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1. Introduction

In all that follows, G and R will denote domains in the complex plane C; G will
always be simply connected, and 0 /∈ R. A first-order univalence criterion for G

is a condition of the form
f ′(G) ⊂ R, (1.1)

or, somewhat more generally (and for present considerations more conveniently)
of the form

log f ′(G) ⊂ R ′, (1.2)

which implies that f is univalent on G. By (1.2) we mean of course that f ′(z) =
eg(z), where g(G) ⊂ R ′. We will be concerned in large measure with the particular
case in which R ′ = αS0, where S0 is the infinite strip

S0 = {z : −1 < �{z} < 1}.
The third author has studied the problem of determining criteria of the form (1.1)

for smoothly bounded Jordan domains G that are sharp in the sense that there is
no R1 properly containing R for which the condition f ′(G) ⊂ R1 implies univa-
lence (see [Ge] and the references therein). In this paper we examine two further
aspects of first-order univalence criteria. First of all, in Section 2 we prove a the-
orem from which it follows immediately that there will be a criterion of either of
these forms if and only if G satisfies an interior chord-arc condition—that is, if
and only if there is an L such that

l(z1, z2) = inf

{∫
γ

|dz| : γ ⊂ G, z1, z2 ∈ γ

}
≤ L|z1 − z2| (1.3)

for all z1, z2 ∈G, where the γ are arcs.
To put our other results in context, we briefly discuss univalence criteria on

quasidisks involving the pre-Schwarzian derivative Pf (z) = f ′′(z)/f ′(z) and the
Schwarzian derivative Sf (z) = (Pf (z))

′ − 1
2 (Pf (z))

2. There is a classical result
of Ahlfors [A] to the effect that, if G is a quasidisk, then there is some βS > 0
such that
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|Sf (z)| ≤ βS

dist(z, ∂G)2
(1.4)

is a univalence criterion for G, where here (and in what follows) dist(a,X) =
inf{|a − z| : z∈X}. From this it follows easily that if G is a quasidisk then there
is also some βP > 0 such that

|Pf (z)| ≤ βP

dist(z, ∂G)
(1.5)

is a univalence criterion in G. It is well known and easily proved that if g maps
the unit disk into S0 then

|g ′(z)| ≤ 4

π(1 − |z|2) . (1.6)

Applying (1.5) and (1.6) for fixed w ∈G to g(z) = 1
α

log f ′(w + rz) with |z| < 1
and r = dist(w, ∂G), one sees that if G is a quasidisk then

log f ′(G) ⊂ αS0 (1.7)

is a univalence criterion in G for any α for which |α| ≤ π
4 βP . Conversely, Gehring

[G1] showed that any G that has a univalence criterion (1.4) is necessarily a quasi-
disk, and subsequently Astala and Gehring [AG] established the stronger fact that
any G having a univalence criterion of the form (1.5) must be a quasidisk. In light
of these results, it makes sense to ask whether there might be an even stronger im-
plication to the effect that all G having a univalence criterion of the form (1.7) are
quasidisks. We show in Section 3 that if G has a univalence criterion (1.7) for some
α > 0, then G must indeed be a quasidisk; the corresponding results of [G1] and
[AG] just mentioned follow immediately from this. Moreover, this result yields
a new characterization of quasidisks—namely, that G ⊂ C is a quasidisk if and
only if it has a univalence criterion (1.1) in which R is an annulus centered at 0. In
Section 4 we show, on the other hand, that for any α /∈ R there is a G that is not
a quasidisk but that nevertheless has a univalence criterion log f ′(G) ⊂ εαS0 for
some ε > 0.

In what follows, �(a, ρ) = {z : |z − a| < ρ}, � = �(0,1). The diameter of a
set X is denoted by diam(X).

2. Interior Chord-arc Conditions and
First-order Univalence Criteria

We shall prove the following theorem.

Theorem1. Let G 
= C be a simply connected domain. Then the following state-
ments are equivalent.

(a) G satisfies an interior chord-arc condition; that is, there is a constant L1 such
that l(z1, z2) ≤ L1|z1 − z2| for all z1, z2 ∈G.

(b) There is an ε > 0 such that f ′(G) ⊂ �(1, ε) is a univalence criterion for G.
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(c) There is a constant L2 such that g ′(G) ⊂ � implies |g(z1) − g(z2)| ≤
L2|z1 − z2| for all z1, z2 ∈G.

Remarks. (i) We do not consider domains that are not simply connected, al-
though investigation of that case would be of interest.

(ii) Condition (c) of this theorem is the Hardy–Littlewood property of order 1,
as explained in [KW].

Proof of Theorem 1. (a) ⇒ (b). Suppose that (a) holds and that f ′ = 1+ εh, where
h(G) ⊂ �. Then for z1 
= z2 we have f(z1) − f(z2) = z1 − z2 + ε

∫
γ
h(z) dz,

where γ is an arc of length λ with

l(z1, z2) < λ < (L1 + 1)|z1 − z2|
joining z2 to z1 in G. It follows that

|f(z1) − f(z2) − (z1 − z2)| < ε(L1 + 1)|z1 − z2|.
Hence f(z1) 
= f(z2) if, for example,

ε = 1

L1 + 1
. (2.1)

(b) ⇒ (c). Suppose that (b) holds and g ′(G) ⊂ � but that, for some distinct
z1, z2 ∈G,

|g(z1) − g(z2)| > |z1 − z2|
ε

. (2.2)

Let δg = g(z1) − g(z2) and δz = z1 − z2, and consider f(z) = z − (δz/δg)g(z).

Then by (2.2), f ′(G) ⊂ �(1, ε), so that f is univalent in G. But

f(z1) − f(z2) = δz − δz

δg
δg = 0,

which is a contradiction. Thus we have that (c) holds with

L2 = 1

ε
. (2.3)

(c) ⇒ (a). This follows directly from Corollary 1 of [KW] in the limiting case
k = 1; for the convenience of the reader, we repeat the proof given there.

Lemma 1. There is a function c(ε) > 0 defined for all ε > 0 with the following
property. Let h be a complex-valued function on (0, ∞) for which

|h(x)| ≤ 1 and |h′(x)| ≤ 1

x
for all x ∈ (0, ∞).

Then there is an F analytic in the right half-plane H = {z : �{z} > 0} such that

|F(x) − h(x)| < ε for x ∈ (0, ∞)

and ‖F‖∞ < c(ε).
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Proof. Let h be as in the hypothesis. The function w = ez maps the horizon-
tal strip |�{z}| < π

2 conformally onto H , and clearly the function H(u) = h(eu)

satisfies
|H(u)| ≤ 1 (2.4)

and
|H ′(u)| = |h′(eu)|eu ≤ 1 (2.5)

for all u ∈ R. If we can find a function f defined in this strip with ‖f ‖∞ < c(ε)

there and with |f(u) − H(u)| < ε for all u ∈ R, then our required function is
F(z) = f(log z) with log1 = 0. Thus we work with functions H on R that satisfy
(2.4) and (2.5).

Let ψ(z) = (sin2 z)/z2, and for n ≥ 1 set

fn(w) = n

π

∫ ∞

−∞
ψ(n(w − t))H(t) dt.

Since
∫ ∞
−∞(sin2 x)/x 2 dx = π, a standard argument shows that fn(u) → H(u)

uniformly on R as n → ∞ and that the rate of convergence is independent of H

under conditions (2.4) and (2.5). With regard to the bound ‖f ‖∞ < c(ε), for w =
x + iy with |y| ≤ π

2 we have

|fn(w)| ≤ n

π

∫ ∞

−∞
|ψ(n(w − t))| dt = n

π

∫ ∞

−∞
|ψ(n(iy − t))| dt

= n

π

∫ ∞

−∞
|ψ(niy + nt)| dt = 1

π

∫ ∞

−∞
|ψ(niy + t)| dt

≤ Bn + 1

π

∫
|t |≥1

An

t 2
dt,

where

Bn = 2

π
sup

{
|ψ(niy + t)| : |t | ≤ 1, |y| ≤ π

2

}
,

An = sup

{
|sin(niy + t)|2 : t ∈ R, |y| ≤ π

2

}
.

Since An and Bn are finite, the proof is complete.

Returning to the proof of Theorem 1, we now assume that condition (c) holds
and show that G satisfies an interior chord-arc condition. Let φ map H one-to-
one onto G in such a way that z1 and z2 are images of points on R

+. It is easy
to see that this is possible by observing, for example, that if ξ maps � onto G

with ξ(0) = z1 then, for an appropriate α with |α| = 1, ξ(αz) maps points of
(−1,1) onto z1 and z2. Then to obtain φ one just composes ξ with a mapping of
H onto � that takes R

+ onto (−1,1). Now consider h(t) = e−i arg{φ ′(t)}. Since
h′(t)/h(t) = −i�{φ ′′(t)/φ ′(t)}, it follows that |h′(t)| ≤ |φ ′′(t)/φ ′(t)|. Using the
fact that the function τ(z) = φ

(
t 1+z

1−z

)
, t > 0, is univalent on �, a straightforward
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calculation—together with the classical coefficient bound |a2| ≤ 2 for normalized
univalent functions on �—shows that |φ ′′(t)/φ ′(t)| ≤ 3/t, so that |h′(t)| ≤ 3/t.
Thus, on applying Lemma 1 we find that there is a positive C and an analytic func-
tion F on H such that

|F(x) − h(x)| ≤ 1
2 for all x ∈ (0, ∞) and ‖F‖∞ < C.

Here, C = 3c
(

1
6

)
is a universal constant. Now we define f on G by setting

f ′(φ(z)) = F(z) so that, obviously, f ′(G) ⊂ C�. Consider the curve γ =
φ([a1, a2 ]), where φ(ak) = zk for k = 1, 2. Then

f(z2) − f(z1) =
∫
γ

f ′(ζ) dζ =
∫ a2

a1

f ′(φ(x))φ ′(x) dx =
∫ a2

a1

F(x)φ ′(x) dx

=
∫ a2

a1

h(x)φ ′(x) dx +
∫ a2

a1

(F(x) − h(x))φ ′(x) dx.

Thus, since h(x)φ ′(x) = |φ ′(x)|,
|f(z2) − f(z1)| =

∣∣∣∣
∫
γ

f ′(ζ) dζ
∣∣∣∣

≥
∫ a2

a1

|φ ′(x)| dx − 1

2

∫ a2

a1

|φ ′(x)| dx = 1

2

∫
γ

|dz|.

Therefore, γ is a curve joining z1 to z2 in G for which
∫
γ
|dz| ≤ 2C|g(z2)−g(z1)|,

where g = f/C. But since f ′(G) ⊂ C� we have g′(G)⊂ � and so, by our as-
sumption that (c) holds,

∫
γ
|dz| ≤ 2CL2|z1 − z2|. Passing to the infimum we see

that (a) holds with
L1 = 2CL2. (2.6)

Remark. The proof shows that L1, ε, and L2 depend on each other in accordance
with (2.1), (2.3), and (2.6).

It is clear that (1.1) can be a univalence criterion only if 0 /∈R, so that G has a uni-
valence criterion of this form if and only if it has one of the form (1.2). We have
the following result.

Corollary. Let G ⊂ C be a simply connected domain. Then there is some do-
main R for which f ′(G) ⊂ R is a univalence criterion if and only if G satisfies
an interior chord-arc condition.

Proof. That (a) of the theorem implies that there is such an R follows from (b). On
the other hand, if there is such an R and �(w, δ) ⊂ R then it is clear that f ′(G) ⊂
1
w
�(w, δ) = �

(
1, δ

|w|
)

is a univalence criterion for G, so that (a) holds.

Remark. Since the disk just considered cannot contain 0, it must be that δ <

|w|. From this one concludes that, for any domain R for which (1.1) is a univa-
lence criterion, dist(w, ∂R) < |w| for all w ∈R.
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3. Characterization of Quasidisks in Terms
of First-order Univalence Criteria

The literature contains numerous characterizations of quasidisks (see e.g. [G3;
L]). Theorem 4.5 and Section 4.6 of [NV] show that a simply connected domain
G ⊂ C, G 
= C, is a quasidisk if and only if G satisfies an interior chord-arc con-
dition (1.3) and G is a John disk; that is, there is some constant L′ such that, for
any rectilinear crosscut (a, b) of G, at least one of the two components of G\(a, b)
has diameter at most L′|b − a|. (See also [P, Thm. 5.9] for this characterization
of quasidisks in the case of bounded domains.)

Theorem 2. Let G 
= C be a simply connected domain. Then G has a univa-
lence criterion of the form

log f ′(G) ⊂ αS0 (3.1)

for some α > 0 if and only if G is a quasidisk .

Proof. That quasidisks have univalence criteria of this form follows, as indicated
in the Introduction, from the result of Ahlfors [A]. Conversely, let G be a domain
for which (3.1) is a univalence criterion. Since there is an ε = ε(α) such that
|�{log(1 + εw)}| ≤ α for all w ∈ �, we see that f ′(G) ⊂ �(1, ε) implies (3.1).
Thus G satisfies condition (b) of Theorem 1; hence it follows from that theorem
and the Remark thereafter that G necessarily has the interior chord-arc property
with a constant L, as in (1.3), which depends only on α. We therefore need only
show that G is a John disk—in other words, that there is a constant L′ = L′(α)
such that, if (a, b) is any rectilinear crosscut of G, then one of the two components
G1,G2 of G\(a, b) has diameter at most L′|b − a|. For notational simplicity we
may assume without loss of generality that a = −1 and b = 1. We need to obtain
an upper bound for min{diam(G1), diam(G2)} that depends only on α. For defi-
niteness we assume that G1 lies to the left of (−1,1) as this interval is traversed
from −1 to 1.

Remark. A mapping q : G → C is a local Q-quasi-isometry if it is a local ho-
meomorphism for which the upper and lower limits of |q(w) − q(z)|/|w − z|
as w → z are in

[
1
Q

,Q
]

for all z in G; analytic functions satisfying (3.1) are
obviously local eα-quasi-isometries. Loosely speaking, to prove the local quasi-
isometry counterpart of Theorem 2, Gehring [G2] constructed a local Q-quasi-
isometry q of G for which q(z) = zeiφQ(|z|) on G1\2� and q(z) = z on G2\2�,
where φQ(r) is a real-valued function (that depends on Q) tending to ∞ as r →
∞. The proof we are giving essentially amounts to an adaptation of this construc-
tion to the much more restrictive class of analytic functions satisfying a condition
of the form (3.1).

Before proceeding with the proof of Theorem 2, we briefly remind the reader of
the mapping properties of sin z and its inverse. For the remainder of this section
and in distinction to the notation of Section 2, H

+ and H
− will denote the upper
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and lower half-planes {z : �{z} > 0} and {z : �{z} < 0}, respectively. Because
sin z maps the half-strip

{
z : �{z} > 0, |�{z}| < π

2

}
one-to-one onto H

+, with
−π

2 , π
2 , and ∞i corresponding (respectively) to −1, 1, and ∞, it follows immedi-

ately from the reflection principle that sin z effects a one-to-one mapping of H
+

onto the universal covering surface U1 of C\[−1,1]. An additional application of
the reflection principle shows that sin z maps the domain E = H

+ ∪H
− ∪(−π

2 , π
2

)
one-to-one onto the simply connected surface U consisting of U1, its reflection U2

across (−1,1), and this interval. The monodromy principle implies that sin z has a
uniquely defined inverse on any simply connected domain, such as G, for which
(−1,1) is a crosscut. Henceforth we denote this inverse on G by γ. We have that

γ (G1) ⊂ H
+ and γ (G2) ⊂ H

−. (3.2)

Let δ > 0 be such that

sin
(
�

(
π
2 , 1

2

) ∩ H
+) ⊃ �(1, 2δ)\[−1,1].

Let z∈G1 be such that |z−1| < δ
L
. From the fact that G satisfies an interior chord-

arc condition with constant L it easily follows that G1 and G2 also have the same
property, from which it follows in turn that for any t ∈ (

1− δ
L

,1
)

there is an arc C

of length less than 2δ that joins t to z in G1. From this we conclude that C\{t} ⊂
�(1, 2δ)\[−1,1], so that γ (z) ∈ �

(
π
2 , 1

2

) ∩ H
+; that is, γ

(
G1 ∩ �

(
1, δ

L

)) ⊂
�

(
π
2 , 1

2

)∩ H
+. In the same manner one sees thatγ

(
G2 ∩�

(
1, δ

L

)) ⊂ �
(
π
2 , 1

2

)∩ H
−

and that analogous statements hold for �
(−1, δ

L

)
. In light of the mapping proper-

ties of sin z in neighborhoods of ±π
2 , this means that

γ (z) = γ1
(√

z − 1
) + π

2 and γ (z) = γ2
(√

z + 1
) − π

2 (3.3)

for z ∈ �
(
1, δ

L

)
and z ∈ �

(−1, δ
L

)
, respectively, where γ1 and γ2 are analytic in

�
(
0,

√
δ/L

)
with simple zeros at 0. Because

γ (z) = −i log
(
iz +

√
1 − z2

) = −i
(
log iz + log

(
1 +

√
1 − 1/z2

))
,

with appropriate values of the logarithm and root, there is clearly an absolute con-
stant A for which

|γ (z)| ≥ A log|z| for z∈G\2�. (3.4)

Let u(z) = (z2 +z+1)4 = (z−e2πi/3)4(z−e4πi/3)4. Clearly, |u(z)| < u(1) =
81 for z∈ �̄\{1}, so that

|arg{81 − u(z)}| < π
2 for z∈�. (3.5)

Let g map E one-to-one onto � with g
(−π

2

) = e2πi/3 and g
(
π
2

) = e4πi/3 and
with the point at infinity on the boundary of H

+ corresponding to 1. Clearly, g is
analytic everywhere on ∂E with the exception of π

2 and −π
2 , and in neighborhoods

of these points g is given by

g(z) = g1
(√

z + π
2

) + e2πi/3 and g(z) = g2
(√

z − π
2

) + e4πi/3, (3.6)

respectively, with appropriate branches of the root, where g1 and g2 are analytic
at 0 with simple zeros there. In addition, g(1/z) is analytic in neighborhoods of
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the point at infinity in both H
+ and H

−, so that g ′(z) is bounded outside of any
neighborhood of

{−π
2 , π

2

}
. Since |γ ′(z)| = |1− z2|−1/2 is bounded outside of any

neighborhood of {−1,1}, it follows that the derivative of g(γ (z)) is bounded in the
complement of the

(
1
3

√
δ/L

)
-neighborhood of {−1,1} by a constant that depends

only on α. In addition, a straightforward calculation together with (3.3) and (3.6)
shows that

g(γ (z)) = h1((z + 1)1/4) + e2πi/3 and g(γ (z)) = h2((z − 1)1/4) + e4πi/3,

where h1 and h2 are analytic in �
(
0,

√
δ/L

)
with simple zeros at 0, whence the

derivative of u1(z) = u(g(γ (z))) is bounded in the
(

1
2

√
δ/L

)
-neighborhood of

{−1,1}. Thus, there is an A0 = A0(α) such that

|u′
1(z)| ≤ A0 for z∈G. (3.7)

From (3.2) and (3.4) we have

|u1(z) − 81| ≤ A1

log|z| for z∈G1\2�, (3.8)

and since (as observed previously) |u(z)| < 81 for z∈ �̄\{1}, it follows that

|u1(z) − 81| ≥ A2, z∈G\(G1\2�) = G2 ∪ (G ∩ 2�), (3.9)

where A1 and A2 are positive universal constants. Relation (3.5) implies that

|�{i log(81 − u1(z))}| < π
2 for z∈G.

We define

H(z) = −2i

π
log(81 − u1(z)),

so that
H(G) ⊂ S0 (3.10)

and, because of (3.7) and (3.9),

|H ′(z)| ≤ A3 for z∈G ∩ 2�, (3.11)

where A3 = A3(α).

For each z0 ∈ U with |z0| ≥ 2, we have �(z0, |z0| − 1) ∩ [−1,1] = ∅. This
means that such a z0 has a neighborhood U such that H coincides in U with a
function H1 (manufactured using an appropriate branch of the inverse of sin z) that
is analytic in �(z0, |z0| − 1) and for which H1(�(z0, |z0| − 1)) ⊂ S0. It follows
from (1.6) that

|H ′(z)| ≤ 4

π(|z| − 1)
for z∈G\2�.

Taking (3.11) into account, we see that

|H ′(z)| ≤ A4

|z| + 1
for z∈G (3.12)

for some A4 = A4(α).
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Now consider the function

Fε(z) = zeεH(z)

on G. We have

logF ′
ε(z) = log

(
eεH(z)(1 + εzH ′(z))

) = εH(z) + log(1 + εzH ′(z)),

so that, in light of (3.12),

|logF ′
ε(z) − εH(z)| ≤ 2εA4 on G

provided that ε ∈ [0,1/2A4]. Consequently, taking (3.10) into account shows
us that

logF ′
ε(G) ⊂ (min{α/2,1})S0 for 0 ≤ ε ≤ ε0, (3.13)

where

ε0 = ε0(α) = min{α/2,1,1/2A4(α)}
1 + 2A4(α)

.

For all ε ∈ [0, ε0 ], the function Fε maps G univalently onto Gε = Fε(G); more-
over, by considering f � Fε, one sees that the condition

log f ′(Gε) ⊂ (α/2)S0

is a univalence criterion for Gε. Thus, there is some λ0 = λ0(α) ≥ 1 such that,
for all ε ∈ [0, ε0 ], Gε has the interior chord-arc property with constant λ0. That
is, if p, q ∈ Gε then there is an arc in Gε joining p to q whose length is at most
λ0|q − p|. From the definition of Fε and the fact that, by (3.9), H is bounded on
G2 it follows that there is an ε1 = ε1(α) > 0 such that

|Fε(z) − z| ≤ 1

4λ0
|z| for all z∈G2 and all 0 ≤ ε ≤ ε1. (3.14)

On the other hand, it follows from (3.8) that given ε > 0 there is some K1 =
K1(ε) ≥ 4 depending only on ε and such that, for all z ∈ G1 for which |z| ≥ K1,
we have �{εH(z)} ≥ 2π. Thus, if diam(G1) ≥ K1 then there is a point

z1 ∈G1 with |z1| = K1 and �{εH(z1)} ≥ 2π. (3.15)

From this it follows that as t varies from 0 to 1, Fεt(z1) describes a spiral such
that the segment [0,Fεt(z1)] turns through an angle of at least 2π radians. Since
H(G) ⊂ S0, this spiral lies in the (thin) annulus

A = {z : |z1|e−ε ≤ |z| ≤ |z1|eε}.
Let ε2 = ε2(α) > 0 be so small that

eε2 − e−ε2 <
1

4λ0
.

Then
eε2 − e−ε2 + 1

4λ0
<

1

2λ0
.

Finally, let ε = min{ε0, ε1, ε2}, so that ε depends only on α. If both diam(G1)

and diam(G2) are greater than K1(ε), then there is a point z1 satisfying (3.15) and
a point
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z2 ∈ ∂�(0, |z1|) ∩ G2.

Since, by (3.14),

|Fεt(z2) − z2| ≤ 1

4λ0
|z2|

and since, for some t ∈ [0,1], arg{Fεt(z1)} = arg{z2}, we have

|Fεt(z2) − Fεt(z1)| ≤ |Fεt(z2) − z2| + |z2 − Fεt(z1)|
<

1

4λ0
|z2| + (eε2 − e−ε2)|z2| < |z2|

2λ0
= |z1|

2λ0
.

But by (3.13), any arc in Fεt(G) that joins Fεt(z2) and Fεt(z1) has length at least
e−1 times the length of its inverse image. However, the length of any arc joining
z1 to z2 in G is at least 2(|z1| − 1), so that

2

e
(|z1| − 1) ≤ λ0|Fεt(z2) − Fεt(z1)| ≤ |z1|

2
;

that is,
4

e
≤ |z1|

|z1| − 1
≤ 4

3
,

since |z1| ≥ K1 ≥ 4. This is a contradiction, so at least one of diam(G1) and
diam(G2) must be at most K1(ε). Since ε depends only on α and given our nor-
malizing assumption |b − a| = 2, we have thus shown that G is a John disk with
a constant L′ = K1(ε)/2 that depends only on α.

4. The Case of Nonvertical Strips

The well-known Noshiro–Warschawski theorem [No; W] states that if G is con-
vex and f ′(G) is contained in any half-plane whose boundary contains 0, then f

is univalent, so that log f ′(G) ⊂ π
2 iS0 is a univalence criterion for any such G.

Because S0 is a convex domain that is not a John disk, the case G = S0 itself
shows that, for pure imaginary α, the existence of a univalence criterion of the
form (1.7) does not imply that G is a quasidisk.

Theorem 3. For any α ∈ ∂�\{1, −1}, there is a simply connected domain G 
=
C that is not a John disk but for which

log f ′(G) ⊂ ξαS0 (4.1)

is a univalence criterion for G for some ξ > 0.

Proof. The cases of α = ±i have already been dealt with. For simplicity we as-
sume that −π

2 < arg{α} < 0; the case 0 < arg{α} < π
2 requires only minor

notational changes. Let η > 0 be such that the intersection of ηαS0 with any
vertical line has length at most π

2 . (The largest possible value of η is π
4 |�{α}|,

but this is immaterial.) Then ez is one-to-one on ηαS0 ∪ (iπ + ηαS0), so that
eηαS0 ∩ −eηαS0 = ∅. We set

Pδ = ⋃{eitα�(1, δ) : t ∈ R} = ⋃{�(eitα, |eitα|δ) : t ∈ R}.
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It is easy to see that there is some δ0 ∈ (0, η) such that

e(δ/2)αS0 ⊂ Pδ ⊂ eηαS0 for 0 < δ ≤ δ0. (4.2)

Henceforth we consider only δ ∈ (0, δ0 ]. We define

Gδ = Pδ ∪ � ∪ −Pδ. (4.3)

From (4.2) it follows that Pδ ∩ −Pδ = ∅ for δ ∈ (0, δ0 ]. The domains Pδ and −Pδ

spiral outward from the origin to infinity. We will show that there is a δ ∈ (0, δ0 ]
such that for Gδ , which is clearly not a John disk, (4.1) is a univalence criterion
for all sufficiently small ξ. Briefly, this is so because (a) for all sufficiently small
ξ, (4.1) with G = Pδ ∪� or G = −Pδ ∪� implies univalence, since each of these
domains is a quasidisk; and (b) for all sufficiently small ξ, any function satisfying
(4.1) and f(0) = 0 maps Pδ into a domain very close (in the appropriate sense) to
Pδ , so that it stays away from −Pδ (which obviously has the analogous property).

We set
L0 = eiαR = {eiαt : t ∈ R}.

Clearly, for any t ∈ R, Pδ and L0 are mapped onto themselves by the function
eiαtz. Let

F(ε, δ) = {f : log f ′(Pδ) ⊂ εαS0}.
Since Pδ is a quasidisk, it follows (cf. the explanation of (1.7)) that there is an

ε(δ) > 0 such that all f ∈ F(ε(δ), δ) are univalent. Suppose ε ∈ (0, ε(δ)) and f ∈
F(ε, δ), and set

g(z) = f(z)

f ′(1)
.

By (4.2), e(δ/2)αS0 ⊂ Pδ and the appropriate branch of log g ′ maps e(δ/2)αS0 into
2εαS0 with log g ′(1) = 0. The function

h(z) = 1

2εα
log g ′(e(δ/2)αz)

maps S0 into itself with h(0) = 0. Because the function H(z) = − 2i
π

log 1+z

1−z
maps

� one-to-one onto S0, we have

h � H(z) = H � ω(z),

where ω : � → � with ω(0) = 0. If we express it as H(x), x ∈ (−1,1), then

|h(it)| =
∣∣∣∣h

(
−2i

π
log

1 + x

1 − x

)∣∣∣∣ =
∣∣∣∣−2i

π
log

1 + ω(x)

1 − ω(x)

∣∣∣∣
≤ 1 + 2

π
log

1 + |x|
1 − |x| = 1 + |H(x)| = 1 + |t |,

where the inequality follows from the Schwarz lemma together with the fact that∣∣arg
{1+ω(z)

1−ω(z)

}∣∣ < π
2 . Thus |h(it)| ≤ 1 + |t | for all t ∈ R, so that

|log g ′(e iαt )| ≤ 2ε
(
1 + 2

δ
|t |)

and therefore
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|f ′(e iαt )| ≤ |f ′(1)|e4ε|t |/δe2ε.

We set w(t) = f(eiαt ), so that w ′(t) = iαf ′(e iαt )e iαt ; consequently, by the fore-
going bound we have

|w ′(t)| ≤ |f ′(1)|e4ε|t |/δ+t5τ0e2ε,

where 5τ0 = −�{α} > 0. Thus
∫ 0
−∞|w ′(t)| dt converges as long as 4ε/δ < 5τ0,

so that lim t→−∞ f(eiαt ) exists for 0 < ε ≤ τ0δ. We call this limit f(0). Now let
ε1(δ) = min{ε(δ), τ0δ}. To normalize, we assume without loss of generality that
f ∈ F(ε1(δ), δ) has f(0) = 0. With this convention, for any M, r > 0 the family

{f ∈ F(ε1(δ), δ) : |f ′(1)| ≤ M}
is compact with respect to uniform convergence on the curve (L0 ∪{0})∩ r� and,
in addition, 0 ∈ ∂f(Pδ) for all f ∈ F(ε1(δ), δ).

Lemma 2. With notation as before, for each δ ∈ (0, δ0 ] and each τ > 0 there is
an ε2(δ, τ) ≤ ε1(δ) such that, for all f ∈ F(ε2(δ, τ), δ),

|f(eitα) − eisα| < τ |eisα| for all t ∈ R, (4.4)

where s = s(t)∈ R is defined by |f(eitα)| = |eisα|.
Proof. We use a compactness argument. Suppose, to the contrary, that there are
real sequences {εn} ⊂ (0, ε1(δ)), εn → 0, and {tn} as well as functions fn ∈
F(εn, δ) for which

|fn(e
itnα) − eisnα| ≥ τ |eisnα|,

where sn = s(tn). The functions

gn(z) = fn(e
itnαz)/e isnα

are univalent in Pδ with |gn(1)| = 1 and gn(0) = 0. Since 0 ∈ ∂gn(Pδ), it follows
from the fact that dist(1, ∂Pδ) = δ and the 1

4 -theorem that |gn(1)/δg ′
n(1)| ≥ 1

4 , so
that |g ′

n(1)| ≤ 4
δ
. Thus {gn} is a normal family of functions with

gn ∈ F(εn, δ) and |gn(1) − 1| ≥ τ.

There is a subsequence of {gn} that tends locally uniformly in Pδ and uniformly on
(L0 ∪ {0})∩ 2� to a function g0 with |g0(1)| = 1, g0(0) = 0, and |g0(1)−1| ≥ τ.

But since log g ′
n(Pδ) ⊂ εnαS0 and εn → 0 as n → ∞, it follows that g ′

0 must have
a constant value c ∈ (L0 ∪ {0}) ∩ 4

δ
�. Since |g0(1)| = 1 and g0(0) = 0, we have

|c| = 1. Since we are assuming that α /∈ R, we have L0 ∩∂� = {1}, so that, in fact,
c = 1. But then g0(z) = z, which is a contradiction because |g0(1) − 1| ≥ τ.

We return now to the proof of Theorem 3. An almost identical compactness argu-
ment shows that for each δ ∈ (0, δ0 ] and each τ > 0 there is an ε3(δ, τ) ≤ ε2(δ, τ)
such that, for all f ∈ F(ε3(δ, τ), δ),∣∣∣∣e

itαf ′(e itα)

e isα
− 1

∣∣∣∣ < τ for all t ∈ R, (4.5)

where s = s(t) is, as before, the number such that |f(eitα)| = |eisα|.
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Now (1.6) shows that if h is analytic in �(a, ρ) and if h(�(a, ρ)) ⊂ εαS0, then
|h′(a + z)| ≤ Kε

ρ−|z| for |z| < ρ. Here, K = 4
π
. Thus, if

log f ′(�(a, ρ)) ⊂ εαS0

then ∣∣∣∣f
′′

f ′ (a + z)

∣∣∣∣ ≤ Kε

ρ − |z| .

From this we obtain∣∣∣∣log
f ′(a + z)

f ′(a)

∣∣∣∣ ≤ −Kε log
ρ − |z|

ρ
= log

(
1 − |z|

ρ

)−Kε

,

so that

|f ′(z + a)| ≤ |f ′(a)|
(

1 − |z|
ρ

)−Kε

,

from which in turn it follows on integrating that

|f(a + z) − f(a)| ≤ ρ|f ′(a)|
1 − Kε

(4.6)

for |z| ≤ ρ.

Let δ ∈ (0, δ0 ], f ∈ F(ε3(δ, τ), δ), ε ≤ ε3(δ, τ), and z ∈ �(eitα, |eitα|δ). Then
by (4.6) and Lemma 2 we have that

|f(z) − eisα| ≤ |f(z) − f(eitα)| + |f(eitα) − eisα|

≤ |eitα||f ′(e itα)|δ
1 − Kε

+ τ |eisα|. (4.7)

But from (4.5) it follows that |eitαf ′(e itα) − eisα| < τ |eisα|, so that

|eitαf ′(e itα)| < (τ + 1)|eisα|.
Therefore, in light of (4.7), we have

|f(z) − eisα| ≤
(
(τ + 1)δ

1 − Kε
+ τ

)
|eisα|. (4.8)

Let 2δ < δ0. Then, for τ > 0 sufficiently close to 0 and ε ∈ (0, ε3(δ, τ)) also suf-
ficiently small, it follows that (τ+1)δ

1−Kε
+ τ < δ0, so that (4.8) and (4.2) imply f(z)∈

eηαS0 . In other words, for these values of δ, τ, and ε,

f(Pδ) ⊂ eηαS0 . (4.9)

Obviously, an analogous statement holds for −Pδ. But since �∪Pδ and −Pδ ∪�

are quasidisks, there is some ξ ∈ (0, ε] for which (4.1) with G = Pδ ∪ � or G =
−Pδ ∪ � implies univalence. If log f ′(Gδ) ⊂ ξαS0, then the only way such an
f could fail to be univalent would be for f(p1) = f(p2), where p1 ∈ Pδ\� and
p2 ∈ (−Pδ)\�. But this is impossible by (4.9) and its analogue for −Pδ , since
eηαS0 ∩ −eηαS0 = ∅. Thus, indeed, log f ′(Gδ) ⊂ ξαS0 is a univalence criterion
for G = Gδ. Since Gδ is obviously not a John disk, the proof of Theorem 3 is
complete.
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