
Michigan Math. J. 58 (2009)

Primitive Permutation Groups and
Their Section-Regular Partitions

Peter M Neumann

Dedicated to the memory of Donald G. Higman

1. Introduction

The study reported here arises out of a question asked by João Araújo (Lisbon) in
an e-mail message of 19 October 2006. Let X be a finite set and let G be a group
of permutations ofX, that is, a subgroup of Sym(X). A partition ofX as a disjoint
union of non-empty pairwise disjoint subsets corresponds to an equivalence rela-
tion, and we shall move freely between the two concepts, using ρ to stand either
for the relation or for the partition, as context demands. A section (or transversal)
of ρ is then a subset S ofX that contains precisely one element from each class of
ρ. Given a relation ρ and one of its sections S, the two conditions

Sg is a section of ρ for all g ∈G, S is a section of ρg for all g ∈G
are of course equivalent. A relation ρ for which there exists a section S such that
this condition is satisfied will be called section-regular relative toG or sometimes
G-regular. In this language Araújo’s question is

is it true that ifG is primitive on X then there are no non-trivial proper
G-regular partitions of X?

The short answer is no. As usual, however, much lies behind this monosyllable.
The context of the question is this. Call the group G synchronizing if G �= {1}

and there are no non-trivial proper G-regular partitions of X. Although formally
different, this is in effect the same as a definition made by Araújo in his work on
semigroups and automata (see Section 6 of this paper). Clearly, if G is intransi-
tive then the partition ofX into orbits is section-regular relative toG. Similarly, if
G is transitive but imprimitive and ρ is a non-trivial proper G-invariant partition
then ρ is section-regular with respect to G. Thus we have the very simple obser-
vation that

if G is a synchronizing group then G is primitive on X,

and Araújo’s question is whether the converse is true.
This paper describes a preliminary study of the situation. It contains some gen-

eral analysis, descriptions of a number of examples, a proof that, in quite a strong
sense, for most n all primitive groups of degree n are synchronizing, and some
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notes suggesting further lines of investigation. Although it is far from being a de-
finitive account, I hope that it might be of some use in the theory of semigroups
and automata from which the question it treats originally emerged.

Acknowledgment. I am most grateful to Dr Araújo for raising the question,
for helpful comments on earlier drafts of this paper, and especially for supplying
references and advice in connection with Section 6.

2. Some Analysis

Before describing some examples of primitive groups that are not synchronizing,
we analyse section-regular partitions for transitive groups. An equivalence rela-
tion ρ will be said to be uniform if all its classes have the same cardinality—and
then |ρ| will denote this number.

Theorem 2.1. Suppose thatG is transitive onX. A section-regular partition for
G is uniform.

Proof. Let ρ be a section-regular partition for G with classes R1, . . . ,Rs , and let
ri := |Ri | for 1≤ i ≤ s. We may suppose that r1 ≤ r2 ≤ · · · ≤ rs . Then

|X| = r1+ r2 + · · · + rs ≥ sr1, (�)

and |X| = sr1 only if ri = rj for all i and j. Let S be a section of ρ that witnesses
itsG-regularity and for 1≤ i ≤ s let xi ∈ S ∩Ri, so that in fact S ∩Ri = {xi} and
S = {x1, x2, . . . , xs}. Let Hi be the stabiliser of xi in G. By assumption, if g ∈G
then |Sg ∩ R1| = 1 and it follows that

G =
s⋃
i=1

⋃
y∈R1

{g ∈G | xgi = y}.

Thus G is a union of s sets, of which the ith is itself a union of r1 cosets of Hi.

Since G is transitive, |Hi | = |G|/|X| for all i and so we find that

|G| ≤ s × r1× |G||X| ,
that is, |X| ≤ sr1. It follows that equality holds in (�) and therefore r1 = r2 =
· · · = rs , that is, ρ is uniform as the theorem states.

Corollary 2.2. IfG is transitive and ρ is a non-uniform partition then ρ is not
section-regular for G.

This tells us that in quite a strong sense if G is transitive then “most” partitions
are not G-regular. In particular, we have the following result.

Corollary 2.3. If G is transitive and |X| is prime then G is a synchronizing
group.

The theorem takes us a first small step toward classifying section-regular partitions
ρ for primitive (indeed transitive) groups G. Except in Lemma 2.6, from now on
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we focus entirely on non-trivial proper uniform partitions ρ of X. We shall main-
tain the following notation as standard:

n := |X|, r := |ρ|, s := |X/ρ|,
so that n is the degree of the permutation group G and n = rs. Also r > 1 since
ρ is non-trivial, and s > 1 since ρ is a proper partition. The triple (n, r, s) will be
called the parameters ofG,X, and ρ. The following lemma excludes the possibil-
ities r = 2 and s = 2 from our further consideration.

Lemma 2.4. Suppose thatG is primitive and ρ is a non-trivial properG-regular
partition of X with parameters (n, r, s). Then r > 2 and s > 2.

Proof. Let S be a section of ρ that witnesses its regularity. Suppose first, seeking
a contradiction, that s = 2. In this case S is an unordered pair and we consider
the graph � with vertex set X and edge set SG. This is an orbital graph for � (see
for example [4, Sec. 1.11; 7, Sec. 3.2; 13, Sec. 2]) and by a famous lemma of D.
G. Higman it is connected (see [9, (1.12); 4, Theorem 1.9; 7, Theorem 3.2A; 13,
Lemma 3]). Let R1 and R2 be the two classes of ρ. Since Sg is a section of ρ for
all g ∈G, if x ∈R1 then any path of even length starting from x will end in R1 and
any path of odd length will end in R2. Therefore � is bipartite with R1 and R2 as
its two parts, and any graph automorphism either fixes each of R1 and R2 setwise
or interchanges R1 and R2. Since � admits G as a group of automorphisms, ρ is
G-invariant. This contradicts the primitivity ofG and proves that our assumption
is untenable. That is, s > 2.

Suppose now that r = 2. Define S1 := S and S2 := X \ S. Then S1 ∪ S2 is a
partition σ ofX. Since S witnesses theG-regularity of ρ, we find that any equiva-
lence class R of ρ witnesses that σ is G-regular. This, however, contradicts what
has just been proved. Therefore r > 2.

Corollary 2.5. If G is primitive on X and |X| = 2p, where p is prime, then
G is synchronizing.

Viewed in the light of a theorem of Helmut Wielandt, this is perhaps not surprising.
In [18] he proves that a primitive group of degree 2p is almost always 2-transitive.
In fact, using CFSG (the classification of the finite simple groups), one can re-
fine his theorem and show that all primitive groups of degree 2p are 2-transitive
except in case p = 5. And it is almost trivial that a 2-transitive group is always
synchronizing.

The idea of the proof of Lemma 2.4 can be extended. Given an equivalence rela-
tion ρ on X define

Eρ := {{xg, yg} ∈X{2} | x ≡ y (mod ρ), x �= y, g ∈G}
and given S ⊆ X define

ES := {{xg, yg} ∈X{2} | x, y ∈ S, x �= y, g ∈G}.
Here X{2} is the set of unordered pairs, that is 2-subsets, from X. Then define �ρ
and �S to be the graphs with vertex set X and with edge sets Eρ and ES , respec-
tively. It should be clear that G ≤ Aut(�ρ) and G ≤ Aut(�S). The following
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simple lemma provides a link with suborbit theory [4, Sec. 1.11; 7, Sec. 3.2; 13,
Sec. 2] and hence a means of studying G-regular partitions for primitive groups
G. Although I perceive it as a tool for analysing primitive groups, the lemma is
formulated in rather general terms. This responds to a question of a referee, whose
interest I gratefully acknowledge. Recall that a clique in a graph is a complete
subgraph—that is, a set of vertices any two of which are joined by an edge.

Lemma 2.6. Suppose that G ≤ Sym(X) and that ρ is a G-regular partition of
X as witnessed by a section S. Then

(1) S is a largest clique in �S , and
(2) if S meets every G-orbit in X, and in particular if G is transitive on X, then

every part of ρ is a maximal clique in �ρ.

Proof. That S is a clique of �S is clear. Let S ′ be a subset of X with |S ′| > |S|.
Since ρ has |S| parts, there must be one of its parts that contains two distinct mem-
bersx andy ofS ′. Thenx andy do not both lie in anyG-transform ofS, and so {x, y}
is not an edge of �S. Therefore S ′ is not a clique, and so S is a largest clique in �S.

For (2) suppose that S meets everyG-orbit inX and let R be one of the parts of
ρ. That R is a clique in �ρ is clear. Let x ∈X \R. There is aG-translate of S that
contains x and without loss of generality this may be assumed to be S itself. Let
y ∈ R ∩ S (so that in fact R ∩ S = {y}). If {x, y} were an edge of �ρ then there
would exist g ∈G such that xg ≡ yg (mod ρ), but this contradicts the fact that Sg

is a section of ρ for all g ∈ G. Thus R ∪ {x} is not a clique in �ρ and it follows
that R is a maximal clique. This proves (2).

We finish this section with an observation of a rather different kind.

Observation 2.7. Suppose that G is primitive on X, but has a subgroup K of
index 2 that is imprimitive. If ρ is a non-trivial proper K-congruence on � then
ρ is section-regular with respect to G. In particular, G is not synchronizing.

Proof. Since ρ isK-invariant but notG-invariant the orbit ρG consists of precisely
two partitions, ρ1 and ρ2. SinceG is primitiveK is transitive, and ρ1 and ρ2, which
are K-congruences, are therefore uniform. Then, by a theorem of König (1916),
there is a subset S of X that is a section of each of the two members of ρG, and
therefore ρ isG-regular. König’s original statement of his theorem [10, Satz A] is
that a regular bipartite graph has a 1-factor, but it is easy to see that this implies
the required result (see Hall [8] for the exact form of the result needed here, for
comment, and for further references).

This observation yields a considerable number of primitive non-synchronizing
groups, some of which are mentioned explicitly in the next section.

3. Some Examples

This section is devoted to descriptions of some examples of G-regular partitions
for primitive groups. As a guide, the reader should bear in mind the O’Nan–Scott
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taxonomy of finite primitive permutation groups: very roughly, there are those
of affine type (having an elementary abelian regular normal subgroup); there are
those that have two distinct regular normal subgroups; there are those that are sub-
groups of wreath products H wr Sym(k) in product action, where H is almost
simple; there are those with a unique non-abelian minimal normal subgroup but
regular subnormal subgroups (“diagonal type”); and there are the almost simple
groups. It is a theory much more than merely a theorem and many treatments are
available—see [4, Chap. 4; 7, Chap. 4] and the references quoted there. Our first
example, which is also the smallest (both in degree and order), is a group of affine
type with parameters (9, 3, 3).

Example 3.1. LetV be a vector space of dimension 2 over the field F3 of size 3.
Take X to be V construed as AG(2, 3), the affine plane over F3. Recall that affine
transformations are permutations of V of the form fA,b : x �→ xA + b, where
A∈GL(V ) and b ∈ V. If we take V to be the space of 1× 2 row vectors then
GL(V ) is the group GL(2, 3) of 2 × 2 invertible matrices over F3, with matrices
acting on row vectors by right multiplication.

Let U := (
0 1
−1 0

)
, so that U 2 = −I and U 4 = I. Define H := {I,U,U 2,U 3} =

{±I,±U}. ThenH is a cyclic subgroup of GL(2, 3) of order 4, and, as is easy to see,
it is irreducible as linear group—that is, there are no non-zero proper H -invariant
subspaces of V. Now define

G := {fA,b | A∈H, b ∈V }.
ThusG is the semidirect product (split extension) of the translation group T byH.
Because H is irreducible as a linear group G is primitive as a permutation group.
Take ρx to be the partition whose classes are the lines parallel to the x-axis. Thus

(x1, y1) ≡ (x2, y2) (mod ρx) ⇐⇒ y1 = y2.

Since ρx is preserved by every translation and also byU 2 we find that for all g ∈G
either ρgx = ρx or ρgx = ρy , where

(x1, y1) ≡ (x2, y2) (mod ρy) ⇐⇒ x1 = x2.

Define ρ := ρx and S := {(0, 0), (1,1), (2, 2)}, the line with equation x = y. Then
since S is a section both of ρx and of ρy , it is a section of ρg for all g ∈G. Thus al-
though G is primitive there is a non-trivial proper G-regular partition of X. Here
n = 9 and r = s = 3. Note that this example can be seen as an instance of Obser-
vation 2.7.

Example 3.1 can be considerably generalised. First, takingX to be the affine plane
AG(2, q) over the finite field Fq , we get examples with parameters (q2, q, q) as
follows. The parallel classes of affine lines inX are the points of PG(1, q), the pro-
jective line over Fq , which may be identified with the set$∞ of “points at infinity”
on the affine lines. Note that GL(2, q) maps parallel classes to parallel classes,
so it acts on $∞ (as the projective group PGL(2, q)). Take H ≤ GL(2, q) such
that its action on $∞ is not transitive and has no orbit of size 1. The latter condi-
tion is necessary and sufficient to ensure thatH is irreducible as linear group, that
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is as subgroup of GL(2, q), and therefore that the group G := T.H (where T is
the translation group as before) is a primitive subgroup of SymX. Such groupsH
will always exist if q > 2: for example H could be the monomial group consist-
ing of all matrices

(
a 0
0 b

)
and

(
0 a
b 0

)
where ab �= 0. Now let ρ be a parallel class of

lines in X and let πρ be the corresponding point of the line at infinity $∞. Then
{ρg | g ∈G} is the set of parallel classes corresponding to the points πhρ for h∈H.
Since H is not transitive on $∞ there exists a point σ ∈$∞ not in this H -orbit.
We take S to be an affine line that has σ as its point at infinity. Then S is a section
of ρg for all g ∈G, and so ρ is G-regular.

Examples can also be created from higher-dimensional affine spaces. LetV be a
d-dimensional vector space over Fq , where q > 2 and d ≥ 2. TakeX to be V con-
strued as the affine space AG(d, q). For each k in the range 1≤ k ≤ d −1 there is
a primitive subgroupG of AGL(d, q) for which there is a partition ρ ofX into par-
allel k-dimensional affine subspaces that is section-regular. The group G will be
constructed as T.H, where T is the translation group andH is a suitable subgroup
of GL(d, q). What is required of H is, first, that it is irreducible as linear group.
This ensures thatG is primitive as subgroup of Sym(X). Further requirements on
H may be expressed in terms of its action on the (d − 1)-dimensional projective
space$∞ of points at infinity on the affine lines in X. Namely, there should exist
a (d−k−1)-flatZ of$∞ and anH -orbit Y in the set of (k−1)-flats of$∞, every
member of which is disjoint from Z. Such groups always exist. For example, the
group of d × d monomial matrices (matrices that have a single non-zero entry in
each row and column), which is isomorphic to the wreath product F×q wr Sym(d ),
is irreducible (this is one of the points where the condition q > 2 is required), and
it meets the geometric requirement with Z equal to the set of points at infinity on
the affine (d − k)-space{

(x1, x2, . . . , xd) | x1 = x2 = · · · = xk−1 =∑
xi = 0

}
and Y equal to the orbit of the set of points at infinity on the k-space

{(x1, x2, . . . , xd) | xk+1 = xk+2 = · · · = xd = 0}.
For +∈ Y define ρ+ to be the partition of X into the corresponding parallel class
of k-spaces, and take ρ to be ρ+ for some+∈ Y. Take S to be the (d−k)-subspace
of X corresponding to Z ⊆ $∞. Then S will be witness to the G-regularity of ρ.
The parameters of this example are (q d, qk, q d−k ).

Two questions, which we shall not pursue here, arise from these constructions.
First, what can be done with affine groups over F2? And secondly, is it true that
if G is a primitive subgroup of AGL(d,p) (where now p is prime), then every
section-regular partition is a parallel class of subspaces?

It is possible to manufacture new examples from old in a very natural way using
product actions of wreath products.

Example 3.2. Let G0 be a primitive permutation group on a set X0, let ρ0 be a
G0-regular partition of X0 as witnessed by a section S0, and let k be a positive in-
teger. Define G := G0 wr Sym(k) and X := Xk

0. Then G has a natural action on
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X and this is primitive provided thatG0 is not cyclic of prime order (see for exam-
ple [4, Thm. 4.5; 7, Lemma 2.7A]). By Corollary 2.3, the condition that G0 is not
cyclic of prime order will certainly be met if ρ0 is a non-trivial proper partition.
Define ρ := ρk0 , that is,

(x1, . . . , xk) ≡ (y1, . . . , yk) (mod ρ) ⇐⇒ xi ≡ yi (mod ρ0) for 1≤ i ≤ k,

and S := S k0 . One easily checks that Sg is a section of ρ for all g ∈G, and so ρ
is a G-regular partition. If the parameter set of ρ0 is (n0, r0, s0) then ρ will have
parameters (nk0, r k0, s k0 ).

Next we have examples where the primitive groupG has two distinct (necessarily
non-abelian and regular) minimal normal subgroups.

Example 3.3. Take A := Alt(5), the simple group of order 60. Take X := A

andG := A×A acting onX by left and right multiplication, x(a,b) := a−1xb. This
is the same as the group of “inner affine transformations” ofA given by fa,b : x �→
xab, where xa := a−1xa. It is well known and easy to prove that, because A is
simple, G is primitive on X. Let B := Alt(4) ≤ A and take ρ to be the partition
of X into right cosets of B. We find that if g = fa,b ∈G then ρg is the partition
of X into right cosets of the conjugate subgroup Ba. Therefore if C is a subgroup
of order 5 in A then, thought of as subset of X, C is a section of ρg for all g ∈G,
and hence ρ is section-regular for G. Here the parameters are (60,12, 5), but if
the roles of B and C are interchanged then an example with parameters (60, 5,12)
emerges.

This example may obviously be generalised. First, the group A can be any sim-
ple group that admits a non-trivial factorisation A = BC, where B and C are
subgroups such that B ∩ C = {1}. Such factorisations have been catalogued by
Liebeck, Praeger, and Saxl [11]. They give section-regular partitions with parame-
ter sets (|A|, |B|, |C|), the first few of which are (60,12, 5), (60, 5,12), (168, 24, 7),
(168, 7, 24), (504, 56, 9), and (504, 9, 56). Next, for any natural number m, using
the wreath product construction of Example 3.2 one may create examples of prim-
itive groupsG having two different minimal normal subgroups, each of which is a
direct product ofm simple groups isomorphic toA, such thatG admits non-trivial
proper section-regular partitions.

A very slight modification gives examples of groups of diagonal type having
a unique minimal normal subgroup. All that is needed is to replace the group G
of Example 3.3 with the group AwrC2 thought of as (A × A).{±1} acting on X
(which, recall, was the simple group A) by

x(a,b,ε) := (a−1xb)ε.

The same partition ρ as in Example 3.3 is section-regular for this extended group
G. And of course this example may be generalised by using as ingredient an arbi-
trary factorisable simple group A, and then using the construction of Example 3.2
to create examples of diagonal type and with arbitrarily complicated minimal nor-
mal subgroups.
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In the next examples the group G is a wreath product in product action. The
case where the parameter k is 2 is an instance of the phenomenon treated in
Observation 2.7.

Example 3.4. LetH be a primitive group (not cyclic of prime order) acting on a
set Y, let k ≥ 2, and letK be a transitive subgroup of Sym(k). Take X := Y k and
take G to be the wreath product H wrK acting on X. Thus G is the split exten-
sion ofH k byK acting to permute the k factors of the direct power, andG acts on
Y k in the natural way. It is well known and easy to prove (see Example 3.2 for ref-
erences) that G will be primitive on X—this is where the fact that H is not cyclic
of prime order is relevant. For 1≤ i ≤ k, define ρi by the condition

(y1, . . . , yk) ≡ (z1, . . . , zk) (mod ρi) :⇐⇒ yi = zi,
and let S be the diagonal {(y, . . . , y) ∈ X | y ∈ Y }. If ρ := ρ1 then ρG =
{ρ1, . . . , ρk} and, since S is a section of ρi for every i, it is a section that witnesses
the G-regularity of ρ. Here the parameters are (mk,mk−1,m), where m := |Y |.
There are also examples coming from the last of the O’Nan–Scott categories, the
class of almost simple groups.

Example 3.5. Let q be any prime power and let G := PGL(3, q).2, the exten-
sion of the group of invertible 3 × 3 matrices (modulo scalars) over the field of
size q by a cyclic group of order 2 whose generator acts as the inverse-transpose
automorphism. This group acts on the set X of flags (incident point-line pairs)
of the projective plane PG(2, q), with inverse transpose acting as a polarity that
interchanges points and lines. It is not hard to see that it acts primitively on X.
Now take ρ1 to be the partition of X where two flags are equivalent if they have
the same point and ρ2 the partition where they are equivalent if they have the
same line. Clearly, elements of GL(3, q) preserve each of ρ1 and ρ2. But the
polarity interchanges points and lines and therefore if ρ := ρ1 then ρG has size 2
and so ρ is G-regular by Observation 2.7. In this example the parameters are
((q + 1)(q2 + q + 1), q + 1, q2 + q + 1); the smallest has q = 2 and parameters
(21, 3, 7).

Example 3.6. Let G := Sym(7), and let H be its subgroup C7.C6. This is the
normaliser of a Sylow 7-subgroup; it can be thought of as AGL(1, 7). It is well
known that H is maximal inG and thereforeG acts primitively on its coset space
X. LetK := Alt(7) ≤ G and letL := K∩H. NowL is not maximal inK because
it is contained in a group isomorphic to PSL(2, 7) (which is the same as SL(3, 2)
in its natural action on the seven points of the Fano plane PG(2, 2)). Therefore
there is a K-invariant equivalence relation ρ, which must be G-regular by Obser-
vation 2.7. Its parameters are (120, 8,15).

Similar examples to this last one can be made with the symmetric group of prime
degree p whenever there exists a non-soluble transitive proper subgroup H of
Alt(p) in which the Sylow p normalisers have order 1

2p(p − 1). For then the
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group AGL(1,p) will be maximal in Sym(p) (supplement what is to be found in
[14, Chap. 10] with an easy consequence of CFSG), so that the action of Sym(p)
on its coset space will be primitive, whereas AGL(1,p) ∩Alt(p) is contained in
(a conjugate of ) H and so is not maximal in Alt(p). In addition to the example
with p = 7 described previously there are examples for p = 11, where H can
be PSL(2,11) or the Mathieu group M11; for degree 17, with H = 3L(2,16), the
extension of SL(2,16) by a cyclic group of order 4 acting by field automorphisms;
and for degree 23, with H the Mathieu group M23.

Our last classes of examples are of a rather different kind.

Example 3.7. Let m be a composite positive integer, m = rt where 2 ≤ t <
1
2m. TakeG to be Sym(m) or Alt(m), and takeX := [1,m]{t}, the set of t-subsets
of [1,m] (where [1,m] := {1, 2, . . . ,m}). By a theorem of Zs. Baranyai (see [2] or
[3, Chap. 1]), there is a partition ρ of X such that each class of ρ is a partition of
[1,m] (into r sets of size t of course). Now take S := {x ∈X | 1∈ x}. Clearly, for
any g ∈G, Sg = {y ∈X | 1g ∈ y}, and, as each class of ρ contains precisely one
t-set containing 1g, Sg is a section of ρ. Thus ρ is section-regular with respect to
G. Its parameters are

((
m
t

)
, r,

(
m−1
t−1

))
.

4. The Rarity of Primitive Non-synchronizing Groups

Let E0 be the set of natural numbers n for which there exists a primitive group
G of degree n admitting a non-trivial proper section-regular partition—that is, a
primitive group that is not synchronizing. Trivially, such a group G cannot be
2-transitive (nor even 2-homogeneous), and therefore E0 ⊆ E, where E is the set
of all n for which there exists a primitive group of degree n other than Sym(n)
or Alt(n). This set E was the subject of a study by Cameron, Neumann, and
Teague [6]. They showed that E has density 0. More precisely, they showed that
if e(x) is the number of n∈E such that n ≤ x, and π(x) is, as usual, the number
of prime numbers ≤ x, then

e(x) = 2π(x)+ (
1+√2

)√
x +O

( √
x

log x

)
,

so that e(x) ∼ 2x/log x as x → ∞. One of the contributions π(x) comes from
prime values of n. By Corollary 2.3 these do not lie in E0, however. The second
contribution π(x) comes from numbers n = p+1 where p is prime, arising from
the groups PSL(2,p) and PGL(2,p) in their natural representations on PG(1,p).
These groups are 2-transitive and therefore do not contribute to E0. The proof of
the theorem in [6] therefore yields the following. Defining

e0(x) := |{n∈E0 | n ≤ x}|
we have e0(x) ≤

(
1 + √2

)√
x + O

(√
x/log x

)
. This is, however, an over-

estimate for e0(x). Example 3.4 with H = Sym(m) and k = 2 witnesses that
m2 ∈ E0 for every m ≥ 3. Certainly therefore e0(x) ≥ √

x − O(1). But the
term

√
2
√
x in the Cameron–Neumann–Teague theorem comes from binomial



318 Peter M Neumann

coefficients m(m− 1)/2. Some of these may be realised as the degrees of primi-
tive permutation representations of the groups PSL(2, q) acting on coset spaces for
dihedral subgroups of index q(q−1)/2 and q(q+1)/2, and some may arise acci-
dentally as degrees of other primitive groups, but mostly they arise from Alt(m) or
Sym(m) acting on the set of pairs. Thus the following result suggests that perhaps
only those binomial coefficients m(m−1)/2 in which m is even really contribute
to E0.

Lemma 4.1. Let m be an odd integer 2k + 1 ≥ 5, let X := [1,m]{2}, the set of
pairs from [1,m], and letG be an at least 4-fold transitive subgroup of Sym(m),
thought of as a subgroup of Sym(X). Then there are no non-trivial proper G-
regular partitions of X, so G is a synchronizing group.

Proof. SinceG is 4-fold transitive on [1,m] it is a rank-3 permutation group onX.
That is to say, it has three orbits in X2: one is the diagonal (known as the “trivial
orbital”); another is 81 where

81 := {(x, y)∈X2 | x ∩ y is a singleton},
and the third is 82 where

82 := {(x, y)∈X2 | x ∩ y = ∅}.
Note that 81 and 82 are self-paired in the sense that if (x, y) ∈ 8i then also
(y, x)∈8i. The graphs �1 and �2 that have vertex set X and edge sets81 and82

respectively are the two non-trivial orbital graphs ofG acting on X. Since81 and
82 are self-paired we may construe these as undirected graphs.

Now suppose, seeking a contradiction, that there existed a G-regular partition
ρ of X, as witnessed by a section S. The edge sets of the graphs �ρ and �S intro-
duced for Lemma 2.6 are disjoint and are unions of G-orbits on pairs. It follows
that these graphs must be the orbital graphs �1 and �2. Therefore we look for the
maximal cliques in �1 and �2.

It is easy to see that there are two kinds of maximal clique in �1: triangles of
the form {{a, b}, {a, c}, {b, c}} and (m−1)-cliques of the form {{a, x} | x �= a}. It
is equally easy to see that there is just one kind of maximal clique in �2, namely,
k-cliques of the form {{a1, b1}, . . . , {ak , bk}}, where a1, . . . , ak , b1, . . . , bk are dis-
tinct and hence are all except one of the members of [1,m]. By Lemma 2.6 there
are three possibilities for the pair (r, s), namely (3, k), (m− 1, k), and (k,m− 1).
In all cases the equation rs = n = m(m− 1)/2 = mk is contradicted, however.
This proves the lemma.

As sketched in the paragraph before the statement of the lemma this leads to the
following asymptotic result.

Theorem 4.2. e0(x) =
(
1+ 1/

√
2

)√
x +O(√

x/log x
)
.

The proof is very similar to that of the main theorem of [6] and will therefore only
be sketched.

We have seen that if m ≥ 3 then m2 ∈E0 and m(2m − 1) ∈E0. Coincidences
m2

1 = m2(2m2−1) arise only from solutions of the familiar diophantine equation
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u2 − 2v2 = −1, and the theory associated with Pell’s Equation tells us that there
are O(log x) of them below a given number x > 1. It follows immediately that

e0(x) ≥
(
1+ 1/

√
2

)√
x −O(log x).

Since log x = o(√x/log x
)

it remains to find an acceptable upper bound for e0(x).

DefineE1 to be the set of positive integers n for which there is an almost simple
primitive non-synchronizing group of degree n (note that the notation here differs
from that in [6]). Also, as in [6], define

E2 := {mk | m, k ∈N, m ≥ 2, k ≥ 2, mk > 4},
E3 := {n∈N | there is a non-abelian simple group of order n},

and define
ei(x) := |{n∈Ei | n ≤ x}|.

By the O’Nan–Scott theorem E0 ⊆ E1∪ E2 ∪ E3 and therefore e0(x) ≤ e1(x)+
e2(x)+e3(x). It is shown in [6] that e2(x) ≤ √x+O(

3
√
x

)
and e3(x) ≤ O(

3
√
x

)
.

It remains therefore to show that e1(x) ≤
(
1/
√

2
)√
x +O(√

x/log x
)
.

Following [6] we define E4 to be the set of natural numbers n for which there
exists a primitive permutation group of degree n that is almost simple but not alter-
nating or symmetric, and e4(x) to be the number of its members less than x. There
are three types of group that contribute significantly toE4. First there are alternat-
ing and symmetric groups acting on pairs, but by Lemma 4.1 the only contribution
from these toE0 consists of the binomial coefficients k(2k−1), and these contrib-
ute

(
1/
√

2
)√
x+O(1) to e1(x). The other two types are the groups PSL(2,p) or

PGL(2,p) acting on coset spaces of dihedral subgroups of index p(p − 1)/2 or
index p(p + 1)/2, where p is prime and p ≥ 5. The numbers p(p + 1)/2 are al-
ready counted among the binomial coefficients k(2k−1); of the others, however,
there are at most π

(√
2x

)
below x and so their contribution to e1(x) is at most

O
(√
x/log x

)
. The contribution to e4(x) from groups other than these three types

is o
(√
x/log x

)
. It follows that e1(x) ≤

(
1/
√

2
)√
x +O(√

x/log x
)
, as required.

5. Final Comments

Note 5.1. Although Section 3 exhibits many primitive permutation groups that
are not synchronizing, so far the only synchronizing primitive groups we have
seen are those of prime degree, doubly transitive groups (or, a little more gener-
ally, doubly homogeneous groups), and the examples in Lemma 4.1. The method
of proof of that lemma should be sufficient to decide of every rank-3 group G
whether or not it is synchronizing, and if not, to find allG-regular partitions. Note
that the primitive rank-3 groups have been classified modulo CFSG in major works
by Kantor and Liebler (almost simple classical groups over finite fields), Liebeck
(groups of affine type), and Liebeck and Saxl (most of the rest)—see [12] for con-
text and references. The method of proof of Lemma 4.1 will also deal with the
actions of Sym(m) and Alt(m) on the set of k-sets from [1,m] for 2 ≤ k < m/2.

Note 5.2. It seems possible that, using the O’Nan–Scott theorem, one might be
able to classify the primitive groups G for which there exists a non-trivial proper
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section-regular partition, and hence, perhaps, all those for which there is no non-
trivial proper section-regular partition, that is, those that are synchronizing. I do
not propose to embark on such a project, but hope that what I have written here
might start someone else off. In particular, it seems possible that the techniques
suggested in Section 2 might be enough to classify all possibleG-regular partitions
for primitive groups G of small rank (say rank ≤ 6) or with parameters (n, r, s)
where r is small or s is small (say r ≤ 6 or s ≤ 6).

Note 5.3. In many cases, when we have found a G-regular partition with pa-
rameters (n, r, s) for a primitive groupG, we have also found such a partition with
parameters (n, s, r). It would be surprising if this always happens. In particular, it
would be surprising if the group PGL(3, q).2 of Example 3.5 had a section-regular
partition with parameters ((q +1)(q2 + q +1), q2 + q +1, q +1). A special case
seems particularly interesting and promising as a line of investigation. Consider
a pair (ρ, σ) of partitions of X with the property that every σ -class S witnesses
G-regularity of R. Then also every ρ-class R will witness that σ is G-regular.
Such a pair will be called sympathetic. Sympathetic pairs of G-regular partitions
appear among the examples of groups of affine type (Example 3.1 and its gener-
alisations) and those described in Example 3.3. The classification of all primitive
groups that admit sympathetic pairs of section-regular partitions ought to be sig-
nificantly easier than the project outlined in Note 5.2, but nevertheless of some
interest.

6. Appendix

Note 6.1. I am asked by the editors and a referee to say a few words about where
Araújo’s question comes from. It lies at a couple of steps removed from the prob-
lem in the theory of automata from which he actually started. That problem is the
so-called Černý Problem. Associated with any finite-state (deterministic) autom-
aton (or semiautomaton, that is, automaton without a designated initial state and
without designated accept states) is the semigroup generated by its transition maps.
A word in those transition maps is said to be a reset word if it sets the machine to
one and the same state whatever state it is originally in. An automaton is said to be
synchronizing if it admits a reset word. The Černý Conjecture is that if an n-state
automaton is synchronizing then it admits a reset word of length at most (n−1)2.
For accounts of the conjecture and substantial lists of references see [15; 16; 17].

This is, however, a question simply about transformation semigroups, and au-
tomata have little to do with it except insofar as they provide context for the origin
of the problem and a ready source of applications. Let T(X) denote the full trans-
formation semigroup on a set X of size n. A subsemigroup of T(X) is said to
be synchronizing if it contains a constant map. Let U0 be a subset of T(X), and
suppose that the subsemigroup U generated by U0 is synchronizing. The Černý
Conjecture is that there is a word of length at most (n−1)2 in the members of U0

that is a constant map.
Setting this particular conjecture aside, in the theory of automata and in semi-

group theory one seeks as much information as one can get about synchronizing
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semigroups and their generating sets. Inspired by the problems formulated in [16,
p. 338], Araújo had the idea of studying the subgroups G of Sym(X) with the
property that for every t in T(X) \ Sym(X) the semigroup 〈G, t〉 generated byG
together with t is synchronizing. He and others (see [1]) call these “synchroniz-
ing groups” and observe that this is equivalent to the definition made in Section 1.
For suppose first that G is not a synchronizing group in the latter sense, as is wit-
nessed by a non-trivial proper partition ρ and its section S. Note that then Sg is a
section of ρh for all g,h∈G. Define

V := {t ∈ T(X) | ∃g,h∈G : Im t = Sg, Ker t = ρh}.
The properties of S and ρ entail that if t1, t2 ∈ V then Im(t1t2) = Im t2 and
Ker(t1t2) = Ker t1. Therefore V is closed under composition, that is, it is a sub-
semigroup of T(X). Also it is normalised by G, that is, g−1tg ∈ V for all t ∈ V,
and so VG, the set of all products tg with t ∈V and g ∈G, is a subsemigroup of
T(X). It contains no constant maps and so for any t ∈V, the subsemigroup 〈G, t〉
of T(X) contains no constant maps.

Conversely, suppose that the group G is synchronizing in the sense defined in
Section 1. Let t ∈ T(X) \ Sym(X), and let t0 be an element of least rank (that
is, with smallest possible image) in 〈G, t〉. Let ρ := Ker t0 and S := Im t0. If
there existed g ∈ G and distinct elements x, y ∈ S such that xg ≡ yg (mod ρ)
then we’d have xgt0 = ygt0 , and therefore t0gt0 would be a member of 〈G, t〉 of
strictly smaller rank than t0, which is not possible. It follows that Sg is a section
of ρ for every g ∈G, that is, ρ isG-regular. Since ρ is certainly not the trivial re-
lation, it follows that ρ is universal, so t0 is a constant map. Therefore 〈G, t〉 is a
synchronizing semigroup and G is a synchronizing group in the original sense.

Note 6.2. Since this paper was accepted new information has come to my
attention.

(1) In their lovely paper [1], Arnold and Steinberg point out that if the permuta-
tion module QX splits as T0 ⊕ T1, where T0 is the trivial G-module and T1

is an irreducible QG-module, then G is a synchronizing group. This applies
to certain groups of affine type; more interestingly, it applies to show that if
2k −1 is a Mersenne prime number,G = SL(2, 2k ), and X is the coset space
of a dihedral subgroup of order 2(2k + 1) then G is a synchronizing group.

(2) Coming from a completely different direction Cameron and Kazanidis [5]
have discovered a serendipitous connection with graph theory. In particular,
they make considerable progress with the problem of classifying the rank-3
permutation groups that are synchronizing—see Note 5.1.

I am grateful to the editors for permission to update this paper at a late stage.
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