(A / I)$. By (1), there exists a sequence $\left(b_{1}^{(k)}, \ldots, b_{n}^{(k)}\right) \in$ $U_{n}(A)$ such that $\left\|\pi\left(b_{j}^{(k)}\right)-\pi\left(a_{j}\right)\right\|_{A / I} \rightarrow 0$ as $k \rightarrow \infty$ for $j=1, \ldots, n$. Hence there are $x_{j}^{(k)} \in A$ such that

$$
\left\|a_{j}-b_{j}^{(k)}+x_{j}^{(k)} a_{n+1}\right\|_{A} \rightarrow 0
$$

Now for every k we have that the $(n+1)$-tuples

$$
\left(b_{1}^{(k)}-x_{1}^{(k)} a_{n+1}, \ldots, b_{n}^{(k)}-x_{n}^{(k)} a_{n+1}, a_{n+1}\right)
$$

are invertible and reducible, since

$$
\left(b_{j}^{(k)}-x_{j}^{(k)} a_{n+1}\right)+x_{j}^{(k)} a_{n+1}=b_{j}^{(k)} \quad \text { and } \quad\left(b_{1}^{(k)}, \ldots, b_{n}^{(k)}\right) \in U_{n}(A)
$$

Using Lemma 2.2, which tells us that $R_{n}\left(a_{n+1}\right)$ is closed inside $I_{n}\left(a_{n+1}\right)$, and noticing that $b_{j}^{(k)}-x_{j}^{(k)} a_{n+1} \rightarrow a_{j}$ for $j=1, \ldots, n$, we see that $\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)$ is reducible and so $\operatorname{bsr}(A) \leq n$.
$(2) \Rightarrow(3)$: This appears in [3, p. 296]. For the reader's convenience we present the argument. Let $\left(a_{1}+I, \ldots, a_{n}+I\right) \in U_{n}(A / I)$. Then there exist $y_{1}, \ldots, y_{n} \in$ A and $b \in I$ such that $\sum_{j=1}^{n} y_{j} a_{j}=1+b$. Hence $\left(a_{1}, \ldots, a_{n}, b\right) \in U_{n+1}(A)$ and so, by (2), there exist $x_{1}, \ldots, x_{n} \in A$ such that

$$
\left(a_{1}+x_{1} b, \ldots, a_{n}+x_{n} b\right) \in U_{n}(A)
$$

It is clear that $\pi\left(a_{j}+x_{j} b\right)=a_{j}+I$. Hence $\underline{\pi}\left(U_{n}(A)\right)=U_{n}(A / I)$.
(3) \Rightarrow (1): This is immediate.

Parts of the following result appear without proof in [6, p. 542].
Theorem 2.4. If A is a commutative unital Banach algebra, then

$$
\operatorname{bsr}(A)=\operatorname{ssr}(A) \leq \operatorname{dsr}(A) \leq \operatorname{tsr}(A) .
$$

Proof. The assertion that $\operatorname{bsr}(A)=\operatorname{ssr}(A)$ follows from Theorem 2.3. Indeed, let $n=\operatorname{ssr}(A)<\infty$. Since for any closed ideal I the canonical map $\pi: A \rightarrow A / I$ is surjective, $\operatorname{ssr}(A)=n$ implies that $\pi\left(U_{n}(A)\right)=U_{n}(A / I)$. Hence, by Theorem 2.3, $m:=\operatorname{bsr}(A) \leq n$. To show that $n \leq m$, let $f: A \rightarrow B$ be a surjective
homomorphism. Then the canonical injection $\check{f}: \tilde{A}=A / \operatorname{Ker} f \mapsto B$ is an algebra isomorphism and so $U_{m}(\tilde{A})$ is mapped onto $U_{m}(B)$ by \check{f}. Since $m=\operatorname{bsr}(A)$, by Theorem 2.3, $\underline{\pi}\left(U_{m}(A)\right)=U_{m}(A / \operatorname{Ker} f)$. Thus $\underline{f}\left(U_{m}(A)\right)=U_{m}(B)$. This means that $\operatorname{ssr}(A) \leq m$. Altogether we have shown that $\operatorname{bsr}(A)=\operatorname{ssr}(A)$.

Now suppose that $\operatorname{dsr}(A)=n$. Consider the algebra $B:=A / I$, where I is any closed ideal in A. Then the assertion that $\operatorname{bsr}(A) \leq \operatorname{dsr}(A)$ follows from Theorem 2.3 when applied to the epimorphism $f=\pi$.

Next we suppose that $\operatorname{tsr}(A)=n$. To show that $\mathrm{dsr}(A) \leq \operatorname{tsr}(A)$, we note that if $f: A \rightarrow B$ has dense image then $f: A^{n} \rightarrow B^{n}$ has dense image as well. Now, the continuity of f and the density of $U_{n}(A)$ in A^{n} imply that

$$
\overline{\underline{f}\left(U_{n}(A)\right)} \supseteq \underline{f}\left(\overline{U_{n}(A)}\right)=\underline{f}\left(A^{n}\right) .
$$

Therefore,

$$
U_{n}(B) \subseteq B^{n}=\underline{f}\left(A^{n}\right) \subseteq \underline{f}\left(U_{n}(A)\right) .
$$

Since $\underline{f}\left(U_{n}(A)\right) \subseteq U_{n}(B)$, we finally obtain that $\underline{f}\left(U_{n}(A)\right)$ is dense in $U_{n}(B)$. Therefore $\operatorname{dsr}(A) \leq n=\operatorname{tsr}(A)$.

It is not known whether always $\operatorname{bsr}(A)=\operatorname{dsr}(A)$. For $A=H^{\infty}$, for instance, we have $\operatorname{bsr}\left(H^{\infty}\right)=\operatorname{dsr}\left(H^{\infty}\right)=1$ (see [13; 23; 26]) and $\operatorname{tsr}\left(H^{\infty}\right)=2$ (see [24]); for $A=H_{\mathbb{R}}^{\infty}=\left\{f \in H^{\infty}: \overline{f(\bar{z})}=f(z)\right\}$ we have $\operatorname{bsr}\left(H_{\mathbb{R}}^{\infty}\right)=\operatorname{dsr}\left(H_{\mathbb{R}}^{\infty}\right)=$ $\operatorname{tsr}\left(H_{\mathbb{R}}^{\infty}\right)=2$ (see [12]).

Our next result, which seems to be new, gives a version of Lemma 2.2 with bounds.

Proposition 2.5. Let (f, g) be an invertible pair in the commutative unital Banach algebra A. Suppose that f_{n} converges to f and that there exist a constant $K \geq 1$ and $u_{n} \in A$ such that $f_{n}+u_{n} g$ is invertible with

$$
\left\|u_{n}\right\|_{A}+\left\|f_{n}+u_{n} g\right\|_{A}+\left\|\left(f_{n}+u_{n} g\right)^{-1}\right\|_{A} \leq K .
$$

Then there is an $h \in A$ such that $f+h g$ is invertible and

$$
\|h\|_{A}+\|f+h g\|_{A}+\left\|(f+h g)^{-1}\right\|_{A} \leq 8 K
$$

Proof. Let $(x, y) \in A^{2}$ be such that $1=x f+y g$. Then

$$
f_{n}+u_{n} g=f\left(x f_{n}+y g\right)+\left(y\left(f_{n}-f\right)+u_{n}\right) g .
$$

Since $\left\|f_{n}-f\right\|_{A} \rightarrow 0$ we may choose n_{0} so big that for all $n \geq n_{0}$ the elements $x f_{n}+y g$ are invertible in A, such that

$$
\left\|x f_{n}+y g\right\|_{A} \leq 2 \quad \text { and } \quad\left\|\left(x f_{n}+y g\right)^{-1}\right\|_{A} \leq 2
$$

and such that

$$
\left\|f-f_{n}\right\|_{A} \leq \min \left\{1,\|y\|_{A}^{-1}\right\} .
$$

If we let

$$
h=\left(y\left(f_{n}-f\right)+u_{n}\right)\left(x f_{n}+y g\right)^{-1}
$$

then $f+h g$ is invertible. Noticing that by hypothesis $\left\|u_{n}\right\|_{A} \leq K$, we get

$$
\begin{gathered}
\|h\|_{A} \leq 2(1+K), \\
\left\|\left(f_{n}+u_{n} g\right)\left(x f_{n}+y g\right)^{-1}\right\|_{A} \leq 2 K,
\end{gathered}
$$

and

$$
\left\|\left(x f_{n}+y g\right)\left(f_{n}+u_{n} g\right)^{-1}\right\|_{A} \leq 2 K .
$$

Since $K \geq 1$,

$$
\|h\|_{A}+\|f+h g\|_{A}+\left\|(f+h g)^{-1}\right\|_{A} \leq 8 K .
$$

3. The Stable Ranks of $\boldsymbol{H}^{\infty}+\boldsymbol{C}$

It is the aim of this section to determine the stable ranks defined previously for the Sarason algebra $H^{\infty}+C$. Toward this end let us recall the following theorem of Treil [26], which tells us in particular that $\operatorname{bsr}\left(H^{\infty}\right)=1$.

Theorem 3.1. There exists a constant $C(\delta)$ depending only on $\delta \in] 0,1[$ such that for every pair (f, g) of elements in the unit ball of H^{∞} satisfying $|f|+|g| \geq$ $\delta>0$ in \mathbb{D} there are functions $u, h \in H^{\infty}$ with u invertible in H^{∞} satisfying $1=$ $u f+h g$ and $\|u\|_{\infty}+\left\|u^{-1}\right\|_{\infty}+\|h\|_{\infty} \leq C(\delta)$.

The following well-known result can easily be deduced from Treil's theorem.
Proposition 3.2. There exists a constant $C(\delta)$ depending only on δ such that, for every f_{1}, \ldots, f_{n} in H^{∞} satisfying $1 \geq \sum_{j=1}^{n}\left|f_{j}\right| \geq \delta>0$ in \mathbb{D}, there exist $a_{j}, t_{j} \in H^{\infty}$ bounded by $C(\delta)$ such that

$$
1=\sum_{j=1}^{n-1} a_{j}\left(f_{j}+t_{j} f_{n}\right)
$$

Proof. By the H^{∞}-corona theorem [2], there is a constant $C_{1}(\delta)$ such that the Bezout equation $\sum_{j=1}^{n} x_{j} f_{j}=1$ admits a solution $\left(x_{1}, \ldots, x_{n}\right) \in\left(H^{\infty}\right)^{n}$ with

$$
\sum_{j=1}^{n}\left\|x_{j}\right\|_{\infty} \leq C_{1}(\delta) .
$$

We may assume that $C_{1}(\delta) \geq 1$. Now

$$
1 \leq\left\|x_{1}\right\|_{\infty}\left|f_{1}\right|+\left|\sum_{j=2}^{n} x_{j} f_{j}\right| \leq C_{1}(\delta)\left(\left|f_{1}\right|+\left|\sum_{j=2}^{n} x_{j} f_{j}\right|\right) ;
$$

hence

$$
2+C_{1}(\delta) \geq\left|f_{1}\right|+\left|\sum_{j=2}^{n} x_{j} f_{j}\right| \geq \frac{1}{C_{1}(\delta)}:=\varepsilon>0 .
$$

By Treil's theorem there is a constant $C_{2}(\varepsilon)$ and $u, v \in H^{\infty}$ such that u is invertible in H^{∞} and $\|u\|_{\infty}+\left\|u^{-1}\right\|_{\infty}+\|v\|_{\infty} \leq C_{2}(\varepsilon)$ with

$$
1=u f_{1}+v\left(\sum_{j=2}^{n} x_{j} f_{j}\right) .
$$

The latter equation can be rewritten as

$$
1=u\left(f_{1}+u^{-1} v x_{n} f_{n}\right)+\sum_{j=2}^{n-1} v x_{j}\left(f_{j}+0 \cdot f_{n}\right)
$$

It is clear that the functions $a_{1}:=u, t_{1}:=u^{-1} v x_{n}, a_{j}:=v x_{j}$, and $t_{j}:=0$ for $j=2, \ldots, n-1$ are bounded by a constant $C(\delta)$ depending only on δ.

The following theorem, given by Laroco [11, p. 819], will be essential for our determination of the stable rank of $H^{\infty}+C$.

Theorem 3.3. Let $f \in H^{\infty}$. Then, for every $\varepsilon>0$, there exist a Blaschke product B and an outer function v, invertible in H^{∞}, such that

$$
\|f-B v\|_{\infty}<\varepsilon \quad \text { and } \quad|v| \geq \varepsilon / 4 \text { on } \partial \mathbb{D}
$$

as well as $\|v\|_{\infty} \leq 1+\|f\|_{\infty}$.
We note that, because v is invertible, we actually have $|v| \geq \varepsilon / 4$ on \mathbb{D}. We additionally need the following lemma.

Lemma 3.4. Let B be a Blaschke product and $g \in H^{\infty}$ with $\|g\|_{\infty} \leq 1$. Suppose that $|B|+|g| \geq \delta>0$ on $M\left(H^{\infty}+C\right)$. Then there exists a constant $C(\delta)$, depending only on δ, and functions h and u in $H^{\infty}+C$ with u invertible in $H^{\infty}+C$ such that $\|u\|_{\infty},\left\|u^{-1}\right\|_{\infty}$, and $\|h\|_{\infty}$ are bounded by $C(\delta)$ and such that

$$
1=u B+h g
$$

Proof. By continuity, there exists an $r>0$ such that on $\{r \leq|z|<1\}$

$$
|B|+|g| \geq \delta / 2
$$

Let B^{*} be a tail of B such that $\left|B^{*}\right| \geq \delta / 2$ on $\{|z| \leq r\}$. Hence

$$
\left|B^{*}\right|+|g| \geq \delta / 2 \text { on } M\left(H^{\infty}\right)
$$

Let $b=B / B^{*}$. Note that b is a finite Blaschke product and hence $\bar{b} \in H^{\infty}+C$. By Treil's result [26] (here Theorem 3.1), there is a constant $C(\delta)$ and two functions $R, h \in H^{\infty}, R$ invertible in H^{∞}, such that

$$
1=R B^{*}+h g
$$

and

$$
\|R\|_{\infty}+\left\|R^{-1}\right\|_{\infty}+\|h\|_{\infty} \leq C(\delta / 2)
$$

Therefore, as $\left(H^{\infty}+C\right)$-functions,

$$
1=(R \bar{b}) B+h g .
$$

Theorem 3.5. The Bass stable rank of $H^{\infty}+C$ equals 1.
Proof. Let (φ, ψ) be an invertible pair in $H^{\infty}+C$. We may assume that $\|\varphi\|_{\infty} \leq 1$ and $\|\psi\|_{\infty} \leq 1$. Since $H^{\infty}+C$ is the uniform closure of the set of functions $\left\{\bar{z}^{n} f: f \in H^{\infty}, n \in \mathbb{N}\right\}$ (see [7]), there exist $n \in \mathbb{N}$ and $f \in H^{\infty}$ such that
$\left\|\varphi-f \bar{z}^{n}\right\|_{\infty}<\varepsilon$. By Theorem 3.3, there is a Blaschke product B and a function v invertible in H^{∞} such that $\|f-v B\|_{\infty}<\varepsilon$. Hence the set of functions

$$
\left\{\bar{z}^{n} v B: n \in \mathbb{N}, B \text { Blaschke, } v \text { invertible in } H^{\infty}\right\}
$$

is dense in $H^{\infty}+C$. By Lemma 2.2 and the fact that the factors $\bar{z}^{n} v$ are invertible in $H^{\infty}+C$, it suffices to show the reducibility of the pairs (B, ψ), where B is any Blaschke product such that $|B|+|\psi| \geq \delta>0$ on $M\left(H^{\infty}+C\right)$.

To do this, we shall use Lemma 3.4. Choose $n \in \mathbb{N}$ and $g \in H^{\infty},\|g\|_{\infty} \leq 1$, such that

$$
\left\|\bar{z}^{n} g-\psi\right\|_{\infty}<\min \left\{\frac{\delta}{2}, \frac{1}{2 C(\delta / 2)}\right\}
$$

where $C(\delta)$ is the constant from Lemma 3.4. Now consider the pair (B, g). We obviously have (on $M\left(H^{\infty}+C\right)$)

$$
|B|+|g|=|B|+\left|\bar{z}^{n} g\right| \geq|B|+|\psi|-\left|\psi-\bar{z}^{n} g\right| \geq \delta / 2
$$

By Lemma 3.4, there exists $u \in H^{\infty}+C, u$ invertible, and $h \in H^{\infty}+C$ with $\|u\|_{\infty}+\left\|u^{-1}\right\|_{\infty}+\|h\|_{\infty} \leq C(\delta / 2)$ such that

$$
1=u B+h g
$$

Hence

$$
\begin{aligned}
\left|u B+\left(h z^{n}\right) \psi\right| & =\left|u B+h g+h\left(z^{n} \psi-g\right)\right| \\
& \geq 1-\|h\|_{\infty}\left\|\psi-\bar{z}^{n} g\right\|_{\infty} \geq 1-\|h\|_{\infty} \frac{1}{2 C(\delta / 2)} \geq \frac{1}{2}
\end{aligned}
$$

Thus $u B+\left(h z^{n}\right) \psi$ is invertible in $H^{\infty}+C$. Hence $1=x B+y \psi$, where $x \in$ $H^{\infty}+C$ is invertible and

$$
\max \left\{\|x\|_{\infty},\|y\|_{\infty}\right\} \leq 2 C(\delta / 2) \quad \text { and } \quad\left\|x^{-1}\right\|_{\infty} \leq 2 C^{2}(\delta / 2)
$$

This shows that the pair (B, ψ) is reducible in $H^{\infty}+C$.
Combining Proposition 2.5 with the proof just given, we get the following extension of Theorem 3.5.

Theorem 3.6. There exists a constant $C(\delta)$ depending only on $\delta \in] 0,1[$ such that for every pair (φ, ψ) of functions in the unit ball of $H^{\infty}+C$ satisfying $|\varphi|+|\psi| \geq \delta$ on $M\left(H^{\infty}+C\right)$ there is a solution $(u, v) \in\left(H^{\infty}+C\right)^{2}$ of the Bezout equation $u \varphi+v \psi=1$, where u is invertible in $H^{\infty}+C$ and such that $\|u\|_{\infty}+\left\|u^{-1}\right\|_{\infty}+\|v\|_{\infty} \leq C(\delta)$.

Proof. According to Theorem 1.1, let (x, y) be a solution in $H^{\infty}+C$ of the Bezout equation $x \varphi+y \psi=1$ with $\|x\|_{\infty}+\|y\|_{\infty} \leq \tilde{\chi}(\delta)$. Using Theorem 3.3, we may choose a Blaschke product B and a function h invertible in H^{∞} such that

$$
\left\|\varphi-\bar{z}^{v} B h\right\|_{\infty}<\sigma(\delta):=\min \left\{\delta / 2,(2 \tilde{\chi}(\delta))^{-1}\right\}
$$

and $2 \geq|h|>\sigma(\delta) / 4$. Since $|B|+|\psi| \geq \delta / 4$ on $M\left(H^{\infty}+C\right)$, there exists by the proof of Theorem 3.5 a constant $C_{1}(\delta)$ and a function $q \in H^{\infty}+C$ such that $F:=B+q \psi$ is invertible in $H^{\infty}+C$ and such that

$$
\|q\|_{\infty}+\|F\|_{\infty}+\left\|F^{-1}\right\|_{\infty} \leq C_{1}(\delta)
$$

Let $f^{*}:=\bar{z}^{\nu} h B$ and $u^{*}:=\bar{z}^{\nu} h q$. Then we have that $v^{*}:=f^{*}+u^{*} \psi$ is invertible in $H^{\infty}+C$ and

$$
\left\|u^{*}\right\|_{\infty}+\left\|v^{*}\right\|_{\infty}+\left\|\left(v^{*}\right)^{-1}\right\|_{\infty} \leq C_{2}(\delta):=6 C_{1}(\delta)+\frac{4}{\sigma(\delta)} C_{1}(\delta)
$$

Now, as in the proof of Proposition 2.5, we see from

$$
f^{*}+u^{*} \psi=\varphi\left(x f^{*}+y \psi\right)+\left(y\left(f^{*}-\varphi\right)+u^{*}\right) \psi
$$

that $1=u \varphi+v \psi$ with

$$
\|u\|_{\infty}+\left\|u^{-1}\right\|_{\infty}+\|v\|_{\infty} \leq C_{3}(\delta)
$$

In [24], Suárez showed that $\operatorname{tsr}\left(H^{\infty}\right)=2$. Using this result, we deduce the topological stable rank for $H^{\infty}+C$.

Theorem 3.7. The topological stable rank of $H^{\infty}+C$ is 2 .
Proof. First we show that the topological stable rank of $H^{\infty}+C$ is at most 2. Let $\left(\varphi_{1}, \varphi_{2}\right) \in\left(H^{\infty}+C\right)^{2}$. Approximate φ_{j} by functions of the form $\overline{z^{n_{j}}} f_{j}$, where $f_{j} \in$ H^{∞}, say $\left\|\overline{z^{n_{j}}} f_{j}-\varphi_{j}\right\|_{\infty}<\varepsilon, j=1,2$.

Since the topological stable rank of H^{∞} is 2 , there exist $g_{j} \in H^{\infty}$ such that $\left\|g_{j}-f_{j}\right\|_{\infty} \leq \varepsilon$ and $\left(g_{1}, g_{2}\right) \in U_{2}\left(H^{\infty}\right)$. Obviously, $\left(\overline{z^{n_{1}}} g_{1}, \overline{z^{n_{2}}} g_{2}\right) \in U_{2}\left(H^{\infty}+C\right)$ and $\left\|\overline{z^{n_{j}}} g_{j}-\varphi_{j}\right\|_{\infty}<2 \varepsilon$. Thus $\operatorname{tsr}\left(H^{\infty}+C\right) \leq 2$.

Let b be an (infinite) interpolating Blaschke product. Note that b is not invertible in $H^{\infty}+C$. Let $m \in M\left(H^{\infty}+C\right)$ be a zero of b and let L_{m} be the associated Hoffman map. Since $b \circ L_{m}$ is analytic but not identically zero, we see that b cannot be uniformly approximated on $M\left(H^{\infty}+C\right)$ by invertibles in $H^{\infty}+C$, say u_{n}, since otherwise $\left\|b \circ L_{m}-u_{n} \circ L_{m}\right\|_{\infty} \rightarrow 0$-a contradiction to Rouché's theorem. Thus $\operatorname{tsr}\left(H^{\infty}+C\right) \geq 2$.

Next we deal with the dense stable rank of $H^{\infty}+C$. Recall that if A is a commutative unital Banach algebra, then E is an A-convex subset of $M(A)$ if

$$
\forall x \notin E \quad \exists f \in A:|f(x)|>\sup _{E}|f| .
$$

We let \hat{E} denote the A-convex hull of a closed set $E \subseteq M(A)$. This is given by

$$
\hat{E}=\left\{m \in M(A):|f(m)| \leq \sup _{E}|f| \forall f \in A\right\}
$$

Note that E is A-convex if and only if $E=\hat{E}$. We say that E is a proper A-convex set if $E=\hat{E}$ and $\hat{E} \neq M(A)$.

Theorem 3.8. The dense stable rank of $H^{\infty}+C$ is 1 .
Proof. Let E be an $\left(H^{\infty}+C\right)$-convex subset of $M\left(H^{\infty}+C\right)$. By [13] it is sufficient to prove that any function $\varphi \in H^{\infty}+C$ that does not vanish on E can be uniformly approximated on E by invertible functions in $H^{\infty}+C$. Toward this end, we first approximate φ on \mathbb{T} (hence on $M\left(H^{\infty}+C\right)$) by a function of the
form $\bar{z}^{n} f$, where $n \in \mathbb{N}$ and $f \in H^{\infty}$, say $\left\|\varphi-\bar{z}^{n} f\right\|_{\infty}<\varepsilon / 2$. By choosing ε sufficiently small, we see that f does not vanish on E, too. Let

$$
\check{E}=\left\{m \in M\left(H^{\infty}\right):|h(m)| \leq \sup _{E}|h| \forall h \in H^{\infty}\right\}
$$

be the H^{∞}-convex hull of E. We show that $\check{E} \cap M\left(H^{\infty}+C\right)=E$. Toward this end, let $m_{0} \in M\left(H^{\infty}+C\right) \backslash E$. Since E is $\left(H^{\infty}+C\right)$-convex, there exists a function $\psi \in H^{\infty}+C$ such that $\left|\psi\left(m_{0}\right)\right|>\sup _{E}|\psi|$. Uniformly approximating ψ by a function of the form $\bar{z}^{n} g$ shows that $\left|g\left(m_{0}\right)\right|>\sup _{E}|g|$ for some $g \in H^{\infty}$. Thus $m_{0} \notin \check{E}$, the H^{∞}-convex hull of E. This shows that $\check{E} \cap M\left(H^{\infty}+C\right)=E$.

Now \check{E} can be written as $\check{E}=E \cup S$, where $S=\check{E} \cap \mathbb{D}$. We probably have $S=$ \emptyset; however, this isn't necessary for the rest of the proof. Note that \check{E} is closed and $\bar{S} \backslash \mathbb{D} \subseteq E$. Recall that our function f described previously does not vanish on E; hence f can have only finitely many zeros in S. Write $f=q F$, where q is the finite Blaschke product formed with the zeros of f in S. Thus F does not vanish on \check{E}. By [13], for every $\varepsilon>0$ there is an invertible function $h \in H^{\infty}$ such that $\sup _{\check{E}}|F-h|<\varepsilon / 2$. Hence, by noticing that $|q|=1$ on $M\left(H^{\infty}+C\right)$, we have $|q h-f|=|q h-q F|<\varepsilon / 2$ on E. Therefore, on E,

$$
\left\|\bar{z}^{n} q h-\varphi\right\|_{\infty} \leq\left\|\bar{z}^{n}(q h-f)\right\|_{\infty}+\left\|\varphi-\bar{z}^{n} f\right\|_{\infty}<\varepsilon
$$

Since $\bar{z}^{n} q h$ does not vanish on $M\left(H^{\infty}+C\right)$, that function is invertible in $H^{\infty}+C$.
Remark. Using Theorem 2.4 and Theorem 3.8 we get a second proof of the fact that $\operatorname{bsr}\left(H^{\infty}+C\right)=1$ (see Theorem 3.5).

References

[1] S. Axler, Factorization of L^{∞} functions, Ann. of Math. (2) 106 (1977), 567-572.
[2] L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547-559.
[3] G. Corach and A. Larotonda, Stable range in Banach algebras, J. Pure Appl. Algebra 32 (1984), 289-300.
[4] G. Corach and F. D. Suárez, Stable rank in holomorphic function algebras, Illinois J. Math. 29 (1985), 627-639.
[5] -, On the stable range of uniform algebras and H^{∞}, Proc. Amer. Math. Soc. 98 (1986), 607-610.
[6] ——, Dense morphisms in commutative Banach algebras, Trans. Amer. Math. Soc. 304 (1987), 537-547.
[7] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York, 1981.
[8] P. Gorkin and R. Mortini, Interpolating Blaschke products and factorization in Douglas algebras, Michigan Math. J. 38 (1991), 147-160.
[9] K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. (2) 86 (1967), 74-111.
[10] P. W. Jones, D. Marshall, and T. Wolff, Stable rank of the disc algebra, Proc. Amer. Math. Soc. 96 (1986), 603-604.
[11] L. Laroco, Stable rank and approximation theorems in H^{∞}, Trans. Amer. Math. Soc. 327 (1991), 815-832.
[12] R. Mortini and B. D. Wick, The Bass and topological stable ranks of $H_{\mathbb{R}}^{\infty}(\mathbb{D})$ and $A_{\mathbb{R}}(\mathbb{D})$, J. Reine Angew. Math. 636 (2009), 175-191.
[13] A. Nicolau and D. Suárez, Approximation by invertible functions in H^{∞}, Math. Scand. 99 (2006), 287-319.
[14] N. K. Nikolski, Treatise on the shift operator, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin, 1986.
[15] ——, In search of the invisible spectrum, Ann. Inst. Fourier (Grenoble) 49 (1999), 1925-1998.
[16] M. Reffel, Dimension and stable rank in the K-theory of C^{*}-algebras, Proc. London Math. Soc. (3) 46 (1983), 301-333.
[17] M. Rosenblum, A corona theorem for countably many functions, Integral Equations Operator Theory 3 (1980), 125-137.
[18] R. Rupp, Stable ranks of subalgebras of the disc algebra, Proc. Amer. Math. Soc. 108 (1990), 137-142.
[19] -, Stable rank of holomorphic function algebras, Studia Math. 97 (1990), 85-90.
[20] —, Stable rank and the $\bar{\partial}$-equation, Canad. Math. Bull. 34 (1991), 113-118.
[21] ——, Stable rank and boundary principle, Topology Appl. 40 (1991), 307-316.
[22] D. Sarason, Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79 (1973), 286-299.
[23] D. Suárez, Cech cohomology and covering dimension for the H^{∞} maximal ideal space, J. Funct. Anal. 123 (1994), 233-263.
[24] , Trivial Gleason parts and the topological stable rank of H^{∞}, Amer. J. Math. 118 (1996), 879-904.
[25] V. Tolokonnikov, Estimates in the Carleson corona theorem, ideals of the algebra H^{∞}, a problem of S.-Nagy, J. Soviet Math. 22 (1983), 1814-1828.
[26] S. Treil, The stable rank of H^{∞} equals 1, J. Funct. Anal. 109 (1992), 130-154.
[27] ——, Estimates in the corona theorem and ideals of H^{∞} : A problem of T. Wolff, J. Anal. Math. 87 (2002), 481-495.
[28] S. Treil and B. D. Wick, The matrix-valued H^{p} corona problem in the disk and polydisk, J. Funct. Anal. 226 (2005), 138-172.
[29] T. T. Trent, A new estimate for the vector valued corona problem, J. Funct. Anal. 189 (2002), 267-282.
[30] L. Vasershtein, The stable rank of rings and dimensionality of topological spaces, Funktsional Anal. i Prilozhen 5 (1971), 17-27 (Russian); English translation in Funct. Anal. Appl. 5 (1971), 102-110.
R. Mortini

Département de Mathématiques
LMAM, UMR 7122
Université Paul Verlaine
Ile du Saulcy
F-57045 Metz
France
mortini@poncelet.univ-metz.fr
B. D. Wick

School of Mathematics
Georgia Institute of Technology
686 Cherry St.
Atlanta, GA 30332
wick@math.gatech.edu

[^0]: Received January 27, 2009. Revision received June 10, 2009.
 Research of the second author was supported in part by the National Science Foundation DMS Grant no. 0752703.

