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Dedicated to the memory of Donald G. Higman

Introduction

This paper is dedicated to the memory of Donald Higman. Don was especially
attracted to methods with some kind of fundamental simplicity but with sufficient
substance to be useful and illuminating. This paper is written in the spirit of this
lofty aspiration and also somewhat in the direction of Don’s early interests in ho-
mological algebra.

The paper begins in Section 1 with a foundational discussion of a new notion,
that of a semistandard filtration in a highest weight category C. The latter cate-
gories [CPS1] axiomatize features found in many Lie-theoretic module settings.
For simplicity we stick to the case of a finite weight poset �, to which many
considerations reduce. Here, the irreducible objects L(λ) and projective indecom-
posable objects P(λ) are indexed by �, and there are standard objects �(λ) with
head L(λ) and all other composition factors indexed by a smaller weight. The ob-
jects P(λ) have finite filtrations with sections as standard objects, the top section
being �(λ) and all others of the form �(ν) with ν > λ. In particular, these con-
ditions imply Ext1C(�(λ),�(µ)) = 0 unless λ > µ. Thus, whenever an object M
in C has a finite length filtration of subobjects

0 = F0 ⊆ F1 ⊆ · · · ⊆ Fn = M

with sections Fi+1/Fi � �(νi) equal to standard objects, we may rearrange the
order in which the latter appear to assume that νi > νj never occurs for i > j.

It is these “standard filtrations” with their additional order requirements (which
may always be assumed by rearrangement) that we will generalize to obtain the
notion of a semistandard filtration. They will be filtrations in which the role of
standard objects is replaced by their nonzero epimorphic images (which might
reasonably be called semistandard objects) yet with the order requirements essen-
tially the same. Actually, it will be convenient in the formal definitions to allow
direct sums of standard objects as filtration sections for standard objects, and their
nonzero epimorphic images in the semistandard case, with similar order require-
ments. However, these more general filtrations can always be refined to fit the
discussion just given for sections that are single standard or semistandard objects.
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We call this single (standard or semistandard) situation the “fully refined” case in
what follows.

All of our considerations will involve objects of finite length, so it is convenient
to assume that all objects in C have finite length. In this case C is equivalent to
the category A-mod of all finite dimensional left modules for a finite dimensional
quasi-hereditary algebra A over a field k. In particular, we drop henceforth the
“object” terminology for objects in C in favor of “module” terminology, though
it is still convenient to think in terms of the categorical setup.

In Section 1 we define a semistandard filtration and some of its basic proper-
ties. We show that the well-known Ext1 vanishing criterion for a module to have
a standard filtration actually implies that all semistandard filtrations are standard
(cf. Proposition 1.1). Then we define, for any semistandard filtration of any mod-
ule M, a quantity [M : �(ν)] associated to each standard module �(ν), ν ∈ �,
counting the multiplicity in which a nonzero homomorphic image of �(ν) ap-
pears in the given semistandard filtration. (If the filtration is fully refined then
this count makes sense in an obvious way, but we will also define it in the general
case.) Such a nonzero homomorphic image of a standard module might be called
a “semistandard module with high weight ν”. We call the associated multiplicity
[M : �(ν)] the “semistandard multiplicity associated to the standard module �(ν)
in M ” or, more briefly, the “semistandard multiplicity of �(ν) in M ”. (This might
also be called the “semistandard multiplicity of L(ν) in M ” because [M : �(ν)]
does record a number, but generally not all, of the occurrences of the irreducible
module L(ν) as a composition factor of M.) The main result in Section 1 is Theo-
rem 1.5, which says that the multiplicities [M : �(ν)] are well-defined (i.e., they
do not depend on the choice of semistandard filtration) and are computable by a
familiar expression, dimkν HomC(M,∇(ν)), involving a costandard module ∇(ν),
where the dimension is taken over the skew field kν = EndC∇(ν) ∼= EndC L(ν) ∼=
EndC �(ν).

In many Lie-theoretic module contexts where the notion of a weight space in
a module makes sense (possibly in a different realization of C ), the multiplicity
[M : �(ν)] is also the dimension of the ν-weight space of M/M ′(ν), where M ′(ν)
is the submodule of M generated by all µ-weight vectors v for weights µ greater
than ν. This interpretation can be made to make sense for any C as before: sim-
ply note that, in the Lie-theoretic case, one may take µ ∈ � in defining M ′(ν)
and assume that the submodule N generated by v has head L(µ). The submodule
M ′(ν) may then be defined in the language of C as the submodule of M gener-
ated by all submodules N that have an irreducible head L(µ) satisfying µ > ν.

With this definition we have in general the additional interpretations [M : �(ν)] =
[M/M ′(ν) : L(ν)] = dimkν HomC(�(ν),M/M ′(ν)).

In Section 2, we specialize to the case of semistandard filtrations of maximal
submodules of standard modules. The main result of this section is Theorem 2.2,
which—under a simple Kazhdan–Lusztig-theory hypothesis—characterizes these
semistandard multiplicities in terms of the (often computable) dimensions of Ext1

groups between irreducible modules. (These dimensions can also be interpreted
in terms of multiplicities of irreducible modules in the second Loewy layers of
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standard modules.) This theorem was really the starting point of this paper (indeed,
it was originally titled “Maximal Submodules and the Second Loewy Layers of
Standard Modules”). The author found this theorem while trying to explain the
mysterious frequency of “0 or 1” answers for the dimensions defined, in the Lie-
theoretic context of the previous paragraph, for the case of M a maximal submod-
ule of a standard module.

Section 3 applies the theory of Section 2 to obtain some general inequalities on
the behavior of Ext1 in the presence of a suitable exact functor. The conditions we
require on such a functor are of some independent interest, as the first attempt to
define what an exact functor between highest weight categories should be. Some
potential applications of the inequalities are noted in Remark 3.5—especially to
the problem of providing a bound, depending only on the root system, for the
dimension of Ext1G(L,L′) between irreducible modules L,L′ of a semisimple al-
gebraic group G. These are in the nature of speculations regarding future work,
but in Section 4 the inequalities of Section 3 are used to prove some specific re-
sults about Ext1G(L,L′). These latter results (and this last section) attack known
issues for Extn and parity conditions involving standard and irreducible modules
with singular high weights in the presence of the Lusztig conjecture for represen-
tations of G in positive characteristics.

1. Semistandard Filtrations in Highest Weight Categories

To formally begin, let A be a quasi-hereditary algebra over a field k. For axioms
and the close relationship with highest weight categories, the reader is referred to
[CPS1]. However, the reader may just assume that the category A-mod of finite
dimensional left A-modules has the properties given in the Introduction for the
category C. We will also sometimes use implicitly the property proved in [CPS1,
p. 98] that ExtnC(�(λ),∇(ν)) = 0 whenever n > 0 and λ, ν ∈ �. As in the In-
troduction, we will primarily use the categorical viewpoint throughout this paper
and will fix terminology in relation to it. Thus, as before, we set C = A-mod. The
terms “module” and “A-module” always mean “finite dimensional left A-module”
unless otherwise noted. Again, these are the objects in C. Continuing with nota-
tion, as in the Introduction there is a poset � (whose elements are called weights)
indexing the irreducible modules as {L(λ)}λ∈�, with distinct weights indexing dis-
tinct irreducible modules, and where (up to isomorphism) every irreducible mod-
ule occurs as some L(λ). There are also standard modules �(λ) and costandard
modules ∇(λ) for each λ ∈ �. The standard module �(λ) has head L(λ), and
all other composition factors L(µ) satisfy µ < λ. We did not discuss costandard
modules in the Introduction; however, the axioms for a quasi-hereditary algebra
are left–right symmetric, and one way to obtain costandard modules is simply to
take linear duals of the standard right A-modules.

One important property noted in the Introduction is that projective modules have
standard filtrations. We give the formal definition of these filtrations now, allow-
ing in our definition direct sums of standard modules as filtration sections. Thus,
a standard filtration of a module M is a filtration
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0 ⊆ F0 ⊆ F1 ⊆ · · · ⊆ Fn = M, (1)

in which each quotient Fi/Fi−1 is a direct sum, possibly zero, of standard modules⊕
λ∈� �(λ)mi(λ). (Each �(λ) appears as a summand mi(λ) times.) Standard prop-

erties of quasi-hereditary algebras, as mentioned before, allow some rearranging
of where the standard modules appear. For instance, we can always assume:

(2) If mi(λ) �= 0 for a given index i and weight λ, then λ is maximal among all
weights ν in � with mj(ν) �= 0 for some j ≥ i.

In some cases, it may be necessary to increase the number n of filtration terms in
order to achieve this. (Consider e.g. the case n = 1.) The condition (2) will also
make sense in the case of the semistandard filtrations to be defined. It is a prop-
erty that we can have or not have in the standard case, but we will require a version
of it in the semistandard case. We call standard filtrations with this property semi-
strict. Observe that this definition allows mi(λ) to be nonzero for multiple values
of i. We could require the following:

(3) For any λ∈�, mi(λ) �= 0 for at most one index i.

We will call semistrict standard filtrations with this additional property (3) strict
standard filtrations. Strictness is easy to arrange and includes semistrictness by
definition, but it is not preserved under as many operations as is the semistrict
property—in particular, “translation to a wall or facet” in algebraic group theory,
as in Section 4. Also, it is very easy to refine a semistrict standard filtration to
a semistrict standard filtration in which each section is a single standard module
(the fully refined case, as defined shortly), but such filtrations will never be strict
if nontrivial multiplicities are present.

We now introduce a new but very natural notion, that of a semistandard filtra-
tion of a module M. This is a filtration (1) of M in which:

(4) There is a surjective homomorphism
⊕
λ∈�

�(λ)mi(λ) −→ Fi

Fi−1

for some choice of multiplicities mi(λ) satisfying the condition (2) that λ must
be maximal among all ν with mj(ν) �= 0 and j ≥ i whenever mi(λ) �= 0 for
a given index i and weight λ. (In particular, mi(λ) �= 0 implies that no com-
position factor L(ν) of M/Fi−1 has weight ν > λ.)

It is useful to call condition (2) the semistrict condition when referring to either
standard or potential semistandard filtrations. (This is a mild abuse of notation,
since some interpretation in context is required as to what the indices in (2) mean.)
By definition, all semistandard filtrations satisfy the semistrict condition, and if
their sections happen to be direct sums of standard modules then they are semi-
strict standard filtrations. We may also call a semistandard filtration semistrict,
though this is redundant.

If, in addition, (3) is satisfied by a given semistandard filtration, then we will call
the filtration strict. We also define the (completely independent) notion of a fully
refined (standard or semistandard) filtration, as previously mentioned, in which
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mi(λ) is, for a given filtration index i, unequal to zero for at most one weight λ and
equal to 1 in such a case. It is fairly clear that any standard or semistandard filtra-
tion has a refinement that is fully refined in this sense, and we call such a filtration
a full refinement of the original. Whenever we speak of a refinement of a standard
or semistandard filtration, we mean a filtration refinement that is standard or semi-
standard, respectively. If the original filtration was semistrict, the refinement will
also be semistrict.

We can now give an improvement of the well-known criterion (due indepen-
dently to the author and to Steve Donkin) for the existence of a standard filtration
for a module M. The hypothesis in the improvement is the same, but the con-
clusion carries more information in view of Proposition 1.2, which shows that
semistandard filtrations always exist for any module.

Proposition 1.1. Let M be an A-module. Suppose Ext1C(M,∇(λ)) = 0 for all
λ∈�. Then every semistandard filtration of M is standard.

Proof. Assume M satisfies the given vanishing condition, and let 0 ⊆ F0 ⊆ F1 ⊆
· · · ⊆ Fn = M be a semistandard filtration. Since there are only trivial extensions
between standard modules whose indexing weights are unrelated in the partial
order, it is sufficient to prove that some semistandard filtration refining the given
one is standard. Thus, changing notation, we may assume the original filtration
is fully refined. The hypothesized vanishing property is preserved by kernels N

of maps from M onto modules M ′ with a standard filtration. Take M ′ to be the
top section M ′ = Fn/Fn−1, and put N = Fn−1. Thus, M ′ is a nonzero homomor-
phic image of a standard module �(µ), and the semistrict property implies that
no section Fi/Fi−1 of the filtration has head L(ν) with ν < µ. Consequently, no
filtration term Fi has such an irreducible module L(ν) in its head (i = 1, . . . , n);
in particular, HomC(Fi,∇(ν)/L(ν)) = 0. However, if M ′ is not standard then
we certainly have Ext1C(M

′,L(λ)) �= 0 for some λ ∈ � satisfying λ < µ. This
gives Ext1C(M

′,∇(λ)) �= 0 and then the contradiction Ext1C(M,∇(λ)) �= 0, using
the facts that HomC(M

′,∇(λ)/L(λ)) = 0 and HomC(N,∇(λ)/L(λ)) = 0. So M ′
must be standard. Then the whole filtration must be standard, by induction on n

and because N satisfies the vanishing condition.

One immediate consequence of the proposition is that all semistandard filtrations
of a module are standard whenever the module has at least one standard filtra-
tion. In particular, any semistandard refinement of a standard filtration must be
standard.

We next consider a different kind of refinement, one of the underlying partial
order. Recall that a partial order � is a refinement of a partial order ≤ if λ ≤ µ

always implies λ � µ for λ,µ ∈ �. The partial order on � can always be re-
placed by any refinement, keeping the same standard and costandard modules and
with the highest weight category properties, as described in the Introduction, still
valid. (For example, for fixed λ ∈�, the standard module �(λ) is determined by
the facts that all of its composition factors L(ν) satisfy ν ≤ λ while every larger
quotient D of P(λ) has some composition factor L(ν) with ν > λ, and these facts
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remain true if ≤ is replaced by any refinement �; obviously, the order properties
of highest weight categories are still satisfied by �.) Clearly we can use the same
definitions to define the notions of standard and semistandard filtrations with re-
spect to any refinement �. A filtration standard with respect to the original order
will be standard with respect to any refinement, and vice versa. The latter half of
this assertion works in the semistandard case as well. This is shown by the follow-
ing proposition, which also establishes the existence of semistandard filtrations
for ≤ and any of its refinements (such as itself ).

Proposition 1.2. For each refinement � of ≤ , every A-module has at least one
semistandard filtration. Such a filtration is semistandard also with respect to the
original partial order. It may be chosen so as to be strict (with respect to either
partial order).

Proof. This is clear from the corresponding facts for projective modules, where
the filtrations may be chosen as standard.

Actually, there is always one canonical way to choose a (strict) semistandard fil-
tration. Let �1 be the set of maximal weights in �1 = �, and recursively define
�j+1 as the set of maximal weights in �j+1 = � −⋃j

i=1�i. For a sufficiently
large n, �j+1 is empty for all j ≥ n. Take n minimal with this property. For i =
1, 2, . . . , n put F0 = 0, and for 1≤ i ≤ n put:

(5) Fi = the smallest submodule of M such that all composition factors of M/Fi

are of the form L(λ) with λ∈�i+1.

Call this filtration, which is certainly well-defined (as a filtration, irrespective of
the semistandard property), the canonical filtration of M. Clearly, every projec-
tive module has a standard filtration of this form; that is, its canonical filtration is
standard. So we need only show that canonical filtrations are well-behaved under
homomorphic images in order to see that they are all semistandard (and strict).

Proposition1.3. Let ϕ : M → M ′ be a surjective homomorphism ofA-modules.
If {Fi}ni=0 is the canonical filtration of M, then {ϕ(Fi)}ni=0 is the canonical filtra-
tion of ϕ(M) = M ′.

Proof. Fix an index i. Clearly, ϕ(Fi) has the property that all composition factors
L(λ) of M ′/ϕ(Fi) have the property λ ∈ �i+1. So ϕ(Fi) ⊇ F ′

i , the ith term of the
canonical filtration of M ′. Now each section Fj/Fj−1 of Fi (j ≤ i) has a head with
composition factors L(ν), ν ∈�j = �j − �j+1. Since �j ∩ �i+1 ⊆ �j ∩ �j+1 =
∅, the head of the homomorphic image

ϕ(Fj )+ F ′
i

ϕ(Fj−1)+ F ′
i

of ϕ(Fj/Fj−1) has only composition factors L(ν), ν /∈ �i+1. Hence the displayed
homomorphic image is zero for each j ≤ i, and it follows that ϕ(Fi) ⊆ F ′

i .

Because this holds for each i, the proposition is proved.
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Corollary. The canonical filtration of any A-module M ′ is semistandard and
strict.

Proof. Simply apply the previous proposition to any surjection P → M ′, with
P playing the role of M. Note, of course, that ϕ(Fi)/ϕ(Fi−1) is a homomorphic
image of Fi/Fi−1. It is instructive to give a second, more direct proof of the corol-
lary, as follows. Each �i is an ideal in �, so the category of A-modules with
all composition factors of the form L(ν), ν ∈ �i, is the category of modules for
a quasi-hereditary algebra Ai, with the same standard modules �(ν), for those
ν ∈�i. Hence, by induction on �, it is sufficient to show that F ′

1 is a homomorphic
image of a direct sum of copies of standard modules �(λ) with λ∈�1. However,
no simple component L(ν) of the head of F ′

1 can have ν ∈ �2, by maximality of
the quotient M ′/F ′

1. Thus, the head of F ′
1 is a direct sum of modules of the form

L(λ) with λ∈�1 = �−�2. Since �(λ) is projective for such a λ (which is maxi-
mal in �) the required surjection follows, and induction completes the proof.

Remark 1.4. The canonical filtration and linear order variations are natural for
computer calculations in a Lie theory setting: to determine F1 for a module M, one
simply looks for all maximal vectors associated to maximal weights in �. Having
found these, one setsF1 equal to the module these maximal vectors generate. Then
one passes to M/F1 and repeats the process with a smaller weight poset (�2 in the
preceding notation), repeating the process as often as necessary to exhaust �.

Such a program was implemented, by the author and undergraduate students, for
algebraic groups of type A4 (with k algebraically closed of characteristic 5 or 7) in
the special case where M is the radical of a standard module �(λ) with restricted
high weight. In this case one uses as weight poset � all dominant weights less
than λ that are linked (cf. [J]) to λ. It is not necessary to keep track of all weight
spaces in the various modules M/Fi but only those of the form ν or ν + α, where
ν ∈ � and α is a fundamental root. (The weights of the form ν + α are needed
in searching for maximal vectors of weight ν.) Actually, this description is some-
what oversimplified in that the current computer implementation works with the
restricted Lie algebra and “baby Verna modules” instead of Weyl modules (the
standard modules for the algebraic group); a true Weyl module implementation
has not yet been achieved. A few details of the work may be found in [S2] and
on the author’s website (www.math.virginia.edu/∼lls2l) along with discussions
of other programs. The determinations obtained of canonical filtrations were most
revealing and led to the results in this paper (see especially Section 2).

We now address multiplicities in semistandard filtrations. Their definition will
be given just before Theorem 1.5, but we begin with some observations and their
justifications. Suppose that (1) is a semistandard filtration of M and that the num-
bers mi(λ) are chosen to be minimal in (4) for each i.

Given an index i and a weight λ, the unique minimal mi(λ) that works in (4)
is the multiplicity of L(λ) in the head of Fi/Fi−1. Clearly the value of mi(λ) must
be at least this multiplicity. Moreover, for any values of mi(ν), ν ∈�, the surjec-
tion (4) implies that the head of Fi/Fi−1 consists of irreducible modules L(ν) with
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mi(ν) �= 0. All such ν are maximal as weights of composition factors of M/Fi−1,
so it follows that �(ν) is projective in the category of modules with composition
factors L(ω), ω ≤ τ, for some τ with L(τ) a composition factor of M/Fi−1. Hence
there is a surjection ⊕

λ∈�
�mi(λ)(λ) −→ Fi

Fi−1
, (6)

with mi(λ) equal to the multiplicity of L(λ) in the head of Fi/Fi−1. Such values
mi(λ) are certainly minimal over all possibilities for mi(λ) in (4) in that any in-
stance of (4) has values of mi(λ) at least as large, for each λ, as the values in (6).

It is also worth mentioning that, for a fixed i and λ with mi(λ) �= 0, if j ≥ i

then mi(λ) in (6) is the multiplicity of L(λ) in all of Fj/Fj−1 (not just in the head).
For otherwise L(λ) would occur as a composition factor of �(ν) for some ν �= λ

with mj(ν) �= 0, contradicting the maximality of λ.
As previously noted, for a given λ we allow mi(λ) �= 0 for more than index i.

We now set, for any semistandard filtration (1) of a module M,

[M : �(λ)] =
∑
i

mi(λ),

wheremi(λ) are given as in (6); we call this number [M : �(λ)] the (semistandard )
multiplicity of �(λ) in M.

Theorem 1.5. For each λ∈�, the multiplicity [M : �(λ)] is independent of the
chosen semistandard filtration. Moreover,

[M : �(λ)] = dimkλ HomA(M,∇(λ)),
where kλ is the skew field EndA(L(λ)) ∼= EndA(∇(λ)).
Proof. For each λ, choose an index i in a given semistandard filtration (λ) with
mi(λ) �= 0 in (6) and i minimal with that property. Then the preceding discussion
shows that:

(i) ∇(λ) is injective in a category of A-modules containing all composition fac-
tors of M/Fi−1; and

(ii) mj(λ) is the multiplicity of L(λ) in Fj/Fj−1 for all j ≥ i. In particular, [M :
�(λ)] (as computed from the given filtration) is the multiplicity of L(λ) in
M/Fi−1.

Combining (i) and (ii), we find that [M : �(λ)], as computed from the given
filtration, is dimkλ HomA(M/Fi−1,∇(λ)). To complete the proof of the theorem,
it suffices to show that HomA(Fi−1,∇(λ)) = 0. For this, it is sufficient to show
HomA(Fj/Fj−1,∇(λ)) = 0 for all j ≤ i−1. However, mj(λ) = 0 in (6) for such a
j, so HomA

(⊕
ν∈� �(λ)mj(ν),∇(λ)) = 0. Since (6) is a surjection, it follows that

HomA(Fj/Fj−1,∇(λ)) = 0. This completes the proof.

Finally we note that, in a fully refined semistandard filtration of a module M, the
multiplicity [M : �(λ)] just counts the number of occurrences of a nonzero image
of �(λ) among the sections of the filtration.
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2. Maximal Submodules of Standard Modules

We now apply the theory of the previous section to the case M = rad�(λ), the
unique maximal submodule of a standard module �(λ). The weight λ will re-
main fixed throughout this section. However, we note that all composition factors
L(γ ) of M have weights in the poset ideal � = {γ ∈� | γ < λ}. In particular,
[M : �(γ )] = 0 unless γ ∈�.
Proposition 2.1. For any γ ∈�, we have

[M : �(γ )] = dimkγ HomA(M,∇(γ )) = dimkγ Ext1A(L(λ),∇(γ )).
Proof. The first equality follows from Theorem 1.5. For the second, use the long
exact sequence of ExtA(·,∇(γ )) for the exact sequence

0 −→ M −→ �(λ) −→ L(λ) −→ 0,

and note that Ext1A(�(λ),∇(γ )) = 0. Also, the map

HomA(�(λ),∇(γ )) −→ HomA(M,∇(γ ))
is always zero. Thus,

HomA(M,∇(λ)) ∼= Ext1A(L(λ),∇(γ )),
and the proposition is proved.

The reader familiar with Kazhdan–Lusztig theories will immediately recognize the
right-hand dimension in the proposition as a quantity computable from Kazhdan–
Lusztig polynomials, in the presence of such a theory, in standard situations arising
in algebraic and quantum groups and in representation theory of Lie algebras. See
[CPS2]. Moreover, in these situations, one has the additional property

Ext1A(L(λ),∇(γ )) ∼= Ext1A(L(λ),L(γ )) (7)

for all γ < λ. We will say L(λ) has the simple KL property provided (7) holds
for λ.

As explained in the remark following its proof, the following theorem was for
this author motivated by computer calculations. It turns out to have considerable
overlap with a previous result [AgDL, Thm. 2.1]. In particular, the injectivity in
(8) was proved under a similar hypothesis for a particular filtration that the authors
of [AgDL] called the trace filtration, which is easily seen to be semistandard. (It
is the canonical filtration associated to a linear refinement of the poset order.) I
am grateful to V. Dlab for drawing my attention to this work.

Theorem 2.2. Suppose L(λ) has the simple KL property, and let M = rad�(λ)
as before. Then

[M : �(γ )] = [head(M) : L(γ )], (8)

the multiplicity ofL(γ ) in the second Loewy layer rad�(λ)/rad2 �(λ) = head(M)

of �(λ), for each γ ∈�. In addition, the natural maps
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head(Fi/Fi−1) −→ head(M/Fi−1)

are injective for any semistandard filtration 0 = F0 ⊆ F1 ⊆ · · · ⊆ Fn = M and
any index i = 1, . . . , n. The direct sum of these maps induces an isomorphism

n⊕
i=1

head

(
Fi

Fi−1

)
∼= head(M). (9)

Finally, if γ < λ, then

[M : �(γ )] = dimkγ Ext1A(L(λ),L(γ )), (10)

whereas [M : �(γ )] = 0 if γ < λ does not hold.

Proof. Apply the long exact sequence in the proof of the proposition but replacing
ExtA(·,∇(γ )) with ExtA(·,L(γ )). This gives

HomA(M,L(γ )) ∼= Ext1A(L(λ),L(γ ))

if γ < λ (which implies that Ext1A(�(λ),L(γ )) = 0). Moreover, this isomor-
phism is compatible with the isomorphism

HomA(M,∇(γ )) ∼= Ext1A(L(λ),∇(γ ))
in the proposition. That is, the map L(γ ) ⊆ ∇(γ ) induces a commutative square
in which the remaining two sides are the isomorphism

Ext1A(L(λ),L(γ )) ∼= Ext1A(L(λ),∇(γ ))
and the map

HomA(M,L(γ )) −→ HomA(M,∇(γ )).
It follows that the latter map is also an isomorphism. Together with Proposition 2.1,
this proves (8). For (9), observe that the filtration of M by the Fi induces a filtra-
tion of head(M) = M/radM by the images (Fi + radM)/radM. The sections
(Fi + radM)/(Fi−1 + radM) may be identified with the images of the natural
maps

head(Fi/Fi−1) −→ head(M/Fi−1).

In particular, we have that the total number of occurrences [M : �(γ )] of L(γ )
in any head(Fi/Fi−1) is at least as great as its multiplicity [head(M) : L(γ )] as
a composition factor of head(M), with equality for all r (which occurs, by (8)),
forcing

head

(
Fi

Fi−1

)
∼= Fi + radM

Fi−1+ radM

for each i. Equivalently, the maps

head(Fi/Fi−1) −→ head(M/Fi−1)

are all injective. We shall now compose each of these maps with a splitting
head(M/Fi−1)→ head(M)of the natural projections head(M)→ head(M/Fi−1).

The compositions are maps from head(Fi/Fi−1) to head(M), and the sum of com-
positions is a map
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n⊕
i=1

head

(
Fi

Fi−1

)
−→ head(M). (11)

When this map is composed with any natural projection head(M)→ head(M/Fj )

and (at the other end) with the inclusion

head

(
Fj

Fj−1

)
⊆

n⊕
i=1

head

(
Fi

Fi−1

)
,

by construction we obtain the natural map

head(Fj/Fj−1) −→ head(M/Fj−1).

This is the compatibility required in (9). Also, we obtain that (11) is surjective,
since each element of each section (Fj + radM)/(Fj−1+ radM) ∼= head(Fj/Fj−1)

is the image under the natural projection M/radM → M/(Fj−1 + radM) of an
element of the image of (11). (Note that this latter projection is precisely the map
head(M) → head(M/Fj−1) used previously.) This proves (9), and (10) is just a
restatement of (7), the previous proposition, and the discussion before it.

Remark 2.3. Equation (10) is a key part of the motivation of the research in this
paper. When running the computer program described in Remark 1.4 for Weyl
module radicals M, the author observed empirically that, extremely often but not
always, either [M : �(ν)] = 1 or [M : �(ν)] = 0 (though the notion [M : �(ν)]
had not yet been formulated—what was observed directly were dimensions of
spaces of high weight vectors in modules M/Fi−1). Efforts to understand this led
eventually to (10) in Theorem 2. Thus, the unexpected observations were due to
two factors:

(i) that Lusztig’s conjecture held for the algebraic groups under consideration
(thus giving property (7); see [CPS2]); and

(ii) Guralnick’s principle (empirical) that H1 and Ext1 groups for finite groups with
coefficients in irreducible modules are, in general, extremely small. (See [S2]
for further discussion and [CPS5] for some new, positive results.)

3. Exact Functors and Semistandard Filtrations

We suppose in this section that, in addition to the quasi-hereditary algebra A of
Section 1, we have a second quasi-hereditary algebra Ā with weight poset �̄. Both
algebras are assumed to have the same ground field k, and all their irreducible mod-
ules are assumed to be absolutely irreducible. We let C be a category equivalent
to mod A and C̄ a category equivalent to mod Ā. The definitions and results of the
previous two sections of course carry over to C and C̄, and we will refer to their ob-
jects as “modules”. We write simply �(ν) for the standard module �C̄(ν), ν ∈ �̄,
when the meaning is clear from the context. It is convenient to assume the weight
posets � and �̄ are disjoint, so that �(γ ) is unambiguous, if ν ∈ �̄ or ν ∈�.

We will use a similar convention for irreducible modules L(γ ) and costandard
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modules ∇(ν). It is also convenient to assume that ∅ is not an element of �̄ (or �)

and to set L(∅) = �(∅) = ∇(∅) = 0 in C̄.
Next, we suppose we have an exact functor T : C → C̄ satisfying axioms (T1)

and (T2).

(T1) For each λ ∈ � there is a λ̄ ∈ �̄ ∪ {∅} such that T(�(λ)) ∼= �(λ̄) and
T(∇(λ)) ∼= ∇(λ̄).

This implies that T(L(λ)) is either 0 or isomorphic to L(λ̄). (However, it possible
to have T(L(λ)) = 0 even when λ̄ �= ∅, and this is common in the setting of Sec-
tion 4.) Also, note that the element λ̄∈ �̄ ∪ {∅} is uniquely determined by λ∈ �̄
and the functor T when axiom (T1) is satisfied.

Our final axiom is

(T2) λ ≤ µ implies λ̄ ≤ µ̄ if λ̄ �= ∅ and µ̄ �= ∅ (λ,µ∈�).

This completes our list of axioms on T, and we will assume them throughout
the rest of this section. We especially have in mind Jantzen translation functors
to a wall, in a Lie-theoretic setting, and similar Jantzen translation functor situ-
ations where the facet containing a target weight λ̄ is in the closure of the facet
containing λ (in the sense of alcove geometry [J]). However, there are other ex-
amples of such exact functors for a general C as before. One can use for �̄ any
poset co-ideal contained in �, with C̄ the associated natural quotient category (cf.
[CPS1]) and T the quotient functor. In this latter case the map λ �→ λ̄ takes any
λ /∈ �̄ to ∅ and takes λ ∈ �̄ to itself. (We mention that the quotient category case
sometimes appears in a disguised form, as when T is defined by first restricting to
a Levi factor H in a Lie-theoretic setting and then removing all weight spaces not
in a given coset of the root lattice of H ; this is “Levi factor truncation”, first stud-
ied by Jantzen and by Donkin—see [CPS4] for references and the quotient functor
interpretation.) Yet another very general case arises when C̄ and �̄ are given and
� is taken to be a poset ideal in �̄, with C the naturally associated full subcate-
gory [CPS1]. The functor T is just inclusion. Finally, we note that the functors
satisfying our axioms behave well under composition (i.e., they lead again to func-
tors satisfying the axioms). Of course, the identity functor satisfies the axioms.
Given these examples and categorical properties, it is reasonable to propose our
axioms as providing a first definition of an exact functor between highest weight
categories in the finite weight poset case. (Of course, such highest weight cate-
gories are not only categories but have additional structure, which includes their
weight posets; we have chosen to include also their standard and costandard ob-
jects as part of their structure. The additional assumption present here, of module
finite dimensionality, does not enter into the axioms.)

Lemma 3.1. Suppose � is a linear order on �̄ that refines ≤ on �̄. Then there
is a linear order � on � that is compatible with the order on �̄, in the sense of
(T2), and refines ≤ on �.

Proof. Let [λ] denote the inverse image of λ̄ under the map �→ �̄∪ {∅}. Linear
order each of the disjoint sets [λ] individually, compatibly with ≤ . Complete the
definition of � on �# = {λ∈� | λ̄ �= ∅} by setting
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λ � µ ⇐⇒ either λ̄ ≺ µ̄ or both λ̄ = µ̄ and λ ≺ µ

(λ,µ ∈ �#). The order � is clearly linear on �# and is compatible with ≤ there
(refining it). Any linear order on a subposet �′ of a finite poset �, and compat-
ible there with the poset order on �′, extends to a linear order on � compatible
with (refining) the poset order on �. (The proof is an easy induction, adding one
element at a time to �′.) Extend � from �# to � accordingly, taking �′ = �#.

Proposition 3.2. Let M be any module in C. Then, for any weight λ∈�,

[T(M) : �(λ̄)] ≤
∑
µ̄=λ̄

[M : �(µ)].

Also, if T(L(λ)) �= 0, then

[T(M) : �(λ̄)] ≥ [M : �(λ)].

Proof. Given Lemma 3.1and looking ahead to Proposition 3.3, we can find a semi-
standard filtration 0 = F0 ⊆ F1 ⊆ · · · ⊆ Fn = M of M such that 0 = T(F0) ⊆
T(F1) ⊆ · · · ⊆ T(Fn) = T(M) is a semistandard filtration of T(M). Choose sur-
jective homomorphisms

⊕
ν∈�

�(ν)mi(ν) −→ Fi

Fi−1

as in (6). Thus, [M : �(λ)] =∑n
i=1mi(λ). We obtain a surjective homomorphism

⊕
ν∈�

�(ν̄)mi(ν) −→ T

(
Fi

Fi−1

)
= T(Fi)

T (Fi−1)
,

from which it follows that

[head(T (Fi/Fi−1)) : L(λ̄)] ≤
∑
µ̄=λ̄

mi(µ).

Adding these inequalities over all i = 1, . . . , n, we get

[T(M) : �(λ̄)] ≤
∑
i

∑
µ̄=λ̄

mi(µ) =
∑
µ̄=λ̄

∑
i

mi(µ) =
∑
µ̄=λ̄

[M : �(µ)].

This proves the first part of the proposition. Note also that if T(L(λ)) = L(λ̄), then

[head(T (Fi/Fi−1)) : L(λ̄)] ≥ [head(Fi/Fi−1) : L(λ)].

Now summing over i gives the second part.

Proposition 3.3. Suppose the poset order � is linear (which, by Lemma 1, can
be assumed if we refine the orders on � and �̄, retaining compatibility). If 0 =
F1 ⊆ F2 ⊆ · · · ⊆ Fn = M is a semistandard filtration of an A-module M, then
0 = T(F1) ⊆ T(F2) ⊆ · · · ⊆ T(Fn) = T(M) is a semistandard filtration of
T(M).

Proof. Without loss of generality, we may assume that Fi/Fi−1 �= 0 for each i =
1, 2, . . . , n. Let λi ∈� be a weight such that [head(Fi/Fi−1) : L(λi)] �= 0. Then
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λi is maximal among weights ν with [M/Fi−1 : L(ν)] �= 0. Since we have as-
sumed a linear order on �, the weight λi is uniquely determined by its maximal-
ity. Hence, there is a surjection �(λi)

m(λi ) → Fi/Fi−1 and a consequent surjection
�(λ̄i)

m(λi ) → T(Fi)/T (Fi−1). Since λi ≥ λj for all j ≥ i, it follows from linear-
ity that λ̄i ≥ λ̄j by compatibility. As a result, the filtration of T(M) by the T(Fi)

is semistandard.

As a consequence of Proposition 2.1, we have the following inequalities on Ext1

groups for irreducible modules and costandard modules. There are, of course, dual
inequalities for standard modules and irreducible modules.

Corollary 3.4. Let λ, ν ∈� with T(L(λ)) �= 0 and ν̄ �= ∅. Then

dimk Ext1C(L(λ),∇(ν)) ≤ dimk Ext1C̄(L(λ̄),∇(ν̄))
≤

∑
µ̄=ν̄

dimk Ext1C(L(λ),∇(µ)).

Proof. Let M = rad�(λ). Thus T(M) ∼= rad�(λ̄), since T(L(λ)) �= 0 by hy-
pothesis (and so T(L(λ)) ∼= L(λ̄)). By Proposition 2,

dimk Ext1C(L(λ),∇(µ)) = [M : �(µ)] for any µ∈�
and

dimk Ext1C̄(L(λ̄),∇(ν̄)) = [T(M) : �(ν̄)] for any ν̄ ∈ �̄.

The inequalities of the corollary now follow immediately from those of Proposi-
tion 3.

Remark 3.5. If T is a quotient functor associated to a poset co-ideal $ = �̄ of
weights in �, then any ν̄ ∈ �̄ is the image of at most one µ in �. Thus we have

Ext1C(L(λ),∇(ν)) ∼= Ext1C̄(L(λ̄),∇(ν̄),
a well-known result that may be seen directly and which also holds for all Extn,
n ≥ 0. If T is a functor “translation to a wall” or a similar translation to a facet
in (say) an algebraic groups context, then the right-hand inequality in the corol-
lary can be obrtained by using the adjoint translation away from the facet. Again,
this is a result for all Extn, n ≥ 0. The left-hand inequality is not so obvious, but it
can be proved directly (without Proposition 2.1) by a method similar to that used
to prove Proposition 3.6.

One valuable aspect of the corollary is, perhaps, the unified perspective it gives
to each of these two cases. In particular, when used with Proposition 3.6, we are
able to establish some evidence in the translation case for a result well known in
at least one quotient functor case (Levi factor truncation, mentioned before). This
will all play out in the next section.

Also, the right-hand inequality in the corollary is suggestive of a new ap-
proach to giving bounds on the dimension of dimk Ext1C̄(L(λ̄),L(ν̄)). Suppose, say,
that λ̄ and ν̄ are singular weights in an algebraic groups situation and that T is a
“translation to a facet” from alcoves containing regular weights (see Section 4).
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Take λ̄ > ν̄. Then dimk Ext1C̄(L(λ̄),L(ν̄)) is bounded by dimk Ext1C̄(L(λ̄),∇(ν̄)).
The latter dimension is, in turn, bounded by the sum expression in Corollary 3.4,
which involves only regular weights. Thus, to provide a uniform bound on
dimk Ext1C̄(L(λ̄),L(ν̄)) that depends only on the root system (partially achieved
in [CPS5] in the regular weight case), it may well be better to approach the analo-
gous question for dimk Ext1C̄(L(λ̄),∇(ν̄)). I hope to pursue this in a later paper
with Parshall.

Finally, the left-hand inequality suggests that vanishing results on Ext1C(L(λ),
∇(ν)) might be proved from those on dimk Ext1C̄(L(λ̄),∇(ν̄)). Vanishing results of
the former kind, in special parity-related regular weight cases, figure prominently
in the reduction theory for the Lusztig conjecture (cf. [CPS2]).

Proposition 3.6. Assume both the hypotheses of Corollary 3.5, and also assume
that T(L(ν)) �= 0. Then

dimk Ext1C(L(λ),L(ν)) ≤ dimk Ext1C̄(L(λ̄),L(ν̄)).

Proof. Let m = dimk Ext1C(L(λ),L(ν)). If m = 0, there is nothing to prove. If
m �= 0 then we have either λ > ν or λ < ν, as is well known. Let us assume that
the first case holds. Then there is an extension

0 −→ L(ν)m −→ E −→ L(λ) −→ 0

in which head(E) ∼= L(λ). (Here L(ν)m = L(ν)⊕m denotes a direct sum of m
copies of L(ν).) Such an E is a homomorphic image of �(λ). Since T(L(λ)) ∼=
L(λ̄) and T(L(ν)) ∼= L(ν̄) with λ̄, ν̄ ∈ �̄, the module T(E) gives rise to an
extension

0 −→ L(ν̄)m −→ T(E) −→ L(λ̄) −→ 0.

Also, T(E) is a homomorphic image of T(�(λ)) ∼= �(λ̄). Thus, head(T (E)) ∼=
L(λ̄). It follows easily that

dimk Ext1C̄(L(λ̄),L(ν̄)) ≥ m.

In the case λ < ν, we may construct an extension

0 −→ L(ν) −→ E ′ −→ L(λ)m −→ 0

for which the socle ofE ′ is isomorphic toL(ν). Such anE ′ embeds in∇(ν). Since
T(∇(ν)) = ∇(ν̄), we again obtain

dimk Ext1C̄(L(λ̄),L(ν̄)) ≥ m.

This completes the proof in all cases.

4. Translation to a Wall

We continue the notation of the previous section, but specialize much further.
In particular, we assume that (i) � is a finite ideal of (integral) dominant reg-
ular weights for a semisimple and simply connected algebraic group G over an
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algebraically closed field k of characteristic p > 0 and (ii) C is the category of fi-
nite dimensional G-modules with composition factors all of the form L(λ), λ ∈
�. We pick an orbit Wp · τ̄ of the affine Weyl group, with τ̄ on a wall (a facet of
codimension 1), and let �̄ be the set of dominant weights in Wp · τ̄ that are in the
closure of some alcove containing an element of �. (The existence of such ele-
ments forces p ≥ h, the Coxeter number; for G = SL(n, k), the Coxeter number
h is n.) The ordering ≤ used in both � and �̄ is the “up-arrow” order ↑, which
guarantees that �̄ is an ideal in the set of dominant weights of the orbit Wp · τ̄
and also implies the compatibility axiom (T2) of Section 3. See [J] (especially
II, 6.5(2) and 6.5(4)) for this ordering, further details on alcove geometry, and the
definitions of translation functors. The category C̄ is taken to be the category of
finite dimensional G-modules with composition factors L(τ), τ ∈ �̄.

If λ∈� then the closure of the alcove containing λ contains at most one weight
in �̄, which we call λ̄ if it exists; if not, we set λ̄ = ∅ as in the previous sec-
tion. (This occurs only if λ is near the boundary of the dominant region and if the
intersection of Wp · τ̄ with the closure of that alcove consists of a nondominant
weight.)

The functor T is defined on each block B of C as follows. All the composition
factors L(γ ) of such a block have their parameterizing dominant weight γ in a
fixed orbit Wp · λ−. We may take τ̄ in the closure of the alcove containing λ−, and
we will write τ̄ = τ− to remind us of this choice. We prefer the “negative domi-
nant” alcove containing the weight −2ρ, the negative sum of all roots, although
[J] uses the alcove containing the weight 0. Then T is defined on B as the trans-
lation functor T τ−

λ− , as defined in [J]. In general, a module M in C is a direct sum
of modules in various blocks B, and T(M) may be defined as the sum of various
T τ−
λ− . (Actually, in all our results of interest, the modules in C under consideration

will be indecomposable and thus in a single block B.)
The exactness of T and the properties to be described (which imply that T satis-

fies axiom (T1)) follow from those of the individual translation functors T τ−
λ− . See

[J, II, 7.6, 7.11, 7.15, and p. 244]. The exactness and subsequent properties do not
depend on our assumption that the facet containing τ− is a wall. (This fact will be
useful in understanding many of the comments we make in this section, though we
continue to assume elsewhere that, unless otherwise noted, τ− belongs to a wall.)

(12) We have T(�(λ)) ∼= T(�(λ̄)) and T(∇(λ)) ∼= ∇(λ̄). Also, T(L(λ)) �= ∅
if and only if λ̄ belongs to the “upper closure” of the alcove containing λ

(λ∈�).

The “upper closure” is defined in [J, p. 232]. In our “wall” case, if λ = w ·λ−∈
� and w ∈ Wp, then λ̄ belongs to the upper closure of the alcove containing λ

if and only if there is a simple reflection s with λ < λs, where λs is defined as
ws · λ− and where λ̄ lies on the wall in the intersection of the closures of the two
alcoves containing λ and λs, respectively. (This statement remains the same if one
replaces the alcove C, which we take to contain −2ρ, with that containing 0, as
is done in [J], though the labeling of s may change.) Equivalently, λ̄ = w · τ−
and the length ,(w) of the element w of Wp is minimal among all y in Wp with



Semistandard Filtrations in Highest Weight Categories 355

λ̄ = y · τ−. This latter characterization of the upper closure may be deduced from
the discussion in [J]. It is valid for τ− in any type facet, provided λ̄ is in the clo-
sure of an alcove containing a dominant weight. (It is our view that the notion of
“upper closure” should be redefined or replaced with a broader notion of “outer
closure” so as to make this assertion true for all alcoves.)

The various T τ−
λ− , viewed as functors on the category of (finite dimensional) ra-

tional G-modules, all have (left and right) adjoints T λ−
τ− . This is true for τ− in any

facet in the closure of the alcove containing λ−. The situation where τ− belongs
to a wall is particularly simple:

(13) If λ ∈ � and λ < λs for a simple reflection s, then there are natural exact
(nonsplit) sequences of G-modules

0 −→ �(λs) −→ T λ−
τ−�(λ̄) −→ �(λ) −→ 0

and
0 −→ ∇(λ) −→ T λ−

τ− ∇(λ̄) −→ ∇(λs) −→ 0,

where the maps at each end arise from adjunction.

We now introduce an additional hypothesis.

LC Hypothesis. The Lusztig character formula holds for each irreducible mod-
ule L(λ) with λ∈�.

This formula asserts, with λ− as before and λ = w · λ− dominant, that

chL(λ) =
∑

y·λ− dominant
y·λ−≤λ

(−1),(w)−,(y)Py,w(1) ch�(y · λ−). (14)

Here Py,w denotes a Kazhdan–Lusztig polynomial for the affine Weyl group. The
formula is conjectured to hold whenever λ satisfies 〈λ+ ρ,α 0̌〉 ≤ p(p − h+ 2),
where α0 is the maximal short root and h is the Coxeter number. It is known
to be true for any p sufficiently large with size unknown and depending on
the root system [AJSo]. Also, if (14) holds for all λ in an ideal � of regu-
lar dominant weights, then an even more powerful assertion can be proved—
called the “homological Lusztig character formula” in [CPS5]—in which each
dim ExtnC(L(λ),∇(ν)), λ, ν ∈ �, is interpreted as a coefficient in a Kazhdan–
Lusztig polynomial. This goes back to work of Vogan [V] and Andersen [A], and
it was used in [CPS2] to calculate dim ExtnC(L(λ),L(ν)) for n ≥ 0 and λ, ν ∈
�. The main tool in this latter work was an axiomatized version of the Vogan–
Andersen work, which CPS called an abstract Kazhdan–Lusztig theory.

Such a theory exists for a highest weight category, such as C, with finite weight
poset � if there is a “length” function , : �→ Z such that:

(15) For each n ≥ 0 and λ,µ∈�,

ExtnC(L(λ),∇(ν)) �= 0  ⇒ n ≡ ,(λ)− ,(µ) mod 2,

ExtnC(�(ν),∇(λ)) �= 0  ⇒ n ≡ ,(λ)− ,(µ) mod 2.



356 Leonard L. Scott

For the present C and λ = w · λ− ∈� with w ∈Wp, we take ,(λ) = ,(w). As
shown byAndersen (see [CPS2]), when the Lusztig character formula (14) holds—
our hypothesis—then the Kazhdan–Lusztig theory property (15) also holds.

If we consider C̄ and �̄, then the Lusztig character formula (14) holds for L(τ)
if τ ∈ �̄ and τ = w · τ−, with w ∈Wp chosen of minimal length for this equation
and with y · τ− represented through an element of minimal length. See, for in-
stance, [S1, pp. 6–7], although the notation w.0 and ww0 there are incorrect and
should be replaced with w0w. − 2ρ and w0w. (See also [K], where a link with
affine Lie algebra notation is given.) Thus, it is natural to define ,(τ ) = ,(w) if
w is of minimal length with w · τ− = τ. One can then ask if (15) holds.

Unfortunately, this is not known. However, we will provide some evidence in
this section for its validity, and so we make the following conjecture.

Conjecture 4.1. Assume the LC Hypothesis. Then the category C̄ has a Kazhdan–
Lusztig theory (15) with the indicated length function and notation.

It is also reasonable to ask whether the analogue of Conjecture 4.1 is true if τ− is
taken from a smaller facet than a wall.

Next, we establish results that give evidence for Conjecture 4.1.

Proposition 4.2. Assume the LC Hypothesis. Suppose τ, η ∈ �̄ with ,(τ ) �≡
,(η) modulo 2. Then the maps

Ext1C̄(L(τ),L(η)) −→ Ext1C̄(L(τ),∇(η)),
Ext1C̄(L(τ),L(η)) −→ Ext1C̄(�(τ),L(η))

are surjective.

There is a completely equivalent version of this proposition, as follows.

Proposition 4.2′. Assume the LC Hypothesis. Suppose τ, η ∈ �̄ with ,(τ ) �≡
,(η) modulo 2. If τ and η are equal or not related in the poset order, then
Ext1C̄(L(τ),L(η)) = 0. Otherwise,

Ext1C̄(L(τ),L(η))
∼=

{
Ext1C̄(L(τ),∇(η)) if τ > η,

Ext1C̄(�(τ),L(η)) if τ < η.

We will establish Propositions 4.2 and 4.2′ along with the next result.

Proposition 4.3. Assume the hypotheses of Proposition 4.2′ and suppose that
τ = λ̄ and η = γ̄, where T(L(λ)) �= 0, T(L(γ )) �= 0, and γ ∈Wp · λ. Then

Ext1C̄(L(λ),L(γ ))
∼= Ext1C̄(L(λ̄),L(γ̄ )).

Proof. We apply Proposition 3.6 and Corollary 3.4. Choose λ minimal in its orbit
under the dot action of Wp with λ̄ = τ. This guarantees that T(L(λ)) = L(λ̄) and
that λ, so chosen, is unique in its orbit [J, II, 7.15]. Choose γ similarly with γ̄ =
η. Then ,(λ) = ,(λ̄) and ,(γ ) = ,(γ̄ ). Also, the representing affine Weyl group
elements in the expressions λ = w · λ− and γ = y · γ−, with λ, γ in the alcove C
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(see the beginning of this section), are the same as for λ̄ = w · τ− and γ̄ = y · τ−.
Therefore, if λ̄ and γ̄ are related in the (up-arrow) order, then the same relation
holds between w · λ− and y · λ− as well as between w · τ− and y · γ−. Because �
is an ideal, we can choose λ and γ to belong to the same orbit in this case. Since
γ̄ belongs to a wall, there is only one µ �= γ inWp · γ with µ̄ = γ̄, and µ satisfies
,(µ) = ,(γ ) + 1. Thus, if µ ∈� then Ext1C(L(λ),∇(µ)) = 0 by (15) for �. So
the inequalities in Corollary 3.4 are equalities if λ and γ belong to the same Wp

orbit and if � is replaced by its intersection with that orbit. So we have

Ext1C(L(λ),∇(γ )) ∼= Ext1C̄(L(λ̄),L(γ̄ ))

in that case. Note that this holds also when λ and γ cannot be chosen in the same
Wp orbit, since λ̄ and γ̄ are not related if such a choice is not possible. The sim-
ple Kazhdan–Lusztig property (7) holds for all λ ∈� by the LC Hypothesis and
[CPS2]. Thus, Ext1C(L(λ),∇(γ )) ∼= Ext1C(L(λ),L(γ )) if λ > γ. The latter group
has dimension ≤ Ext1C̄(L(λ̄),L(γ̄ )) here, by Proposition 3.6, so we obtain the con-
clusions of Propositions 4.2′ and 4.3 when λ > γ. We also get the first surjectivity
in Proposition 4.2, and the second surjectivity holds because its target is zero. If
λ < γ then dual arguments apply. It remains only to consider the case where λ

and γ are unrelated. Here each group Ext1C(L(λ),∇(γ )), Ext1C(�(λ),L(γ )), and
Ext1C(L(λ),L(γ )) is zero, and the same is true if λ and γ are interchanged. Thus,
by duality for G-modules and applying the previously displayed isomorphism,
Ext1C̄(L(λ̄),∇(γ̄ )) = 0. It follows easily that Ext1C̄(L(λ̄),L(γ̄ )) = 0. This gives
the vanishing required in Proposition 4.2′, since λ and γ are unrelated whenever
λ̄ and γ̄ are unrelated. We also obtain the isomorphism in Proposition 4.3, now
in all cases. The isomorphisms in Proposition 4.2′ also hold now, since they both
hold with both sides zero when λ and γ are unrelated. This completes the proof
of Propositions 4.2, 4.2′, and 4.3 in all cases.

Remark 4.4. Each of the results just proved would be derivable from Conjecture
4.1, if it were true (and we would then also have that each group Ext1C̄(�(τ),L(η)),
Ext1C̄(L(τ),∇(η)), and Ext1C̄(L(τ),L(η)) is zero when ,(τ ) ≡ ,(η) modulo 2; see
[CPS2; CPS3]). Moreover, [CPS3] shows that Proposition 4.2 or Proposition 4.2′
(or Proposition 4.3, given our hypothesis on �) is enough to prove the conjecture
if sufficient “Hecke operators” can be found. Although naive adjoint construc-
tions do not give Hecke operators in the singular weight case, it seems plausible
that some variation might succeed. We will not attempt more detailed specula-
tion here but instead indicate a nice consequence of Conjecture 4.1. The left-hand
sides of each expression in (i)–(iii) of Theorem 4.5 all have dimensions that can
be calculated from Kazhdan–Lusztig polynomials of [CPS2]. Also, note that The-
orem 4.5(i) has already been proved in a special case, in Proposition 4.3, without
the use of Conjecture 4.1.

Theorem 4.5. Suppose Conjecture 4.1 is true. (We still assume the LC Hypothe-
sis.) Suppose that λ, γ ∈� with γ ∈Wp ·λ and that T(L(λ)) �= 0 and T(L(γ )) �=
0. Then:
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(i) Ext1C(L(λ),L(γ )) ∼= Ext1C(L(λ̄),L(γ̄ ));
(ii) the maps

ExtnC(L(λ),L(γ )) −→ ExtnC̄(L(λ̄),L(γ̄ ))

are surjective for each n ≥ 0; and
(iii) the maps

ExtnC(�(λ),L(γ )) −→ ExtnC̄(�(λ̄),L(γ̄ )),

ExtnC(L(λ),∇(γ )) −→ ExtnC̄(L(λ̄),∇(γ̄ ))
are surjective for each n ≥ 0.

Proof. We have dimk Ext1C(L(λ),L(γ )) ≤ dimk Ext1C̄(L(λ̄),L(γ̄ )) by Proposi-
tion 3.6 (whose proof even shows that the natural map from the first Ext group to
the second is injective, though we need only the inequality). Therefore, to prove
(i) it is sufficient to prove (ii) and then apply the case n = 1. To prove (ii), it is
sufficient (by [PS, Sec. 8]) to prove (iii). The arguments in [PS] are formulated
for a quotient functor—more precisely, for the projection functor associated with
a Levi subgroup—and designed with a catalyzing result of Hemmer [H] in mind.
Nevertheless, those arguments apply here. The results established in [PS] for Levi
subgroup projections, together with the common framework for T of Section 3,
inspired Theorem 4.5.

It remains to prove (iii). We first need a formality regarding adjoints. Obvi-
ously, we may assume that � is contained in a singleWp orbitWp · λ−. Recall that
�̄ is contained inWp · τ−. As discussed before (13), the functor T τ−

λ− has a (left and
right) adjoint T λ−

τ− at the G-module level. (We continue to work only with finite
dimensional modules.) If M and N are G-modules then it is a formality that, for
any f ∈HomG(M,N), the adjoint adj(T τ−

λ− f ) : T τ−
λ− T λ−

τ−M → N may be expressed
as the composite of f and adj(T τ−

λ− idM) : T λ−
τ− T

τ−
λ− M → M, where idM : M → M

is the identity map. Consequently, the composite

HomG(M,N) −→ HomG(T
τ−
λ− M, T τ−

λ− N) ∼= HomG(T
λ−
τ− T

τ−
λ− M,N)

agrees with the map

HomG(adj(T τ−
λ− idM),N) : HomG(M,N) −→ HomG(T

λ−
τ− T

τ−
λ− M,N).

By takingN injective in a suitably large highest weight category, we can replace
the Hom with Extn and obtain the same agreement. Apply this for M = �(λ) and
N = L(γ ); then use (13) together with the assumed validity of Conjecture 4.1.
The map

ExtnG(T
λ−
τ−�(λ̄),L(γ )) −→ ExtnG(�(λs),L(γ ))

is zero for each n, since ,(λs) = ,(λ) + 1 = ,(λ̄) + 1 and ,(γ̄ ) = ,(γ ). (Note
that ExtnG(T

λ−
τ−�(λ̄),L(γ ))

∼= ExtnG(�(λ̄),L(γ )).) Thus, the adjunction map
ExtnG(�(λ),L(γ )) → ExtnG(T

λ−
τ−�(λ̄),L(γ )) is surjective. (Note that �(λ̄) ∼=

T τ−
λ− �(λ).) Consequently, by the agreement of Extn maps just mentioned, the map

ExtnG(�(λ),L(γ )) → ExtnG(�(λ̄),L(γ̄ )) in (iii) is surjective. (Observe that this
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map is induced by T τ−
λ− .) Dual arguments, which we leave to the reader, show also

that the map ExtnG(L(λ),∇(γ ))→ ExtnG(λ̄),∇(γ̄ )) in (iii) is surjective. This com-
pletes the proof of the theorem.

Remark 4.6. One could not deduce a similar result for smaller facets than walls
even if Conjecture 4.1 were found to be valid for them. The reason is that T λ−

τ−�(λ̄)
is much larger when τ− belongs to a smaller facet. However, this difficulty might
be partly overcome by a suitable bootstrap approach, taking λ− also in a smaller
facet (though the outward translations are still too large to be used naively).

Remark 4.7. All of the results and discussions (and questions and conjectures)
carry over when “G modules” are replaced by “type 1 integrable Uζ modules”,
where Uζ is the quantum enveloping algebra in characteristic 0 at a pth root ζ
of unity (p a positive integer), associated to the same root system as G. Here
the Lusztig character formula is known (apparently) for p > h, the Coxeter
number. See Tanisaki [T] and also [ArBG]. Another relevant case where the
(Kazhdan–)Lusztig conjecture is known is that of the category O for a complex
semisimple Lie algebra. In this case a version of Conjecture 4.1 is also known to
be true, for walls and all smaller facets, by work of Soergel [So].
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