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On the Beurling–Ahlfors Transform’s
Weak-type Constant

James T. Gill

1. Introduction

The Beurling–Ahlfors transform, denoted by S, is defined on Lp(C), 1 ≤ p <

∞, by

Sf(z) = − 1

π

∫
C

f(w)

(z− w)2
dw,

where dw is the 2-dimensional Lebesgue measure and the integral is understood
as a Cauchy principal value. By the theory of Calderón and Zygmund this is a
bounded operator on Lp(C) for 1 < p < ∞. In fact one can show the Fourier
multiplier associated with the operator is ξ̄/ξ, and so it is an isometry on L2(C)

by Plancharel’s theorem. Its norm on the other Lp spaces is unknown and is an
area of interest, especially in the field of quasiconformal mappings as

S(∂̄f ) = ∂f

gives a connection between the z and z̄ derivatives. The well-known Iwaniec con-
jecture [4] asserts that

‖S‖p = p∗ − 1 := max{p,p/(p − 1)} − 1.

The current best estimate of

‖S‖p ≤ 1.575(p∗ − 1)

is due to Bañeulos and Janakiraman [2].
For a function f on a measure space (X,µ) we define the weak “norm” of f as

‖f ‖w := sup
λ>0

µ(|f | ≥ λ)λ.

For an operator T defined on L1(X,µ), but not necessarily bounded, define

‖T ‖w := sup
f∈L1,f 
=0

‖Tf ‖w
‖f ‖1

.

An L1(X,µ) bounded operator T has ‖T ‖w < ∞ by Chebyshev’s inequality, but
an operator with ‖T ‖w < ∞ is not necessarily bounded in L1(X,µ). If ‖T ‖w is
finite, we say that T is weak-type bounded with constant ‖T ‖w.
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It is an interesting problem to find ‖S‖w (see [1, Chap. 4] for motivation). Per-
haps the first result along these lines is due to Bañuelos and Janakiraman [3]. They
introduce an operator �, called �0 in [3], which is defined as

�f(x) := 1

x

∫ x

0
f(y) dy − f(x), 0 < x < ∞. (1)

They show that� is an isometry onL2(0, ∞). If f ∈L1(0, ∞) andF(z) = f(|z|2)
for z∈ C, then F ∈L1(C),

SF(z) = z̄

z
�f(|z|2), ‖SF‖w = π‖�f ‖w, and ‖F‖1 = π‖f ‖1

where the quantities are taken in their respective spaces.

Theorem A [3]. ‖�‖w = 1
log 2 and so ‖S‖w ≥ 1

log 2 .

A function that gives the extremal value in Theorem A is f(x) = −χ(0,2](x) · log x
where χ represents the indicator function. Then �f ≡ 1 on (0, 2] and then jumps
down and decreases for (2, ∞).

The main purpose of this paper is to prove a companion result for Theorem A.
Let

�∗f(x) :=
∫ ∞

x

f(y)

y
dy − f(x), 0 < x < ∞,

be an operator defined on Lp(0, ∞) for all 1 ≤ p < ∞. First we show that �∗ is
the adjoint of �. Let f ∈L1(0, ∞) and g ∈L∞(0, ∞). Then

〈f ,�g〉 =
∫ ∞

0
f(x)

[
1

x

∫ x

0
g(y) dy − g(x)

]
dx

=
∫ ∞

0
g(y)

∫ ∞

y

f(x)

x
dx dy −

∫ ∞

0
f(y)g(y) dy = 〈�∗f , g〉.

Our first result is to note that �∗ provides a way to calculate S for a class of radial
functions.

Theorem 1. If f ∈Lp(R+, R), 1 ≤ p < ∞, and F(z) = (z/z̄)f(|z|2), then

SF(z) = −�∗f(|z|2).
This relationship gives us another way to calculate a lower bound for the weak-type
norm ‖S‖w.
Theorem 2. ‖�∗‖w = 1

log 2 , and so ‖S‖w ≥ 1
log 2 .

Note that there is no obvious reason for the quantities ‖�‖w and ‖�∗‖w to be the
same. A function that is extremal for ‖�∗‖w is

f(x) = χ(1/2,1](x)

x
, which gives �∗f(x) = χ[0,1/2](x)− χ(1/2,1](x). (2)

As ‖f ‖1 = log 2 and ‖�∗f ‖w = 1 the value 1/log 2 is achieved.
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In order to prove Theorem 2, we recast the question as a nontrivial question
about �. We first note, by exploiting our adjoint relationship, that the image of
any f in L1[0, ∞) under �∗ has zero mean:∫ ∞

0
�∗f dx = 〈�∗f ,1〉 = 〈f ,�1〉 = 〈f , 0〉 = 0. (3)

Now note that when looking for ‖�∗‖w, it is enough to look at the f that have a
limit at 0 that is noninfinite. As �∗ is unaffected for all x > ε if we change f
on (0, ε) but keep the same absolute sum from 0 to ε, the only difference in our
ratio defining ‖�∗‖w would be a difference of at most ε in the numerator, and so
we may restrict f to having a noninfinite limit at zero. This is our first reduction.
Now we note that for such f , �(�∗f ) = f :

�(�∗f )(u) = 1

u

∫ u

0

(∫ ∞

x

f(t)

t
dt − f(x)

)
dx −

(∫ ∞

u

f(t)

t
dt − f(u)

)

= 1

u

∫ u

0

∫ ∞

x

f(t)

t
dt dx − 1

u

∫ u

0
f(x) dx −

∫ ∞

u

f(t)

t
+ f(u).

We now integrate the first integral in the last line above by parts to obtain∫ u

0

∫ ∞

x

f(t)

t
dt dx = u

∫ ∞

u

f(t)

t
dt − 0 +

∫ u

0
f(x) dx

where the integration by parts is justified by our reduction on f. Plugging this cal-
culation into last expression above for�(�∗f )(u) yields f(u). So on the function
class to which we have reduced for finding ‖�∗‖w we also have that � ��∗ = Id.
So, using this fact and (3), Theorem 2 is equivalent to the following statement.

Theorem 3. If f ∈L1(R+, R) with
∫ ∞

0 f(x) dx = 0, then

|{x ∈ R
+ : |f(x)| ≥ λ}|λ

‖�f ‖1
≤ 1

log 2
.

There exist f and λ for which equality can be attained.

In Section 2 we prove Theorem 1, and in Section 3 we prove Theorem 3 and hence
Theorem 2. We note the following conjecture from [3].

Conjecture. ‖S‖w = 1
log 2 .

So Theorem 2 gives further evidence that this conjecture may be true. We also
note that Theorem A and Theorem 3 are different results as the role of f and �f
are reversed.

2. Proof of Theorem 1

We first consider that with D = {z : |z| < 1}, we have the pair

ρ1 = z

z̄
· χD(z) and Sρ1(z) = (1 + log(|z|2))χD(z). (4)
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This was first noticed by Iwaniec in [5]. The pair ρ1 and Sρ1 determine the action
of S on the class of functions in Theorem 1 from above. By a change of variables,
one can show that

ρR(z) = z

z̄
· χBR(z),

where BR is the disc of radius R > 0, is transformed to

SρR(z) = Sρ1

(
z

R

)
=

(
1 + log

(∣∣∣∣ zR
∣∣∣∣

2))
χBR(z).

As a consequence, we know how the Beurling–Ahlfors transform acts on lin-
ear combinations of these functions, and by continuity of our operator S, on Lp

limits of the functions. This is detailed for a similar class in [3] and we will not
reproduce the argument here. We now show the relationship between f and F in
Theorem 1. Let f(x) = χ[0,R)(x). Then for u ≤ R,

−�∗f(u) =
(

1 + log

(
u

R

))
χ[0,R)(u).

Hence as
ρR(z) = z

z̄
· χ[0,R)(|z|) = z

z̄
· χ[0,R2)(|z|2)

we get
SρR(z) = −�∗(χ[0,R2))(|z|2),

which, by the density of linear combinations, proves Theorem 1.

3. Proof of Theorem 3

We have already noted by (2) that the value 1/log 2 can be achieved. We now must
show that this is best possible. To do this we make some assumptions that allow
us to work in an orderly fashion. By linearity we may assume λ = 1. Note that
without loss of generality, we can assume that f has compact support. Also our
ratio |{|f | ≥ 1}|

‖�f ‖1

is invariant under dilation so we may assume that our support is contained in
[0,1]. Also functions of this type may be approximated by functions gm =∑m

i=1 xiχ[(i−1)/m,i/m)(x) as m → ∞. In order to make our calculations simpler,
we dilate these approximants by m, so that our functions have support on [0,m].
So we start with, for m ≥ 2, a function of the form

f(x) =
m∑
i=1

xiχ[i−1,i)(x); and
m∑
i=1

xi = 0. (5)

Then one can calculate

�f(x) = x1 − x2

x
χ[1,2)(x)+ · · · + x1 + · · · + xm−1(m− 1)xm

x
χ[m−1,m) (6)

and so
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‖�f ‖1

= |x1 − x2| log 2 + · · · + |x1 + · · · + xm−1 − (m− 1)xm| log

(
m

m− 1

)
. (7)

So if we show that the quantity

R(f ) := |{|f | ≥ 1}|
‖�f ‖1

(8)

is less than or equal to 1/log 2, then Theorem 3 is proved. We first note that if one
has two different functions f and g supported on [0,m] such that

∫ n

0 f = ∫ n

0 g for
some n < m and f = g on [n,m], then�f and�g are identical on [n,m], as one
can see from the preceding formulas. This fact will allow us to make modifica-
tions on progressively larger intervals without changing our function “too much”.

Let us define some notation:

kn :=
∫ n

0
f =

n∑
i=1

xi,

mf (j) := |{|f | ≥ 1} ∩ [0, j)| and Mf (j) := |{|f | ≥ 1} ∩ [j, ∞)|,

νf (j) :=
∫ j

0
|�f | dx and Nf (j) :=

∫ ∞

j

|�f | dx.
Therefore

R(f ) = mf (j)+Mf (j)

νf (j)+Nf (j)
for all j ∈ [0,m).

We also note the following.

Observation A. Let a, b, c, d ≥ 0. If a
b

≤ 1
log 2 and c

d
≥ 1

log 2 then a
b

≤ a+c
b+d . If

a
b
> 1

log 2 and c
d

≥ 1
log 2 then a+c

b+d >
1

log 2 . Of course, 1
log 2 can be replaced by any

other positive number.

3.1. Modification on [0, 2)

Let

f2 := f · χ[2,m) +




k2

2 · χ[0,2) if |k2| ≥ 2,

χ[
0,
k2+2

2

) − χ[
k2+2

2 ,2
) if 0 ≤ k2 < 2,

−χ[
0,

|k2 |+2
2

) + χ[ |k2 |+2
2 ,2

) if −2 < k2 < 0,

and note that f = f2 on [2,m),
∫ 2

0 f = ∫ 2
0 f2, Mf (2) = Mf2(2), and Nf (2) =

Nf2(2). Without loss of generality, by multiplying by −1 we can assume k2 is non-
negative. We now examine a series of cases.

Case 1: k2 ≥ 2. First, we note that if k2 ≥ 2, then 2 = mf2(2) ≥ mf (2) and as
�f2 = 0 on [0, 2), we also have 0 = νf2(2) ≤ νf (2). So R(f ) ≤ R(f2).

Case 2: 0 ≤ k2 < 2 and mf (2) = 2. Then |f | ≥ 1 on [0, 2) and so both |x1|
and |x2| are greater than or equal to 1. As k2 < 2, x1 and x2 must have opposite
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signs; thus by (7) we know that νf (2) ≥ 2 log 2. But �f2(x) = 2a
x
χ[a,2)(x) on

[0, 2), where a = k2+2
2 , so that νf2(2) = (k2 + 2) log

(
4

k2+2

)
. One may check that

νf2(2) ≤ νf (2). As mf (2) = mf2(2) = 2, we conclude that R(f ) ≤ R(f2).

Case 3: 0 ≤ k2 < 2 andmf (2)= 0. Asmf2(2)= 2 we knowmf2(2)−mf (2) =
2. Also

νf2(2)− νf (2) = (k2 + 2) log

(
4

k2 + 2

)
− |x1 − x2| log 2.

If νf2(2)− νf (2) is nonpositive, then with

mf (2)+Mf (2) = a, νf (2)+Nf (2) = b,

mf2(2)−mf (2) = 2 = c, νf2(2)− νf (2) = d

we have R(f ) = a
b
< a+c

b+d = R(f2). If instead d > 0, then

c

d
= mf2(2)−mf (2)

νf2(2)− νf (2)
≥ 2

(k2 + 2) log
(

4
k2+2

) ≥ 1

log 2

for all k2 ∈ [0, 2). We conclude from Observation A that if R(f ) = a
b

≤ 1
log 2 then

R(f ) ≤ a+c
b+d = R(f2), while if R(f ) > 1

log 2 then R(f2) >
1

log 2 as well.

Case 4: 0 ≤ k2 < 2 and mf (2) = 1. We know mf2(2)−mf (2) = 1 and

d = νf2(2)− νf (2) = (k2 + 2) log

(
4

k2 + 2

)
− |x1 − x2| log 2.

As in the previous case, we wish to examine

c

d
= mf2(2)−mf (2)

νf2(2)− νf (2)
= 1

(k2 + 2) log
(

4
k2+2

) − |x1 − x2| log 2
.

If d ≤ 0, then the argument in Case 3 shows again that R(f ) < R(f2). One may
show that if d > 0 then the expression c/d ≥ 1/log 2. This may be checked by
noting that exactly one of |x1| or |x2| is greater than or equal to 1 and then maxi-
mizing d with this assumption.

So in all possible cases of f and f2, either R(f ) ≤ R(f2) or R(f ) and R(f2) are
both strictly greater than 1/log 2.

3.2. Modification on [0, n+ 1)

After comparing f to f2 in Section 3.1, we now wish to compare f2 to f3, then
f3 to f4, and so on. We will compare the general fn to fn+1 for 2 ≤ n ≤ m − 1.
First, the definitions are

fn := f · χ[n,m) +




kn

n
χ[0,n) if |kn| ≥ n,

χ[
0,
kn+n

2

) − χ[
kn+n

2 ,n

) if 0 ≤ kn < n,

−χ[
0,

|kn |+n
2

) + χ[ |kn |+n
2 ,n

) if −n < kn < 0,
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and

fn+1 := f · χ[n+1,m)

+




kn+1

n+1χ[0,n+1) if |kn+1| ≥ n+ 1,

χ[
0,
kn+1+n+1

2

) − χ[
kn+1+n+1

2 ,n+1
) if 0 ≤ kn+1 < n+ 1,

−χ[
0,

|kn+1|+n+1
2

) + χ[ |kn+1|+n+1
2 ,n+1

) if −n− 1< kn+1 < 0.

Our cases will correspond to various possibilities for kn and xn+1.

Case 1: |kn+1| ≥ n + 1. In this case mfn+1 = n + 1 and νfn+1 = 0. Hence
R(fn) ≤ R(fn+1).

For the rest of the cases, by multiplying f by −1 if necessary, we may assume
0 ≤ kn+1 < n+ 1.

Case 2: 0 ≤ kn+1 < n+1 and xn+1 ≥ 1. This is an unbounded region with the
following lines corresponding to its boundary: kn + xn+1 = n+1, kn + xn+1 = 0,
and xn+1 = 1. The first line corresponds to our assumption that kn+1 < n+ 1, the
second to our assumption that 0 ≤ kn+1, and the third to xn+1 ≥ 1. We will show
that on this entire region, R(fn) ≤ R(fn+1).

Asmfn(n+ 1) andmfn+1(n+ 1) are both equal to n+1 as |xn+1| ≥ 1 on this re-
gion, and we have concocted fn and fn+1 to have equal M(n+ 1) and N(n+ 1)
values, we must only compare the νs directly. We record our formulas, which can
be found using (1):

νfn+1(n+ 1) = (kn + xn+1 + n+ 1) log

(
2(n+ 1)

kn + xn+1 + n+ 1

)

and

νfn(n+ 1)

= χ[0,n)(|kn|) · (|kn| + n) log

(
2n

|kn| + n

)
+ |kn − nxn+1| log

(
n+ 1

n

)
.

We must show that on region A,

νfn+1(n+ 1) ≤ νfn(n+ 1). (9)

Note, using kn + xn+1 ≥ 0 that if kn is fixed and xn+1 increases then νfn+1(n+ 1)
decreases. Also, since kn ≤ nxn+1 for all points in Case 2, νfn(n+ 1) increases as
xn+1 increases. So if we show that (9) holds for the points in our region of inter-
est where xn+1 is smallest for a given kn, we will have our desired inequality on
all of the region for Case 1. There are two lines for which we must check (9): 0 =
kn + xn+1 where xn+1 > 1 and −1 ≤ kn < n where xn+1 = 1. The first is easy to
check. The second we do as a subcase.

Subcase 2.1: −1 ≤ kn < n and xn+1 = 1. We first record that for this subcase

νfn+1(n+ 1) = (kn + n+ 2) log

(
2(n+ 1)

kn + n+ 2

)
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and

νfn(n+ 1) = (|kn| + n) log

(
2n

|kn| + n

)
+ |kn − n| log

(
n+ 1

n

)
.

Let us start with −1 ≤ kn ≤ 0. Then νfn(n + 1) = (n − kn) log
( 2(n+1)
n−kn

)
, and (9)

may be easily checked.
The other segment, 0 ≤ kn < n is a bit more difficult. It is easy to check that

(9) holds for a given n with a calculator, but this is not sufficient. Note that on
this segment, fn(x) and fn+1(x) take only two values for x ∈ [0, n + 1): 1 and
−1. The function fn(x) is 1 from 0 to (kn + n)/2, −1 from (kn + n)/2 to n, and 1
again from n to n+1. The function fn+1(x) is 1 from 0 to (kn + n+ 2)/2 and −1
from (kn+n+2)/2 to n+1. It is simply a matter of comparing functions of these
type. We first note that (kn + n)/2 is larger than n/2, and some integer multiple
of (k + n)/2 is arbitrarily close to an integer, so by the fact that our quantities are
invariant under dilation, it suffices to prove the following lemma.

Lemma 1. Let f be 1 on [0, j), −1 on [j,N), and again 1 on [N,N + l ) where
j ≥ N/2. Let g be equal to 1 on [0, j + l ) and −1 on [j + l,N + l ). Then
‖�f ‖1 ≥ ‖�g‖1.

This is a matter of computing and counting. One can find that

‖�f ‖1 = 2j

(
log

(
j + 1

j

)
+ log

(
j + 2

j + 1

)
+ · · · + log

(
N

N − 1

))

+ 2(N − j)

(
log

(
N + 1

N

)
+ · · · + log

(
N + l

N + l − 1

))

and

‖�g‖1 = 2(j + l )

(
log

(
j + l + 1

j + l

)
+ · · · + log

(
N + l

N + l − 1

))
.

Consider the sequence of logarithms as a sequence of decreasing weights. The
total of the quantities multiplied by the weights is the same for each of the above
as 2j(N − j)+ 2(N − j)l = 2(j + l )((N + l )− (j + l )). As 2(N − j) ≤ 2j ≤
2(j + l ) we’ve simply moved our quantities to lower weights for g than for f.
Hence ‖�f ‖1 ≥ ‖�g‖1 and our lemma is proved.

From the lemma we see that (9) holds in our Subcase 2.1 when 0 ≤ kn < n and
now Case 2 is completed as (9) implies R(fn) ≤ R(fn+1).

Case 3: 0 ≤ kn+1 < n+1 and xn+1 ≤ −1. This case consists of an unbounded
region with the following lines constituting its boundary: kn + xn+1 = n + 1,
kn + xn+1 = 0, and xn+1 = −1. Note that againmfn(n+ 1) = n+1, so it suffices
again to prove (9). We will break this region into two different subcases.

Subcase 3.1: n ≤ kn and xn+1 ≤ −1. On this unbounded subregion we have
the following explicit formulas:
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νfn+1(n+ 1) = (kn + xn+1 + n+ 1) log

(
2(n+ 1)

kn + xn+1 + n+ 1

)

and

νfn(n+ 1) = (kn − nxn+1) log

(
n+ 1

n

)
.

Consider the lines of constant kn + xn+1 = c in this region. By inspection
νfn+1(n+ 1) is constant on these lines. One can show that νfn(n+ 1) increases as
we move down lines kn + xn+1 = c with increasing kn. So it suffices to check (9)
only on the lines which make the boundary of our subregion: the line xn+1 = −1
and the line kn = n. This is another elementary calculation.

Subcase 3.2: 1 ≤ kn < n and xn+1 ≤ −1. With νfn+1(n + 1) the same as in
Subcase 3.1 and using 1 ≤ kn < n , we compute

νfn(n+ 1) = (kn + n) log

(
2n

kn + n

)
+ |kn − nxn+1| log

(
n+ 1

n

)
.

On the line xn+1 = −1 in our subregion, the functions fn and fn+1 are the same.
So (9) holds on that line.

As noted before, on lines of constant c = xn+1 + kn, νfn+1(n + 1) is constant.
One may show that νfn(n + 1) increases along these lines in our subregion as kn
increases. Hence νfn+1(n+ 1) ≤ νfn(n+ 1) holds for this subcase.

So in all possibilities for Case 3, we have that νfn+1(n+ 1) ≤ νfn(n+ 1). As the
rest of the quantities determining R(fn+1) and R(fn) are the same in the region
for Case 3, we conclude that R(fn) ≤ R(fn+1).

Case 4: 0 ≤ kn+1 < n + 1 and |xn+1| < 1. We start by noting that n + 1 =
mfn+1(n + 1) > mfn(n + 1) = n. Recall Case 4 of Section 3.1: it required us to
use Observation A because mf2(2) > mf (2). We are in a similar situation. As
mfn+1(n+ 1)−mfn(n+ 1) = 1 we need to show that

d := νfn+1(n+ 1)− νfn(n+ 1) ≤ log 2 (10)

in our region in question. If d ≤ 0, then R(fn) < R(fn+1) as we are adding to the
numerator and subtracting from the denominator ofR. If d > 0, we show (10) and
then invoke Observation A. For this case the most important line for our analysis
is xn+1 = kn/n for kn ∈ [0, n) because that line corresponds to the “critical line”
of νfn(n+ 1) because the absolute-value term changes sign there. We calculate d
on this critical line by plugging in kn/n for xn+1:(

kn + kn

n
+ n+ 1

)
log

(
2(n+ 1)

kn + kn
n

+ n+ 1

)
− (kn + n) log

(
2n

kn + n

)
. (11)

One may check that (10) holds on our critical line xn+1 = kn/n. Now recall that
νfn+1(n+ 1) is constant on lines of constant kn + xn+1 = c; if νfn(n+ 1) increases
along these lines as we move away from the critical line, then (10) will hold on
the entirety of our region in question. This is easily checked. We now invoke Ob-
servation A to conclude that either R(fn) ≤ R(fn+1) or both R(fn) and R(fn+1)

are greater than 1/log 2 and so Case 4 is concluded.
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In all cases for n ≥ 2 we concluded either R(fn) ≤ R(fn+1) or both R(fn) and
R(fn+1) are greater than 1/log 2. So continuing until n = m, ifR(f ) > 1/log 2, it
follows that R(fm) > 1/log 2. But R(fm) = 1/log 2 as it is a dilate of (2). Hence
the alternative is true: R(f ) < 1/log 2.

4. A Conjecture

The foregoing theorems about �∗, combined with [3] tell the whole “weak”-story
for � and its adjoint. There are other operators that coincide with the Beurling–
Ahlfors transform on certain radial functions. Let a natural number m ≥ 0 be
given. In [3] it is shown that given an f ∈ L2(0, ∞) one may set g(z) = f(|z|2)
and F(z) = z̄m

|z|m g(z). Then with

�mf(u) = m+ 1

u1+m/2

∫ u

0
f(x)xm/2 dx − f(u),

one has the relation

SF(z) = z̄m+2

|z|m+2
�mf(|z|2).

Note that �0 = �. So it is conceivable that one could analyze �m and come up
with a larger lower bound for the weak-type constant ‖S‖w. However, the author
believes the following is true.

Conjecture 1. For m∈ {1, 2, . . .},

‖�m‖w = m22/(2+m)

(2 +m)(2 − 22/(2+m))
.

This value is achieved by the function

fm(x) =
[(

1 + 2

m

)
− xm/2

]
χ[0,x0)(x) where x0 = 22/(2+m)

(
2 +m

m

)2/m

.

The author arrived at this conjecture by taking an optimal sum of (1 + 2/m) and
xm/2 for f , as the image of the former under �m is the constant 1 and the latter
vanishes under �m. The author believes this is best possible because the quan-
tity for ‖�m‖w above, if considered a function on the positive reals, has a limit of
1/log 2 at 0. This suggests that no more information about ‖S‖w can be obtained
with these �m operators.
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