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L2-Betti Numbers of Plane Algebraic Curves
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& Laurentiu Maxim

1. Introduction

Let X be any topological space and let ϕ : π1(X) → � be a homomorphism to a
group (all groups are assumed to be countable). Then for p ∈ N ∪ {0} we can con-
sider the L2-Betti number b(2)p (X,ϕ) ∈ [0, ∞]. We recall the definition and some
of the most important properties of L2-Betti numbers in Section 2.

Let C ⊂ C2 be a reduced plane algebraic curve with irreducible components
C1, . . . , Cr .We writeX(C ) := C2\νC for νC a regular neighborhood of C inside C2.

We denote the meridians about the nonsingular parts of C1, . . . , Cr by µ1, . . . ,µr.
Note that these meridians come with a preferred orientation because the nonsin-
gular parts of the irreducible components C i are complex submanifolds of C2.

It is well known (cf. Theorem 3.1) that H1(X(C ); Z) is the free abelian group
generated by the meridians µ1, . . . ,µr. Throughout this paper we denote by φ the
map π1(X(C ); Z) → Z given by sending each meridian µi to 1. We also refer
to φ as the total linking homomorphism. We henceforth call a homomorphism
α : π1(X(C )) → � to a group admissible if the total linking homomorphism φ

factors through α.
Our first result is the following.

Theorem 1.1. Let C ⊂ C2 be a reduced algebraic curve C whose projective com-
pletion intersects the line at infinity transversely. Let α : π1(X(C )) → � be an
admissible homomorphism. Then

b(2)p (X(C ),α) =
{

0 for p �= 2,

χ(X(C )) for p = 2.

In [DaJLe] it was shown that if A is an affine hyperplane arrangement in Cn then
at most one of the L2-Betti numbers b(2)p (C

n \ A , id) is nonzero. Theorem 1.1 can
be seen as an analogous statement for the complement of an algebraic curve in C2

that is in general position at infinity. Note that if � is a polytorsion-free abelian
(PTFA) group then this theorem, together with Proposition 2.4, recovers [LMa1,
Cor. 4.2].
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Given an algebraic curve C, we denote by X̃(C ) the infinite cyclic cover ofX(C )
corresponding to φ. Given an admissible homomorphism α : π1(X(C )) → �,
we let �̃ := Im{π1(X̃(C )) −→ π1(X(C )) α−→ �} and denote the induced map
π1(X̃(C )) → �̃ by α̃. We will now study the invariant

b
(2)
1 (X̃(C ), α̃ : π1(X̃(C )) → �̃).

The idea of looking for invariants of the fundamental group of the complement that
capture information about the topology of the curve goes back to the early work of
Zariski, and it was further developed by Libgober by analogy with classical knot
theory (cf. [Lib1; Lib2; Lib4; Lib6]). In particular, Libgober studied the ordinary
one-variable Alexander polynomial corresponding to X(C ) whose degree is given
by the ordinary Betti number of X̃(C ) (cf. e.g. [C, p. 368]). In that sense the study
of the L2-Betti numbers of X̃(C ) can be seen as a noncommutative generalization
of the approach of Libgober.

Following work of Cochran and Harvey, the second and third author consider
in [LMa1] the homomorphism

πn : π1(X(C )) → π1(X(C ))/π1(X(C ))(n+1)
r =: �n;

here, given a groupG, we denote byG(n)
r the nth term in the rational derived series

(cf. [Ha1]). The group �n is a PTFA group, and the authors define an invariant
δn(C ) as the dimension of the first homology of X̃(C )with coefficients in the skew
field associated to �̃n. Some of these invariants are computed in [LMa1; LMa2].
The main result of [LMa1] gives upper bounds on δn(C ) in terms of information
coming from the singularities of C.

We will see in Theorem 2.5 that

δn(C ) = b
(2)
1 (X̃(C ), π̃n : π1(X̃(C )) → �̃n).

The following theorem can therefore be viewed as a generalization of [LMa1,
Thm. 4.1]. Note that for the invariants δn(C ) this new result gives a slightly better
bound.

Theorem 1.2. Let C ⊂ C2 be a reduced plane algebraic curve of degree d whose
projective completion intersects the line at infinity transversely. Denote the set of
singular points by P1, . . . ,Ps and, for a singular point Pi, denote by µ(C,Pi) the
associated Milnor number of the singularity germ at Pi. Let α : π1(X(C )) → �

be an admissible homomorphism. Then

b
(2)
1 (X̃(C ), α̃ : π1(X̃(C )) → �̃) ≤

s∑
i=1

(µ(C,Pi)+ ni − 1)+ 2g + d,

where ni denotes the number of branches through Pi and g is the genus of the
normalization of the projective completion of C.

This theorem shows that the topology of the singularities imposes restrictions on
theL2-Betti numbers of the curve complement. In this sense Theorem 1.2 is in the
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same vein as the results of Libgober [Lib1] and Cogolludo and Florens [CoF], but
see also [DiMa; Lib5; Ma] for similar results in the higher-dimensional case.

2. L2-Betti Numbers

2.1. The von Neumann Algebra and Its Localizations

Let � be a countable group. Define l2(�) := {
f : � → C | ∑

g∈�|f(g)|2 < ∞};
this is a Hilbert space. Then � acts on l2(�) by right multiplication—that is,
(g · f )(h) = f(hg). This defines an injective map C[�] → B(l2(�)), where
B(l2(�)) is the set of bounded operators on l2(�). We henceforth view C[�] as a
subset of B(l2(�)).

Now define the von Neumann algebra N(�) to be the closure of C[�] ⊂
B(l2(�))with respect to pointwise convergence in B(l2(�)). Note that any N(�)-
moduleM has a dimension dimN(�)(M)∈ R≥0 ∪{∞}. We refer to [Lü, Def. 6.20]
for details.

2.2. The Definition of L2-Betti Numbers

Let X be a topological space (not necessarily compact) and let ϕ : π1(X) → � be
a homomorphism to a group. Denote the covering of X corresponding to ϕ by X̃.
Then we can study the N(�)-chain complex

C sing
∗ (X̃)⊗Z[�] N(�),

where C sing
∗ (X̃) is the singular chain complex of X̃ with right �-action given by

covering translation. Furthermore, � acts canonically on N(�) on the left. The
pth L2-Betti number is now defined as

b(2)p (X,ϕ) := dimN(�)(Hp(C
sing
∗ (X̃)⊗Z[�] N(�)))∈ [0, ∞].

See [Lü, Def. 6.50] for more details.
In the following lemma we summarize some of the properties of L2-Betti num-

bers. We refer to [Lü, Thm. 6.54, Lemma 6.53, Thm. 1.35] for the proofs.

Lemma 2.1. Let X be a topological space and let ϕ : π1(X) → � be a homo-
morphism to a group.

(1) b(2)p (X,ϕ) is a homotopy invariant of the pair (X,ϕ).

(2) b(2)0 (X,ϕ) = 0 if Im(ϕ) is infinite and b(2)0 (X,ϕ) = 1/|Im(ϕ)| if Im(ϕ) is
finite.

(3) If X is a finite CW-complex, then∑
p

(−1)pb(2)p (X,ϕ) = χ(X),

where χ(X) denotes the Euler characteristic of X.
(4) If Im(ϕ) ⊂ �̃ ⊂ �, then b(2)p (X,ϕ : π1(X) → �̃) = b(2)p (X,ϕ : π1(X) → �).

We will also make use of the following lemma.
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Lemma 2.2. Let f : Y → Z be a map of topological spaces such that π1(Y ) →
π1(Z) is surjective. Assume that we are given a homomorphism β : π1(Z) → �.

Then
b
(2)
1 (Y,π1(Y )

f∗−→ π1(Z)
β−→ �) ≥ b

(2)
1 (Z,β).

Proof. We denote the homomorphism π1(Y )
f∗−→ π1(Z)

β−→ � by β as well. Note
that an Eilenberg–Maclane space K for π1(Z) is given by adding handles of de-
gree > 2 to Z. In particular b(2)1 (Z,β) = b

(2)
1 (K,β). By the homotopy invariance

of the L2-Betti numbers we know that, for any other Eilenberg–Maclane space,
we get the same invariant for π1(Z).

Because f∗ : π1(Y ) → π1(Z) is surjective, we can also build an Eilenberg–
Maclane space K ′ for π1(Z) by adding handles of degree ≥ 2 to Y. By the pre-
ceding discussion we therefore get

b
(2)
1 (Z,β) = b

(2)
1 (K,β) = b

(2)
1 (K

′,β).

It now remains to show that b(2)1 (Y,β) ≥ b
(2)
1 (K

′,β). SinceK ′ is given by adding
handles of degree ≥ 2 to Y, we obtain the following commutative diagram:

C2(Y ; N(�))

��

�� C1(Y ; N(�))
=

��

�� C0(Y ; N(�))
=

��

�� 0

P ⊕ C2(Y ; N(�)) �� C1(Y ; N(�)) �� C0(Y ; N(�)) �� 0

C2(K
′; N(�)) �� C1(K

′; N(�)) �� C0(K
′; N(�)) �� 0,

where P is the free N(�)-module generated by the extra 2-handles of K ′. This
shows that the map H1(Y ; N(�)) → H1(K

′; N(�)) is surjective. But then the
claim on L2-Betti numbers follows immediately from [Lü, Thm. 6.7].

2.3. The L2-Betti Numbers and the Cochran–Harvey Invariants

Recall that a group � is called locally indicable if for every finitely generated non-
trivial subgroup H ⊂ � there exists an epimorphism H → Z. We will also need
the notion of an amenable group. We refer to [Lü, p. 256] for the definition of
an amenable group, but note that any solvable group is amenable and that groups
containing the free group on two generators are not amenable. In the following
we refer to a locally indicable torsion-free amenable group as a LITFA group.

Denote by S the set of nonzero divisors of the ring N(�). By [R, Prop. 2.8]
(see also [Lü, Thm. 8.22]), the pair (N(�), S) satisfies the right Ore condition.
We now let U(�) := N(�)S−1; this ring is called the algebra of operators affili-
ated to N(�). For any U(�)-module M we also have a dimension dimU(�)(M).

By [Lü, Thm. 8.31],

b(2)p (X,ϕ) = dimU(�)(Hp(C sing
∗ (X̃)⊗Z[�] U(�))).
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We collect some properties of LITFA groups in the following well-known
theorem.

Theorem 2.3. Let � be a LITFA group.

(1) All nonzero elements in Z[�] are nonzero divisors in N(�).
(2) Z[�] is an Ore domain and embeds in its classical right ring of quotients K(�).

(3) K(�) is flat over Z[�].
(4) There exists a monomorphism K(�) → U(�) that makes the following dia-

gram commute:

Z[�] ��

����������
K(�)

��

U(�).

Proof. The first claim follows from results of Linnell [Li] and Burns and Hale
[BH]. Note that it implies in particular that all nonzero elements in Z[�] are
nonzero divisors in Z[�]. The second part now follows from [DLiMSY, Cor. 6.3].
The third part is a well-known property of Ore localizations (cf. e.g. [R, p. 99]).
Finally, the last statement follows from the definitions of K(�) and U(�) as Ore
localizations and the fact that Z[�] \ {0} ⊂ S.

We recall that a group � is called polytorsion-free abelian (PTFA) if there exists
a normal series

1 = �0 ⊂ �1 ⊂ · · · ⊂ �n−1 ⊂ �n = �

such that �i/�i−1 is torsion-free abelian. PTFA groups have played an important
role in several recent papers (e.g. [C; COT; Ha1; LMa1]).

It is easy to see that PTFA groups are LITFA. Note that the quotients π/π(n)r of
a group by terms in the rational derived series are PTFA (cf. [Ha1]). The follow-
ing proposition relates L2-Betti numbers to ranks of modules over skew fields. It
seems to be well known (see e.g. [Ha2, p. 8]), but for the sake of completeness
we quickly outline the proof.

Proposition 2.4. Let ϕ : π1(X) → � be a homomorphism to a LITFA group �.
Then

b(2)p (X,ϕ) = dimK(�)(Hp(X; K(�)).

Proof. By Theorem 2.3 we have an inclusion K(�) → U(�). Since K(�) is a
skew field, it follows that any K(�)-module is free. We deduce that U(�) is flat
as a K(�)-module. In particular, if d = dimK(�)(Hp(X; K(�)) < ∞ then

dimU(�)(Hp(X; U(�))) = dimU(�)(Hp(X; K(�))⊗K(�) U(�))
= dimU(�)(K(�)d ⊗K(�) U(�))
= dimU(�)(U(�)d) = d.

The case of d = dimK(�)(Hp(X; K(�)) = ∞ follows similarly.
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We now recall the definition of the Cochran–Harvey invariants (which in this con-
text were first studied in [LMa1]). Let C be an algebraic curve in C2. Furthermore,
let α : π1(X(C )) → � be an admissible homomorphism to a LITFA group. Recall
that “admissible” means that there exists a map φ : � → Z such that the following
diagram commutes:

π1(C
2 \ C ) α ��

φ

����
��

��
��

��
�

φ

����
��

��
��

Z.

Also recall that we denote by �̃ the kernel of φ : � → Z and by α̃ the induced
homomorphism π1(X̃(C )) → �̃.

Now consider the homomorphism π1(X(C )) → π1(X(C ))/π1(X(C ))(n+1)
r =

�n. It is easy to see that this homomorphism is admissible. As in [LMa1], we now
define

δn(C ) = dimK(�̃n)
(H1(X̃(C ); K(�̃n)).

The following theorem, which is an immediate corollary to Proposition 2.4, now
shows that the L2-Betti numbers considered in this paper can be viewed as a gen-
eralization of the Cochran–Harvey invariants of plane algebraic curves.

Theorem 2.5. Let C ⊂ C2 be an algebraic curve C and let α : π1(X(C )) → �

be an admissible homomorphism to a LITFA group. Then

dimK(�̃)(H1(X̃(C ); K(�̃)) = b
(2)
1 (X̃(C ), α̃ : π1(X̃(C )) → �̃).

3. Proof of Theorem 1.1 and Theorem 1.2

3.1. Plane Algebraic Curves and Their Topology

From now on let C ⊂ C2 be an algebraic curve with irreducible components
C1, . . . , Cr . Recall that we write X(C ) = C2 \ νC. We now also write Y(C ) =
∂(νC ) = ∂(X(C )). Note that Y(C ) ⊂ X(C ). The following theorem summarizes
some well-known results on the topology of X(C ).

Theorem 3.1. (1) π1(X(C )) is normally generated by the meridians about the
nonsingular parts of the irreducible components, andH1(X(C ); Z) is a free abelian
group of rank r with basis given by these meridians.

(2) X(C ) is homotopy equivalent to a 2-complex.
(3) If C intersects the line at infinity transversely, then π1(Y(C )) → π1(X(C ))

is surjective.

Proof. The first statement follows from the fact that by gluing in disks at the merid-
ians we kill the fundamental group; the claim about the first homology group fol-
lows from Lefschetz duality (cf. [Lib1, p. 835] or [Di, p. 103]). The second state-
ment follows because X(C ) has the homotopy type of a 2-dimensional complex
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affine variety (cf. also [Di, Thm. 1.6.8] or [Mi, Thm. 7.2]). The third statement
follows from applying the Lefschetz hyperplane theorem (cf. e.g. [Di, p. 25]) and
by an argument similar to the proof of Theorem 4.1 in [LMa1].

3.2. Proof of Theorem 1.1

From now on we assume that the algebraic curve C intersects the line at infinity
transversely. Let α : π1(X(C )) → � be an admissible homomorphism.

Since � is infinite and since X(C ) is homotopy equivalent to a 2-complex, it
follows from Lemma 2.1 that b(2)p (X(C ),α) = 0 for p = 0 and p > 2. It therefore
remains to show that b(2)1 (X(C ),α) = 0, from which the statement on b(2)2 (X(C ),α)
will then follow immediately by Lemma 2.1(3). We denote the homomorphism
π1(Y(C )) −→ π1(X(C )) α−→ � by α as well. By Theorem 3.1(3) and Lemma 2.2,
it is enough to prove that b(2)1 (Y(C ),α) = 0.

Let B4 ⊂ C2 be a sufficiently large closed ball in the sense that int(B4) \
(C ∩ int(B4)) is diffeomorphic to C2 \ C. Such a ball exists by [Di, Thm. 1.6.9].
Note in particular that all singularities of C lie in the interior of B4. By the ho-
motopy invariance of the L2-Betti numbers, we can abuse notation and thus also
denote B4 ∩X(C ) and B4 ∩ Y(C ) by X(C ) and Y(C ), respectively.

Given a point P = (xP , yP)∈ C2 and ε > 0, we write B4(P, ε) = {(x, y)∈ C2 |
|x − xP |2 + |y − yP |2 ≤ ε2} and S3(P, ε) = ∂B4(P, ε). Now let Sing(C ) :=
{P1, . . . ,Ps} denote the set of singularities of C. Then there exist ε1, . . . , εs > 0
such that

(1) B4(Pi, εi) are pairwise disjoint,
(2) B4(Pi, εi) ⊂ int(B4), and
(3) B4(Pi, εi) \ (C ∩ B4(Pi, εi)) is the cone on S3(Pi, εi) \ (C ∩ S3(Pi, εi)).

Such εi exist by Thom’s first isotopy lemma (see [Di, Sec. 5] for details). For i =
1, . . . , s we write S3

i = ∂(B4(Pi, εi)), Li := S3
i ∩ C, and X(Li) := S3

i \ νLi.
Let Ti, i = 1, . . . , s, be the boundaries of S3

i \ νLi. These are unions of tori,
and we denote the connected components of Ti by T 1

i , . . . , T ni
i . Let Fj := Cj

∖(⋃
int(B4

i ) ∩ Cj
)

for j = 1, . . . , r. Then F1, . . . ,Fr are the connected components
ofF := C∩(

C2
∖ ⋃s

i=1 int(B4
i )

)
. We write Y(F ) = Y(C )∩(

C2
∖ ⋃s

i=1 int(B4
i )

)
and denote the connected components of Y(F ) by Y(F1), . . . ,Y(Fr). We can there-
fore decompose

Y(C ) =
⋃

i=1,...,r

Y(Fi) ∪T1∪··· ∪Ts
⋃

i=1,...,s

X(Li).

We need the following definition.

Definition. LetM be a 3-manifold and let ψ ∈H1(M; Z). We say that (M,ψ)
fibers over S1 if the homotopy class of maps M → S1 determined by ψ ∈
H1(M; Z) = [M, S1] contains a representative that is a fiber bundle over S1.

Milnor [Mi, Thm. 4.8] showed that for i = 1, . . . , s the pair (X(Li),φi) fibers over
S1, where φi : H1(X(Li); Z) → Z is induced by the (local) total linking number
homomorphism—that is, by sending all meridians (with the induced orientation)
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about the components of Li to 1 (see e.g. [Di, pp. 76–77]). Note that φi is pre-
cisely the homomorphism given by homomorphism

π1(X(Li)) → π1(Y(C )) → π1(X(C )) φ−→ Z.

For i = 1, . . . , r we now consider Y(Fi). Picking a trivialization of the normal
bundle ofFi allows us to identify Y(Fi)withFi×S1. Consider the homomorphism

ψi : π1(Fi × S1) → π1(Y(C )) → π1(X(C )) φ−→ Z.

Since the homomorphism π1(S
1) → π1(Fi × S1)

ψi−→ Z is surjective, it is well
known that (Fi × S1,ψi) fibers over S1 and that the fiber is diffeomorphic to Fi.
It follows from the preceding discussion that the fibrations Fi × S1 → S1 and
X(Li) → S1, when restricted to the tori T ji , correspond to the same classes in
H1(T

j

i ; Z). Since fibrations of a torus that lie in the same cohomology class are
isotopic, it follows that we can glue the fibrations Fi × S1 → S1 andX(Li) → S1

to get a fibration π : Y(C ) → S1 such that π∗ : π1(Y(C )) → π1(S
1) = Z equals

π1(Y(C )) → π1(X(C )) φ−→ Z.

We now recall the following theorem [Lü, Thm. 1.39].

Theorem 3.2. Let M be a compact 3-manifold and let ψ ∈ H1(M; Z) be such
that (M,ψ) fibers over S1. If β : π1(M) → G is a homomorphism to a group G
such that ψ factors through β, then b(2)p (M,β) = 0 for all p.

Since α is admissible it follows now that b(2)p (Y(C ),α) = 0. This concludes the
proof of Theorem 1.1.

3.3. Proof of Theorem 1.2

Let C ⊂ C2 be a reduced algebraic curve in general position at infinity. We pick
B4 as in the previous section, and again we abuse notation by usingX(C ) and Y(C )
to denote B4 ∩X(C ) and B4 ∩ Y(C ), respectively.

Let α : π1(X(C )) → � be an admissible homomorphism. Denote the induced
map π1(Y(C )) → π1(X(C )) φ−→ Z by φ ′. Note that, by Theorem 3.1(3), the map
φ ′ is surjective as well. Now denote by Ỹ(C ) and X̃(C ) the infinite cyclic covers
corresponding to φ ′ and φ, respectively. It follows easily that the induced map

π1(Ỹ(C ) → π1(X̃(C ))
is still surjective. But by Lemma 2.2 we then also have

b
(2)
1 (Ỹ(C ), α̃) ≥ b

(2)
1 (X̃(C ), α̃).

As we saw before, (Y(C ),φ) fibers over S1. It follows that Ỹ(C ) is homotopy equiv-
alent to the fiber / of the fibration, and we see that b(2)1 (Ỹ(C ), α̃) = b

(2)
1 (/, α̃).

Since/ is a compact surface with boundary, it follows immediately from Lemma
2.1 that

b
(2)
1 (/, α̃) = −χ(/)+ b

(2)
0 (/, α̃) ≤ −χ(/)+ 1.

It therefore remains to compute χ(/).
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We denote the fibers of the fibrations X(Li) → S1 by /i, and we denote the
fibers of the fibrations X(Fi) → S1 by F ′

i . Recall that F ′
i is diffeomorphic to Fi.

Note that/ is the result of gluing the set of fibers {/i} and the surfaces {F ′
i } along

the longitudes of the links Li. Because the Euler characteristic of the longitudes
is 0, we obtain

χ(/) =
s∑
i=1

χ(/i)+
r∑
i=1

χ(Fi).

By [Di, p. 78] we have χ(/i) = 1−µ(C,Pi), where µ(C,Pi) denotes the Milnor
number of the singularity Pi.

Now let D be the projective completion of C. Topologically, D is given by adding
disks to the boundary components of C at “infinity”. Since C has degree d and is
in general position at infinity, there are exactly d such components. Since gluing
in a disk increases the Euler characteristic by 1, we have that

χ(D) = χ(C )+ d.

Recall that the normalization of D is defined to be the curve D̂ without singulari-
ties obtained from D by blow-ups. Note that χ(D̂) can be computed as follows.

Let D ′ be the result of first removing balls around the singularities, and let D ′′
be the result of gluing in disks to all the boundary components of D ′. Then D ′′ is
topologically equivalent to D blown up at the singularities; in particular,

χ(D̂) = χ(D ′′).

Since gluing in a disk increases the Euler characteristic by 1, we also get that

χ(D̂) = χ(D ′)+ b0(∂D ′).

Hence in our situation it follows that

χ(D̂) =
r∑
i=1

χ(Fi)+
s∑
i=1

ni + d.

In summary, we therefore see that

b
(2)
1 (X̃(C )) ≤ b

(2)
1 (Ỹ(C ))

≤ −χ(/)+ 1

= −
s∑
i=1

χ(/i)−
r∑
i=1

χ(Fi)+ 1

=
s∑
i=1

(µ(C,Pi)− 1)− χ(D̂)+
s∑
i=1

ni + d + 1

≤
s∑
i=1

(µ(C,Pi)+ ni − 1)+ 2g(D̂)+ d.

This completes the proof of Theorem 1.2. We conclude with three remarks.

Remark. (1) For � a LITFA group we saw in Proposition 2.4 that the L2-Betti
numbers are determined by ranks of homology modules over skew fields. In that
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case, the flatness of certain rings involved shows that the statement of Theorem 1.2
is an immediate consequence of Theorem 1.2 (we refer to [LMa1] for details). This
approach does not seem to work if � is not a LITFA group.

(2) Our methods carry over to prove generalizations of Theorem 4.5, Theo-
rem 4.7, and Corollary 4.8 in [LMa1]. We leave the task of formulating and prov-
ing the precise statements to the interested reader.

(3) Given a knotK, we denote byX(K) = S3 \νK its exterior and by X̃(K) the
infinite cyclic cover of X(K). WhenK is a nontrivial fibered knot it follows from
the preceding that b(2)1 (X̃(K), id) = 2 genus(K) − 1. Given any nontrivial knot
K, we write π̃ = π1(X̃(K)). By Proposition 2.4, the sequence of L2-Betti num-
bers b(2)1 (X̃(K), π̃ → π̃/π̃ (n)), n ≥ 1, equals the sequence of Cochran invariants
δn(K), which was shown in [C] to be a never-decreasing sequence of invariants
that all give lower bounds on 2 genus(K)−1. Cochran’s result can be interpreted
as stating that the L2-Betti number corresponding to “bigger” (PTFA-) quotients
of π̃ give better bounds on 2 genus(K) − 1. It therefore seems natural to conjec-
ture that “in the limit” we have equality—in other words, that b(2)1 (X̃(K), id) =
2 genus(K)− 1.
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