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Maximal Operator for
Pseudodifferential Operators
with Homogeneous Symbols

YOSHIHIRO SAWANO

1. Introduction

The class S° is a basic class of pseudodifferential operators that has been inves-
tigated by many authors. For example, it is quite fundamental that the pseudo-
differential operators with symbol S are L?-bounded (see [14]). However, given
that L2 >~ F), (where F.Y, is the homogeneous Triebel-Lizorkin space), it seems
there is no need to assume Supyepr», |g|51|8§‘8}3a(x, &)| < oo for all multiindices
o, B. Indeed, Grafakos and Torres established that it suffices to assume
capl@ = sup [€[71PN3¢0 a(x, )] < oo (D
xeR" £eR”
for all multiindices «, 8. Denote by a(x, D)* the formal adjoint of a(x, D). It is
natural to assume that
a(x, D)*1(x) =0, ()

since one must postulate some moment condition on atoms for F202 when consid-
ering the atomic decomposition (see [2; 15]).

We shall assume that a € L (R" x R") N C*(R" x (R"\ {0})) is a function
satisfying (1) and (2). In [5], Grafakos and Torres established that

feSor> | a(x,&)expQnuix-&F 'f(§)dE
Rn

extends to an L2-bounded operator, where Sy denotes the closed subspace of S
that consists of the functions with vanishing moment of any order.

We seek to obtain a maximal estimate related to this operator. To formulate our
results, we need some notation. Given a, & € R” and A > 0, define

I, f(x) == f(x —a),
Mg f(x) :=exp(2mi§ - x) f(x),
D, f(x) := X" f (0 x).

.. B to denote that there exists a constant ¢ > 0, depending only
on the parameters X, Y, ..., such that A < ¢B. If the constant ¢ depends only on
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120 YOSHIHIRO SAWANO
Ca,p(a) and the dimension n, we simply write A < B. If the two-sided estimate
A SX,Y,... B SX,Y,... A hOldS, we write A Zx’y’”_ B.

In this paper we establish the following result.

THEOREM 1.1.  Suppose that 1 < p < oco. Then

sup [M_ea(x, DYMef1| S, 171
EecRn p

This theorem will be established via the following statement, which we shall strug-
gle to prove.

THEOREM 1.2.  The following estimate holds:

1
“x €R" : sup |M_za(x, D)Msf(x)] > ,\H < ﬁ/ | £ do.
EeRn R

Let a(x,&) = m(&) with m homogeneous of degree 0. In this case, Theorem 1.2
was covered by Pramanik and Terwilleger [13] and Theorem 1.1 was covered by
Grafakos, Tao, and Terwilleger [4].

We now give an example of the function a for which Theorem 1.2 is applica-
ble. It is well known that pseudodifferential operators with symbol SR | are not
L?-bounded. However, a slight transformation of Sl(? | comes about naturally in the
following context. Let A;: " — S’ be the jth Littlewood—Paley operator; that
is,A; f = FU®@77.) - Ff] for some appropriate smooth function ®. Set S; =
Zk< j—4 Ak .

If the aim is to show that f - g€ B if f € B! and g € B2, then one is

. i K Pogo 141 p2g2°
led to investigate the operator given by

oo

P(f.9)= Y Si(Hnri(g).

j=—00

If © is appropriately localized (say, supp(®) C {1 < |&] < 4}) then we see that Py
satisfies the assumption of Theorem 1.2, where Py is given by Pr(g) = P(f, g).
This is a traditional method proposed by Bony [1].

Before we consider another example for which Theorem 1.2 is applicable, re-
call how a counterexample showing that pseudodifferential operators with symbol
in SR | can be unbounded on L2 To construct this example, we choose the same
function ® used in the previous paragraph. Then define

a(x.6) =Y exp(—2mi - 470)O478).
j=1

It is not difficult to see that @ € S?; N 7. By modifying ® we can assume that
®=1on3 < [§| < I. Define
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N
1 : 1
fy(x) =Y —expmi - 2fx1)f—‘@(—x) 3)
—J 4
j=4
for N > 4. Since Ffy(x) = 4" 2?1:4 %@(45 —2i(1,0,0,...,0)), it follows that
terms in the sum appearing in (3) are orthogonal to one another. Hence { fy}y>4
forms a bounded subset in L2. However, a(x, D) completely undoes this orthog-
onality, since

N ]
a(x, D) f(x) = ; ;}'_'@(Zx)

This example will lead us to the conclusion that pseudodifferential operators with
symbol S, are not L2-bounded.

However, a similar example will satisfy the assumption in Theorem 1.2. Indeed,
if we define

o0
a(x.£) =Y exp(~10mi - 40O E),
j=1
then a simple calculation shows

~(8(5721,0,0,...,0» F @) = 0.

~.| =

(La(x,D)g) =
j=1

Moreover, we still have a € SIO1 Therefore, a is an example to which we can apply
Theorem 1.2.

In this paper we prove Theorems 1.1 and 1.2. In Section 3 we obtain a formula
of the Fourier multiplier. The formula will be a simplification of results in [13]
and enables us to extend those results. What is new about this formula is that there
is no need to take the average over the time space, as discussed in Section 3. We
investigate an estimate of Cotlar type in Section 4, and in In Section 5 we prove
Theorem 1.2. Our proof parallels the one in [13], so we will invoke their notation
and results. Finally, in Section 6 we consider an extension to L” (1 < p < o0o) of
Theorem 1.2.

2. Preliminaries

The following notation will be used throughout.

2.1. Notation for Cubes

We begin with some notation for R”.

DEFINITION 2.1.

1. Denote {0,1,2,...} by Nj.
2. Equip R" with the lexicographic order <; namely, define

X =(X1,X2,...,%) LY =(Y,Y2,--sYn)> X FY
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if and only if x; = yy, X2 = y2, ..., Xj_1 = yj—1 and x; < y; for some j =
1,2,...,n.
3. Letl:=(1,1,...,1).

The following notation will be used for dyadic cubes.

DEFINITION 2.2.
1. A dyadic cube is a cube of the form

T omi 1
va o 1_[[?, 2u )

j=1

form = (m,m,,...,m,) and v € Z; its center and the side-length are defined
by c(Qum) = (Zg’u‘jl, e 2';,":1”1) and £(Q,,,) := 27", respectively.

2. A dyadic cube Q may be bisected into 2" cubes of equal length, labeled
Q(]), Q(Q), A Q(zn), such that

c(Qm) € c(Q) K- KL c(Qam).

Dyadic cubes are assumed to be open, but we assume that cubes (see next defini-
tion) are closed.

DEFINITION 2.3. A cube is a subset in R” of the form
O(x,r) = {y =(LYy2....yn) €R": ,_max n|xi -yl = r}

forx = (x1,x2,...,x,) and r > 0. The center and the side-length of O = Q(x,r)
are given (respectively) by

c(Q) :=x, £(Q) :=12r.
Given ¥ > 0 and a cube Q = Q(x,r), we define kQ := Q(x,«r).

2.2. Notation on Tiles and Trees

The key tool for our analysis is a decomposition technique using trees. The notion
of trees can be traced back to the seminal papers [7; 8; 10; 11; 12].

DEerINITION 2.4 [7; 8; 10; 11; 12; 13].

1. A tile is a cross product of the form s = Q,,,, X Q_,,,y withv e Z and m,m’ €
Z". Given such a tile s, we define I; := Q,,, and ws := Q_,,,/. The set of all
tiles is denoted by D.

2. Letu,veD. Thenu <vifandonlyif I, C I, and , D w,.

3. Atreeis a pair (T,¢) such that T C D is a finite subset of D and # € D is a tile
with ¢t > s for all s € T. Define wr := w, and I := I,.

4. Letl <i < 2" Atree (T,t) is called an i-tree if w;;) C ws(;) forall s € T.

Occasionally ¢ is called a fop of T. Note that the top of T is not unique in gen-
eral. In this paper, to avoid confusion, when we call a pair (T,?) a tree we are
specifying the top.
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2.3. Notation for Auxiliary Functions

We assume throughout that ® € S is a function satisfying

X00/100) <= P < Xo/10)-
DEFINITION 2.5.
1. ¢ :=F o,
2. W =3 — D).
3. Given a cube Q, define @y (&) := (D(g—c(Q)).

Q)
4. Given atile s €D, define ¢, (x) := M) Te,) Do,y (x) (cf. [13]).

The following property is easily shown.

LEMMA 2.6.
1. If Q is a cube, then
X250 < Pso < X6/50- 4
2. If s is a tile, then
Fos = Ty M=c1y) Deqoy P- o)

In particular, supp(Fey) C %ws(l).

According to (4), @¢( is almost the same as xo. Meanwhile, (5) implies that the
frequency support of ¢, is concentrated near c(ws(1))-
The following lemma is easy to show by using the Plancherel theorem.

LEMMA 2.7. Let & e R". Then
1/2
( > i mmz) S f e
SED:wx(zn)BS
Next, we consider the model operator.

DEFINITION 2.8.  The (model) dyadic operator is given by

Agpf() = D (fe)2p, PCD, £€R"

seP:wsony 38

LEMMA 2.9 [13]. Agpis L?-bounded uniformly over P C D and & e R":
1Az : BILDI ST,
where B(L?) denotes the set of all bounded linear operators in L?.

Proof. 1t is convenient to rely on the molecular decomposition described in [15].
When we consider that decomposition for £}, ~ L2 we must consider the mo-
ment condition for molecules. However, this requirement is satisfied by virtue
of ¢, having frequency support outside the origin. Meanwhile, the condition
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for the coefficients is satisfied because of Lemma 2.7. An alternative proof uses
Lemma 2.7 and the almost-orthogonality. UJ

2.4. Integral Kernel of a(x, D)
We define
aj(x, D) f(x)
= [ aoven et - o) dvd, e
where ¥ = & — & (2-) (see Definition 2.5(1)). Then we have

aj(x,D) f(x) = /kj(x,x —2)f(2)dz.

The integral kernel can be written as

kj(x,z) = / a(x,)W(2/E) exp(2mif - 7) dE.
Rn
Using integration by parts yields the following estimate.

LeMMA 2.10. Let o, B € (No)" and L € Ngy. Then

|3gafkj(x’ 2)| Sa,ﬁ,L pJ(ntlal+1pD—-2jL |Z|_2L-

A direct consequence of this lemma is that

o
D 10808 k; (x, )| S ]~ HATIAD,

j=—0

Proof of Lemma 2.10. Assuming that the frequency support of ¥ is compact and
does not contain 0, we have

%3P k;(x,2) = f d%a(x,&)2mi&)PW(2IE) exp(2mik - 7) dé.

n

From (1) we deduce that
|AL[0¢a(x, §)2mig) W2 TIE)]| Sa,pp 2/0¢H1FI720), (6)

~

An integration by parts then yields
3%9Pk;(x, 2)

1 .
= m /I‘W B;‘a(x, S)(zﬂlS)ﬁ\I’(27J§)AIé CXp(ZT[lS . Z) dé
1 .
= m /R" Aé[aﬁ’a(x, E)(Zni’g‘)ﬁ\ll(Z_JE)]exp(2m’“§ -z) d§.

If we insert (6) and take into account the size of support, we obtain
|8a3’3kj(x 2l < |Z|*2L2]'(Ia\+lﬂ\*21‘) / dg < |Z|*2L2j(n+|01\+\/3\*2L)
X 7z ’ ~ ~ .
2-J
This concludes the proof. ]
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Letus set k(x,z) :== Y - k;j(x,z) and write a(x, D) as

j=—00

a(x, D) f(x) = / KGrox — 2 f(2)dz. x ¢ supp(f)

in terms of the integral kernel. Recall that a(x, D) has been shown to be L2
bounded (see [5]). As a consequence, we have

/ Sup|a(x:D)[XR"\Q(X,E)f](x)|2dx5/ |f()[* dx, (7
R R’l

noe>0

which is also known as the maximal estimate of the truncated singular integral op-
erator (see [14]).

3. Simplified Phase Decomposition Formula
and Some Reductions of Theorem 1.2

In this section we obtain a simplified phase decomposition formula. We follow
the notation of Section 2.

3.1. Simplified Phase Decomposition Formula

DErFINITION 3.1.  The model operator A, ; of the /th generation is defined by

Apif(x) = Yo (oo

seD:wgony3n, |1s |=2n

LEMMA 3.2. There exists a function m € COO(R” \ {0}) such that

lim/ M_, Ay M, f —— = F ' ImQ2") - Ff]

N—o00 |Q |

for any sequence of cubes {Qn}yen such that 2Qy C Qn+1 forall N € N, where
the convergence takes place in the strong topology of L*.

Proof. Because the family of operators

dn
M_,A, M, —
on |OnI NeN

is uniformly bounded in B(L?), we can assume that f € S in order to investigate
the limit as N — oo. Consider

dn
]-'( M_,A, M, ) Flf=| FM_,A, M,F~ lf
ow 1Ol ow |QN|
We denote by Q; = Q,(n) the unique dyadic cube with £(Q;) = 2~/ such that €
Qim, if such a cube exists. Assuming the existence of such a Q;, we can use the
Fourier expansion and (5) to obtain
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FM_, A, M, F~'f
= > (M, F 7' f, 0502 FM_ 4

seD: wyon)3n, [I|=2"

= Yo STFMoyp) e FM e,

seD: wyany 3, |I|=2!n

= > (fs Tewsan-nMeit) Doy P12 Tewy 1y —nMe i) D) ®

seD: wyny3, |Is|=2"

_ 7. ’CD( +n- C(Ql(l)))'z.
£(01)

Inserting this equality, we obtain
dn

F M_AM
<QN TR o

)7‘— f=m-f

where

my = zln/ 1PQ 45— 272D dy =/ D"+ dt.
Qi41,1 1/2)+0(1/4)

Hence, we have the desired result with m := f(1/2)+Q(1/4) |®(-+ )| de. UJ
COROLLARY 3.3. With the same notation as in Lemma 3.2, define
ME) =Y mQ). ®)
I=—00

Then .
lim (llm/ M_ A,,IMf|Q |>:_7—"“(M._7:f),

L—>ool N—o00

where the convergence takes place in the strong topology of L*.

With this result, we can obtain a (simpler) decomposition of the phase space.
Recall that SO(n) denotes the set of all orthogonal matrices with determinant 1.
Since SO(n) is compact, it carries the normalized Haar measure n. We define
p: SO(n) — U(L?) as the unitary representation of SO(n); namely, we define

p(A)f = f(A™"), felL™

COROLLARY 3.4. With the same notation as in Lemma 3.2, let o« > 0 be a con-

stant given by |
a = / / MQ2XAE) di du
SO(n) Jo

for & e R" \ {0}. Then

o idLZ

1 o0
d
2/ f( Y lim/ p(A™)Dy-cM_y Ay My Dyep(A) —’7> dic s,
som Jo \, L N> Jo, [On]

where all the convergences take place in the strong topology of L*.
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REMARK 3.5.

1. In view of (8), o does not depend on the & that appears in the formula defin-
ing .

2. In [13], Pramanik and Terwilleger considered the average of

p(A YDy T_yM_, A, 1M, Ty Dacp(A).

However, as Corollary 3.4 here shows, there is no need to take the average over
the time space RY. We shall take full advantage of this fact in the course of
proving Theorem 1.2.

3.2. Some Reductions of Theorem 1.2

Corollary 3.4 is the simplified phase decomposition formula, which is beautiful in
its own right. However, in this paper we discretize the formula. More precisely,
we proceed as follows.

PrROPOSITION 3.6. Let {A,}eny and {k(n)},en be dense subsets of SO(n) and
[0, 1], respectively, such that Ay = idg» and k(1) = 0. Then
K

mi(&) = Y MQ*VA ) ©)
ki, k=1
satisfies the following conditions, provided K is sufficiently large:
1. cq,p(mg) < 0o forall a, B € (Np)";
2. infeepn oy mg(§) > 0.

Proof. If a # 0, then cq g(mg) = 0. Therefore, to establish part 1, we may as-
sume that o = 0. Note that 3’M (&) = Y72 2"#13#m(2'€). Consequently,
o0 o0
0PM@E)| < > 2"aPm2E)| < &7 Y 120 m2'e)).
I=—00 l=—00
Now that the function Mg(€) = Y70 _ [2[1F1|aPm(2'¢)| satisfies Mg (28) =
Mﬁ (&), we have

sup |Mg(€)| = sup |[Mg(&)| <p 1.

§eR” I<|§|<2

Hence it follows that [3#M (£)| < g€ | 7181, This establishes part 1 of the proposi-
tion, since we are considering a finite sum with respect to k; and k5.

We now turn to the proof of part 2. Since {A,},en and {x(n)},cn are the re-
spective dense subsets of SO(n) and [0, 1], it follows that

t=lgr=2ycJ U U mtlsupplm@<8a; 191,

ki=1ky=11l=—00
Hence, we can find a large K such that
K K o)

{1=<1§l=2}C U U U Int{supp[m (2" A 1)1}

k1=1 k2=l I=—0
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by virtue of the compactness of {I < || < 2}. With this choice of K, we have
mg(€) > 0 for 1 < |&] < 2. Since the support of each summand in the sum
defining mg is disjoint, it follows that mg is continuous. Hence mg(§) > 4,
1 < |& < 2, for some § > 0. In view of the periodicity mg(2&) = mg(§),
we have infEeRn\{o} mK(S) = inf1§|g|§2 mK(S) > 4. O

Given Proposition 3.6, we set b(x, &) := a(x,&)/mg(&). Then

a(x,D)
K oo dT)
= > Z lim / b(x, D)p(AL) Doy M—y Ay i My Doyt p(Ag,) —— T

kl kz 1 l—foo

Let us consider the summand for k; = k, = 1 (the other summand can be dealt
with similarly). We shall deal with

> dn
Z lim/ b(x, DYM_, A, M, ——
l:—ooN_)oo |K |

which is equal to

oo

N—o0

dn
lim / M_,b(x,D —n)A, M, Xy
= Kyl
Recall that the main theorem concerns the conjugated modulation. So, we are led

to consider
o0

. dn
; ngnw/ Mogyb(x. D = D AyiMyse 7o
ad dn
- li M_,b(x,D — Ay_e M,
Py Jim, |, M-b 5.0 =1+ Db

Here the equality holds by virtue of Lemma 3.2.
Define a norm by

If: L2 = sup|E|—‘/2/|f|.
E E

Here E in sup runs over all the nonempty bounded measurable sets. Then, the
weak-L? quasi-norm is equivalent to this norm (see [3]). Furthermore, if f is
locally square integrable, then

If: L*|* ~ sup|E| />
E

/ f ‘ (10)
E
In view of Proposition 3.6, the functions a and b enjoy the same property:

Ca,ﬂ(a) :a,ﬂ Ca,ﬁ(b)
for all «, B € (Ny)". Hence, it is sufficient to show that

sup|E|’1/2/ sup
E E £€Rn

L

Y a(x, D —&)Ag 1 f(x)

I=—L

dx S 1 fll2
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Since there exists a measurable mapping N : R” — R” such that

L

> a(x,D—§)Ag f(x)

I=—L

L

D a(x, D= §)Ae 1 f(0)|e=nw)

I=—L

sup
SER”

<2

bl

we have only to show that

L
supl €172 [ 37 a(x.D = e e dx| S 11
E E,
Taking into account Lemma 3.8 (to follow), we conclude that
L
a(x,D—§ ) Agif(x)= lim > (f>@s)2a(x, D — §)g,

I=—L seD:wgony &
27 b<eI) <2t eIy <M

converges pointwise. Hence, we need only establish that

sup
PCD

Z(f, ‘ps>L2/ XN wsomInE (X)a(x, D —§) @ (X)|g=n(x) dx
]:Rn

seP
1/2
SIEIM2 £z,

where P C D runs over any finite set. Finally, by scaling we can assume that
|E| < 1. We refer to [13, p. 780] for more details of this dilation technique.
With this in mind, we shall prove the following in Section 5.

THEOREM 3.7 (Basic estimate). Let N: R" — R" be a measurable mapping
and E a bounded measurable subset whose volume is less than 1. Then

2

sebD

(f, %)LZ/ XN—I[wx(zn)]ﬂE(x)a(xa D — &), (0)|e=nw)ydx| SN fll2-
RVI

In this paper we fix a measurable mapping N : R” — R” and a bounded measur-
able set £ with volume less than 1. To simplify the notation, we define E ;) 1=
N’l[a)s(zn)] N E and

YEx) i=a(x, D —&)ey(x),  YNOX) = Y=

As for 1//5, we have the following pointwise estimate.

LEMMA 3.8. Let & € wson) and o € (No)". Then we have

_ —cU)I\ "
PLEVA <, |1 1721 %
0%y (0] Si sl + 0
forall L e N.

Proof. We have only to deal with the case « = 0, because the passage to the
higher derivatives follows immediately from the calculation for « = 0. With &
fixed, we can integrate by parts. More precisely, we proceed as follows. We need
to show that
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L)t

o)l < I =2 “NST
I e T

an

for all L € Nj.
First, we write out x[ff(x) in full:

¥y (x)
=|I,|'? / exp2mi(x — c(ly)) - Ma(x,n — &) PUU) (1 — c(ws)))) dn.

Now we use

Al expri(x — c(Iy)) - ) = (—47°|x — c()1H)" expRmi(x — c(Iy)) - 1)
to integrate by parts and use the triangle inequality for integrals. The result is
FALES]

|]'2
<
T (—An?|x = c)HE

Now we invoke the assumption (1) and use that n € w2y and W(L(L) (- — c(ws(1y)))
is supported on éa)s( 1) to conclude that

| &M a(x, 1 = §) @ (LU (7 — clwsaD S U)K, ()
If we insert this pointwise inequality to (12), we obtain (11). O

/R”IAL[a(x, n—8§PUU)(n — clwsa))]ldn.  (12)

An immediate corollary of this estimate is the following.

COROLLARY 3.9. Let P be a finite subset of D. Then

PVABUA

seD

S A2,

2

where the implicit constant does not depend on & e R" or s € D.

Proof. This is another application of molecular decomposition. Here we need the
assumption (2) for the molecules to satisfy the moment condition. O

Following the notation in [9], we define

Sum(P) := Y (£, 05| - W, Xy )12]

selP

for P C ID. We shall establish
Sum(P) S |11z (13)

for any finite subset P instead of proving Theorem 3.7 directly.

4. Cotlar-type Estimate

In this section we obtain a Cotlar-type estimate. We let

ar],r,é(-xs ‘i:) = a(-xa%— - ?7)(1)(56;{;), as,n(-x’ 5) = an,c(ws),f(ws)(xs é:)
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for £ > 0, n,7 € R", and s € D. To formulate our result, we use the maximal op-
erator M, given by

1 1
My f(x) := sup — lfDldy =sup— | | f(x +y)ldy
r=b " Jo(xn r=b " Jo

for b > 0. We prove the following estimate.

ProposiTION 4.1.  Letu,v € D withu < v. Suppose that y € R" and ng, n; € w,.
Then

|@v,ny (X, D) f(¥) = Gu,no(x, D) f(¥)]

< inf (M>e(1u>f(Z) + supla(x, D — Ul)[XR”\Q(z,s)f](Z)|)-
z€Q(y,€(1y)) >0

4.1. Maximal Operator M,
In this section we frequently use the following estimates.

LEMMA 4.2.
1. Leta > 0and L > n. Then

al= " f ()l
/ @ N gy <) Maaf o), (14)
RN\ Q(x,a) X — VI
2. Letb > a > 0. Then
f WL < M p. (15)
0(x,b\Q(x,a) DX — yI"

Proof. For the proof of (15), we may assume that @ = 2~/b for some / € N by re-
placing a with a number slightly less than a. Both cases can be proved easily by
decomposing

o0

/R"\Qu,w Z /Q(x,Zl'a)\Q(x,Zjla) ’

Jj=1
I

~/Q(x,b)\Q(x,a) =1 /;(LZ'/b)\Q(x,Zfb)

Using this decomposition, we can prove (14) and (15) easily. We omit the details.
O
LEmMMA 4.3. Leta,b > 0,se€D,and y,y*,n,t € R". Then

@y, z.at() (X D) Xoey, et FIN Sao Moy f(3) (16)
and

[(a(x, D — 1) — ay,z, 00X DDxrR 0y, 0000 S I S Moy f(y) (A7)

whenever |y — y*| <, £(1y).
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Proof. By the triangle inequality we have

LHSof(l6)§/ </ )
Oy, (1)) n

from which we easily obtain (16).
As for (17), we decompose

(M)'ds)mzndz,

6al(wy)

o0
a(x, D = 1) = dy 1.t D) = ) dy ¢ 2700 (3 D) =y 257160, (%, D).
j=1

Observe that the integral kernel k;(x, z) of @, ¢ 2jp(w,)(Xs D) — @y 7 25140, (X> D)
has the naive bound

1k (x,2)| S (27 (ws)" 2 |x — 7|72 (18)

for each L € N. This inequality is summable if L > n, and we obtain

d
LHSof(17)5/ |f§i)| z
R\ Q(y, e(Ly)) ULs)" ™5z —

N S Mz f(3).

This shows (17), completing the proof of the lemma. UJ
The following estimate can be obtained by using the same ideas.

LEmMA 4.4.  Suppose that u < v and 1 € w,. Then
[(@n, 1.0 (%> D) = an . 06, (Xs D)X 00y, 01, ST S Mz0a1,) f(Y)-
Proof. Let N = log, £(w,) —log, £(w,). Then

N

7,000 (X D) = @y, 2060, (5, D) = Y @y ¢ 2560y (X D) = @y 1 27100 (X, D),
j=1

which yields
[an, 7,60, (Xs D) f(¥) — a2 00,) (X, D) f(P)]

o0
<Y 1y 200000) (5 D) F(Y) = @y 22171400, (%, D) F()-
j=l1

Now we have only to appeal to (18) and the same argument as before works here.
O
LEmMmA 4.5. Lets €D and n € ws. Then

[(as,n(x, D) — ay y 0(ws) (X, D)) fF(D] S M=eay f(¥)
forall y e R".

Proof. First, we write the left-hand side out in full:
(as,y(x, D) = ayp,p, 00, (x, D)) f(y)

=/ exp2ri(y —z) - §)A(x,§,n;5) f(2) dzdn,
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o B & — c(wy) B E—n
Ax, & n;s) =a(x,& ’7){<D< 66(0)‘;)) <D<6£(a)s)>}'

Note that if |§ — n| < ﬁﬁ(a)s) then & € %a)s, since n € w,. Hence it follows that

©<w>=®(s_">=1.
64 (wy) 6¢(wy)

With this in mind, we invoke again the assumption (1) and conclude that
|AMACx, €15 9)] S 8(@5) 2 X10w, (%)

Inserting this formula and then integrating by parts, we obtain

where

1 ly —z|*t
[(as,3(x, D) — ay n )X DN FD| S = (1 +———|If(2)|dz.
! ) L] Je\ eIt
Hence, a dyadic partition of this integral yields the desired result. O

4.2. Proof of Proposition 4.1

Fix a point z € Q(y, £(1,)). In view of Lemmas 4.3, 4.4, and 4.5, it is sufficient to
prove Proposition 4.1 assuming that f is supported outside Q(z,2£(1,)). Note that

Mo f(Y) = Msey f(YF)
whenever |y — y*| < kb. We seek to establish that
[@no,no,e1,)(Xs D) F(¥) = ayg, o, 01,/ (%, D) f(¥)]
S Moy f(y) +la(x, D —ny) f(2)],

which immediately yields Proposition 4.1. For the time being, we concentrate on
reducing the matter to the case when ng = n;.

LEMMA 4.6. Letu < v eD and ng,n € w,. Set

k+1
Ao (% D) i= Y (=D g gy 01, (x, D).
k,i1=0,1
Then we have

IAﬂ(],nl,u,v(x’ D)[XQ(}',Z(lu))f](yN S, Mzeuu)f()’)«
Proof. Note that A, ,, .,v(x, D) can be written as

Ao (X D) X0y, e, 1)
10g2(£(1v)/£(1u))

= > f (/ o (v, y* &5 10, m1) dé) My,
= Jovamew i \Jer

where

o (v, ¥, &m0, m)

L &
. “(y’g)w<3-2f+w(wu))
x {exp(2mi(§ +no) - (y — ") —expQRui(§ +m) - (y — y)}.
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An integration by parts yields
o (3 Y5, €m0, )| Se Iy = ¥ ' (@) Q7 (@) "
forall L e N. If L > n/2, then this inequality is summable over j € N and we have
oo
D o,y & no )l S )y =y
j=1
Inserting this estimate and invoking (14), we obtain

LI

oo (6 D) FO] < / V< Moy £).

BN Qe Y — ¥
This completes the proof. 0

COROLLARY 4.7. Suppose that u < v and 1y, n € w,. Then
|(au,,]0(x, D) — av,no(xv D) — au,m(xa D) + av,m(x’ D)) f(y)l 5 MZE(Iu)f(y)~
Proof. Combine Lemmas 4.3, 4.4, and 4.6. O

In view of Corollary 4.7, we can and do assume that no = n; = n € w, for the
proof of Proposition 4.1.

LEMMA 4.8. Lets €D. Then
las,n(x, D) fFDI S Mz f(y) + lalx, D —n) f(y)

forall y e R".
Proof. This is an immediate consequence of (16) and (17). O
Proposition 4.1 will be proved completely once we establish the following.
LEMMA 4.9. Lets €D. Then

la(x, D =) f(D] S Maeiry f) + la(x, D — ) f(2)]
Jorall ze Q(y,L(1)).
Proof. We shall control

[y, n, e (X, D) f(¥) =y n, e (X, D) f(2)],

which is sufficient by virtue of (17). Note that

gty (6 D) F(¥) = iy o) (5, D) f(2) = / k(%) f(z) d2,

where

o _ §—n N
k(z>.—/”a<y,s n)®<6e(ws)>exp<2m<y )-8 de

— /" a(z, & — md}(?ﬂ(—w?)) exp(mi(z — z%) - ) d&.
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Let us define
kj(z*) = —f a(y,& — n)‘ll< i

m) exp2mi(y —z7) - §) d§

+ /R a(z,6 — n)m(%) exp(2ri(z — 2%) - €) dE.

It then follows that k = > 72, k;.
A simple calculation now yields

k(2] S1 )@ (@) 172y — 27
for all L € N. Interpolating this inequality with L = 0 and n 4 1, we obtain
k(2] o L)@ (@) ly — 27"

for 0 < 6 < 1 and hence
o0

D k()] S b))y =2
j=1

As a result, we obtain

[ay, 0, e (X, D) fF(¥) = @y n e, (X, D) f(2)| S M=oy f(3).
This is the desired result. O

5. Proofs of Theorems 1.2 and 3.7

In this section we shall prove Theorem 1.2 and Theorem 3.7, which are reduced to
establishing (13).

5.1. Review of Size and Count

DEFINITION 5.1 [8;12; 13].
1. The density of a tile s € D is defined by

lx — c(I)\ 2" dx 2\
dense(s) := 14— <{—].
ENN—w,] £(Iy) | 1] 19

2\ 1/2
size(Ty) = (Z 1> @shi2l” r‘;sl)“l >

seTp

for an i-tree (Ty,#) with2 < i < 2™

2. Define

DEFINITION 5.2 [8;12;13]. Let P be a subset of D. Then define
Dense(P) := sup dense(s);

selP

Size(P) := sup{size(Ty) : To C P and (Ty,?) is an i-tree with 2 < i < 2"};

Jo Jo
Count(P) := inf{ZH,jl zeach (T, ¢;) isatree and P = U T; asa set}.

j=1 j=I



136 YOSHIHIRO SAWANO

We now invoke the following crucial lemmas.

LeEmMA 5.3 [13, Density lemma, Lemma 1].  There exists a constant o with the
following property: Any finite subset T admits a partition such that

1
T = Tiigh | [ Theawy, ~ Dense(Tign) < - Dense(T),

o
Count(Theayy) < —————.
(Theavy) Dense(T)

LEmMA 5.4 [13, Size lemma, Lemma 2]. There exists a constant B with the fol-
lowing property: Any finite subset T admits a partition such that

(Bl f12)?

. 1.
T = Tman | [ Trarser - Size(Toman) < 5Size(T),  Count(Tgge) < o T

If we combine the density lemma and the size lemma, we obtain the following.

COROLLARY 5.5 [3; 13]. Any finite subset P C D admits the following decom-
position:

LP=1[2_ P
2. Set U :=P \ [I;Z; Px. Then

Dense(U;) < 4/; (19)
Size(U;) < 27| f1l». (20
3. Count(P)) < (a + )4~

Here the constants « and B are from Lemmas 5.3 and 5.4, respectively.

Although the proof is essentially contained in [3; 13], we outline it here for the
convenience of readers.

Proof of Corollary 5.5. Assume j is large enough that
Dense(P) < 470,  Size(P) < 27°|| f|}».

We define P; := ¥ for j > jo. Assume that P;, k > j, is defined such that
Dense(Uj) <4/,  Size(U;) < 27| f|a.

We use Lemmas 5.3 and 5.4 to define P;_; as follows:

Y if Dense(U;) <4/~!and Size(U;) <2/7!| fll2,
P (Uj)large if Dense(U;) < 471 and Size(U;) > 2j_1||f||2,
== (U} heavy if Dense(U;) > 4/~! and Size(U;) < 277! f|l2,

(Ujheavy Y (Ujiarge  if Dense(U;) > 4/~ and Size(U;) > 277! fl».

By Lemmas 5.3 and 5.4, we see that Count(PP;_;) < 4(a + ) - 47/ in any case.
O
Next we review the results that will be used in the proof of Theorem 1.2 and The-
orem 3.7.
To prove (13), it suffices to establish the following statement.
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THEOREM 5.6. There exists a y with the property that, for (T,t) a tree,
Sum(T) < y Dense(T) Size(T)|I;|. 21

In particular,
Sum(P) < y Dense(P) Size(P) Count(P). 22)

We remark that (22) is an immediate consequence of (21). Indeed, to obtain (22)
we need only decompose P into a sequence of trees and then add (21) over those
trees. Furthermore, once we obtain (22), we have

Sum(P;) < 4y (e + B)| £l min(2™/,27)

in the notation in Corollary 5.5. This inequality is summable over j € Z to yield
Theorem 3.7 and hence Theorem 1.2.
By linearization, (21) amounts to establishing

D ol fr o - (N, Xe o )12 | S Dense(T) Size(T)| 1] (23)

seT

for all sequences {o};er C A(1) :={z€C:|z] < 1}.

5.2. Partition J(T) of R" and Further Reduction

To proceed, we consider a partition of R” associated with a tree T.

LeEmMA 5.7 [8;10; 13].  Suppose that T is a tree. Define
Jo(T) :={Q €D : I is not contained in 3Q for all s € T},

and define J(T) as the subfamily consisting of all cubes that are maximal with
respect to inclusion. Then J(T) is a partition of R".

It is not difficult to prove Lemma 5.7 by using the maximality of J(T). Along
with this partition, (23) can be decomposed into

oD adfiedn: / YO dx
JNEg@2n

JeJ(T) 'seT, |I;|<2"|J]

< Dense(T) Size(T)|I,|, (24)

> adfie / ¥,V (x) dx
JNEg@n)

seT, |I;|>2"|J|

2

JeIg(T)

< Dense(T) Size(T)|I;|. (25)

Keeping Lemma 3.8 in mind, we can prove (24) completely analogously to the
corresponding part in [13] (we omit the details). For the proof of (25) we use
our simplified phase decomposition formula. Now we invoke the following result
from [13].

LeEmmMma 5.8 [13, p. 795].

‘Jﬂ U Een

seT, |I;|>27]J|

< Dense(T)|J]|.
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5.3. Conclusion of the Proof of Theorem 3.7
To establish (25), we obtain a pointwise estimate of
Y tnEe Do) Ow).
seT, |I;|>27]J]
Toward that end, we set

Fi(x) =) o f,00)20,(x),

seT

Foy(x) = Y XunEan®as(fe0) ey Ow).

seT, |I;|>2"|J|

The following lemma is easy to show with the help of Lemma 2.9.
LEMMA 5.9 [13].  [.|Fi(x) |>dx < |I,) Size(T)>.

To obtain the pointwise estimate, we fix a point x € J such that |I;| > 2"|J| and
x € Egony for some s € T.
We define

wr =wy(x;J) = U{a)s 15 €T, x € Egony, || > 2" |1},

w_=ow_(x:J) = {wsen : s €T, x € Eson, L] > 2"|J|}.
A geometric observation shows the following.

LEMMA 5.10 [13]. Lets€eT.

1. If w4 is a proper subset of wy, then ga)_,_ N %a)s = 0.

2. w- C wy C wy ifand only if |I;| > 2"|J|. If this is the case, then %a)s -
27 6
50+ \ S0-.

3. If w_ contains wy, then %a)x C gw,.

In light of this observation, it follows that

Fy 1(x) = (g, c(wy), t(0) (X, D) — g c(w_), ey (X, D)) F1(X)|e=N(x)-
Let w1 = w, and w_ = wyr with u,v € T. We apply Proposition 4.1 with
no = N(x) and n; = c(wT) to obtain

[Fo j(X)| S Ms¢yFi(x)+ inf  supla(x, D — c(@1)[ Xxrm\ 0(z,6) F11(2)].
z2€Q(x,€(J)) ¢~0

Let us set
F3(x) :== MFi(x) +supla(x, D — c(wr))[ xrm\ 0(z,6) F11(X)|
e>0

for x € R". Here M denotes the usual Hardy—Littlewood maximal operator.
In view of this result and the fact that 4¢(J) < £([;), we obtain

1
In |J  Een -m/JFz(y)dy-

seT, |I;|>27]J|

f|Fz,J<y>|dy <
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Hence it follows from the Holder inequality that

> [1Fsidy s Densecry 3t [ By
7 JeT, L1277 /

SDense(T),| Y I [ Fs(y?dy.
YERATAESAIN R

Since M and a(x, D) are both L?-bounded, we obtain

/ Fa(n)?dy < f \Fu(»)Pdy < || Size(T?
n R"

from Lemma 5.9. Combining our observations yields
> / |F2, ()| dy < Dense(T) Size(T)| |,
J

which gives the desired result.

6. Self-extension

With Theorem 1.2 established, we consider a self-extension of this result using the
result in [4].
In this section we consider key estimates needed for the proof of Theorem 1.1.

THEOREM 6.1.  Suppose we are given two measurable sets E, F of finite measure
such that 1 < |E| < 2". Let us define

Q:={Myxr > 100"|F|}, E' :=E\Q.
1. Assume that P C D is a finite subset such that I, C 2 for all s € P. Then

D o xE0s) - Xerw-wgan W)

selP

2. Assume that P C D is a finite subset such that Iy N Q€ # @ for all s € P. Then

Sn,p min(l, [F1). (26)

~

Size(xp; P) := Z

selP

1
<., |Fllog(14+ — ). 27
Sap | I0g<+|F|) 27

<XF’ (pS) : (XE/QNfl[ws(zn)P WXN()>‘

Once (26) and (27) are proved, we will have shown that
IDfllpoe SUfllps 1< p <oo0. (28)
We can then interpolate (28) to obtain the desired L” estimate:

IDfllp S WFllp, 1< p < oo.

If we use our new phase decomposition formula (see Corollary 3.4), then we fi-
nally obtain Theorem 1.1.
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It is fairly easy to establish (26), which we do in Section 6.1; (27) is taken up in
Section 6.2. The following result is the crux of the proof of Theorem 6.1.

THEOREM 6.2 [4]. Let F be a measurable function, and assume that P is a finite
set of tiles such that I intersects Q€ for all s € P. Then

Size(xr; P) < min(|F[, 1). (29)

6.1. Proof of (26)

For the proof of (26), we can assume that | /| < 1. Otherwise €2 is empty and there
is nothing to prove.
We define

Fr :={0Q €D : k is the largest integer such that 20 c @),
where D denotes the set of all dyadic cubes in R". Also, we decompose

<Y ) S,

k=0 QeFy

Z(XF’ (pS) : (XE/ﬁNfl[u)J(zn)P I/ISN()>

selP

where

N(-
Z (XF’ (ps> : (XE'ﬂNfl[wx(zn)]’ Ws ()) .
seP, ;=0

Now observe that, if I; = Q, then

|Oxra @)l < (xropo) $2%° inf My < 27 min(l, | F))

S(Q) =

for some yy > 0. Furthermore, by Lemma 3.8 we have

N(- 1/2~7—vk
XNt UV S 10122775,

Finally, for each x € R” and Q € D, we can find at most one s € D such that w; >
N(x) and I, = Q. As aresult, if we choose y > y( then we obtain the desired
result.

6.2. Proof of (27)

Here we shall assume that 1 < |E| < 2" by scaling.

LEMMA 6.3. Let A > 0. Then

o0
Z 272 min(A,27) min(1,2%) < 14 Amin(1, —log A).

j=—00

Proof. We write f(A) =Y % ___ 272 min(A,2/) min(1,2%). Itis trivial that

j=—o0

f(4) < Y~ 277 min(1,2%) <33,

j=—00

solet A < 1. Then
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fA)y= > 24 N A+ A2 < A3 —log; A),

j<logs A logs A< j<0 j=1

which is the desired result. O

Corollary 5.5 allows us to partition P into a disjoint union {P;}, where P; =

Uj <G T is a set of trees contained in [P’ that satisfies (19), (20), and

> Il = 2 Count(P)) < 2(a + )47
kEGj

Given Theorem 5.6, it is easy to establish (27).
Indeed, let P C D be any set such that I, N Q€ # @ for all s € P. Then we have

o0
Sum(P):ZSum(’]I‘jk)§ Z Z|1T,k|Dense(1rjk)Size(ﬂrjk)
ik j=—00 keG;

by virtue of (21). If we use (19), (20), the inequality Dense(Tj;) <
Theorem 6.1, then we obtain

n
lzg—n <1, and

oo

Sum(P) Y min(1,2%) min(L,|F|,27) Y Iz

j=—00 keG;

o0
< Z 27% min(1,2%) min(1, | F|,27).

Jj==00

Using Lemma 6.3 now yields

1
Sum(P) < |F| 10g<1 + m)
This proves (27). Now that both (26) and (27) have been established, it follows
that Theorem 1.1 is completely proved.
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