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Boundedness for Commutators of
Rough Hypersingular Integrals
with Variable Kernels

YANPING CHEN & YONG DING

1. Introduction

Let S"~! be the unit sphere in R” (n > 2) with area element do(x"). A function
Q(x,z) defined on R" x R" is said to be in L®(R") x LI(§"7 1), g > 1,if Q
satisfies the following conditions:

(1) forany x,z€eR", and A > 0, Q2(x,1z7) = Q(x, 2);

/! ’ 1 ’
(2) NIl @nyx Lasn-1) := SUpxern ( fgui|R(x,2")|7 do(2))) ' < 00, where 7/ =
z/|z| for any z e R" \ {0}.
For y > 0, we define the operator T, with variable kernel by

Qx.x —
T, f(x) = p. f SOX =) ) ay,

o |x =yt

where f € S(R") and Q € L®(R") x L'(§"7!) satisfies
/ Q(x,7)Yu(z")do(z’) =0 forany x e R" (1.1
Sn—l

for all spherical harmonic polynomials Y, with degree < [y]. In the sequel, we
denote Ty = T when y = 0 for simplicity.

Obviously, T is the singular integral operator with variable kernel, which was
first studied by Calderén and Zygmund in [2]. They found that these operators
connect closely to the problem about the second-order linear elliptic equations
with variable coefficients. Calderén and Zygmund obtained the following result.

THEOREM A (see [2]or [3]). If Q(x,z') € L®°(R") x L"(S"“),q > 2(n—1)/n,
satisfies

/ Q(x,7)do(z') =0 forany x e R", (1.2)
sn—1
then there is a constant C > 0 such that | Tf ||;2 < C|| fll2-

In [16], for y > O the operator T, is called the hypersingular integral operator with
variable kernel. Chen, Fan, and Ying [4] extended Theorem A to the homogeneous
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Sobolev space I;,’,’(R"). Before stating the result in [4], let us recall the definition
of LY(R™).

DEFINITION 1. Let y e Rand 1 < p < oo. The homogeneous Sobolev space
i{,’(R”) is defined as the space of all tempered distributions f in S’'(R")/P for
which the expression (|- |V3”\)V is a function in L”(R"), where (and in the sequel)
“7 and “V” denote the Fourier transform and inverse Fourier transform, respec-
tively. For distributions f in LJI,’(R”) we define ||f||L~5 = ||(|'|y?)v||Lp.

THEOREM B (see [4]). Let y > 0. If (1.1) is satisfied by Q(x,z') € L (R") x
LI(S"™ Y with q > max{l, Zn(i;;) }, then there is a constant C > 0 such that
1Ty fliz = Cllfllz2-

On the other hand, it is well known that the commutator of the Calderon—-Zygmund
singular integral operator and a BMO(R") function b plays an important role in
characterizing the Hardy space H'(RR") and in studying the regularity of the solu-
tion of the second-order elliptic equations (see e.g. [6; 7; 8]).

To study the interior W22 estimates for nondivergence elliptic second-order
equation with discontinuous coefficients, Chiarenza, Frasca, and Longo [6] gave
the L2(R") boundedness of the commutator [b, T'] with variable kernel, which is
defined by

(D, T1f(x) :==b(x)Tf(x) — T(bf)(x)
Q(x,x —
=px [ 2D 600 - b0 F) d,
N E ]
where b € BMO(R"). That is,

1
D15 := sup —- flb(y) —boldy < oo,
o 19l Jo

where the supremum is taken over all cubes Q in R"” and where

1
bp = — b dx.
0 |Q|/Q(x)x

THEOREM C (see [6]). Suppose that Q(x,z') € L®°(R") x C®(5") satisfies
(1.2). Then there is a constant C > 0 such that |[[b, T1fll.2 < ClIbll«ll fllL2.

In [8], Di Fazio and Ragusa gave the weighted form of Theorem C. This was used
to obtain the local regularity in Morrey spaces of the solution of the second-order
elliptic equation with discontinuous coefficients in nondivergence form.

In [5] we proved that the conclusion of Theorem C holds even when the strong
smoothness assumption in the second variate of Q(x, z) is removed.

THEOREM D (see [5]). If (1.2) is satisfied by Q(x,z') € L®(R") x LI(§"™ 1)
with ¢ > 2(n — 1)/n, then there is a constant C > 0 such that ||[b, T] |2 <
ClIDIN SNl z2-
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Given Theorem B and Th;orem D, it is natural to ask whether the commutator
[b, T, ] of T, is still from LJZ/ to L2 with the same condition in Theorem B, where
y >0, b € BMO(R"), and [b, T, ] is defined by

Qx,x —y)
n|x = y[nty

(6. T, 1f(x) = p~V-/ (b(x) = b(y) f(y)dy.

The purpose of this paper is to give a positive answer to this question.

THEOREM . Let 0 <y < 5 andb e I;;',/y C BMO. Suppose that (1.1) is satis-

fied by Q(x,z') € L°(R") x LI(S"™") withq > max{l, Zn(_':;;) } Then there is a

constant C > 0 such that ||[b, T, ] fll.2 < C|b||1“n/y||f||1"%/.
Y

REMARK 1.1.  As shown in Section 2, the following relationships exist between
the homogeneous Triebel-Lizorkin space FPV’Z(R”), the homogeneous Sobolev
space L)(R"), and BMO(R"):

FO%Z =BMO and pr,z = l',f,’ forl < p < o0, y €R.

Thus, at least formally, we may view BMO(R") as a limit case of L}/"(R") as
y — 0. In this sense, Theorem 1 is just an extension of Theorem D.

2. Definition and Some Lemmas

Let us begin by recalling the definitions of the homogeneous Triebel-Lizorkin
space F,,S "7 and the Bony paraproduct.

Let ¢ € S(R") be a radial function satisfying ¢ (&) = 1 for |§] < % and ¢(§) =
0 for || > 1. The function ¥/(§) = ¢(&§/2) — @(&) is in C°(R"), supported by
{ % <& < 2}, and satisfies the identity

> v@ e =1 for £ #0.
JEZ

We denote by A; the convolution operator whose symbol is ¥(27/-). For s € R
and 1 < p,g < oo, the homogeneous Triebel-Lizorkin space is defined by

1/q
||f||F;,q = H (Z 2s]4|Ajf|lI)

JjeZ

< Q.

Lr

To give the definition of the BMO-Triebel-Lizorkin space Fa?, let us first re-
call the definition of Carleson measure. A sequence of positive Borel measure
{vj}jez is said to be a Carleson measure in R" x Z if there exists a constant C > 0
such that

> v(B) < CIB|

Jjzk

for all k € Z and all balls B in R”" with radius 2%, where | B| denotes the Lebesgue
measure of B. The norm of the Carleson measure v = {v;} ez is given by
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1
lvlll = sup{ﬁZvj(m},

Jjzk

where the supremum is taken over all k € Z and all balls B with radius 2.

The homogeneous BMO-Triebel-Lizorkin space Fa? (1 < g < +00) is the
space of all distributions b for which the sequence {2*/9|A;b(x)|9dx}; is a Carle-
son measure (see [10]). The norm of b in F,? is given by

1 y 1/q
1615 =sup[®2 / 2”‘1|A,-b(x)|qu} :
B

izk
where the supremum is taken over all k € Z and all balls B with radius 27*. The
following facts are well known (see [10; 11]): for 1 < p,q < oo and s € R,
(D) Fpo,z = H? for0 < p <1and Fp0’2 =LPforl < p < o0;
) FPS’Z =LY forl < p < o00;
(3) E%? =BMO c F2.

Finally, let us recall the Bony decomposition. For functions f and g, the Bony
paraproduct 777 (g) of f and g is defined by

() = Y (A f)(Gj38),
JEZ

where G; is the convolution operator whose symbol is ©(2778). The following
Bony decomposition is well known (see [1]):

J8 =mp(8) + me(f) + R(f. 8, 2.1

where R(f,g) = Z‘ifj‘SZ(Ajf)(Al‘g)'
For § € (0, 1), the Riesz potential operator of order § is defined on the space of
tempered distributions modulo polynomials by setting

L&) = EF®).

The Sobolev space I5(BMO) is the image of BMO under /5. Strichwarz [14] has
shown that
I;(BMO) C Lips.

Now we give some lemmas that will play an important role in the proof of
Theorem 1.

Lemma 2.1 (see [13]). Letn > 2 andlet f € L'(R") N L%(R") have the form
f(x) = fo(|x]) P(x), where P(x) is a solid spherical harmonic of degree m. Then
the Fourier transform of f has the form f(&) = Fy(|&]) P(§), where
oo
Fo(r) = 2ai ™" plrt2m =221 f fo($)Jn2m—2)y2rs) s 22 ds,
0

r = |&|, and J, is the Bessel function.
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LEmMMA 2.2. Supposethaty > 0,0 < B < 1,0 € Z,and m € N. Let H,, denote
the space of surface spherical harmonics of degree m on S"~' with its dimension
D,,, and let {Y,, j}jD:'”l denote the normalized complete system in ‘H,,. Let

Ym,j(x/)

Uy,a,m,j(x) = |7

Xp2o<|xj<20+1}(X).

Then

|Gy am, j (E)] < C27Ym™ P 2 min{2% |V H 298| 7F2) |y, «(ED],  (2.2)

16y am, () < CLEPM™ 1Y, (€, (2.3)
VG am j(§)] < C207HD, (2.4)

where A = (n — 2)/2 and &' = £/|£|.

Proof. First we give the estimate (2.4). Since

Gy (€)= /2

it follows from || Y, jll 2(s»-1) = 1 that

pa+l

o dr
(v ,—2mirx"-& i
[ Y )

o

o+l

_— ) dr -
Vo @1 =C [ [ I ()ldot) 5 < cacrive

To show (2.2) and (2.3), we set P, j(x) = Y, j(x")|x|™. Then P, ;isasolid spher-
ical harmonic of degree m and o, ¢ 1, j(X) = |X|7"77 7" Py, ; (%) X (2 <|x) <201} (X).
Using Lemma 2.1 and noting that ¥o(|x]) := [x|™"77" ™" e <|xj<20+1)(X) is a Ta-
dial function in x, we have

—

Fy.a,m, j () = Wo(IE]) P, j(§) = Yo ;(EDIEI" Yo (IED),

where

o0
Wy(r) = zﬂi_mr_[("+2m_2)/2]/ WO(S)J(n+2m—2)/2(Zﬂrs)s(n+2m)/2 ds
0

2¢x+l
— 2nl~—m,_—[(n+2m—2)/2] / s—il—y—mJ(n+2m72)/2(ans)s(n-‘er)/Z ds

o

a+l
22 T am—2y2()

1 (n=2)/2+1+y dt.

= Qm)"/FriTmemty f

2m2%r

From this it follows that

a+l
TR Jga (1)

o ®) = Q)Y (€)Y /

2720 | t)d»H’)/
= Q@) """ Y j(ENT (), (2.5)
where »
22 Jm 14
6 =le [ )
220 | [)u+ +y
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Now we consider T (&) under three cases: (1) 2¢|&| <1; 2) 1 < 2%|&| <m + A;
(3) 28] = m + A.

Case 1. By a classical formula of the Bessel function (see [15, p. 48]),

(t/2)m+* /](1 _ 2yl it g
F(m+x+1/2I'(1/2) J

(t/z)m-&-k
T I'(m+r+1/2)
Applying Stirling’s formula for x > 1 yields
V2rx 26 < D(x) < 2427 x% V277,

Thus, since 2% |&| < 1, we have

a+l
RN | ()]

T < |&)¥ ———dt
1T &) < &] L:mm ity

[ T2 (D)] =

c2—oy 27[20‘+1|8;'\
< — "t
2 A (m 4+ A+ 1/2) Jaroag
Cc2~v 1
< - —@m2otED”
2mHAM(m + A +1/2) m
[yl+1Ha [y]+1 a+l1 m—[y]—1
<o (4m) (2”180 Qm2%7&])
m 2mtA 2w (m + A + 1/2)ntre—m=2
m m+A
< cr g G e
- 2mth (m 4 x41/2)m
< C2Ym 1% (2.6)

Before considering Case 2 and Case 3, we state the following fact:

a+1
Tpas() iy [T ()
PrEs| dt +C2 . £t

h

dt, (2.7

T = 2 /
2

2%

where 2m2%|€| < h < 2m2%*t!|€|. Moreover, by [2, Lemma 2] there exists a
C > O such that, forany 0 < a,b < oo,

‘/ m+A(f)
At
Case 2. By (2.8) and noting that 1 < 2¢|£| < m + A, we have
22 (1)
J

<Cm™*L (2.8)

—r—1

dt| <Cm
A \F/2

< C(l + —) m B2 (4 )P
m

< Cm ™R E) IR,

t}\+]

Similarly,
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b Tt
/ 0 )dt
2

noagg] 1A

< Cm—l—)u+,3/2(20l |g|)—ﬁ/2

Then by (2.7) we obtain
1Y (&) < C27*Ym =M A2 (2% g)F/2, (2.9)

Case 3. Since |/, ,(1)] < 1fort > 0, we can use the second mean-valued
theorem and the following differential equation of J,,1; (see [15]),

Imiat) a1 _ T2 {1)
P 2= (m+ 02 N2 = (m 4+ 1)2)]
to show that there exists 272%|&| < h; < h < 272%t1|£| such that

h k C g
Jna(t l
/. mj\rx(l ) dil < C/ 2k gy — / I () dt
PRSI S 2729 €| QUIED™ 1 2m2eig

h
"
T e /; Im (D) dt

< CQRYUEN < Cm IR g TP

where we assume 272%|&| > 27 (m + X). Similarly, we can get

/2"2”“'5' T 1)
h

t)\-‘rl

dt < Cm™'MHB2 Qg P2

Then by (2.7) we have
1Y (&) < C27*Ym~ =M A2 (2% g)F/2, (2.10)

Thus, (2.2) follows from (2.5), (2.6), (2.9), and (2.10). On the other hand, it is easy
to check that

ITE)] < Cm™ g (2.11)
by (2.6) (for 2%|&€| < 1) and by (2.7) and (2.8) (for 2*|&| > 1). Hence, (2.3) fol-
lows from (2.5) and (2.11), completing the proof of Lemma 2.2. O

LEMMA 2.3. Fory 20,0 <8 <oo,meN,and j =1,...,D,,, take B, s ,; €
C3(R™) such that supp(By,s.m,j) C {8/2 < |&| < 28}. Let T, 5, j be the multi-
plier operators defined by

Tyom i f &) = Bysm (FE. j=1.....D,.

Moreover, for b € BMO, denote by [b, T, s, ;] the commutator of Ty, 5 1, j and b.
Define T, s, m;p by

Dy 1/2
Tys.mn f(x) = (Z([b, Tysm j]f(x))2) .

Jj=1

If for some constants 0 < B < 1, a e N,and 0 < v < 1, By 5, satisfies the
conditions
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|Bysm j(E)] = CQT*0)m ™2 min{s™, 72X, ;D). (212)
1By,s.m, j () < CQ™8)'m ™Y, (5], (2.13)

IVBy,5.m,;(§)] < C(27%6)"877, (2.14)

then for any fixed 0 < v < 1 there exists a positive constant C = C(n, v) such that

Iy 5.mpf N2 < CQR78) m P2 mings™, 5P 2) bl fll 2. (2.15)

Proof. Assume that ||b]|,, = 1. Take a C2°(IR") radial function ¢ such that supp ¢ C
{1/2 < |x| < 2} and Zlez¢(2"|x|) = 1 for any |x| > 0. Denote ¢o(x) =
S0 #Q7'x]) and ¢;(x) = ¢(27'|x|) for a positive integer I. Then ¢ €
S(R") and supppo C {x : 0 < |x|] < 2}. Let K, 5 j(x) = (By,5.m, ;)" (x), the
inverse Fourier transform of B, 5, ;, and let K)l/,(S,m,j(x) = Ky 5,m, j(x)¢;(x) for
[=0,1,...; then

Ky.5m,j(x) = ZKMW!J

Denote by Tyl ; the convolution operator with kernel K! Then the Min-

kowski inequahty implies that

D, 2 1/2
”Ty,ﬁ,m;bf”L2 = ('/ Z dx)
( 2 >1/2

0Ty 5 mep S Nl22s (2.16)

y,8,m,j*

Z[b, T sm 1S (X)
1=

D
S

b, y(sm]]f(x)

Jj=

M8 7

I
o

where T!; . f(x) = (X 20106, T}, ;17 (0)17)""2 By (2.16), to derive (2.15)
it sufﬁces to show that, for any fixed 0 < v < 1, there exists a ¥k > 0 such that

1T} 5 e f 2 < CQR78)m T2 2 min{8™, 572 |b || fll 2. (2.17)

We shall prove (2.17) by an almost orthogonality decomposition. For/ > 0, we
decompose R" = [ J32 . Qu, where the Q, are nonoverlapping cubes with side
length 2'. Set f; = fxo,- Then

f) = > fax)ae, xeR"
d=—o0
Since supp(Kyamj) Cox:|x] < 2} and supp(Kf,yaym’j) c{x:2" < |x <
1t is obvious that supp([b, ) C 10nQ, and that the supports o
21+2y, b h ([, T} 5, j1.fa) C 10nQq and that th f
{[b, T y 5.m, j1Ja}qZ_o have bounded overlaps. We thus have the following almost
orthogonality property:
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oo
Wb Ty g £ 1172 < C DB T 5 1 fall 7

d=—00
Therefore,

Dy,

1 2 1 2
I} g pen 72 =D BTy 5 11172
j=1

00 Dy, o)
l 2 l 2
<C Y D MbT s A fale =C D Ty s mepfallza
d=—00 j:l d=—o0

Hence it suffices to verify (2.17) for the function f with supp f C Q, where Q
has side length 2'. Choose ¢ € C>(R") with suppe C 100nQ such that 0 <

¢ <land ¢ = 1on50nQ. For Q =: 200nQ let b = (b — by)e, where b
|0~ J5b(y)dy. Itis easy to see that

(b, T} s Af(x) =BT 5, f() = Ths 0 (B ().

. . 12
Denoting T\ ; , f(x) = (X 711T} .. £(X)1?) ", we then have

! 2
” Ty’&m;bf”[‘z

Dy,

- C/,l Z(lg(ﬁoTy’,(s,m,jf(x)|2 + |Ty{5,m7j(15f)(x)|2) dx
j=1

Dy, Dy

e / BCOR ST (D) dx + / ST GO dx
R j=1 R j=1

= CIIbT} 5, [N} + 1T} 5w B2 (2.18)

Thus by (2.18) we need only show that, for the function f supported in Q with
side length 2, the following estimates hold for ;= 0 and 1:

16T 5 (B " )]l 12
< CQ27%8)m D min{8™Y, 5P 227 bl £l 2. (2.19)

We shall first show that (2.19) is a consequence of the following statement: For
geLq/(]R”),l <q'<2(hence2 <g <o0),and0 <t <1,

||Tyl,8,mg”Lq < C(Z*a(g)VZ*Ztl/qm(f2+ﬁ)(1*t)/qf(lf2/q)+2tk/q5n(172/q)72t)//q

x (min{8", 8 P2 >4 g . (2.20)

In fact, for2 < ¢q1,q> < oo with1/g;+1/g> = 1/2, by (2.20) and the obvious fact
Ibll- < ClBlL1Q1Y < C2"°|b]l, for 1 <o < o0

we have
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16T, 5 0 1l
< 1Bl I Ty 5 0 f NlLe2
< C(Z*Ol(g)yzﬂfl/qz5n(1*2/¢12)7211//112m(*2+t3)(1*f)/q27(1*2/q2)+2tx/qz
x (min{8%, 87222 b Lo || £, 4,
< C(z—ag))/z—%l/qz-&-nl(1—2/qz)m(—2+ﬁ)(l—f)/qz—(l—Z/qz)+2M/qz5n(1—2/q2)—2w/412
x (min{87, 8220 b, | £ 2 (2.21)
and
IT;) 5 Bl
< C1Q1""IT} 5w (Bf) e
< C(z*ﬂg))/z*ﬂl/qz5n(1*2/qz)*21}//42m(72+/3)(1*f)/qu(1*2/qz)+2tx/qz
x (min{8%, 872> 1bf |,
<C| Q|1/q1 (Q—a(g)y2—2tl/qz3n(1—2/qz)—2ty/qzm(—2+ﬁ)(1—t)/q2—(1—2/q2)+2rk/q2
x (min{8%, 8 P22V b|| 2 || £ 1] 2
< C(z*ﬂg))/2*2fl/qz+nl(1*2/qz)m(*2+ﬂ)(lft)/qu(1*2/qz)+21A/qzan(I*Z/qz)*ZfV/qz
x (min{87, 8~ F/2)2I=D/2 bl || £]] 2. @.21)

Now, for any fixed 0 < v < 1, we choose ¢, > 2 sufficiently close to 2 and
t > 0 sufficiently close to 0 such that g, and ¢ satisfy

2t/qr > n(1 =2/q»),
tB(1—1)/g2 > n(1 —2/q2) + vtB/2 + 2trB/q2 + 2tyB/q>. (%)

Then we take k := 2t/q> — n(1 — 2/g;) > 0, and by (%) we have (1 —t)/g> >
v/2 4 2tA/q2. Hence (=24 B)(1 —1)/q» < (=14 B/2)v — 2tL/q2, so
m 2B =0/02=(1=2/q) 420002 <y (<1452,

By (x), we have 8(1 — t)/q>, — n(1 —2/q2) > vB/2. Thus, for § > 1, by (2.21)
and (2.21") we have

max {67} 5, fllz2: 1T 5. (B 112}
< C(z—ag))/m(—1+5/2)v2—K15n(1—2/f12)—Zf)//qz(g—ﬂ(l—t)/qz||f||L2
< CQ78)m =D s b £l 2.

By (%) again we have 2t (1 — t)/q, — 2ty/q> > vt if 0 < § < 1. Then, by (2.21)
and (2.21"),

max{[|6T} 5, fll12: 1Ty 5. BF) 1l 12}
< C(z—aa)Vm(—l+ﬂ/2)v2—K13n<1—2/qz)—2ty/q232r(l—t)/qz”f”L2
< CQ7%8)m PP ST D] || £1] 2.

Thus we obtain (2.19). Therefore, to finish the proof of Lemma 2.3, it remains to
verify (2.20).
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By the definition of T Mm ;, we have
D 2 1/2
Ty 5.mg(X)| < < (/ Ky 5., (X —J’)||g()’)|dY) )
Din 1/2
sz(ZlKé,s,m,j(x—y)P) 2l dy
j=1

D, 1/2
fllgllLI/ (DKWM@)F) dt.

Since
KD &) = Ky % 61(6) = / Brsm (€ —Ei(dy,  (2.22)

it follows from (2.13) and from Z Yo, (X2 ~ m** (see [3, p. 225, (2.6)])

that
Dy, . 2\1/2
T} 5 g ()] < / (Z / By sm (€ — V) i1(y)dy ) d&||gll
j=1 1R
Dy 12
//(Emm,@ y>|) B1(») dy dgligl
R J R
Dy 1/2 N
/ <Z|By,sm,<s)|) dellgill o gl
5/2<|k|<28
Dy 1/2
< (27%8)"m ! / ( Yo, (s>|) d&llgll
5/2<|E|<28 Z J g
<CQ ) m™'8" gl
That is,

||Tyl,5,mg||L°0 <CQ278)"m™ 8" gl (2.23)

On the other hand, observe that fR,, a(n) dn = ¢(0) = 0; then, by (2.22) and
(2.14),

K s O = [ By =279 = By NI dy

< C27YIVBy 5.m, llL / Y1) dy
Rll
<C@Re8)rsr2

Thus, by the Plancherel theorem and the fact that D,, ~ m** (see [3, p- 226,
(2.8)]), we have

Dy, 1/2
1Ty 5 n8llz2 < (/ ZIKM,,,,(S)VI?(E)I%)

< CQ27)"8 2 'm* ||gll 2. (2.24)
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Applying the Plancherel theorem again and then using (2.22), (2.12), and

Dm

2 21
D W j (P~ m,
Jj=1

we obtain

o —

Dm
1T, 5 m8ll72 < /R DK s OPIBEF dé
j=1
Dm
< C/” Y 1By *iOPIEE ] dk
j=1
Al
R L\

2\1/242
) } 12(&)1 d
J

D 2 2
= C/’l{/;§"<Z|By,5,m,j(é - y)|2> |¢>z(y)|dy} |§(.§)|2d%‘
j=1

< (2_a8)2ym_2A_2+ﬁ(min{8r, 8—/3/2})2

)

m

/];,1 Bys.m, i (€ = y)i(y) dy

1

Dy,

1/2 . 2
x /n</Rn<Z|Ym,j((5 - y)’)lz) I¢1(y)ldy> 126 d&
j=1

< CQ78)»m~ P (min{8", 6721 |1 pilI2 Il g2
In other words,
IT) 5 8ll2 < C278)7m™""F/> min{s, s /?}|g]l 2. (2.25)
Hence, by (2.24) and (2.25), for any 0 < ¢t < 1 we have
17y,5 melli2
< CQ27%8)7 s 27 m B DU=D(min{sT, §TF2H) gl 2. (2.26)

Thus we obtain (2.20) by interpolating between (2.23) and (2.26), completing the
proof of Lemma 2.3. U

REMARK 2.1. If we denote
Dy 1/2
Ty sm f(x) = (Z[Tmm, jf(x)]z) ,
j=1

then it is easy to see that (2.15) still holds for T, 5 ,, under the same conditions of
Lemma 2.3.

REMARK 2.2.  For b € BMO and k €N, the kth-order commutator of 7}, 5 ,,, ; and
b is defined by

Tysm, bk S (%) := (B, (D, Ty 5 m 11 F () = Ty 5 m, j((B(x) = b)) f) ().
k
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Let
D 1/2
Ty,B,m;b,kf(-x) = (Z(Ty,s,m,j;b,kf(x))2> .
j=1

Then, using methods in the proof of Lemma 2.3, (2.15) holds for T, 5 ,; »,x under
the conditions of that lemma.

LEMMA 2.4 (see[12]). Let¢ € CX°(R")bearadial function suchthat supp(¢) C
{1/2 < 1§l <2} and ), $3(27'6) = 1 (¢ # 0). Define the multiplier S; by
57‘(5) = ¢(2_l§)f(é). For b € BMO denote by [ b, S;] the commutator of S; and
b, which is defined by [b, S;] f(x) := b(x)S; f(x) — S;(bf)(x). Then, for {f;} €
L*(1%),

@) [(Ziealtl. $i1A12) ] 2 < CHEieal £iP) 7,
(i) [Siealb. Si1fil 2 < CIBIN(Zieal £iP)] o

12 , and

3. Proof of Theorem 1

As before, we denote the space of surface spherical harmonics of degree m on S"~!
by #,, and its dimension by D,,. By a limit argument (see [3] for the details), we
may reduce the proof of Theorem 1 to the case of f € C2°(R") and

Dy,

Q)= am ()Y (2)

m>0 j=1

a finite sum, where {Y,,,, J} ;= denotes the complete system of normalized surface
spherical harmonics in H,,, (see [3] or [13]) and

am,j(x):/ Q(x,2) Y, j(z) do(2).
sn—1

Notice that Q satisfies (1.1), so a,, ; = 0 form = 0, ...,[y]. Therefore, we actu-
ally have

oo Dy,
Q)= Y Y am ()Y ().
m=[y]+1 j=1
Writing
m, '(X
Ty,m,jj”(x)=1>-v./]R | ’ NI f( )dy

and denoting by [b, T,, ,,, ;] the commutator of 7, ,, ; and b, by Holder’s inequality
we have

([b, T, 1 f(x))?

{ Z Zaz (x)m—s(H—Zy)}{ Z meU+2y) Z([b Tymj]f(-x))z}

m=[yl+1 j=I1 m=[y]+1
3.1
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where 0 < ¢ < 1. According to [4, p. 527], for each x fixed, the series in the first
set of braces on the RHS of (3.1) is equal to || 2 (x, )||L2 (s’ where L2 L8 D)
is the homogeneous Sobolev space on S"~! with p = 8(1/ 24 y). If we take ¢
sufficiently close to 1 then, by the Sobolev imbedding theorem, L? — L2 for

q > max{l, 2(121)} and

sup [|€2(x, )||L2 S5 = C||Q||Loo(R")xm(sn 1.
xeR"

Let
D 1/2
Tymp f(X) = (Zl[b’ Tym. ,»]f<x>|2) ; (3.2)
j=1
then by (3.1) and (3.2) we have
1D, T £ < CHQUS g fogsnt mYNT, L fl7.. (33)
(R™) ( )
m=[y]+1

Let n = e(1 4+ 2y). If we can show that there exists 0 < 8 < (1 — n)/2 such that

I Ty f1I72 < Cm*”wllbllzn/yllflle, 34

then the conclusion of Theorem 1 follows immediately from (3.3) and (3.4). Hence,
to prove Theorem 1, it remains to show (3.4).

Let ¢ € C°(R") be a radial function such that 0 < ¢ < 1, supp¢ C {1/2 <
|£] < 2},and Zzez¢4(2 lg) = 1for |&| # 0. Define the multiplier S; by Slf(g) =

d(27 lé)f(é) Let
Uy,oz,m,j(x) =
fore €Z,m=1,2,...,and j =1,...,D,. Set

By am, j(€) = 0yam ;(§) and B;W,@)=By,a,m,,(5)¢(2”"s>.

Define the operators 7}, 4, j and T, y wm,j DY

Ty 1 £ = @pamj %)) and T/ &) =B, (©7®,
respectively. Define the operator V,,; ; by

Vot if () = 15, S1-a Ty o ST o) F(2),

o€l

where [b, S;_o T}

y(xm]

function b. Then it is easy to check that, for f,ge C2°(S"~ b,

_, ] denotes the commutator of S;_ D,Ty w,m, jSi—q and the

/ i F (g () dx = / S Vo fmedx.  (35)

leZ

By (3.2) and the Minkowski inequality, we have
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DIYl
1Ty 2 = ( [»>

dx)
j=1

Dy 1/2
<Z</ Z|Vy71,jf(x)|2dx> : 3.6
P

leZ

Zvyl]f(x)

leZ

So by (3.6), to prove (3.4) it suffices to show that there exists 0 < 8 < (1 —1n)/2
such that

(/ Z|Vy1,f<x>| dx) <Cm bl fliz G
leZ

where C is 1ndependent of I and f. Then, by Lemma 2.4(ii) and Littlewood—Paley
theory,

Dy,

[ Y Vs S0P d
D 2
= Z[ < b Sl—OtTyl,[x,m,jS/z—a]f(x)> dx
DlVl

—Z[

[Z([b, S1—a)(T) g i SE) ) + Si—al b, T} o ASE o f(X)
€L

+ Si—aTy g, j1bs Si—alSi—a f(x)

2
+ SlfaT},lya’mijlfa[bs Sla]f(x))i| dx

Dy,

Z(nbu / T} o ST L O dx

+/R 106, T3, VST f (O dx
f T o 10s Si-alSi—a f(X)]” dx
f T o Si—albs Si— a]f(x>|2dx>

Define Ty’ and T!

y,o,m; b

1/2
yamh(x) (Z' yamjh(-x)| >

by

and
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Dy,

172
Ty (%) = (Zub, Ty’,a,m,j]mx)ﬁ) :
j=1

respectively. Then

Dm
/ Y WV i f0P dx
n ]:l

< CIE Y. [ 1T nStas P dr+ 3 [ 18],0,52 o r 0P dx
R” RrR”

IV 1V

'y / T o 1B Si-a1S)o f() P dx
R’l

el

e / T Sicalb, Si_al f() P dx
R”l

el

=L+ DL+ 1+ 1.

Obviously, (3.7) will follow if we can show that, for 0 < 8 < (1 — )/2, there
exists 0 < vy < 1 such that

max {1;} < Cm ™" min{227 2770 b )12, || £117. (3.8)
Y Y

1<i<4

Our proof of (3.8) requires the following fact: For 0 < 8 < (1 — n)/2, there
exists 0 < vg < 1 such that

”Tyl,a,mh”Lz S Cz(l—a)]/m—H-ﬁ min{zrvol7 2—/3U01/2}||h||L2 (39)
and
I} g phll2 < C2U7Ym =P min(2700! 27 P02y ib|| |I2]|2. (3.10)

The verification of (3.9) and (3.10) will be postponed until the end of this section.
For now, we estimate (3.8) by applying (3.9) and (3.10). Given (3.9) and

1/2
H (Zuwsmz)

el

=Cllflz, (3.11)

L2

and noting that S, is a bounded operator on L? uniformly in « by the definition of
S, we have

L=ClbI2Y ITy nSEaf

Q€L
< ClIb|2m =2 min{2%o! 27Fv0} 3 " 22=0 15, £117,
Q€L
1/22
= Cm ™2 min(2270!, 270y 1|2 <Z|2°‘Vsa f|2>
L2

o€l

< Cm ™2 min{2270L 270 b3, | £ (3.12)
14
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where (and in the sequel) we use that L)/” ¢ BMO and ||b||, < ”b”Ln/y forb e
L "Y Now we give the estimate of I,. By (3.10) and (3.11), we have

12 =C Z||Ty7a’m;bS1_af('x)||L2

o€l

< Cm 722 min{2270! 27P0 b2 Y T 22T S £
ael

< O =220 min(22!, 2700 b, , | £ I (3.13)
Next, we estimate /3. By (3.9), Lemma 2.4(i), and (3.11), it follows that
I3 < Cm 2P min{2270!, 2P0ty 3 "2 (b, 541810 f 1172

o€l

= Cm ™72 min{2?™0 2P0l b||2 D " 227 |15, £117,
el

< Cm ™22 min{2? ! 27 b|2, 11 £ 113 (3.14)
Y 14
Now we consider /4. By (3.9), we have

Iy < Cm ™2 min{2?70!, 2oty " 20—y / 1S1—al b, Si—a f(2)I dx

YA
= Cm 228 min{2270! 2~ W}Z?W/ 1Se[b, Sl f(x)?dx.  (3.15)
aEZ

Using the Bony decomposition (2.1) to estimate /4, we have fg = ng + 7, f +
R(f,g), where s g and 7, f are Bony paraproducts (see Section 2) and

R(f.9)=) Y AifAg

ieZ |k—i|<2

Thus,

[b, Self(x) = [7s, 1 (B)(x) — Sa(7rb)(x)] + [R(B, Se. [)(x) — Su(R(D, f))(x)]
+ [775(Sa ) (x) — Sa (s f)(X)]. (3.16)

From (3.15) and (3.16) we obtain

Iy = Cm~>*F min{2?70! 27wl (Z 2% (|Sq (s, £ (b) — Sa(7pb))|I72

o€l

_}.ZZNVHSQ(R(ZL Sa f) — Sa(R(b, f)))”i2

VA
+ Y 2% Su (i (Su f) — Sa(m,f»niz)
aEZ
= Cm ™22 min(22700!, 27 (g + T, + J3). (3.17)

Regarding J;, note that (A; S, f)(Gi_3b) = 0 and S, ((A; f)(Gi_3b)) = 0 if
|i — o] > 5, so we can write
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75, £ () (x) = So (777b) (x)
= Y AiSaf(0)Gisb(x) = Y Sa(AifGisb)(x)

ji—al<4 li=ar =4
= D [Gi3b, SlAif(x).
li—a|<4

o~

Recall that S, f(x) = &4 * f(x), where ®(x) = ¢(x) and D, (x) = 24" D (2%).
We have

[[Gi—3b, Sa]A; f(X)]

/n 2P 2%x = yN(Gi—3b(x) — Gi—3b()A; f(¥) dY'

Gi_3b(x) — G;_3b
—2| 2@ Q% (x — )27 (x — )L (f;)_ I SR (”dy‘
Gi_sb(x) — Gi_sb
=2 [ = GO ZION oy 0
o ¥ =]
Gi_3b(x) — G;_3b
<2700 [ gt - OO, ) ay (3.18)
R7 |X—y|

where n(x) = ®(x)|x]® € S(R”) and ny(x) = 2*"'5n(2%x). On the other hand,
since GyA;b = 0 fori > k — 1, I;(BMO) C Lips for0 < § < 1,and L™ C
BMO, for k € Z we can obtain
|Gib(x) — Geb(y)| < Clx — yI’ [ D’Gibllgmo
< Clx — yPIID’Gib|l 1~

=Clx -y D‘?Gk(z Aub)
Uez L
< Clx =y’ Y ID°GiAb|
u<k—1
<Clx =yl Y ID°Aublr,
u<k—1

where Dﬂ;‘ (x) = |x|5f(x). Introduce a C2® function J supported in a shell and

such that 1:5 = 1 in supp ¥, where ¥(277§) is the symbol of A; (see Section 2).
Then

DOAb(E) = 24 27"8) 27 EPA,b(E).
Since ¥/(£)|£]° € C°, we get
| D°A,b|l e < C2°||Ayb| Lo

thus, from sup, ;|| A, b| L~ < C||b]|. it follows that
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Gib(x) — Geb(0)| < Clx = y° >~ 2“|| Aybl|

u<k—1
< Clx =y 2" supl|Aybll e Y 2070
Uuez kol
< Clx = y2°|b])... (3.19)

Now we return to the estimate of J;. By Littlewood—Paley theory, (3.18), (3.19),
and the convolution inequalities for series, we have

Ji < 22@Y|[Gy_3b, Se127A: f 11,
L

el li—al<4

<CY Y IBIR2PE U2y |k A £117

o€l li—a|<4
2~2(a—i § 2 A2i 2
<CY D bIR2PE g [17.2°7 | A 117
o€l li—a|<4

< ClbIGw 1 f 12 (3.20)
14

Next, we consider J,. By the definition of R(f, g) (see Section 2), we have
R(D, So f)(x) — Su(R(D, f))(x)

=Y > AD)AkSe f(x) — Sa<Z > AibAka)(x).

ieZ |k|<2 ieZ |k|<2

Note that both A; S, f and S, (A;bA; 4 f) are zero for |i —«| > 6 and |k| < 2;
then, applying the Littlewood—Paley theory, sup;cz||A;(b)|L~ < C|b|l., and
(3.11) yields

2
LCY D0 Y 2D Sabisa NI + 1AD) Aiga )H7)

a€Z k=—2 |i—a|<5

< Csupll Al Y227 [AfII7

iez i€
< CIbI0 1 f 1172 (3.21)
Y 14

Finally, we estimate J3. Since S, (A;bG;_3S, f) = 0 and SO%(A,-bG,-_gf) =0
for |i — a| > 5, we can derive

Sa(Tp(Sa f) = Sul(my f))
= Y SulAibGi 3Suf)(x) = Y SIABG; 3£)(x)

li—a|<4 li—a|<4
= K\ + K. (322)
Using Littlewood—Paley theory, ||G; f|l;2 < C||fll;2 fori € Z,
supl|A;bllLe < Cllblls < ClID|l v,
i€z 4
and (3.11), we have
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D 2VIKilz < CsupllAib) I D 12°7Suf 72 < ClIBIG,,IF1IF;- (323)
i 14

ael ael

Given Holder’s inequality, ||sup;cz|GiflllLr < C||fllLr forany 1 < p < oo, and
Li(R") s L2O=2(R") for 0 < y < n/2, we obtain

D2 KlF, < CY D 22 @Y 2YA G5 f ]

aEZ i€eZ li—a|<4
122 2
YA . |2 .

<c|(gear) |, lupoanl......
< CIBIE o I F I ousin 2

Y
< ClIbIZu I F 1132 (3.24)

Y 14

By (3.22)—(3.24), we can get
J3 < ClbI I F 13- (3.25)
12 14

Combining this with (3.17), (3.20), (3.21), (3.25), and L}/”  BMO yields
Iy < Cm 2P ming227ol 27ty b2, | £, (3.26)
Y Y

Thus, when (3.9) and (3.10) hold, (3.8) follows from (3.12), (3.13), (3.14), and
(3.26).

Therefore, to finish the proof of Theorem 1, it remains to show (3.9) and (3.10).
Toward this end, we define the operator T! by

y,o,m, j

T! o h& =B, QOhE)

and denote
DII’

~ ~ 1/2
T;,a,m;bh(g) = <Z|[b’ Tyl,oz,m,j]h(g)|2> .
j=1

On the other hand, forany 0 < g < 1, Umj satisfies (2.2)—(2.4) by Lemma 2.2.
Note that, since

By om () =Gyam;( and supp(B.,, (27%)) C {2'7h <& <21},

y,a,m, j
we have
1B o ;276)| < C2U- W m M2 min(27, 272y, (&),
B! 4 ;270 < C2Ym Ny, 1(E)),
VB!, . ;(276) < 2027y,

where 7 = [y] + 1 — y. By Lemma 2.3 and Remark 2.1 with § = 2/ we know
that, for any fixed 0 < v < 1,

IT!,, il < C2U=07 1AV min (2! 2=Au/2y) )|

y,o,m

and
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”?yl,a,m;bh”LZ < Cz(l—(!))/m(—l-‘rﬁ)v min{z‘rvl’ 2—,3111/2} ||b||*||]’l||L2,

where C is independent of o and I. Hence, for 0 < 8 < (1 — n)/2, we can find
0 < vo < 1such that vo(—1+ B/2) < —1+ B and such that

T! ke < €247 =8 min(2vo! 2Pl 2)1h) (3.27)
1T o mhlL L
and

1T} e phllz2 < €247 m =P min(2 0! 2702y b |IA]l,2. (3.28)

However, (3.27) and (3.28) imply, respectively, (3.9) and (3.10) by dilation-
invariance. This completes the proof of Theorem 1.
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